1
|
Nishijima M, Kobayashi K, Masuda-Endo M, Yoda H, Koike-Takeshita A. Regioselective photocyclodimerization of 2-anthracenecarboxylic acid through ATP hydrolysis-driven conformational change using simulation prediction-designed GroEL mutant. J Biosci Bioeng 2024; 138:283-289. [PMID: 39097441 DOI: 10.1016/j.jbiosc.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 08/05/2024]
Abstract
GroEL, a chaperone protein responsible for peptide and denatured protein folding, undergoes substantial conformational changes driven by ATP binding and hydrolysis during folding. Utilizing these conformational changes, we demonstrated the GroEL-mediated regioselective photocyclodimerization of 2-anthracenecarboxylic acid (AC) using ATP hydrolysis as an external stimulus. We designed and prepared an optimal GroEL mutant to employ in a docking simulation that has been actively used in recent years. Based on the large difference in the motif of hydrogen bonds between AC and GroEL mutant compared with the wild-type, we predicted that GroELMEL, in which the 307‒309th amino acid residues were mutated to Ala, could alter the orientation of bound AC in GroEL. The GroELMEL-mediated photocyclodimerization of AC can be used for regioselective inversion upon ATP addition to a moderate extent.
Collapse
Affiliation(s)
- Masaki Nishijima
- National Institute of Technology (KOSEN), Wakayama College, 77 Noshima, Gobo, Wakayama 644-0023, Japan.
| | - Kota Kobayashi
- Department of Applied Chemistry and Bioscience, Graduate School of Engineering, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Megumi Masuda-Endo
- Biomedical Research Center, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Hiromi Yoda
- Department of Applied Chemistry and Bioscience, Graduate School of Engineering, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan; Biomedical Research Center, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Ayumi Koike-Takeshita
- Department of Applied Chemistry and Bioscience, Graduate School of Engineering, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan; Biomedical Research Center, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| |
Collapse
|
2
|
Wagner J, Carvajal AI, Bracher A, Beck F, Wan W, Bohn S, Körner R, Baumeister W, Fernandez-Busnadiego R, Hartl FU. Visualizing chaperonin function in situ by cryo-electron tomography. Nature 2024; 633:459-464. [PMID: 39169181 PMCID: PMC11390479 DOI: 10.1038/s41586-024-07843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Chaperonins are large barrel-shaped complexes that mediate ATP-dependent protein folding1-3. The bacterial chaperonin GroEL forms juxtaposed rings that bind unfolded protein and the lid-shaped cofactor GroES at their apertures. In vitro analyses of the chaperonin reaction have shown that substrate protein folds, unimpaired by aggregation, while transiently encapsulated in the GroEL central cavity by GroES4-6. To determine the functional stoichiometry of GroEL, GroES and client protein in situ, here we visualized chaperonin complexes in their natural cellular environment using cryo-electron tomography. We find that, under various growth conditions, around 55-70% of GroEL binds GroES asymmetrically on one ring, with the remainder populating symmetrical complexes. Bound substrate protein is detected on the free ring of the asymmetrical complex, defining the substrate acceptor state. In situ analysis of GroEL-GroES chambers, validated by high-resolution structures obtained in vitro, showed the presence of encapsulated substrate protein in a folded state before release into the cytosol. Based on a comprehensive quantification and conformational analysis of chaperonin complexes, we propose a GroEL-GroES reaction cycle that consists of linked asymmetrical and symmetrical subreactions mediating protein folding. Our findings illuminate the native conformational and functional chaperonin cycle directly within cells.
Collapse
Affiliation(s)
- Jonathan Wagner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Research Group Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Alonso I Carvajal
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Beck
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - William Wan
- Vanderbilt University Center for Structural Biology, Nashville, TN, USA
| | - Stefan Bohn
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Structural Biology, Helmholtz Center Munich, Oberschleissheim, Germany
| | - Roman Körner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Baumeister
- Research Group Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Ruben Fernandez-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Faculty of Physics, University of Göttingen, Göttingen, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
3
|
Liao Z, Gopalasingam CC, Kameya M, Gerle C, Shigematsu H, Ishii M, Arakawa T, Fushinobu S. Structural insights into thermophilic chaperonin complexes. Structure 2024; 32:679-689.e4. [PMID: 38492570 DOI: 10.1016/j.str.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024]
Abstract
Group I chaperonins are dual heptamer protein complexes that play significant roles in protein homeostasis. The structure and function of the Escherichia coli chaperonin are well characterized. However, the dynamic properties of chaperonins, such as large ATPase-dependent conformational changes by binding of lid-like co-chaperonin GroES, have made structural analyses challenging, and our understanding of these changes during the turnover of chaperonin complex formation is limited. In this study, we used single-particle cryogenic electron microscopy to investigate the structures of GroES-bound chaperonin complexes from the thermophilic hydrogen-oxidizing bacteria Hydrogenophilus thermoluteolus and Hydrogenobacter thermophilus in the presence of ATP and AMP-PNP. We captured the structure of an intermediate state chaperonin complex, designated as an asymmetric football-shaped complex, and performed analyses to decipher the dynamic structural variations. Our structural analyses of inter- and intra-subunit communications revealed a unique mechanism of complex formation through the binding of a second GroES to a bullet-shaped complex.
Collapse
Affiliation(s)
- Zengwei Liao
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan
| | - Chai C Gopalasingam
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, Sayo, Hyogo 1-1-1, Japan
| | - Masafumi Kameya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan
| | - Christoph Gerle
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, Sayo, Hyogo 1-1-1, Japan
| | - Hideki Shigematsu
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, Japan
| | - Masaharu Ishii
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan
| | - Takatoshi Arakawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.
| | - Shinya Fushinobu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan.
| |
Collapse
|
4
|
Marie A, Georgescauld F, Johnson KR, Ray S, Engen JR, Ivanov AR. Native Capillary Electrophoresis-Mass Spectrometry of Near 1 MDa Non-Covalent GroEL/GroES/Substrate Protein Complexes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306824. [PMID: 38191978 PMCID: PMC10953559 DOI: 10.1002/advs.202306824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Protein complexes are essential for proteins' folding and biological function. Currently, native analysis of large multimeric protein complexes remains challenging. Structural biology techniques are time-consuming and often cannot monitor the proteins' dynamics in solution. Here, a capillary electrophoresis-mass spectrometry (CE-MS) method is reported to characterize, under near-physiological conditions, the conformational rearrangements of ∽1 MDa GroEL upon complexation with binding partners involved in a protein folding cycle. The developed CE-MS method is fast (30 min per run), highly sensitive (low-amol level), and requires ∽10 000-fold fewer samples compared to biochemical/biophysical techniques. The method successfully separates GroEL14 (∽800 kDa), GroEL7 (∽400 kDa), GroES7 (∽73 kDa), and NanA4 (∽130 kDa) oligomers. The non-covalent binding of natural substrate proteins with GroEL14 can be detected and quantified. The technique allows monitoring of GroEL14 conformational changes upon complexation with (ATPγS)4-14 and GroES7 (∽876 kDa). Native CE-pseudo-MS3 analyses of wild-type (WT) GroEL and two GroEL mutants result in up to 60% sequence coverage and highlight subtle structural differences between WT and mutated GroEL. The presented results demonstrate the superior CE-MS performance for multimeric complexes' characterization versus direct infusion ESI-MS. This study shows the CE-MS potential to provide information on binding stoichiometry and kinetics for various protein complexes.
Collapse
Affiliation(s)
- Anne‐Lise Marie
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Florian Georgescauld
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Kendall R. Johnson
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Somak Ray
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - John R. Engen
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| |
Collapse
|
5
|
Gardner S, Darrow MC, Lukoyanova N, Thalassinos K, Saibil HR. Structural basis of substrate progression through the bacterial chaperonin cycle. Proc Natl Acad Sci U S A 2023; 120:e2308933120. [PMID: 38064510 PMCID: PMC10723157 DOI: 10.1073/pnas.2308933120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023] Open
Abstract
The bacterial chaperonin GroEL-GroES promotes protein folding through ATP-regulated cycles of substrate protein binding, encapsulation, and release. Here, we have used cryoEM to determine structures of GroEL, GroEL-ADP·BeF3, and GroEL-ADP·AlF3-GroES all complexed with the model substrate Rubisco. Our structures provide a series of snapshots that show how the conformation and interactions of non-native Rubisco change as it proceeds through the GroEL-GroES reaction cycle. We observe specific charged and hydrophobic GroEL residues forming strong initial contacts with non-native Rubisco. Binding of ATP or ADP·BeF3 to GroEL-Rubisco results in the formation of an intermediate GroEL complex displaying striking asymmetry in the ATP/ADP·BeF3-bound ring. In this ring, four GroEL subunits bind Rubisco and the other three are in the GroES-accepting conformation, suggesting how GroEL can recruit GroES without releasing bound substrate. Our cryoEM structures of stalled GroEL-ADP·AlF3-Rubisco-GroES complexes show Rubisco folding intermediates interacting with GroEL-GroES via different sets of residues.
