1
|
Abdolvahab MH, Safari M, Hasannejad F, Asefi N, Salimi A, Nazari M. Optimization of a recombinant BlaR-CTD protein formulation using the response surface methodology. J Biol Eng 2024; 18:4. [PMID: 38212764 PMCID: PMC10785353 DOI: 10.1186/s13036-023-00399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024] Open
Abstract
The sequence of a carboxy-terminal of the β-lactam sensor-transducer protein (BlaR-CTD) from Bacillus licheniformis ATCC14580 was extracted from US7745193B2 patent and expressed in E. coli using pColdI vector as a soluble His-tag recombinant protein. In this study, several excipients were used to improve the stability of recombinant BlaR-CTD and obtain the optimal formulation for this protein using response surface methodology (RSM)/ Central Composite Design (CCD). Total protein concentration was measured by UV spectroscopy and the Bradford test. A total of 7 various factors were designed using four different excipients including Glycerol, Sucrose, Triton x-100, and Tween-20, and three different buffers like Tris, Borate, and PBS. By obtaining suitable excipients and buffer i.e. glycerol and sucrose, pH ranging from 7 to 9 were evaluated. The pH 7.62, glycerol 15.35%, and sucrose 152.52 mM were determined as the most suitable for improving the thermal stability of recombinant BlaR-CTD.
Collapse
Affiliation(s)
- Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Mojdeh Safari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farkhonde Hasannejad
- Genetic Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Nika Asefi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Genetic Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Alireza Salimi
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Mahboobeh Nazari
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Alexander JAN, Worrall LJ, Hu J, Vuckovic M, Satishkumar N, Poon R, Sobhanifar S, Rosell FI, Jenkins J, Chiang D, Mosimann WA, Chambers HF, Paetzel M, Chatterjee SS, Strynadka NCJ. Structural basis of broad-spectrum β-lactam resistance in Staphylococcus aureus. Nature 2023; 613:375-382. [PMID: 36599987 PMCID: PMC9834060 DOI: 10.1038/s41586-022-05583-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023]
Abstract
Broad-spectrum β-lactam antibiotic resistance in Staphylococcus aureus is a global healthcare burden1,2. In clinical strains, resistance is largely controlled by BlaR13, a receptor that senses β-lactams through the acylation of its sensor domain, inducing transmembrane signalling and activation of the cytoplasmic-facing metalloprotease domain4. The metalloprotease domain has a role in BlaI derepression, inducing blaZ (β-lactamase PC1) and mecA (β-lactam-resistant cell-wall transpeptidase PBP2a) expression3-7. Here, overcoming hurdles in isolation, we show that BlaR1 cleaves BlaI directly, as necessary for inactivation, with no requirement for additional components as suggested previously8. Cryo-electron microscopy structures of BlaR1-the wild type and an autocleavage-deficient F284A mutant, with or without β-lactam-reveal a domain-swapped dimer that we suggest is critical to the stabilization of the signalling loops within. BlaR1 undergoes spontaneous autocleavage in cis between Ser283 and Phe284 and we describe the catalytic mechanism and specificity underlying the self and BlaI cleavage. The structures suggest that allosteric signalling emanates from β-lactam-induced exclusion of the prominent extracellular loop bound competitively in the sensor-domain active site, driving subsequent dynamic motions, including a shift in the sensor towards the membrane and accompanying changes in the zinc metalloprotease domain. We propose that this enhances the expulsion of autocleaved products from the active site, shifting the equilibrium to a state that is permissive of efficient BlaI cleavage. Collectively, this study provides a structure of a two-component signalling receptor that mediates action-in this case, antibiotic resistance-through the direct cleavage of a repressor.
Collapse
Affiliation(s)
- J Andrew N Alexander
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam J Worrall
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
- HRMEM Facility, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jinhong Hu
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nidhi Satishkumar
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Raymond Poon
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Solmaz Sobhanifar
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Federico I Rosell
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua Jenkins
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Chiang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Wesley A Mosimann
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Henry F Chambers
- Division of Infectious Diseases, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Som S Chatterjee
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada.
- HRMEM Facility, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
3
|
Pandey D, Singhal N, Kumar M. Investigating the OXA Variants of ESKAPE Pathogens. Antibiotics (Basel) 2021; 10:antibiotics10121539. [PMID: 34943751 PMCID: PMC8699015 DOI: 10.3390/antibiotics10121539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
ESKAPE pathogens are the leading cause of nosocomial infections. The Global Priority List of WHO has categorized ESKAPE as priority 1 and 2 pathogens. Even though several mechanisms contribute to antimicrobial resistance, OXA β-lactamase has emerged as a new threat in combating nosocomial infections. In the present study we have investigated the presence of OXA and their variants, copy number, distribution on chromosomes/plasmids, subfamilies, phylogenetic relationships, amino acid identities and variabilities in ESKAPE pathogens. Our results revealed that a total of 929 OXA were present in 2258 completely assembled genomes, which could be further subdivided into 16 sub-families. Among all the ESKAPE pathogens, OXA were highly prevalent in A. baumannii, followed by P. aeruginosa and K. pneumoniae but completely absent in E. faecium and S. aureus while, only a few copies were found in Enterobacter spp. Most of the OXA variants belonged to the OXA-51-like subfamily (200 proteins), followed by OXA-50-like subfamily (189 proteins), OXA-23-like subfamily (156 proteins) and OXA-1-like subfamily (154 proteins). OXA-51-like, OXA-213-like, OXA-134-like, OXA-58-like, OXA-24-like and OXA-20-like subfamilies were present exclusively in A. baumannii. Phylogenetic tree of the subfamilies revealed that OXA-1-like and OXA-33-like, OXA-51-like and OXA-213-like and, OXA-5-like and OXA-10-like belonged to the same branches with amino acid identities as 100%, 97.10% and 80.90% respectively. This indicates that the members of these subfamily-pairs might have evolved from the same ancestor or have recently diverged. Thus, a judicious use of carbapenems is warranted to curtail the rise of new OXA enzymes and preserve them. This is the first detailed report about the OXA of ESKAPE pathogens.
Collapse
|
4
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
5
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
6
|
Liu Y, Li L, Yu F, Luo Y, Liang W, Yang Q, Wang R, Li M, Tang J, Gu Q, Luo Z, Chen M. Genome-wide analysis revealed the virulence attenuation mechanism of the fish-derived oral attenuated Streptococcus iniae vaccine strain YM011. FISH & SHELLFISH IMMUNOLOGY 2020; 106:546-554. [PMID: 32781206 DOI: 10.1016/j.fsi.2020.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Streptococcus iniae has become one the most serious aquatic pathogens causing invasive diseases in farmed marine and freshwater fish worldwide, and orally attenuated vaccine is still the best option in protecting these invasive diseases. In this study, the safety, stability, immunogenicity of the S. iniae attenuated strain YM011 were evaluated, and comprehensively analyzed its virulence weakening mechanism at whole genome level. The results shown that attenuated S. iniae strain YM011 completely lost its pathogenicity to tilapia and had good immunogenicity with relative percent survival being 93.25% at 15 days and 90.31% at 30 days via IP injection, respectively, and 76.81% at 15 days and 56.69% at 30 days via oral gavage, respectively. Back-passage safety assay indicated that YM011 did not cause diseases or death in tilapia after 100 generations of serial passaging. Comparative genome-wide sequencing shown that YM011 had a 0.4 M large inversion fragment compared with its parental strain virulent strain GX005, which encoded 372 genes including drug resistance genes pbp2A and tet, as well as known virulence factors including hemolysin transport system gene, recA, and mutator family transposase. The attenuated S. iniae strain YM011 is an ideal attenuated oral vaccine candidate with good immunogenicity, safety and stability. Abnormal expression of important drug resistance genes as well as known virulence factors due to inversion of a 0.4 M large fragment is the leading mechanism underlying its attenuated virulence.