Collapse
Affiliation(s)
- Scott Gardner
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, LondonWC1E 7HX, United Kingdom
| | | | - Natalya Lukoyanova
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, LondonWC1E 7HX, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, LondonWC1E 7HX, United Kingdom
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, LondonWC1E 6BT, United Kingdom
| | - Helen R. Saibil
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, LondonWC1E 7HX, United Kingdom
| |
Collapse
|
6
|
Kim H, Park J, Lim S, Jun SH, Jung M, Roh SH. Cryo-EM structures of GroEL:ES 2 with RuBisCO visualize molecular contacts of encapsulated substrates in a double-cage chaperonin. iScience 2022; 25:103704. [PMID: 35036883 PMCID: PMC8749442 DOI: 10.1016/j.isci.2021.103704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 10/24/2022] Open
Abstract
The GroEL/GroES chaperonin system assists the folding of many proteins, through conformational transitions driven by ATP hydrolysis. Although structural information about bullet-shaped GroEL:ES1 complexes has been extensively reported, the substrate interactions of another functional complex, the football-shaped GroEL:ES2, remain elusive. Here, we report single-particle cryo-EM structures of reconstituted wild-type GroEL:ES2 complexes with a chemically denatured substrate, ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO). Our structures demonstrate that native-like folded RuBisCO density is captured at the lower part of the GroEL chamber and that GroEL's bulky hydrophobic residues Phe281, Tyr360, and Phe44 contribute to direct contact with RuBisCO density. In addition, our analysis found that GroEL:ES2 can be occupied by two substrates simultaneously, one in each chamber. Together, these observations provide insights to the football-shaped GroEL:ES2 complex as a functional state to assist the substrate folding with visualization.
Collapse
Affiliation(s)
- Hyunmin Kim
- School of Biology, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsun Park
- School of Biology, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Seyeon Lim
- School of Biology, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hoon Jun
- Korea Basic Science Institute, Ochang 28119, Republic of Korea
| | - Mingyu Jung
- School of Biology, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Soung-Hun Roh
- School of Biology, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Horovitz A, Reingewertz TH, Cuéllar J, Valpuesta JM. Chaperonin Mechanisms: Multiple and (Mis)Understood? Annu Rev Biophys 2022; 51:115-133. [DOI: 10.1146/annurev-biophys-082521-113418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The chaperonins are ubiquitous and essential nanomachines that assist in protein folding in an ATP-driven manner. They consist of two back-to-back stacked oligomeric rings with cavities in which protein (un)folding can take place in a shielding environment. This review focuses on GroEL from Escherichia coli and the eukaryotic chaperonin-containing t-complex polypeptide 1, which differ considerably in their reaction mechanisms despite sharing a similar overall architecture. Although chaperonins feature in many current biochemistry textbooks after being studied intensively for more than three decades, key aspects of their reaction mechanisms remain under debate and are discussed in this review. In particular, it is unclear whether a universal reaction mechanism operates for all substrates and whether it is passive, i.e., aggregation is prevented but the folding pathway is unaltered, or active. It is also unclear how chaperonin clients are distinguished from nonclients and what are the precise roles of the cofactors with which chaperonins interact. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Amnon.H
| | - Tali Haviv Reingewertz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Amnon.H
| | - Jorge Cuéllar
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José María Valpuesta
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
8
|
Yoda H, Koike-Takeshita A. TEM and STEM-EDS evaluation of metal nanoparticle encapsulation in GroEL/GroES complexes according to the reaction mechanism of chaperonin. Microscopy (Oxf) 2021; 70:289-296. [PMID: 33173948 DOI: 10.1093/jmicro/dfaa064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 11/12/2022] Open
Abstract
Escherichia coli chaperonin GroEL, which is a large cylindrical protein complex comprising two heptameric rings with cavities of 4.5 nm each in the center, assists in intracellular protein folding with the aid of GroES and adenosine triphosphate (ATP). Here, we investigated the possibility that GroEL can also encapsulate metal nanoparticles (NPs) up to ∼5 nm in diameter into the cavities with the aid of GroES and ATP. The slow ATP-hydrolyzing GroELD52A/D398A mutant, which forms extremely stable complexes with GroES (half-time of ∼6 days), made it possible to analyze GroEL/GroES complexes containing metal NPs. Scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy analysis proved distinctly that FePt NPs and Au NPs were encapsulated in the GroEL/GroES complexes. Dynamic light scattering measurements showed that the NPs in the GroEL/GroES complex were able to maintain their dispersibility in solution. We previously described that the incubation of GroEL and GroES in the presence of ATP·BeFx and adenosine diphosphate·BeFx resulted in the formation of symmetric football-shaped and asymmetric bullet-shaped complexes, respectively. Based on this knowledge, we successfully constructed the football-shaped complex in which two compartments were occupied by Pt or Au NPs (first compartment) and FePt NPs (second compartment). This study showed that metal NPs were sequentially encapsulated according to the GroEL reaction in a step-by-step manner. In light of these results, chaperonin can be used as a tool for handling nanomaterials.
Collapse
Affiliation(s)
- Hiromi Yoda
- Department of Applied Chemistry and Bioscience, Graduate School of Engineering, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Ayumi Koike-Takeshita
- Department of Applied Chemistry and Bioscience, Graduate School of Engineering, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| |
Collapse
|
9
|
Chaperonins: Nanocarriers with Biotechnological Applications. NANOMATERIALS 2021; 11:nano11020503. [PMID: 33671209 PMCID: PMC7922521 DOI: 10.3390/nano11020503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 12/18/2022]
Abstract
Chaperonins are molecular chaperones found in all kingdoms of life, and as such they assist in the folding of other proteins. Structurally, chaperonins are cylinders composed of two back-to-back rings, each of which is an oligomer of ~60-kDa proteins. Chaperonins are found in two main conformations, one in which the cavity is open and ready to recognise and trap unfolded client proteins, and a "closed" form in which folding takes place. The conspicuous properties of this structure (a cylinder containing a cavity that allows confinement) and the potential to control its closure and aperture have inspired a number of nanotechnological applications that will be described in this review.
Collapse
|
10
|
Korobko I, Mazal H, Haran G, Horovitz A. Measuring protein stability in the GroEL chaperonin cage reveals massive destabilization. eLife 2020; 9:56511. [PMID: 32716842 PMCID: PMC7440923 DOI: 10.7554/elife.56511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/25/2020] [Indexed: 01/29/2023] Open
Abstract
The thermodynamics of protein folding in bulk solution have been thoroughly investigated for decades. By contrast, measurements of protein substrate stability inside the GroEL/ES chaperonin cage have not been reported. Such measurements require stable encapsulation, that is no escape of the substrate into bulk solution during experiments, and a way to perturb protein stability without affecting the chaperonin system itself. Here, by establishing such conditions, we show that protein stability in the chaperonin cage is reduced dramatically by more than 5 kcal mol-1 compared to that in bulk solution. Given that steric confinement alone is stabilizing, our results indicate that hydrophobic and/or electrostatic effects in the cavity are strongly destabilizing. Our findings are consistent with the iterative annealing mechanism of action proposed for the chaperonin GroEL.
Collapse
Affiliation(s)
- Ilia Korobko
- Departments of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hisham Mazal
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Gilad Haran
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Amnon Horovitz
- Departments of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
Abstract
This chronologue seeks to document the discovery and development of an understanding of oligomeric ring protein assemblies known as chaperonins that assist protein folding in the cell. It provides detail regarding genetic, physiologic, biochemical, and biophysical studies of these ATP-utilizing machines from both in vivo and in vitro observations. The chronologue is organized into various topics of physiology and mechanism, for each of which a chronologic order is generally followed. The text is liberally illustrated to provide firsthand inspection of the key pieces of experimental data that propelled this field. Because of the length and depth of this piece, the use of the outline as a guide for selected reading is encouraged, but it should also be of help in pursuing the text in direct order.