Collapse
Affiliation(s)
- Yu Liu
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Liping Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Fangzhao Yu
- Zhuhai Modern Agriculture Development Center, Zhuhai, 519000, China
| | - Yongju Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Wanwen Liang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Qiong Yang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Rui Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Min Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Jiayou Tang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Qunhong Gu
- Zhuhai Modern Agriculture Development Center, Zhuhai, 519000, China
| | - Zhiping Luo
- Zhuhai Modern Agriculture Development Center, Zhuhai, 519000, China
| | - Ming Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|
7
|
Alexander JAN, Radaeva M, King DT, Chambers HF, Cherkasov A, Chatterjee SS, Strynadka NCJ. Structural analysis of avibactam-mediated activation of the bla and mec divergons in methicillin-resistant Staphylococcus aureus. J Biol Chem 2020; 295:10870-10884. [PMID: 32518158 DOI: 10.1074/jbc.ra120.013029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/02/2020] [Indexed: 02/01/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections cause significant mortality and morbidity globally. MRSA resistance to β-lactam antibiotics is mediated by two divergons that control levels of a β-lactamase, PC1, and a penicillin-binding protein poorly acylated by β-lactam antibiotics, PBP2a. Expression of genes encoding these proteins is controlled by two integral membrane proteins, BlaR1 and MecR1, which both have an extracellular β-lactam-binding sensor domain. Here, we solved the X-ray crystallographic structures of the BlaR1 and MecR1 sensor domains in complex with avibactam, a diazabicyclooctane β-lactamase inhibitor at 1.6-2.0 Å resolution. Additionally, we show that S. aureus SF8300, a clinically relevant strain from the USA300 clone of MRSA, responds to avibactam by up-regulating the expression of the blaZ and pbp2a antibiotic-resistance genes, encoding PC1 and PBP2a, respectively. The BlaR1-avibactam structure of the carbamoyl-enzyme intermediate revealed that avibactam is bound to the active-site serine in two orientations ∼180° to each other. Although a physiological role of the observed alternative pose remains to be validated, our structural results hint at the presence of a secondary sulfate-binding pocket that could be exploited in the design of future inhibitors of BlaR1/MecR1 sensor domains or the structurally similar class D β-lactamases. The MecR1-avibactam structure adopted a singular avibactam orientation similar to one of the two states observed in the BlaR1-avibactam structure. Given avibactam up-regulates expression of blaZ and pbp2a antibiotic resistance genes, we suggest further consideration and research is needed to explore what effects administering β-lactam-avibactam combinations have on treating MRSA infections.
Collapse
Affiliation(s)
- J Andrew N Alexander
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mariia Radaeva
- Vancouver Prostate Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Dustin T King
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Henry F Chambers
- Division of Infectious Disease, Dept. of Medicine, San Francisco General Hospital, San Francisco, California, USA
| | - Artem Cherkasov
- Vancouver Prostate Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Som S Chatterjee
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland and Institute of Marine and Environmental Technology, Baltimore, Maryland, USA ;
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada ;
| |
Collapse
|
8
|
Shalaby MAW, Dokla EME, Serya RAT, Abouzid KAM. Penicillin binding protein 2a: An overview and a medicinal chemistry perspective. Eur J Med Chem 2020; 199:112312. [PMID: 32442851 DOI: 10.1016/j.ejmech.2020.112312] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/28/2020] [Accepted: 04/05/2020] [Indexed: 12/17/2022]
Abstract
Antimicrobial resistance is an imminent threat worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the "superbug" family, manifesting resistance through the production of a penicillin binding protein, PBP2a, an enzyme that provides its transpeptidase activity to allow cell wall biosynthesis. PBP2a's low affinity to most β-lactams, confers resistance to MRSA against numerous members of this class of antibiotics. An Achilles' heel of MRSA, PBP2a represents a substantial target to design novel antibiotics to tackle MRSA threat via inhibition of the bacterial cell wall biosynthesis. In this review we bring into focus the PBP2a enzyme and examine the various aspects related to its role in conferring resistance to MRSA strains. Moreover, we discuss several antibiotics and antimicrobial agents designed to target PBP2a and their therapeutic potential to meet such a grave threat. In conclusion, we consider future perspectives for targeting MRSA infections.
Collapse
Affiliation(s)
- Menna-Allah W Shalaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt; Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt.
| |
Collapse
|
9
|
Belluzo BS, Abriata LA, Giannini E, Mihovilcevic D, Dal Peraro M, Llarrull LI. An experiment-informed signal transduction model for the role of the Staphylococcus aureus MecR1 protein in β-lactam resistance. Sci Rep 2019; 9:19558. [PMID: 31862951 PMCID: PMC6925264 DOI: 10.1038/s41598-019-55923-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 12/04/2019] [Indexed: 11/13/2022] Open
Abstract
The treatment of hospital- and community-associated infections by methicillin-resistant Staphylococcus aureus (MRSA) is a perpetual challenge. This Gram-positive bacterium is resistant specifically to β-lactam antibiotics, and generally to many other antibacterial agents. Its resistance mechanisms to β-lactam antibiotics are activated only when the bacterium encounters a β-lactam. This activation is regulated by the transmembrane sensor/signal transducer proteins BlaR1 and MecR1. Neither the transmembrane/metalloprotease domain, nor the complete MecR1 and BlaR1 proteins, are isolatable for mechanistic study. Here we propose a model for full-length MecR1 based on homology modeling, residue coevolution data, a new extensive experimental mapping of transmembrane topology, partial structures, molecular simulations, and available NMR data. Our model defines the metalloprotease domain as a hydrophilic transmembrane chamber effectively sealed by the apo-sensor domain. It proposes that the amphipathic helices inserted into the gluzincin domain constitute the route for transmission of the β-lactam-binding event in the extracellular sensor domain, to the intracellular and membrane-embedded zinc-containing active site. From here, we discuss possible routes for subsequent activation of proteolytic action. This study provides the first coherent model of the structure of MecR1, opening routes for future functional investigations on how β-lactam binding culminates in the proteolytic degradation of MecI.
Collapse
Affiliation(s)
- Bruno S Belluzo
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, 2000, Rosario, Argentina
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling - École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015, Lausanne, Switzerland
| | - Estefanía Giannini
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, 2000, Rosario, Argentina
| | - Damila Mihovilcevic
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, 2000, Rosario, Argentina
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling - École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015, Lausanne, Switzerland
| | - Leticia I Llarrull
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, 2000, Rosario, Argentina. .,Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000, Rosario, Argentina.
| |
Collapse
|
10
|
Silveira MC, Azevedo da Silva R, Faria da Mota F, Catanho M, Jardim R, R Guimarães AC, de Miranda AB. Systematic Identification and Classification of β-Lactamases Based on Sequence Similarity Criteria: β-Lactamase Annotation. Evol Bioinform Online 2018; 14:1176934318797351. [PMID: 30210232 PMCID: PMC6131288 DOI: 10.1177/1176934318797351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022] Open
Abstract
β-lactamases, the enzymes responsible for resistance to β-lactam antibiotics, are
widespread among prokaryotic genera. However, current β-lactamase classification
schemes do not represent their present diversity. Here, we propose a workflow to
identify and classify β-lactamases. Initially, a set of curated sequences was
used as a model for the construction of profiles Hidden Markov Models (HMM),
specific for each β-lactamase class. An extensive, nonredundant set of
β-lactamase sequences was constructed from 7 different resistance proteins
databases to test the methodology. The profiles HMM were improved for their
specificity and sensitivity and then applied to fully assembled genomes. Five
hierarchical classification levels are described, and a new class of
β-lactamases with fused domains is proposed. Our profiles HMM provide a better
annotation of β-lactamases, with classes and subclasses defined by objective
criteria such as sequence similarity. This classification offers a solid base to
the elaboration of studies on the diversity, dispersion, prevalence, and
evolution of the different classes and subclasses of this critical enzymatic
activity.
Collapse
Affiliation(s)
- Melise Chaves Silveira
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Rangeline Azevedo da Silva
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Fábio Faria da Mota
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Marcos Catanho
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo Jardim
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Carolina R Guimarães
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Antonio B de Miranda
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Hua X, Yang Q, Zhang W, Dong Z, Yu S, Schwarz S, Liu S. Antibacterial Activity and Mechanism of Action of Aspidinol Against Multi-Drug-Resistant Methicillin-Resistant Staphylococcus aureus. Front Pharmacol 2018; 9:619. [PMID: 29950995 PMCID: PMC6008372 DOI: 10.3389/fphar.2018.00619] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/23/2018] [Indexed: 12/03/2022] Open
Abstract
This study aimed at investigating the antibacterial activity of aspidinol, an extract from Dryopteris fragrans (L.) Schott, against methicillin-resistant Staphylococcus aureus (MRSA). MRSA isolates were treated with aspidinol to determine the differential expression of genes and associated pathways following the drug treatment. Aspidinol displayed significant anti-MRSA activity, both in vivo (minimum inhibitory concentration = 2 μg/mL) and in vitro, and achieved an antibacterial effect comparable to that of vancomycin. In the lethal septicemic mouse study, a dose of 50 mg/kg of either aspidinol or vancomycin provided significant protection from mortality. In the non-lethal septicemic mouse study, aspidinol and vancomycin produced a significant reduction in mean bacterial load in murine organs, including the spleen, lung, and liver. After treatment with aspidinol, we found through RNA-seq and RT-PCR experiments that the inhibition of the formation of ribosomes was the primary S. aureus cell-killing mechanism, and the inhibition of amino acid synthesis and the reduction of virulence factors might play a secondary role.
Collapse
Affiliation(s)
- Xin Hua
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qin Yang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanjiang Zhang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhimin Dong
- Tianjin Animal Science and Veterinary Research Institute, Tianjin, China
| | - Shenye Yu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Siguo Liu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
12
|
Silveira MC, Catanho M, Miranda ABD. Genomic analysis of bifunctional Class C-Class D β-lactamases in environmental bacteria. Mem Inst Oswaldo Cruz 2018; 113:e180098. [PMID: 29846396 PMCID: PMC5967600 DOI: 10.1590/0074-02760180098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/20/2018] [Indexed: 11/22/2022] Open
Abstract
β-lactamases, which are found in several bacterial species and environments, are the main cause of resistance to β-lactams in Gram-negative bacteria. In 2009, a protein (LRA-13) with two β-lactamase domains (one class C domain and one class D domain) was experimentally characterised, and an extended action spectrum against β-lactams consistent with two functional domains was found. Here, we present the results of searches in the non-redundant NCBI protein database that revealed the existence of a group of homologous bifunctional β-lactamases in the genomes of environmental bacteria. These findings suggest that bifunctional β-lactamases are widespread in nature; these findings also raise concern that bifunctional β-lactamases may be transferred to bacteria of clinical importance through lateral gene transfer mechanisms.
Collapse
Affiliation(s)
- Melise Chaves Silveira
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Marcos Catanho
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Antônio Basílio de Miranda
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
13
|
Frederick TE, Peng JW. A gratuitous β-Lactamase inducer uncovers hidden active site dynamics of the Staphylococcus aureus BlaR1 sensor domain. PLoS One 2018; 13:e0197241. [PMID: 29771929 PMCID: PMC5957439 DOI: 10.1371/journal.pone.0197241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/28/2018] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence shows that active sites of proteins have non-trivial conformational dynamics. These dynamics include active site residues sampling different local conformations that allow for multiple, and possibly novel, inhibitor binding poses. Yet, active site dynamics garner only marginal attention in most inhibitor design efforts and exert little influence on synthesis strategies. This is partly because synthesis requires a level of atomic structural detail that is frequently missing in current characterizations of conformational dynamics. In particular, while the identity of the mobile protein residues may be clear, the specific conformations they sample remain obscure. Here, we show how an appropriate choice of ligand can significantly sharpen our abilities to describe the interconverting binding poses (conformations) of protein active sites. Specifically, we show how 2-(2'-carboxyphenyl)-benzoyl-6-aminopenicillanic acid (CBAP) exposes otherwise hidden dynamics of a protein active site that binds β-lactam antibiotics. When CBAP acylates (binds) the active site serine of the β-lactam sensor domain of BlaR1 (BlaRS), it shifts the time scale of the active site dynamics to the slow exchange regime. Slow exchange enables direct characterization of inter-converting protein and bound ligand conformations using NMR methods. These methods include chemical shift analysis, 2-d exchange spectroscopy, off-resonance ROESY of the bound ligand, and reduced spectral density mapping. The active site architecture of BlaRS is shared by many β-lactamases of therapeutic interest, suggesting CBAP could expose functional motions in other β-lactam binding proteins. More broadly, CBAP highlights the utility of identifying chemical probes common to structurally homologous proteins to better expose functional motions of active sites.
Collapse
Affiliation(s)
- Thomas E. Frederick
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
| | - Jeffrey W. Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
- Department of Physics, University of Notre Dame, Notre Dame, IN, United States of America
| |
Collapse
|
14
|
Lohans CT, Wang DY, Jorgensen C, Cahill ST, Clifton IJ, McDonough MA, Oswin HP, Spencer J, Domene C, Claridge TDW, Brem J, Schofield CJ. 13C-Carbamylation as a mechanistic probe for the inhibition of class D β-lactamases by avibactam and halide ions. Org Biomol Chem 2018; 15:6024-6032. [PMID: 28678295 DOI: 10.1039/c7ob01514c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The class D (OXA) serine β-lactamases are a major cause of resistance to β-lactam antibiotics. The class D enzymes are unique amongst β-lactamases because they have a carbamylated lysine that acts as a general acid/base in catalysis. Previous crystallographic studies led to the proposal that β-lactamase inhibitor avibactam targets OXA enzymes in part by promoting decarbamylation. Similarly, halide ions are proposed to inhibit OXA enzymes via decarbamylation. NMR analyses, in which the carbamylated lysines of OXA-10, -23 and -48 were 13C-labelled, indicate that reaction with avibactam does not ablate lysine carbamylation in solution. While halide ions did not decarbamylate the 13C-labelled OXA enzymes in the absence of substrate or inhibitor, avibactam-treated OXA enzymes were susceptible to decarbamylation mediated by halide ions, suggesting halide ions may inhibit OXA enzymes by promoting decarbamylation of acyl-enzyme complex. Crystal structures of the OXA-10 avibactam complex were obtained with bromide, iodide, and sodium ions bound between Trp-154 and Lys-70. Structures were also obtained wherein bromide and iodide ions occupy the position expected for the 'hydrolytic water' molecule. In contrast with some solution studies, Lys-70 was decarbamylated in these structures. These results reveal clear differences between crystallographic and solution studies on the interaction of class D β-lactamases with avibactam and halides, and demonstrate the utility of 13C-NMR for studying lysine carbamylation in solution.