Collapse
|
12
|
Physicochemical Properties of the Mammalian Molecular Chaperone HSP60. Int J Mol Sci 2018; 19:ijms19020489. [PMID: 29415503 PMCID: PMC5855711 DOI: 10.3390/ijms19020489] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/02/2022] Open
Abstract
The E. coli GroEL/GroES chaperonin complex acts as a folding cage by producing a bullet-like asymmetric complex, and GroEL exists as double rings regardless of the presence of adenosine triphosphate (ATP). Its mammalian chaperonin homolog, heat shock protein, HSP60, and co-chaperonin, HSP10, play an essential role in protein folding by capturing unfolded proteins in the HSP60/HSP10 complex. However, the structural transition in ATPase-dependent reaction cycle has remained unclear. We found nucleotide-dependent association and dissociation of the HSP60/HSP10 complex using various analytical techniques under near physiological conditions. Our results showed that HSP60 exist as a significant number of double-ring complexes (football- and bullet-type complexes) and a small number of single-ring complexes in the presence of ATP and HSP10. HSP10 binds to HSP60 in the presence of ATP, which increased the HSP60 double-ring formation. After ATP is hydrolyzed to Adenosine diphosphate (ADP), HSP60 released the HSP10 and the dissociation of the double-ring to single-rings occurred. These results indicated that HSP60/HSP10 undergoes an ATP-dependent transition between the single- and double-rings in their system that is highly distinctive from the GroEL/GroES system particularly in the manner of complex formation and the roles of ATP binding and hydrolysis in the reaction cycle.
Collapse
|
13
|
Wälti MA, Clore GM. Disassembly/reassembly strategy for the production of highly pure GroEL, a tetradecameric supramolecular machine, suitable for quantitative NMR, EPR and mutational studies. Protein Expr Purif 2017; 142:8-15. [PMID: 28951283 DOI: 10.1016/j.pep.2017.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 11/20/2022]
Abstract
GroEL, a prototypical member of the chaperonin class of chaperones, is a large supramocular machine that assists protein folding and plays an important role in proteostasis. GroEL comprises two heptameric rings, each of which encloses a large cavity that provides a folding chamber for protein substrates. Many questions remain regarding the mechanistic details of GroEL facilitated protein folding. Thus, data at atomic resolution of the type provided by NMR and EPR are invaluable. Such studies often require complete deuteration of GroEL, uniform or residue specific 13C and 15N isotope labeling, and the introduction of selective cysteine mutations for site-specific spin labeling. In addition, high purity GroEL is essential for detailed studies of substrate-GroEL interactions as quantitative interpretation is impossible if the cavities are already occupied and blocked by other protein substrates present in the bacterial expression system. Here we present a new purification protocol designed to provide highly pure GroEL devoid of non-specific protein substrate contamination.
Collapse
Affiliation(s)
- Marielle A Wälti
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| |
Collapse
|
14
|
Chaperonin GroEL accelerates protofibril formation and decorates fibrils of the Het-s prion protein. Proc Natl Acad Sci U S A 2017; 114:9104-9109. [PMID: 28784759 DOI: 10.1073/pnas.1711645114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have studied the interaction of the prototypical chaperonin GroEL with the prion domain of the Het-s protein using solution and solid-state NMR, electron and atomic force microscopies, and EPR. While GroEL accelerates Het-s protofibril formation by several orders of magnitude, the rate of appearance of fibrils is reduced. GroEL remains bound to Het-s throughout the aggregation process and densely decorates the fibrils at a regular spacing of ∼200 Å. GroEL binds to the Het-s fibrils via its apical domain located at the top of the large open ring. Thus, apo GroEL and bullet-shaped GroEL/GroES complexes in which only a single ring is capped by GroES interact with the Het-s fibrils; no evidence is seen for any interaction with football-shaped GroEL/GroES complexes in which both rings are capped by GroES. EPR spectroscopy shows that rotational motion of a nitroxide spin label, placed at the N-terminal end of the first β-strand of Het-s fibrils, is significantly reduced in both Het-s/GroEL aggregates and Het-s fibrils, but virtually completely eliminated in Het-s/GroEL fibrils, suggesting that in the latter, GroEL may come into close proximity to the nitroxide label. Solid-state NMR measurements indicate that GroEL binds to the mobile regions of the Het-s fibril comprising the N-terminal tail and a loop connecting β-strands 4 and 5, consistent with interactions involving GroEL binding consensus sequences located therein.
Collapse
|
15
|
Weiss C, Jebara F, Nisemblat S, Azem A. Dynamic Complexes in the Chaperonin-Mediated Protein Folding Cycle. Front Mol Biosci 2016; 3:80. [PMID: 28008398 PMCID: PMC5143341 DOI: 10.3389/fmolb.2016.00080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/23/2016] [Indexed: 11/13/2022] Open
Abstract
The GroEL–GroES chaperonin system is probably one of the most studied chaperone systems at the level of the molecular mechanism. Since the first reports of a bacterial gene involved in phage morphogenesis in 1972, these proteins have stimulated intensive research for over 40 years. During this time, detailed structural and functional studies have yielded constantly evolving concepts of the chaperonin mechanism of action. Despite of almost three decades of research on this oligomeric protein, certain aspects of its function remain controversial. In this review, we highlight one central aspect of its function, namely, the active intermediates of its reaction cycle, and present how research to this day continues to change our understanding of chaperonin-mediated protein folding.
Collapse
Affiliation(s)
- Celeste Weiss
- George S. Weiss Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University Tel Aviv, Israel
| | - Fady Jebara
- George S. Weiss Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University Tel Aviv, Israel
| | - Shahar Nisemblat
- George S. Weiss Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University Tel Aviv, Israel
| | - Abdussalam Azem
- George S. Weiss Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University Tel Aviv, Israel
| |
Collapse
|
16
|
Suzuki Y, Yura K. Conformational shift in the closed state of GroEL induced by ATP-binding triggers a transition to the open state. Biophys Physicobiol 2016; 13:127-134. [PMID: 27924266 PMCID: PMC5042161 DOI: 10.2142/biophysico.13.0_127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/12/2016] [Indexed: 01/11/2023] Open
Abstract
We investigated the effect of ATP binding to GroEL and elucidated a role of ATP in the conformational change of GroEL. GroEL is a tetradecamer chaperonin that helps protein folding by undergoing a conformational change from a closed state to an open state. This conformational change requires ATP, but does not require the hydrolysis of the ATP. The following three types of conformations are crystalized and the atomic coordinates are available; closed state without ATP, closed state with ATP and open state with ADP. We conducted simulations of the conformational change using Elastic Network Model from the closed state without ATP targeting at the open state, and from the closed state with ATP targeting at the open state. The simulations emphasizing the lowest normal mode showed that the one started with the closed state with ATP, rather than the one without ATP, reached a conformation closer to the open state. This difference was mainly caused by the changes in the positions of residues in the initial structure rather than the changes in "connectivity" of residues within the subunit. Our results suggest that ATP should behave as an insulator to induce conformation population shift in the closed state to the conformation that has a pathway leading to the open state.
Collapse
Affiliation(s)
- Yuka Suzuki
- Department of Biology, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan; Center for Informational Biology, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan; National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
17
|
Iizuka R, Funatsu T. Chaperonin GroEL uses asymmetric and symmetric reaction cycles in response to the concentration of non-native substrate proteins. Biophys Physicobiol 2016; 13:63-69. [PMID: 27924258 PMCID: PMC5042173 DOI: 10.2142/biophysico.13.0_63] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/07/2016] [Indexed: 12/01/2022] Open
Abstract
The Escherichia coli chaperonin GroEL is an essential molecular chaperone that mediates protein folding in association with its cofactor, GroES. It is widely accepted that GroEL alternates the GroES-sealed folding-active rings during the reaction cycle. In other words, an asymmetric GroEL–GroES complex is formed during the cycle, whereas a symmetric GroEL–(GroES)2 complex is not formed. However, this conventional view has been challenged by the recent reports indicating that such symmetric complexes can be formed in the GroEL–GroES reaction cycle. In this review, we discuss the studies of the symmetric GroEL–(GroES)2 complex, focusing on the molecular mechanism underlying its formation. We also suggest that GroEL can be involved in two types of reaction cycles (asymmetric or symmetric) and the type of cycle used depends on the concentration of non-native substrate proteins.
Collapse
Affiliation(s)
- Ryo Iizuka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Funatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
The GroEL-GroES Chaperonin Machine: A Nano-Cage for Protein Folding. Trends Biochem Sci 2015; 41:62-76. [PMID: 26422689 DOI: 10.1016/j.tibs.2015.07.009] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/21/2015] [Accepted: 07/31/2015] [Indexed: 01/12/2023]
Abstract
The bacterial chaperonin GroEL and its cofactor GroES constitute the paradigmatic molecular machine of protein folding. GroEL is a large double-ring cylinder with ATPase activity that binds non-native substrate protein (SP) via hydrophobic residues exposed towards the ring center. Binding of the lid-shaped GroES to GroEL displaces the bound protein into an enlarged chamber, allowing folding to occur unimpaired by aggregation. GroES and SP undergo cycles of binding and release, regulated allosterically by the GroEL ATPase. Recent structural and functional studies are providing insights into how the physical environment of the chaperonin cage actively promotes protein folding, in addition to preventing aggregation. Here, we review different models of chaperonin action and discuss issues of current debate.
Collapse
|
19
|
Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes. J Mol Biol 2015; 427:2244-55. [PMID: 25912285 DOI: 10.1016/j.jmb.2015.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 11/21/2022]
Abstract
The chaperonin GroEL, a cylindrical complex consisting of two stacked heptameric rings, and its lid-like cofactor GroES form a nano-cage in which a single polypeptide chain is transiently enclosed and allowed to fold unimpaired by aggregation. GroEL and GroES undergo an ATP-regulated interaction cycle that serves to close and open the folding cage. Recent reports suggest that the presence of non-native substrate protein alters the GroEL/ES reaction by shifting it from asymmetric to symmetric complexes. In the asymmetric reaction mode, only one ring of GroEL is GroES bound and the two rings function sequentially, coupled by negative allostery. In the symmetric mode, both GroEL rings are GroES bound and are folding active simultaneously. Here, we find that the results of assays based on fluorescence resonance energy transfer recently used to quantify symmetric complexes depend strongly on the fluorophore pair used. We therefore developed a novel assay based on fluorescence cross-correlation spectroscopy to accurately measure GroEL:GroES stoichiometry. This assay avoids fluorophore labeling of GroEL and the use of GroEL cysteine mutants. Our results show that symmetric GroEL:GroES2 complexes are substantially populated only in the presence of non-foldable model proteins, such as α-lactalbumin and α-casein, which "over-stimulate" the GroEL ATPase and uncouple the negative GroEL inter-ring allostery. In contrast, asymmetric complexes are dominant both in the absence of substrate and in the presence of foldable substrate proteins. Moreover, uncoupling of the GroEL rings and formation of symmetric GroEL:GroES2 complexes is suppressed at physiological ATP:ADP concentration. We conclude that the asymmetric GroEL:GroES complex represents the main folding active form of the chaperonin.
Collapse
|
20
|
Taguchi H. Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate. J Mol Biol 2015; 427:2912-8. [PMID: 25900372 DOI: 10.1016/j.jmb.2015.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/12/2015] [Accepted: 04/14/2015] [Indexed: 11/13/2022]
Abstract
Chaperonin GroEL is an essential chaperone that assists in protein folding in the cell. Since one GroEL ring binds one GroES heptamer, the GroEL double ring permits the formation of two types of GroEL:GroES complexes: asymmetric 1:1 "bullet"-shaped and symmetric 1:2 "football"-shaped GroEL:GroES2 complexes. There have been continuing debates about the mechanism and which complex is critical to the chaperonin-assisted folding. In this review, I summarize the recent progress on the football complex.
Collapse
Affiliation(s)
- Hideki Taguchi
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
21
|
Ishino S, Kawata Y, Taguchi H, Kajimura N, Matsuzaki K, Hoshino M. Effects of C-terminal Truncation of Chaperonin GroEL on the Yield of In-cage Folding of the Green Fluorescent Protein. J Biol Chem 2015; 290:15042-51. [PMID: 25887400 DOI: 10.1074/jbc.m114.633636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Indexed: 11/06/2022] Open
Abstract
Chaperonin GroEL from Escherichia coli consists of two heptameric rings stacked back-to-back to form a cagelike structure. It assists in the folding of substrate proteins in concert with the co-chaperonin GroES by incorporating them into its large cavity. The mechanism underlying the incorporation of substrate proteins currently remains unclear. The flexible C-terminal residues of GroEL, which are invisible in the x-ray crystal structure, have recently been suggested to play a key role in the efficient encapsulation of substrates. These C-terminal regions have also been suggested to separate the double rings of GroEL at the bottom of the cavity. To elucidate the role of the C-terminal regions of GroEL on the efficient encapsulation of substrate proteins, we herein investigated the effects of C-terminal truncation on GroE-mediated folding using the green fluorescent protein (GFP) as a substrate. We demonstrated that the yield of in-cage folding mediated by a single ring GroEL (SR1) was markedly decreased by truncation, whereas that mediated by a double ring football-shaped complex was not affected. These results suggest that the C-terminal region of GroEL functions as a barrier between rings, preventing the leakage of GFP through the bottom space of the cage. We also found that once GFP folded into its native conformation within the cavity of SR1 it never escaped even in the absence of the C-terminal tails. This suggests that GFP molecules escaped through the pore only when they adopted a denatured conformation. Therefore, the folding and escape of GFP from C-terminally truncated SR1·GroES appeared to be competing with each other.
Collapse
Affiliation(s)
- So Ishino
- From the Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasushi Kawata
- Department of Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
| | - Hideki Taguchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan, and
| | - Naoko Kajimura
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Katsumi Matsuzaki
- From the Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaru Hoshino
- From the Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi, Sakyo-ku, Kyoto 606-8501, Japan,
| |
Collapse
|
22
|
Koike-Takeshita A, Mitsuoka K, Taguchi H. Asp-52 in combination with Asp-398 plays a critical role in ATP hydrolysis of chaperonin GroEL. J Biol Chem 2014; 289:30005-11. [PMID: 25202010 DOI: 10.1074/jbc.m114.593822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Escherichia coli chaperonin GroEL is a double-ring chaperone that assists protein folding with the aid of GroES and ATP. Asp-398 in GroEL is known as one of the critical residues on ATP hydrolysis because GroEL(D398A) mutant is deficient in ATP hydrolysis (<2% of the wild type) but not in ATP binding. In the archaeal Group II chaperonin, another aspartate residue, Asp-52 in the corresponding E. coli GroEL, in addition to Asp-398 is also important for ATP hydrolysis. We investigated the role of Asp-52 in GroEL and found that ATPase activity of GroEL(D52A) and GroEL(D52A/D398A) mutants was ∼ 20% and <0.01% of wild-type GroEL, respectively, indicating that Asp-52 in E. coli GroEL is also involved in the ATP hydrolysis. GroEL(D52A/D398A) formed a symmetric football-shaped GroEL-GroES complex in the presence of ATP, again confirming the importance of the symmetric complex during the GroEL ATPase cycle. Notably, the symmetric complex of GroEL(D52A/D398A) was extremely stable, with a half-time of ∼ 150 h (∼ 6 days), providing a good model to characterize the football-shaped complex.