Collapse
Affiliation(s)
| | - David Y Wang
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | | | - Samuel T Cahill
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | - Ian J Clifton
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | | | - Henry P Oswin
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Carmen Domene
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK. and Department of Chemistry, King's College London, London, SE1 1DB, UK
| | | | - Jürgen Brem
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | | |
Collapse
|
15
|
Zhang Y, Borrel A, Ghemtio L, Regad L, Boije af Gennäs G, Camproux AC, Yli-Kauhaluoma J, Xhaard H. Structural Isosteres of Phosphate Groups in the Protein Data Bank. J Chem Inf Model 2017; 57:499-516. [DOI: 10.1021/acs.jcim.6b00519] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Alexandre Borrel
- Laboratoire
Molécules Thérapeutiques in silico (MTi), UMRS-973, Université Paris Diderot, Sorbonne Paris Cité, INSERM, F-75013 Paris, France
| | | | - Leslie Regad
- Laboratoire
Molécules Thérapeutiques in silico (MTi), UMRS-973, Université Paris Diderot, Sorbonne Paris Cité, INSERM, F-75013 Paris, France
| | | | - Anne-Claude Camproux
- Laboratoire
Molécules Thérapeutiques in silico (MTi), UMRS-973, Université Paris Diderot, Sorbonne Paris Cité, INSERM, F-75013 Paris, France
| | | | | |
Collapse
|
16
|
Brandt C, Braun SD, Stein C, Slickers P, Ehricht R, Pletz MW, Makarewicz O. In silico serine β-lactamases analysis reveals a huge potential resistome in environmental and pathogenic species. Sci Rep 2017; 7:43232. [PMID: 28233789 PMCID: PMC5324141 DOI: 10.1038/srep43232] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/20/2017] [Indexed: 12/30/2022] Open
Abstract
The secretion of antimicrobial compounds is an ancient mechanism with clear survival benefits for microbes competing with other microorganisms. Consequently, mechanisms that confer resistance are also ancient and may represent an underestimated reservoir in environmental bacteria. In this context, β-lactamases (BLs) are of great interest due to their long-term presence and diversification in the hospital environment, leading to the emergence of Gram-negative pathogens that are resistant to cephalosporins (extended spectrum BLs = ESBLs) and carbapenems (carbapenemases). In the current study, protein sequence databases were used to analyze BLs, and the results revealed a substantial number of unknown and functionally uncharacterized BLs in a multitude of environmental and pathogenic species. Together, these BLs represent an uncharacterized reservoir of potentially transferable resistance genes. Considering all available data, in silico approaches appear to more adequately reflect a given resistome than analyses of limited datasets. This approach leads to a more precise definition of BL clades and conserved motifs. Moreover, it may support the prediction of new resistance determinants and improve the tailored development of robust molecular diagnostics.
Collapse
Affiliation(s)
- Christian Brandt
- Center for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany
| | - Sascha D Braun
- InfectoGnostics Research Campus, Jena, Germany.,Alere Technologies GmbH, Jena, Germany
| | - Claudia Stein
- Center for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany
| | - Peter Slickers
- InfectoGnostics Research Campus, Jena, Germany.,Alere Technologies GmbH, Jena, Germany
| | - Ralf Ehricht
- InfectoGnostics Research Campus, Jena, Germany.,Alere Technologies GmbH, Jena, Germany
| | - Mathias W Pletz
- Center for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany
| | - Oliwia Makarewicz
- Center for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany
| |
Collapse
|
17
|
Prevalence of blaOXA-1 and blaDHA-1 AmpC β-Lactamase-Producing and Methicillin-Resistant Staphylococcus aureus in Iran. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2016. [DOI: 10.5812/pedinfect.36778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Kaneti G, Meir O, Mor A. Controlling bacterial infections by inhibiting proton-dependent processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:995-1003. [PMID: 26522076 DOI: 10.1016/j.bbamem.2015.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
Bacterial resistance to antibiotics is recognized as one of the greatest threats in modern healthcare, taking a staggering toll worldwide. New approaches for controlling bacterial infections must be designed, eventually combining multiple strategies for complimentary therapies. This review explores an old/new paradigm for multi-targeted antibacterial therapy, focused at disturbing bacterial cytoplasmic membrane functions at sub minimal inhibitory concentrations, namely through superficial physical alterations of the bilayer, thereby perturbing transmembrane signals transduction. Such a paradigm may have the advantage of fighting the infection while avoiding many of the known resistance mechanisms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
Affiliation(s)
- Galoz Kaneti
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ohad Meir
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Amram Mor
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
19
|
Abstract
Staphylococcus aureus is a major human and veterinary pathogen worldwide. Methicillin-resistant S. aureus (MRSA) poses a significant and enduring problem to the treatment of infection by such strains. Resistance is usually conferred by the acquisition of a nonnative gene encoding a penicillin-binding protein (PBP2a), with significantly lower affinity for β-lactams. This resistance allows cell-wall biosynthesis, the target of β-lactams, to continue even in the presence of typically inhibitory concentrations of antibiotic. PBP2a is encoded by the mecA gene, which is carried on a distinct mobile genetic element (SCCmec), the expression of which is controlled through a proteolytic signal transduction pathway comprising a sensor protein (MecR1) and a repressor (MecI). Many of the molecular and biochemical mechanisms underlying methicillin resistance in S. aureus have been elucidated, including regulatory events and the structure of key proteins. Here we review recent advances in this area.
Collapse
Affiliation(s)
- Sharon J. Peacock
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Gavin K. Paterson
- School of Biological, Biomedical, and Environmental Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
20
|
Staude MW, Frederick TE, Natarajan SV, Wilson BD, Tanner CE, Ruggiero ST, Mobashery S, Peng JW. Investigation of signal transduction routes within the sensor/transducer protein BlaR1 of Staphylococcus aureus. Biochemistry 2015; 54:1600-10. [PMID: 25658195 DOI: 10.1021/bi501463k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transmembrane antibiotic sensor/signal transducer protein BlaR1 is part of a cohort of proteins that confer β-lactam antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) [Fisher, J. F., Meroueh, S. O., and Mobashery, S. (2005) Chem. Rev. 105, 395-424; Llarrull, L. I., Fisher, J. F., and Mobashery, S. (2009) Antimicrob. Agents Chemother. 53, 4051-4063; Llarrull, L. I., Toth, M., Champion, M. M., and Mobashery, S. (2011) J. Biol. Chem. 286, 38148-38158]. Specifically, BlaR1 regulates the inducible expression of β-lactamases that hydrolytically destroy β-lactam antibiotics. The resistance phenotype starts with β-lactam antibiotic acylation of the BlaR1 extracellular domain (BlaRS). The acylation activates the cytoplasmic protease domain through an obscure signal transduction mechanism. Here, we compare protein dynamics of apo versus antibiotic-acylated BlaRS using nuclear magnetic resonance. Our analyses reveal inter-residue interactions that relay acylation-induced perturbations within the antibiotic-binding site to the transmembrane helix regions near the membrane surface. These are the first insights into the process of signal transduction by BlaR1.
Collapse
Affiliation(s)
- Michael W Staude
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ngo TD, Ryu BH, Ju H, Jang EJ, Kim KK, Kim TD. Crystallographic analysis and biochemical applications of a novel penicillin-binding protein/β-lactamase homologue from a metagenomic library. ACTA ACUST UNITED AC 2014; 70:2455-66. [PMID: 25195758 DOI: 10.1107/s1399004714015272] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/29/2014] [Indexed: 11/10/2022]
Abstract
Interest in penicillin-binding proteins and β-lactamases (the PBP-βL family) is increasing owing to their biological and clinical significance. In this study, the crystal structure of Est-Y29, a metagenomic homologue of the PBP-βL family, was determined at 1.7 Å resolution. In addition, complex structures of Est-Y29 with 4-nitrophenyl phosphate (4NP) and with diethyl phosphonate (DEP) at 2.0 Å resolution were also elucidated. Structural analyses showed that Est-Y29 is composed of two domains: a β-lactamase fold and an insertion domain. A deep hydrophobic patch between these domains defines a wide active site, and a nucleophilic serine (Ser58) residue is located in a groove defined primarily by hydrophobic residues between the two domains. In addition, three hydrophobic motifs, which make up the substrate-binding site, allow this enzyme to hydrolyze a wide variety of hydrophobic compounds, including fish and olive oils. Furthermore, cross-linked Est-Y29 aggregates (CLEA-Est-Y29) significantly increase the stability of the enzyme as well as its potential for extensive reuse in various deactivating conditions. The structural features of Est-Y29, together with biochemical and biophysical studies, could provide a molecular basis for understanding the properties and regulatory mechanisms of the PBP-βL family and their potential for use in industrial biocatalysts.