Collapse
Affiliation(s)
- Ayumi Koike-Takeshita
- From the Department of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Kaoru Mitsuoka
- Technology Research Association for Next Generation Natural Products Chemistry, AIST Tokyo Waterfront, 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan, and
| | - Hideki Taguchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
23
|
Koike-Takeshita A, Arakawa T, Taguchi H, Shimamura T. Crystal structure of a symmetric football-shaped GroEL:GroES2-ATP14 complex determined at 3.8Å reveals rearrangement between two GroEL rings. J Mol Biol 2014; 426:3634-41. [PMID: 25174333 DOI: 10.1016/j.jmb.2014.08.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
Abstract
The chaperonin GroEL is an essential chaperone that assists in protein folding with the aid of GroES and ATP. GroEL forms a double-ring structure, and both rings can bind GroES in the presence of ATP. Recent progress on the GroEL mechanism has revealed the importance of a symmetric 1:2 GroEL:GroES2 complex (the "football"-shaped complex) as a critical intermediate during the functional GroEL cycle. We determined the crystal structure of the football GroEL:GroES2-ATP14 complex from Escherichia coli at 3.8Å, using a GroEL mutant that is extremely defective in ATP hydrolysis. The overall structure of the football complex resembled the GroES-bound GroEL ring of the asymmetric 1:1 GroEL:GroES complex (the "bullet" complex). However, the two GroES-bound GroEL rings form a modified interface by an ~7° rotation about the 7-fold axis. As a result, the inter-ring contacts between the two GroEL rings in the football complex differed from those in the bullet complex. The differences provide a structural basis for the apparently impaired inter-ring negative cooperativity observed in several biochemical analyses.
Collapse
Affiliation(s)
- Ayumi Koike-Takeshita
- Department of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Takatoshi Arakawa
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Hideki Taguchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| | - Tatsuro Shimamura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-Ku, Kyoto 606-8501, Japan; Membrane Protein Crystallography Project, Research Acceleration Program, Japan Science and Technology Agency, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
24
|
Formation and structures of GroEL:GroES2 chaperonin footballs, the protein-folding functional form. Proc Natl Acad Sci U S A 2014; 111:12775-80. [PMID: 25136110 DOI: 10.1073/pnas.1412922111] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The GroE chaperonins assist substrate protein (SP) folding by cycling through several conformational states. With each cycle the SP is, in turn, captured, unfolded, briefly encapsulated (t1/2 ∼ 1 s), and released by the chaperonin complex. The protein-folding functional form is the US-football-shaped GroEL:GroES2 complex. We report structures of two such "football" complexes to ∼ 3.7-Å resolution; one is empty whereas the other contains encapsulated SP in both chambers. Although encapsulated SP is not visible on the electron density map, using calibrated FRET and order-of-addition experiments we show that owing to SP-catalyzed ADP/ATP exchange both chambers of the football complex encapsulate SP efficiently only if the binding of SP precedes that of ATP. The two rings of GroEL thus behave as a parallel processing machine, rather than functioning alternately. Compared with the bullet-shaped GroEL:GroES1 complex, the GroEL:GroES2 football complex differs conformationally at the GroEL-GroES interface and also at the interface between the two GroEL rings. We propose that the electrostatic interactions between the ε-NH(3+) of K105 of helix D in one ring with the negatively charged carboxyl oxygen of A109 at the carboxyl end of helix D of the other ring provide the structural basis for negative inter-ring cooperativity.
Collapse
|
25
|
Substrate protein switches GroE chaperonins from asymmetric to symmetric cycling by catalyzing nucleotide exchange. Proc Natl Acad Sci U S A 2013; 110:E4289-97. [PMID: 24167257 DOI: 10.1073/pnas.1317702110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complex kinetics of Pi and ADP release by the chaperonin GroEL/GroES is influenced by the presence of unfolded substrate protein (SP). Without SP, the kinetics of Pi release are described by four phases: a "lag," a "burst" of ATP hydrolysis by the nascent cis ring, a "delay" caused by ADP release from the nascent trans ring, and steady-state ATP hydrolysis. The release of Pi precedes the release of ADP. The rate-determining step of the asymmetric cycle is the release of ADP from the trans ring of the GroEL-GroES1 "bullet" complex that is, consequently, the predominant species. In the asymmetric cycle, the two rings of GroEL function alternately, 180° out of phase. In the presence of SP, a change in the kinetic mechanism occurs. With SP present, the kinetics of ADP release are also described by four phases: a lag, a "surge" of ADP release attributable to SP-induced ADP/ATP exchange, and a "pause" during which symmetrical "football" particles are formed, followed by steady-state ATP hydrolysis. SP catalyzes ADP/ATP exchange on the trans ring. Now ADP release precedes the release of Pi, and the rate-determining step of the symmetric cycle becomes the hydrolysis of ATP by the symmetric GroEL-GroES2 football complex that is, consequently, the predominant species. A FRET-based analysis confirms that asymmetric GroEL-GroES1 bullets predominate in the absence of SP, whereas symmetric GroEL-GroES2 footballs predominate in the presence of SP. This evidence suggests that symmetrical football particles are the folding functional form of the chaperonin machine in vivo.
Collapse
|
26
|
Symmetric GroEL:GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine. Proc Natl Acad Sci U S A 2013; 110:E4298-305. [PMID: 24167279 DOI: 10.1073/pnas.1318862110] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using calibrated FRET, we show that the simultaneous occupancy of both rings of GroEL by ATP and GroES occurs, leading to the rapid formation of symmetric GroEL:GroES2 "football" particles regardless of the presence or absence of substrate protein (SP). In the absence of SP, these symmetric particles revert to asymmetric GroEL:GroES1 "bullet" particles. The breakage of GroES symmetry requires the stochastic hydrolysis of ATP and the breakage of nucleotide symmetry. These asymmetric particles are both persistent and dynamic; they turnover via the asymmetric cycle. When challenged with SP, however, they revert to symmetric particles within a second. In the presence of SP, the symmetric particles are also persistent and dynamic. They turn over via the symmetric cycle. Under these conditions, the stochastic hydrolysis of ATP and the breakage of nucleotide symmetry also occur within the ensemble of particles. However, on account of SP-catalyzed ADP/ATP exchange, GroES symmetry is rapidly restored. The residence time of both GroES and SP on functional GroEL is reduced to ∼1 s, enabling many more iterations than was previously believed possible, consistent with the iterative annealing mechanism. This result is inconsistent with currently accepted models. Using a foldable SP, we show that as the SP folds to the native state and the population of unfolded SP declines, the population of symmetric particles reverts to asymmetric particles in parallel, a result that is consistent with the former being the folding functional form.
Collapse
|
27
|
Takei Y, Iizuka R, Ueno T, Funatsu T. Single-molecule observation of protein folding in symmetric GroEL-(GroES)2 complexes. J Biol Chem 2012; 287:41118-25. [PMID: 23048033 DOI: 10.1074/jbc.m112.398628] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chaperonin, GroEL, is an essential molecular chaperone that mediates protein folding together with its cofactor, GroES, in Escherichia coli. It is widely believed that the two rings of GroEL alternate between the folding active state coupled to GroES binding during the reaction cycle. In other words, an asymmetric GroEL-GroES complex (the bullet-shaped complex) is formed throughout the cycle, whereas a symmetric GroEL-(GroES)(2) complex (the football-shaped complex) is not formed. We have recently shown that the football-shaped complex coexists with the bullet-shaped complex during the reaction cycle. However, how protein folding proceeds in the football-shaped complex remains poorly understood. Here, we used GFP as a substrate to visualize protein folding in the football-shaped complex by single-molecule fluorescence techniques. We directly showed that GFP folding occurs in both rings of the football-shaped complex. Remarkably, the folding was a sequential two-step reaction, and the kinetics were in excellent agreement with those in the bullet-shaped complex. These results demonstrate that the same reactions take place independently in both rings of the football-shaped complex to facilitate protein folding.
Collapse
Affiliation(s)
- Yodai Takei
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
28
|
Reissmann S, Joachimiak LA, Chen B, Meyer AS, Nguyen A, Frydman J. A gradient of ATP affinities generates an asymmetric power stroke driving the chaperonin TRIC/CCT folding cycle. Cell Rep 2012; 2:866-77. [PMID: 23041314 DOI: 10.1016/j.celrep.2012.08.036] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/06/2012] [Accepted: 08/30/2012] [Indexed: 01/16/2023] Open
Abstract
The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramatic asymmetry in the ATP utilization cycle of this ring-shaped chaperonin, despite its apparently symmetric architecture. Only four of the eight different subunits bind ATP at physiological concentrations. ATP binding and hydrolysis by the low-affinity subunits is fully dispensable for TRiC function in vivo. The conserved nucleotide-binding hierarchy among TRiC subunits is evolutionarily modulated through differential nucleoside contacts. Strikingly, high- and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, generating an asymmetric power stroke that drives the folding cycle. This unusual mode of ATP utilization likely serves to orchestrate a directional mechanism underlying TRiC/CCT's unique ability to fold complex eukaryotic proteins.
Collapse
Affiliation(s)
- Stefanie Reissmann
- Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA
| | | | | | | | | | | |
Collapse
|
29
|
Mizobata T, Uemura T, Isaji K, Hirayama T, Hongo K, Kawata Y. Probing the functional mechanism of Escherichia coli GroEL using circular permutation. PLoS One 2011; 6:e26462. [PMID: 22028884 PMCID: PMC3196576 DOI: 10.1371/journal.pone.0026462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The Escherichia coli chaperonin GroEL subunit consists of three domains linked via two hinge regions, and each domain is responsible for a specific role in the functional mechanism. Here, we have used circular permutation to study the structural and functional characteristics of the GroEL subunit. METHODOLOGY/PRINCIPAL FINDINGS Three soluble, partially active mutants with polypeptide ends relocated into various positions of the apical domain of GroEL were isolated and studied. The basic functional hallmarks of GroEL (ATPase and chaperoning activities) were retained in all three mutants. Certain functional characteristics, such as basal ATPase activity and ATPase inhibition by the cochaperonin GroES, differed in the mutants while at the same time, the ability to facilitate the refolding of rhodanese was roughly equal. Stopped-flow fluorescence experiments using a fluorescent variant of the circularly permuted GroEL CP376 revealed that a specific kinetic transition that reflects movements of the apical domain was missing in this mutant. This mutant also displayed several characteristics that suggested that the apical domains were behaving in an uncoordinated fashion. CONCLUSIONS/SIGNIFICANCE The loss of apical domain coordination and a concomitant decrease in functional ability highlights the importance of certain conformational signals that are relayed through domain interlinks in GroEL. We propose that circular permutation is a very versatile tool to probe chaperonin structure and function.
Collapse
Affiliation(s)
- Tomohiro Mizobata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Kim SY, Miller EJ, Frydman J, Moerner WE. Action of the chaperonin GroEL/ES on a non-native substrate observed with single-molecule FRET. J Mol Biol 2010; 401:553-63. [PMID: 20600107 DOI: 10.1016/j.jmb.2010.06.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/14/2010] [Accepted: 06/22/2010] [Indexed: 12/20/2022]
Abstract
The double ring-shaped chaperonin GroEL binds a wide range of non-native polypeptides within its central cavity and, together with its cofactor GroES, assists their folding in an ATP-dependent manner. The conformational cycle of GroEL/ES has been studied extensively but little is known about how the environment in the central cavity affects substrate conformation. Here, we use the von Hippel-Lindau tumor suppressor protein VHL as a model substrate for studying the action of the GroEL/ES system on a bound polypeptide. Fluorescent labeling of pairs of sites on VHL for fluorescence (Förster) resonant energy transfer (FRET) allows VHL to be used to explore how GroEL binding and GroEL/ES/nucleotide binding affect the substrate conformation. On average, upon binding to GroEL, all pairs of labeling sites experience compaction relative to the unfolded protein while single-molecule FRET distributions show significant heterogeneity. Upon addition of GroES and ATP to close the GroEL cavity, on average further FRET increases occur between the two hydrophobic regions of VHL, accompanied by FRET decreases between the N- and C-termini. This suggests that ATP- and GroES-induced confinement within the GroEL cavity remodels bound polypeptides by causing expansion (or racking) of some regions and compaction of others, most notably, the hydrophobic core. However, single-molecule observations of the specific FRET changes for individual proteins at the moment of ATP/GroES addition reveal that a large fraction of the population shows the opposite behavior; that is, FRET decreases between the hydrophobic regions and FRET increases for the N- and C-termini. Our time-resolved single-molecule analysis reveals the underlying heterogeneity of the action of GroES/EL on a bound polypeptide substrate, which might arise from the random nature of the specific binding to the various identical subunits of GroEL, and might help explain why multiple rounds of binding and hydrolysis are required for some chaperonin substrates.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
31
|
Sameshima T, Iizuka R, Ueno T, Wada J, Aoki M, Shimamoto N, Ohdomari I, Tanii T, Funatsu T. Single-molecule study on the decay process of the football-shaped GroEL-GroES complex using zero-mode waveguides. J Biol Chem 2010; 285:23159-64. [PMID: 20511221 DOI: 10.1074/jbc.m110.122101] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been widely believed that an asymmetric GroEL-GroES complex (termed the bullet-shaped complex) is formed solely throughout the chaperonin reaction cycle, whereas we have recently revealed that a symmetric GroEL-(GroES)(2) complex (the football-shaped complex) can form in the presence of denatured proteins. However, the dynamics of the GroEL-GroES interaction, including the football-shaped complex, is unclear. We investigated the decay process of the football-shaped complex at a single-molecule level. Because submicromolar concentrations of fluorescent GroES are required in solution to form saturated amounts of the football-shaped complex, single-molecule fluorescence imaging was carried out using zero-mode waveguides. The single-molecule study revealed two insights into the GroEL-GroES reaction. First, the first GroES to interact with GroEL does not always dissociate from the football-shaped complex prior to the dissociation of a second GroES. Second, there are two cycles, the "football cycle " and the "bullet cycle," in the chaperonin reaction, and the lifetimes of the football-shaped and the bullet-shaped complexes were determined to be 3-5 s and about 6 s, respectively. These findings shed new light on the molecular mechanism of protein folding mediated by the GroEL-GroES chaperonin system.
Collapse
Affiliation(s)
- Tomoya Sameshima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Denatured proteins facilitate the formation of the football-shaped GroEL-(GroES)2 complex. Biochem J 2010; 427:247-54. [PMID: 20121703 DOI: 10.1042/bj20091845] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Controversy exists over whether the chaperonin GroEL forms a GroEL-(GroES)2 complex (football-shaped complex) during its reaction cycle. We have revealed previously the existence of the football-shaped complex in the chaperonin reaction cycle using a FRET (fluorescence resonance energy transfer) assay [Sameshima, Ueno, Iizuka, Ishii, Terada, Okabe and Funatsu (2008) J. Biol. Chem. 283, 23765-23773]. Although denatured proteins alter the ATPase activity of GroEL and the dynamics of the GroEL-GroES interaction, the effect of denatured proteins on the formation of the football-shaped complex has not been characterized. In the present study, a FRET assay was used to demonstrate that denatured proteins facilitate the formation of the football-shaped complex. The presence of denatured proteins was also found to increase the rate of association of GroES to the trans-ring of GroEL. Furthermore, denatured proteins decrease the inhibitory influence of ADP on ATP-induced association of GroES to the trans-ring of GroEL. From these findings we conclude that denatured proteins facilitate the dissociation of ADP from the trans-ring of GroEL and the concomitant association of ATP and the second GroES.
Collapse
|
33
|
Nojima T, Yoshida M. Probing open conformation of GroEL rings by cross-linking reveals single and double open ring structures of GroEL in ADP and ATP. J Biol Chem 2009; 284:22834-9. [PMID: 19520865 DOI: 10.1074/jbc.m109.020057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two heptamer rings of chaperonin GroEL undergo opening-closing conformational transition in the reaction cycle with the aid of GroES and ATP. We introduced Cys into the GroEL subunit at Ala-384 and Ser-509, which are very close between adjacent GroEL subunits in the open heptamer ring but far apart in the closed heptamer ring. The open ring-specific inter-subunit cross-linking between these Cys indicated that the number of rings in open conformation in GroEL was two in ATP (GroEL(OO)), one in ADP (GroEL(O)), and none in the absence of nucleotide. ADP showed an inhibitory effect on ATP-induced generation of GroEL(OO). The isolated GroEL(O) and GroEL(OO), which lost any bound nucleotide, could bind GroES to form a bullet-shaped 1:1 GroEL-GroES complex and a football-shaped 1:2 GroEL-GroES complex, respectively, even without the addition of any nucleotide. Substrate protein was unable to form a stable complex with GroEL(OO) and did not stimulate ATPase activity of GroEL. These results favor a model of the GroEL reaction cycle that includes a football complex as a critical intermediate.