Collapse
Affiliation(s)
- Tri Duc Ngo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Bum Han Ryu
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-749, Republic of Korea
| | - Hansol Ju
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-749, Republic of Korea
| | - Eun Jin Jang
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-749, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - T Doohun Kim
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-749, Republic of Korea
| |
Collapse
|
22
|
Mechanisms of β-lactam killing and resistance in the context of Mycobacterium tuberculosis. J Antibiot (Tokyo) 2014; 67:645-54. [PMID: 25052484 DOI: 10.1038/ja.2014.94] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 04/21/2014] [Accepted: 05/16/2014] [Indexed: 02/07/2023]
Abstract
β-Lactams are one of the most useful classes of antibiotics against many common bacterial pathogens. One exception is Mycobacterium tuberculosis. However, with increasing incidence of multidrug-resistant tuberculosis and a need for new agents to treat it, the use of β-lactams, specifically the combination of carbapenem and clavulanate, is now being revisited. With this attention, comes the need to better understand both the mechanisms of action of β-lactams against M. tuberculosis as well as possible mechanisms of resistance, within the context of what is known about the β-lactam action in other bacteria. M. tuberculosis has two major mechanisms of intrinsic resistance: a highly active β-lactamase and a poorly permeable outer membrane. Within the cell wall, β-lactams bind several enzymes with differing peptidoglycan-synthetic and -lytic functions. The inhibition of these enzymes may lead to cell death through several mechanisms, involving disruption of the balance of synthetic and lethal activities. Currently, all known means of resistance to the β-lactams rely on diminishing the proportion of peptidoglycan-synthetic proteins bound and inhibited by β-lactams, through either exclusion or destruction of the antibiotic, or through replacement or supplementation of target enzymes. In this review, we discuss possible mechanisms for β-lactam activity in M. tuberculosis and the means by which it may acquire resistance, within the context of what is known in other bacterial species.
Collapse
|
23
|
Black PA, Warren RM, Louw GE, van Helden PD, Victor TC, Kana BD. Energy metabolism and drug efflux in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2014; 58:2491-503. [PMID: 24614376 PMCID: PMC3993223 DOI: 10.1128/aac.02293-13] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inherent drug susceptibility of microorganisms is determined by multiple factors, including growth state, the rate of drug diffusion into and out of the cell, and the intrinsic vulnerability of drug targets with regard to the corresponding antimicrobial agent. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a significant source of global morbidity and mortality, further exacerbated by its ability to readily evolve drug resistance. It is well accepted that drug resistance in M. tuberculosis is driven by the acquisition of chromosomal mutations in genes encoding drug targets/promoter regions; however, a comprehensive description of the molecular mechanisms that fuel drug resistance in the clinical setting is currently lacking. In this context, there is a growing body of evidence suggesting that active extrusion of drugs from the cell is critical for drug tolerance. M. tuberculosis encodes representatives of a diverse range of multidrug transporters, many of which are dependent on the proton motive force (PMF) or the availability of ATP. This suggests that energy metabolism and ATP production through the PMF, which is established by the electron transport chain (ETC), are critical in determining the drug susceptibility of M. tuberculosis. In this review, we detail advances in the study of the mycobacterial ETC and highlight drugs that target various components of the ETC. We provide an overview of some of the efflux pumps present in M. tuberculosis and their association, if any, with drug transport and concomitant effects on drug resistance. The implications of inhibiting drug extrusion, through the use of efflux pump inhibitors, are also discussed.
Collapse
Affiliation(s)
- Philippa A. Black
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Robin M. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Gail E. Louw
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Thomas C. Victor
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Bavesh D. Kana
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
24
|
Che T, Bethel CR, Pusztai-Carey M, Bonomo RA, Carey PR. The different inhibition mechanisms of OXA-1 and OXA-24 β-lactamases are determined by the stability of active site carboxylated lysine. J Biol Chem 2014; 289:6152-64. [PMID: 24443569 DOI: 10.1074/jbc.m113.533562] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The catalytic efficiency of class D β-lactamases depends critically on an unusual carboxylated lysine as the general base residue for both the acylation and deacylation steps of the enzyme. Microbiological and biochemical studies on the class D β-lactamases OXA-1 and OXA-24 showed that the two enzymes behave differently when reacting with two 6-methylidene penems (penem 1 and penem 3): the penems are good inhibitors of OXA-1 but act more like substrates for OXA-24. UV difference and Raman spectroscopy revealed that the respective reaction mechanisms are different. The penems form an unusual intermediate, a 1,4-thiazepine derivative in OXA-1, and undergo deacylation followed by the decarboxylation of Lys-70, rendering OXA-1 inactive. This inactivation could not be reversed by the addition of 100 mM NaHCO3. In OXA-24, under mild conditions (enzyme:inhibitor = 1:4), only hydrolyzed products were detected, and the enzyme remained active. However, under harsh conditions (enzyme:inhibitor = 1:2000), OXA-24 was inhibited via decarboxylation of Lys-84; however, the enzyme could be reactivated by the addition of 100 mM NaHCO3. We conclude that OXA-24 not only decarboxylates with difficulty but also recarboxylates with ease; in contrast, OXA-1 decarboxylates easily but recarboxylates with difficulty. Structural analysis of the active site indicates that a crystallographic water molecule may play an important role in carboxylation in OXA-24 (an analogous water molecule is not found in OXA-1), supporting the suggestion that a water molecule in the active site of OXA-24 can lower the energy barrier for carboxylation significantly.
Collapse
Affiliation(s)
- Tao Che
- From the Departments of Biochemistry
| | | | | | | | | |
Collapse
|
25
|
Kaneti G, Sarig H, Marjieh I, Fadia Z, Mor A. Simultaneous breakdown of multiple antibiotic resistance mechanisms in
S. aureus. FASEB J 2013; 27:4834-43. [DOI: 10.1096/fj.13-237610] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Galoz Kaneti
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Hadar Sarig
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Ibrahim Marjieh
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Zaknoon Fadia
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Amram Mor
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
26
|
López-Pelegrín M, Cerdà-Costa N, Martínez-Jiménez F, Cintas-Pedrola A, Canals A, Peinado JR, Marti-Renom MA, López-Otín C, Arolas JL, Gomis-Rüth FX. A novel family of soluble minimal scaffolds provides structural insight into the catalytic domains of integral membrane metallopeptidases. J Biol Chem 2013; 288:21279-21294. [PMID: 23733187 PMCID: PMC3774397 DOI: 10.1074/jbc.m113.476580] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/13/2013] [Indexed: 11/06/2022] Open
Abstract
In the search for structural models of integral-membrane metallopeptidases (MPs), we discovered three related proteins from thermophilic prokaryotes, which we grouped into a novel family called "minigluzincins." We determined the crystal structures of the zymogens of two of these (Pyrococcus abyssi proabylysin and Methanocaldococcus jannaschii projannalysin), which are soluble and, with ∼100 residues, constitute the shortest structurally characterized MPs to date. Despite relevant sequence and structural similarity, the structures revealed two unique mechanisms of latency maintenance through the C-terminal segments previously unseen in MPs as follows: intramolecular, through an extended tail, in proabylysin, and crosswise intermolecular, through a helix swap, in projannalysin. In addition, structural and sequence comparisons revealed large similarity with MPs of the gluzincin tribe such as thermolysin, leukotriene A4 hydrolase relatives, and cowrins. Noteworthy, gluzincins mostly contain a glutamate as third characteristic zinc ligand, whereas minigluzincins have a histidine. Sequence and structural similarity further allowed us to ascertain that minigluzincins are very similar to the catalytic domains of integral membrane MPs of the MEROPS database families M48 and M56, such as FACE1, HtpX, Oma1, and BlaR1/MecR1, which are provided with trans-membrane helices flanking or inserted into a minigluzincin-like catalytic domain. In a time where structural biochemistry of integral-membrane proteins in general still faces formidable challenges, the minigluzincin soluble minimal scaffold may contribute to our understanding of the working mechanisms of these membrane MPs and to the design of novel inhibitors through structure-aided rational drug design approaches.