Collapse
Affiliation(s)
- Tatsuya Nojima
- Chemical Resources Laboratory R1-7, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | | |
Collapse
|
34
|
GroEL assisted folding of large polypeptide substrates in Escherichia coli: Present scenario and assignments for the future. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 99:42-50. [DOI: 10.1016/j.pbiomolbio.2008.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Koike-Takeshita A, Yoshida M, Taguchi H. Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant. J Biol Chem 2008; 283:23774-81. [PMID: 18567584 DOI: 10.1074/jbc.m802542200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli chaperonin GroEL is a double-ring chaperone that assists in protein folding with the aid of GroES and ATP. It is believed that GroEL alternates the folding-active rings and that the substrate protein (and GroES) can bind to the open trans-ring only after ATP in the cis-ring is hydrolyzed. However, we found that a substrate protein prebound to the trans-ring remained bound during the first ATP cycle, and this substrate was assisted by GroEL-GroES when the second cycle began. Moreover, a slow ATP-hydrolyzing GroEL mutant (D398A) in the ATP-bound form bound a substrate protein and GroES to the trans-ring. The apparent discrepancy with the results from an earlier study (Rye, H. S., Roseman, A. M., Chen, S., Furtak, K., Fenton, W. A., Saibil, H. R., and Horwich, A. L. (1999) Cell 97, 325-338) can be explained by the previously unnoticed fact that the ATP-bound form of the D398A mutant exists as a symmetric 1:2 GroEL-GroES complex (the "football"-shaped complex) and that the substrate protein (and GroES) in the medium is incorporated into the complex only after the slow turnover. In light of these results, the current model of the GroEL-GroES reaction cycle via the asymmetric 1:1 GroEL-GroES complex deserves reexamination.
Collapse
Affiliation(s)
- Ayumi Koike-Takeshita
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | | | | |
Collapse
|
36
|
Sameshima T, Ueno T, Iizuka R, Ishii N, Terada N, Okabe K, Funatsu T. Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle. J Biol Chem 2008; 283:23765-73. [PMID: 18567585 DOI: 10.1074/jbc.m802541200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GroEL is an Escherichia coli chaperonin that is composed of two heptameric rings stacked back-to-back. GroEL assists protein folding with its cochaperonin GroES in an ATP-dependent manner in vitro and in vivo. However, it is still unclear whether GroES binds to both rings of GroEL simultaneously under physiological conditions. In this study, we monitored the GroEL-GroES interaction in the reaction cycle using fluorescence resonance energy transfer. We found that nearly equivalent amounts of symmetric GroEL-(GroES)(2) (football-shaped) complex and asymmetric GroEL-GroES (bullet-shaped) complex coexist during the functional reaction cycle. We also found that D398A, an ATP hydrolysis defective mutant of GroEL, forms a football-shaped complex with ATP bound to the two rings. Furthermore, we showed that ADP prevents the association of ATP to the trans-ring of GroEL, and as a consequence, the second GroES cannot bind to GroEL. Considering the concentrations of ADP and ATP in E. coli, ADP is expected to have a small effect on the inhibition of GroES binding to the trans-ring of GroEL in vivo. These results suggest that we should reconsider the chaperonin-mediated protein-folding mechanism that involves the football-shaped complex.
Collapse
Affiliation(s)
- Tomoya Sameshima
- Laboratory of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Machida K, Kono-Okada A, Hongo K, Mizobata T, Kawata Y. Hydrophilic Residues 526KNDAAD531 in the Flexible C-terminal Region of the Chaperonin GroEL Are Critical for Substrate Protein Folding within the Central Cavity. J Biol Chem 2008; 283:6886-96. [DOI: 10.1074/jbc.m708002200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
Asymmetry of the GroEL-GroES complex under physiological conditions as revealed by small-angle x-ray scattering. Biophys J 2007; 94:1392-402. [PMID: 17981896 DOI: 10.1529/biophysj.107.114710] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the well-known functional importance of GroEL-GroES complex formation during the chaperonin cycle, the stoichiometry of the complex has not been clarified. The complex can occur either as an asymmetric 1:1 GroEL-GroES complex or as a symmetric 1:2 GroEL-GroES complex, although it remains uncertain which type is predominant under physiological conditions. To resolve this question, we studied the structure of the GroEL-GroES complex under physiological conditions by small-angle x-ray scattering, which is a powerful technique to directly observe the structure of the protein complex in solution. We evaluated molecular structural parameters, the radius of gyration and the maximum dimension of the complex, from the x-ray scattering patterns under various nucleotide conditions (3 mM ADP, 3 mM ATP gamma S, and 3 mM ATP in 10 mM MgCl(2) and 100 mM KCl) at three different temperatures (10 degrees C, 25 degrees C, and 37 degrees C). We then compared the experimentally observed scattering patterns with those calculated from the known x-ray crystallographic structures of the GroEL-GroES complex. The results clearly demonstrated that the asymmetric complex must be the major species stably present in solution under physiological conditions. On the other hand, in the presence of ATP (3 mM) and beryllium fluoride (10 mM NaF and 300 microM BeCl(2)), we observed the formation of a stable symmetric complex, suggesting the existence of a transiently formed symmetric complex during the chaperonin cycle.
Collapse
|
39
|
Chen B, Doucleff M, Wemmer DE, De Carlo S, Huang HH, Nogales E, Hoover TR, Kondrashkina E, Guo L, Nixon BT. ATP ground- and transition states of bacterial enhancer binding AAA+ ATPases support complex formation with their target protein, sigma54. Structure 2007; 15:429-40. [PMID: 17437715 PMCID: PMC2680074 DOI: 10.1016/j.str.2007.02.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/01/2006] [Accepted: 02/22/2007] [Indexed: 11/28/2022]
Abstract
Transcription initiation by the sigma54 form of bacterial RNA polymerase requires hydrolysis of ATP by an enhancer binding protein (EBP). We present SAS-based solution structures of the ATPase domain of the EBP NtrC1 from Aquifex aeolicus in different nucleotide states. Structures of apo protein and that bound to AMPPNP or ADP-BeF(x) (ground-state mimics), ADP-AlF(x) (a transition-state mimic), or ADP (product) show substantial changes in the position of the GAFTGA loops that contact polymerase, particularly upon conversion from the apo state to the ADP-BeF(x) state, and from the ADP-AlF(x) state to the ADP state. Binding of the ATP analogs stabilizes the oligomeric form of the ATPase and its binding to sigma54, with ADP-AlF(x) having the largest effect. These data indicate that ATP binding promotes a conformational change that stabilizes complexes between EBPs and sigma54, while subsequent hydrolysis and phosphate release drive the conformational change needed to open the polymerase/promoter complex.
Collapse
Affiliation(s)
- Baoyu Chen
- Integrative Biosciences Graduate Degree Program – Chemical Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michaeleen Doucleff
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David E. Wemmer
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sacha De Carlo
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California at Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hector H. Huang
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California at Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eva Nogales
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California at Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Elena Kondrashkina
- BioCAT at APS/Argonne National Lab, Illinois Institute of Technology, 9700 S. Cass Ave, Argonne, IL 60439, USA
| | - Liang Guo
- BioCAT at APS/Argonne National Lab, Illinois Institute of Technology, 9700 S. Cass Ave, Argonne, IL 60439, USA
| | - B. Tracy Nixon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
40
|
Okuda H, Sakuhana C, Yamamoto R, Kawai R, Mizukami Y, Matsuda K. Effects of divalent cations on encapsulation and release in the GroEL-assisted folding. Biometals 2007; 20:903-10. [PMID: 17242865 DOI: 10.1007/s10534-006-9078-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Accepted: 12/21/2006] [Indexed: 11/26/2022]
Abstract
Chaperonin GroEL assists protein folding in the presence of ATP and magnesium. Recent studies have shown that several divalent cations other than magnesium induce conformational changes of GroEL, thereby influencing chaperonin-assisted protein folding, but little is known about the detailed mechanism for such actions. Thus, the effects of divalent cations on protein encapsulation by GroEL/ES complexes were investigated. Of the divalent cations, not only magnesium, but also manganese ions enabled the functional refolding and release of 5,10-methylenetetrahydroforate reductase (METF) by GroEL. Neither ATP hydrolysis nor METF refolding was observed in the presence of zinc ion, whereas only ATP hydrolysis was induced by cobalt and nickel ions. SDS-PAGE and gel filtration analyses revealed that cobalt, nickel and zinc ions permit the formation of stable substrate-GroEL-GroES cis-ternary complexes, but prevent the release of METF from GroEL.