Collapse
Affiliation(s)
- Mar López-Pelegrín
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, c/Baldiri Reixac, 15-21, 08028 Barcelona
| | - Núria Cerdà-Costa
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, c/Baldiri Reixac, 15-21, 08028 Barcelona
| | - Francisco Martínez-Jiménez
- the Genome Biology Group, Centre Nacional d'Anàlisi Genòmic, c/Baldiri Reixac, 4, 08028 Barcelona,; the Gene Regulation, Stem Cells and Cancer Program, Center for Genomic Regulation, c/Dr. Aiguader, 88, 08003 Barcelona
| | - Anna Cintas-Pedrola
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, c/Baldiri Reixac, 15-21, 08028 Barcelona
| | - Albert Canals
- the Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas and Institute for Research in Biomedicine, c/Baldiri Reixac, 10-12, 08028 Barcelona, and
| | - Juan R Peinado
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, c/Baldiri Reixac, 15-21, 08028 Barcelona
| | - Marc A Marti-Renom
- the Genome Biology Group, Centre Nacional d'Anàlisi Genòmic, c/Baldiri Reixac, 4, 08028 Barcelona,; the Gene Regulation, Stem Cells and Cancer Program, Center for Genomic Regulation, c/Dr. Aiguader, 88, 08003 Barcelona
| | - Carlos López-Otín
- the Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Joan L Arolas
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, c/Baldiri Reixac, 15-21, 08028 Barcelona,.
| | - F Xavier Gomis-Rüth
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, c/Baldiri Reixac, 15-21, 08028 Barcelona,.
| |
Collapse
|
27
|
Favre A, Grugier J, Brans A, Joris B, Marchand-Brynaert J. 6-Aminopenicillanic acid (6-APA) derivatives equipped with anchoring arms. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.10.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Abstract
Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many--and quite possibly all--bacteria, the peptidoglycan fragments are recovered and recycled. Although cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall-targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC β-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both β-lactamase and β-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of β-lactams in vitro against inducible AmpC β-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall-recycling inhibitors.
Collapse
Affiliation(s)
- Jarrod W Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
29
|
Hao H, Dai M, Wang Y, Huang L, Yuan Z. Key genetic elements and regulation systems in methicillin-resistant Staphylococcus aureus. Future Microbiol 2012; 7:1315-29. [DOI: 10.2217/fmb.12.107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), popularly known as a type of superbug, has been a serious challenge for animal and human health. S. aureus has developed methicillin resistance mainly by expression of β-lactamase and PBP2a, which is regulated by the blaZ–blaI–blaR1 and mecA–mecI–mecRI systems. Other genetic elements, including murE and femA, also participate in expression of methicillin resistance, but the mechanism remains unclear. The evolution of the staphylococcal cassette chromosome mec determines the epidemiological risk of MRSA. The plasmid-located gene cfr might contribute to multiresistance and transmission of MRSA. Some virulence factors, including Panton–Valentine leukocidin, phenol-soluble modulin, arginine catabolic mobile element and other toxin elements enhance the pathogenesis and fitness of MRSA. Two-component regulation systems (agr, saeRS and vraRS) are closely associated with pathogenesis and drug resistance of MRSA. The systematic exploration of key genetic elements and regulation systems involved in multidrug resistance/pathogenesis/transmission of MRSA is conclusively integrated into this review, providing fundamental information for the development of new antimicrobial agents and the establishment of reasonable antibiotic stewardship to reduce the risk of this superbug.
Collapse
Affiliation(s)
- Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Menghong Dai
- National Reference Laboratory of Veterinary Drug Residues (HZAU) & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
30
|
Che T, Bonomo RA, Shanmugam S, Bethel CR, Pusztai-Carey M, Buynak JD, Carey PR. Carboxylation and decarboxylation of active site Lys 84 controls the activity of OXA-24 β-lactamase of Acinetobacter baumannii: Raman crystallographic and solution evidence. J Am Chem Soc 2012; 134:11206-15. [PMID: 22702961 DOI: 10.1021/ja303168n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The class D β-lactamases are characterized by the presence of a carboxylated lysine in the active site that participates in catalysis. Found in Acinetobacter baumannii, OXA-24 is a class D carbapenem hydrolyzing enzyme that exhibits resistance to most available β-lactamase inhibitors. In this study, the reaction between a 6-alkylidiene penam sulfone inhibitor, SA-1-204, in single crystals of OXA-24 is followed by Raman microscopy. Details of its reaction with SA-1-204 provide insight into the enzyme's mode of action and help define the mechanism of inhibition. When the crystal is maintained in HEPES buffer, the reaction is fast, shorter than the time scale of the Raman experiment. However, when the crystal holding solution contains 28% PEG 2000, the reaction is slower and can be recorded by Raman microscopy in real time; the inhibitor's Raman bands quickly disappear, transient features are seen due to an early intermediate, and, at approximately 2-11 min, new bands appear that are assigned to the late intermediate species. At about 50 min, bands due to all intermediates are replaced by Raman signals of the unreacted inhibitor. The new population remains unchanged indicating (i) that the OXA-24 is no longer active and (ii) that the decarboxylation of Lys84 occurred during the first reaction cycle. Using absorbance spectroscopy, a one-cycle reaction could be carried out in aqueous solution producing inactive OXA-24 as assayed by the chromogenic substrate nitrocefin. However, activity could be restored by reacting aqueous OXA-24 with a large excess of NaHCO(3), which recarboxylates Lys84. In contrast, the addition of NaHCO(3) was not successful in reactivating OXA-24 in the crystalline state; this is ascribed to the inability to create a concentration of NaHCO(3) in large excess over the OXA-24 that is present in the crystal. The finding that inhibitor compounds can inactivate a class D enzyme by promoting decarboxylation of an active site lysine suggests a novel function that could be exploited in inhibitor design.
Collapse
Affiliation(s)
- Tao Che
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Llarrull LI, Mobashery S. Dissection of events in the resistance to β-lactam antibiotics mediated by the protein BlaR1 from Staphylococcus aureus. Biochemistry 2012; 51:4642-9. [PMID: 22616850 DOI: 10.1021/bi300429p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A heterologous expression system was used to evaluate activation of BlaR1, a sensor/signal transducer protein of Staphylococcus aureus with a central role in resistance to β-lactam antibiotics. In the absence of other S. aureus proteins that might respond to antibiotics and participate in signal transduction events, we documented that BlaR1 fragmentation is autolytic, that it occurs in the absence of antibiotics, and that BlaR1 directly degrades BlaI, the gene repressor of the system. Furthermore, we disclosed that this proteolytic activity is metal ion-dependent and that it is not modulated directly by acylation of the sensor domain by β-lactam antibiotics.
Collapse
Affiliation(s)
- Leticia I Llarrull
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
32
|
Berzigotti S, Benlafya K, Sépulchre J, Amoroso A, Joris B. Bacillus licheniformis BlaR1 L3 loop is a zinc metalloprotease activated by self-proteolysis. PLoS One 2012; 7:e36400. [PMID: 22623956 PMCID: PMC3356374 DOI: 10.1371/journal.pone.0036400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 04/04/2012] [Indexed: 11/26/2022] Open
Abstract
In Bacillus licheniformis 749/I, BlaP β-lactamase is induced by the presence of a β-lactam antibiotic outside the cell. The first step in the induction mechanism is the detection of the antibiotic by the membrane-bound penicillin receptor BlaR1 that is composed of two functional domains: a carboxy-terminal domain exposed outside the cell, which acts as a penicillin sensor, and an amino-terminal domain anchored to the cytoplasmic membrane, which works as a transducer-transmitter. The acylation of BlaR1 sensor domain by the antibiotic generates an intramolecular signal that leads to the activation of the L3 cytoplasmic loop of the transmitter by a single-point cleavage. The exact mechanism of L3 activation and the nature of the secondary cytoplasmic signal launched by the activated transmitter remain unknown. However, these two events seem to be linked to the presence of a HEXXH zinc binding motif of neutral zinc metallopeptidases. By different experimental approaches, we demonstrated that the L3 loop binds zinc ion, belongs to Gluzincin metallopeptidase superfamily and is activated by self-proteolysis.
Collapse
Affiliation(s)
- Stéphanie Berzigotti
- Centre for Protein Engineering, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Kamal Benlafya
- Centre for Protein Engineering, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Jérémy Sépulchre
- Centre for Protein Engineering, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Ana Amoroso
- Centre for Protein Engineering, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Bernard Joris
- Centre for Protein Engineering, Department of Life Sciences, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
33
|
Buchman JS, Schneider KD, Lloyd AR, Pavlish SL, Leonard DA. Site-saturation mutagenesis of position V117 in OXA-1 β-lactamase: effect of side chain polarity on enzyme carboxylation and substrate turnover. Biochemistry 2012; 51:3143-50. [PMID: 22429123 DOI: 10.1021/bi201896k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Class D β-lactamases pose an emerging threat to the efficacy of β-lactam therapy for bacterial infections. Class D enzymes differ mechanistically from other β-lactamases by the presence of an active-site N-carboxylated lysine that serves as a general base to activate the serine nucleophile for attack. We have used site-saturation mutagenesis at position V117 in the class D β-lactamase OXA-1 to investigate how alterations in the environment around N-carboxylated K70 affect the ability of that modified residue to carry out its normal function. Minimum inhibitory concentration analysis of the 20 position 117 variants demonstrates a clear pattern of charge and polarity effects on the level of ampicillin resistance imparted on Escherichia coli (E. coli). Substitutions that introduce a negative charge (D, E) at position 117 reduce resistance to near background levels, while the positively charged K and R residues maintain the highest resistance levels of all mutants. Treatment of the acidic variants with the fluorescent penicillin BOCILLIN FL followed by SDS-PAGE shows that they are active for acylation by substrate but deacylation-deficient. We used a novel fluorescence anisotropy assay to show that the specific charge and hydrogen-bonding potential of the residue at position 117 affect CO(2) binding to K70, which in turn correlates to deacylation activity. These conclusions are discussed in light of the mechanisms proposed for both class D β-lactamases and BlaR β-lactam sensor proteins and suggest a reason for the preponderance of asparagine at the V117-homologous position in the sensors.
Collapse
Affiliation(s)
- Jennifer S Buchman
- Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, USA
| | | | | | | | | |
Collapse
|
34
|
Kumarasiri M, Llarrull LI, Borbulevych O, Fishovitz J, Lastochkin E, Baker BM, Mobashery S. An amino acid position at crossroads of evolution of protein function: antibiotic sensor domain of BlaR1 protein from Staphylococcus aureus versus clasS D β-lactamases. J Biol Chem 2012; 287:8232-41. [PMID: 22262858 DOI: 10.1074/jbc.m111.333179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integral membrane protein BlaR1 of Staphylococcus aureus senses the presence of β-lactam antibiotics in the milieu and transduces the information to its cytoplasmic side, where its activity unleashes the expression of a set of genes, including that for BlaR1 itself, which manifest the antibiotic-resistant phenotype. The x-ray structure of the sensor domain of this protein exhibits an uncanny similarity to those of the class D β-lactamases. The former is a membrane-bound receptor/sensor for the β-lactam antibiotics, devoid of catalytic competence for substrate turnover, whereas the latter are soluble periplasmic enzymes in gram-negative bacteria with avid ability for β-lactam turnover. The two are clearly related to each other from an evolutionary point of view. However, the high resolution x-ray structures for both by themselves do not reveal why one is a receptor and the other an enzyme. It is documented herein that a single amino acid change at position 439 of the BlaR1 protein is sufficient to endow the receptor/sensor protein with modest turnover ability for cephalosporins as substrates. The x-ray structure for this mutant protein and the dynamics simulations revealed how a hydrolytic water molecule may sequester itself in the antibiotic-binding site to enable hydrolysis of the acylated species. These studies document how the nature of the residue at position 439 is critical for the fate of the protein in imparting unique functions on the same molecular template, to result in one as a receptor and in another as a catalyst.
Collapse
Affiliation(s)
- Malika Kumarasiri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Borbulevych O, Kumarasiri M, Wilson B, Llarrull LI, Lee M, Hesek D, Shi Q, Peng J, Baker BM, Mobashery S. Lysine Nzeta-decarboxylation switch and activation of the beta-lactam sensor domain of BlaR1 protein of methicillin-resistant Staphylococcus aureus. J Biol Chem 2011; 286:31466-72. [PMID: 21775440 DOI: 10.1074/jbc.m111.252189] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integral membrane protein BlaR1 of methicillin-resistant Staphylococcus aureus senses the presence of β-lactam antibiotics in the milieu and transduces the information to the cytoplasm, where the biochemical events that unleash induction of antibiotic resistance mechanisms take place. We report herein by two-dimensional and three-dimensional NMR experiments of the sensor domain of BlaR1 in solution and by determination of an x-ray structure for the apo protein that Lys-392 of the antibiotic-binding site is posttranslationally modified by N(ζ)-carboxylation. Additional crystallographic and NMR data reveal that on acylation of Ser-389 by antibiotics, Lys-392 experiences N(ζ)-decarboxylation. This unique process, termed the lysine N(ζ)-decarboxylation switch, arrests the sensor domain in the activated ("on") state, necessary for signal transduction and all the subsequent biochemical processes. We present structural information on how this receptor activation process takes place, imparting longevity to the antibiotic-receptor complex that is needed for the induction of the antibiotic-resistant phenotype in methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Oleg Borbulevych
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Three factors that modulate the activity of class D β-lactamases and interfere with the post-translational carboxylation of Lys70. Biochem J 2011; 432:495-504. [PMID: 21108605 DOI: 10.1042/bj20101122] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The activity of class D β-lactamases is dependent on Lys70 carboxylation in the active site. Structural, kinetic and affinity studies show that this post-translational modification can be affected by the presence of a poor substrate such as moxalactam but also by the V117T substitution. Val117 is a strictly conserved hydrophobic residue located in the active site. In addition, inhibition of class D β-lactamases by chloride ions is due to a competition between the side chain carboxylate of the modified Lys70 and chloride ions. Determination of the individual kinetic constants shows that the deacylation of the acyl-enzyme is the rate-limiting step for the wild-type OXA-10 β-lactamase.