Collapse
Affiliation(s)
- Hiroshi Okuda
- Department of Applied Biological Chemistry, School of Agriculture, Kinki University, 3327-204, Nakamachi, Nara, 631-8505, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Yoshida T, Iizuka R, Itami K, Yasunaga T, Sakuraba H, Ohshima T, Yohda M, Maruyama T. Comparative analysis of the protein folding activities of two chaperonin subunits of Thermococcus strain KS-1: the effects of beryllium fluoride. Extremophiles 2006; 11:225-35. [PMID: 17072688 DOI: 10.1007/s00792-006-0026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 08/31/2006] [Indexed: 10/24/2022]
Abstract
We conducted a comparative analysis of the effects of beryllium fluoride (BeFx) on protein folding mediated by the alpha- and beta-subunit homooligomers (alpha16mer or beta16mer) from the hyperthermophilic archaeum Thermococcus strain KS-1. BeFx inhibited the ATPase activities of both alpha16mer and beta16mer with equal efficiency. This indicated that BeFx replaces the gamma-phosphate of chaperonin-bound ATP, thereby forming a stable chaperonin-ADP-BeFx complex. In the presence of ATP and BeFx, both of the two chaperonin subunits mediated green fluorescent protein (GFP) folding. Gel filtration chromatography revealed that the refolded GFP was retained by both chaperonins. Protease digestion and electron microscopic analyses showed that both chaperonin-ADP-BeFx complexes of the two subunits adopted a symmetric closed conformation with the built-in lids of both rings closed and that protein folding took place in their central cavities. These data indicated that basic protein folding mechanisms of alpha16mer and beta16mer are likely similar although there were some apparent differences. While beta16mer-mediated GFP refolding in the presence of ATP-BeFx that proceeded more rapidly than in the presence of ATP alone and reached a twofold higher plateau than that achieved with AMP-PNP, the folding mediated by the alpha16mer that proceeded with much lower yields. A mutant of alpha16mer, trapalpha, which traps the unfolded and partially folded substrate protein, did not affect the ATP-BeFx-dependent GFP folding by beta16mer but it suppressed that mediated by alpha16mer to the level of spontaneous folding. These results suggested that beta16mer differed from the alpha16mer in nucleotide binding affinity or the rate of nucleotide hydrolysis.
Collapse
Affiliation(s)
- Takao Yoshida
- Research Program for Marine Biology and Ecology, Extremobiosphere Research Center, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kim SY, Semyonov AN, Twieg RJ, Horwich AL, Frydman J, Moerner WE. Probing the sequence of conformationally induced polarity changes in the molecular chaperonin GroEL with fluorescence spectroscopy. J Phys Chem B 2006; 109:24517-25. [PMID: 16375456 PMCID: PMC1414071 DOI: 10.1021/jp0534232] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrophobic interactions play a major role in binding non-native substrate proteins in the central cavity of the bacterial chaperonin GroEL. The sequence of local conformational changes by which GroEL and its cofactor GroES assist protein folding can be explored using the polarity-sensitive fluorescence probe Nile Red. A specific single-cysteine mutant of GroEL (Cys261), whose cysteine is located inside the central cavity at the apical region of the protein, was covalently labeled with synthetically prepared Nile Red maleimide (NR). Bulk fluorescence spectra of Cys261-NR were measured to examine the effects of binding of the stringent substrate, malate dehydrogenase (MDH), GroES, and nucleotide on the local environment of the probe. After binding denatured substrate, the fluorescence intensity increased by 32 +/- 7%, suggesting enhanced hydrophobicity at the position of the label. On the other hand, in the presence of ATP, the fluorescence intensity decreased by 13 +/- 3%, implying increased local polarity. To explore the sequence of local polarity changes, substrate, GroES, and various nucleotides were added in different orders; the resulting changes in emission intensity provide insight into the sequence of conformational changes occurring during GroEL-mediated protein folding.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
43
|
Koike-Takeshita A, Shimamura T, Yokoyama K, Yoshida M, Taguchi H. Leu309 plays a critical role in the encapsulation of substrate protein into the internal cavity of GroEL. J Biol Chem 2005; 281:962-7. [PMID: 16239229 DOI: 10.1074/jbc.m506298200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the crystal structure of the native GroEL.GroES.substrate protein complex from Thermus thermophilus, one GroEL subunit makes contact with two GroES subunits. One contact is through the H-I helices, and the other is through a novel GXXLE region. The side chain of Leu, in the GXXLE region, forms a hydrophobic cluster with residues of the H helix (Shimamura, T., Koike-Takeshita, A., Yokoyama, K., Masui, R., Murai, N., Yoshida, M., Taguchi, H., and Iwata, S. (2004) Structure (Camb.) 12, 1471-1480). Here, we investigated the functional role of Leu in the GXXLE region, using Escherichia coli GroEL. The results are as follows: (i) cross-linking between introduced cysteines confirmed that the GXXLE region in the E. coli GroEL.GroES complex is also in contact with GroES; (ii) when Leu was replaced by Lys (GroEL(L309K)) or other charged residues, chaperone activity was largely lost; (iii) the GroEL(L309K).substrate complex failed to bind GroES to produce a stable GroEL(L309K).GroES.substrate complex, whereas free GroEL(L309K) bound GroES normally; (iv) the GroEL(L309K).GroES.substrate complex was stabilized with BeF(x), but the substrate protein in the complex was readily digested by protease, indicating that it was not properly encapsulated into the internal cavity of the complex. Thus, conformational communication between the two GroES contact sites, the H helix and the GXXLE region (through Leu(309)), appears to play a critical role in encapsulation of the substrate.
Collapse
Affiliation(s)
- Ayumi Koike-Takeshita
- Chemical Resources Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | | | | | | | | |
Collapse
|
44
|
Abstract
Chaperonin GroEL is an essential molecular chaperone that assists protein folding in the cell. With the aid of cochaperonin GroES and ATP, double ring-shaped GroEL encapsulates non-native substrate proteins inside the cavity of the GroEL-ES complex. Although extensive studies have revealed the outline of GroEL mechanism over the past decade, central questions remain: What are the in vivo substrate proteins? How does GroEL encapsulate the substrates inside the cavity in spite of an apparent entropic difficulty? Is the folding inside the GroEL-ES cavity the same as bulk spontaneous folding? In this review I summarize the recent progress on in vivo and in vitro aspects of GroEL. In particular, emerging evidence shows that the substrate protein itself influences the chaperonin GroEL structure and reaction cycle. Finally I propose the mechanistic similarity between GroEL and kinesin, a molecular motor that moves along a microtubule in an ATP-dependent manner.
Collapse
Affiliation(s)
- Hideki Taguchi
- Graduate School of Frontier Sciences, University of Tokyo.
| |
Collapse
|
45
|
Iizuka R, Yoshida T, Ishii N, Zako T, Takahashi K, Maki K, Inobe T, Kuwajima K, Yohda M. Characterization of archaeal group II chaperonin-ADP-metal fluoride complexes: implications that group II chaperonins operate as a "two-stroke engine". J Biol Chem 2005; 280:40375-83. [PMID: 16183634 DOI: 10.1074/jbc.m506785200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group II chaperonins, found in Archaea and in the eukaryotic cytosol, act independently of a cofactor corresponding to GroES of group I chaperonins. Instead, the helical protrusion at the tip of the apical domain forms a built-in lid of the central cavity. Although many studies on the lid's conformation have been carried out, the conformation in each step of the ATPase cycle remains obscure. To clarify this issue, we examined the effects of ADP-aluminum fluoride (AlFx) and ADP-beryllium fluoride (BeFx) complexes on alpha-chaperonin from the hyperthermophilic archaeum, Thermococcus sp. strain KS-1. Biochemical assays, electron microscopic observations, and small angle x-ray scattering measurements demonstrate that alpha-chaperonin incubated with ADP and BeFx exists in an asymmetric conformation; one ring is open, and the other is closed. The result indicates that alpha-chaperonin also shares the inherent functional asymmetry of bacterial and eukaryotic cytosolic chaperonins. Most interestingly, addition of ADP and BeFx induced alpha-chaperonin to encapsulate unfolded proteins in the closed ring but did not trigger their folding. Moreover, alpha-chaperonin incubated with ATP and AlFx or BeFx adopted a symmetric closed conformation, and its functional turnover was inhibited. These forms are supposed to be intermediates during the reaction cycle of group II chaperonins.
Collapse
Affiliation(s)
- Ryo Iizuka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|