Collapse
|
37
|
Bou G, Santillana E, Sheri A, Beceiro A, Sampson J, Kalp M, Bethel CR, Distler AM, Drawz SM, Pagadala SRR, van den Akker F, Bonomo RA, Romero A, Buynak JD. Design, synthesis, and crystal structures of 6-alkylidene-2'-substituted penicillanic acid sulfones as potent inhibitors of Acinetobacter baumannii OXA-24 carbapenemase. J Am Chem Soc 2010; 132:13320-31. [PMID: 20822105 PMCID: PMC3393087 DOI: 10.1021/ja104092z] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Class D β-lactamases represent a growing and diverse class of penicillin-inactivating enzymes that are usually resistant to commercial β-lactamase inhibitors. As many such enzymes are found in multi-drug resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa, novel β-lactamase inhibitors are urgently needed. Five unique 6-alkylidene-2'-substituted penicillanic acid sulfones (1-5) were synthesized and tested against OXA-24, a clinically important β-lactamase that inactivates carbapenems and is found in A. baumannii. Based upon the roles Tyr112 and Met223 play in the OXA-24 β-lactamase, we also engineered two variants (Tyr112Ala and Tyr112Ala,Met223Ala) to test the hypothesis that the hydrophobic tunnel formed by these residues influences inhibitor recognition. IC(50) values against OXA-24 and two OXA-24 β-lactamase variants ranged from 10 ± 1 (4 vs WT) to 338 ± 20 nM (5 vs Tyr112Ala, Met223Ala). Compound 4 possessed the lowest K(i) (500 ± 80 nM vs WT), and 1 possessed the highest inactivation efficiency (k(inact)/K(i) = 0.21 ± 0.02 μM(-1) s(-1)). Electrospray ionization mass spectrometry revealed a single covalent adduct, suggesting the formation of an acyl-enzyme intermediate. X-ray structures of OXA-24 complexed to four inhibitors (2.0-2.6 Å) reveal the formation of stable bicyclic aromatic intermediates with their carbonyl oxygen in the oxyanion hole. These data provide the first structural evidence that 6-alkylidene-2'-substituted penicillin sulfones are effective mechanism-based inactivators of class D β-lactamases. Their unique chemistry makes them developmental candidates. Mechanisms for class D hydrolysis and inhibition are discussed, and a pathway for the evolution of the BlaR1 sensor of Staphylococcus aureus to the class D β-lactamases is proposed.
Collapse
Affiliation(s)
| | | | | | | | - Jared Sampson
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Matthew Kalp
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH
| | | | - Anne M. Distler
- Department of Pharmacology, Case Western Reserve University School of Medicine
| | - Sarah M. Drawz
- Department of Pathology, Case Western Reserve University School of Medicine
| | | | - Focco van den Akker
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Robert A. Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University School of Medicine
- Department of Molecular Biology and Microbiology, Case Western Reserve University
| | | | | |
Collapse
|
38
|
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, USA
| | | |
Collapse
|
39
|
Tayler AE, Ayala JA, Niumsup P, Westphal K, Baker JA, Zhang L, Walsh TR, Wiedemann B, Bennett PM, Avison MB. Induction of beta-lactamase production in Aeromonas hydrophila is responsive to beta-lactam-mediated changes in peptidoglycan composition. MICROBIOLOGY-SGM 2010; 156:2327-2335. [PMID: 20430811 DOI: 10.1099/mic.0.035220-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have studied the mechanism by which beta-lactam challenge leads to beta-lactamase induction in Aeromonas hydrophila through transposon-insertion mutagenesis. Disruption of the dd-carboxypeptidases/endopeptidases, penicillin-binding protein 4 or BlrY leads to elevated monomer-disaccharide-pentapeptide levels in A. hydrophila peptidoglycan and concomitant overproduction of beta-lactamase through activation of the BlrAB two-component regulatory system. During beta-lactam challenge, monomer-disaccharide-pentapeptide levels increase proportionately with beta-lactamase production and beta-lactamase induction is inhibited by vancomycin, which binds muro-pentapeptides. Taken together, these data strongly suggest that the Aeromonas spp. beta-lactamase regulatory sensor kinase, BlrB, responds to the concentration of monomer-disaccharide-pentapeptide in peptidoglycan.
Collapse
Affiliation(s)
- Amy E Tayler
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Juan A Ayala
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Pannika Niumsup
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Katrin Westphal
- Department of Pharmaceutical Microbiology, University of Bonn, 53115 Bonn, Germany.,Department of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Jenny A Baker
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Lufei Zhang
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Timothy R Walsh
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Bernd Wiedemann
- Department of Pharmaceutical Microbiology, University of Bonn, 53115 Bonn, Germany
| | - Peter M Bennett
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Matthew B Avison
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
40
|
McCallum N, Berger-Bächi B, Senn MM. Regulation of antibiotic resistance in Staphylococcus aureus. Int J Med Microbiol 2009; 300:118-29. [PMID: 19800843 DOI: 10.1016/j.ijmm.2009.08.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Staphylococcus aureus has a formidable ability to adapt to varying environmental conditions and an extraordinary capacity to rapidly become resistant to virtually all antibiotics. Resistance develops either through mutations and rearrangements within the staphylococcal genome, or by the acquisition of resistance determinants. Antibiotic resistances often impose a fitness burden on the host. Such biological costs can be reduced by tight regulation and antibiotic-inducible expression of resistance genes, or by compensatory mutations. Resistance induction by antibiotics can be mediated by dedicated, antibiotic-recognizing signal transducers or by mechanisms relieving translational attenuation. Antibiotic tolerance and the expression of resistance phenotypes can also be strongly influenced by the genetic backgrounds of strains and several other factors. Modification and indirect regulation of resistance levels can occur by mutations that alter gene expression or substrate specificity of genes contributing to resistance. Insertion elements can alter resistance profiles by turning relevant genes on or off. Environmental conditions and stress response mechanisms triggered by perturbation of the cell envelope, DNA damage, or faulty intermediary metabolism can also have an impact on resistance development and expression. Clinically relevant resistance is often built up through multiple steps, each of which contributes to an increase in resistance. The driving force behind resistance formation is antibiotic stress, and under clinical conditions selection for resistance is continuously competing with selection for bacterial fitness.
Collapse
Affiliation(s)
- Nadine McCallum
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 32, CH-8006 Zürich, Switzerland
| | | | | |
Collapse
|
41
|
Schneider KD, Bethel CR, Distler AM, Hujer AM, Bonomo RA, Leonard DA. Mutation of the active site carboxy-lysine (K70) of OXA-1 beta-lactamase results in a deacylation-deficient enzyme. Biochemistry 2009; 48:6136-45. [PMID: 19485421 DOI: 10.1021/bi900448u] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Class D beta-lactamases hydrolyze beta-lactam antibiotics by using an active site serine nucleophile to form a covalent acyl-enzyme intermediate and subsequently employ water to deacylate the beta-lactam and release product. Class D beta-lactamases are carboxylated on the epsilon-amino group of an active site lysine, with the resulting carbamate functional group serving as a general base. We discovered that substitutions of the active site serine and lysine in OXA-1 beta-lactamase, a monomeric class D enzyme, significantly disrupt catalytic turnover. Substitution of glycine for the nucleophilic serine (S67G) results in an enzyme that can still bind substrate but is unable to form a covalent acyl-enzyme intermediate. Substitution of the carboxylated lysine (K70), on the other hand, results in enzyme that can be acylated by substrate but is impaired with respect to deacylation. We employed the fluorescent penicillin BOCILLIN FL to show that three different substitutions for K70 (alanine, aspartate, and glutamate) lead to the accumulation of significant acyl-enzyme intermediate. Interestingly, BOCILLIN FL deacylation rates (t(1/2)) vary depending on the identity of the substituting residue, from approximately 60 min for K70A to undetectable deacylation for K70D. Tryptophan fluorescence spectroscopy was used to confirm that these results are applicable to natural (i.e., nonfluorescent) substrates. Deacylation by K70A, but not K70D or K70E, can be partially restored by the addition of short-chain carboxylic acid mimetics of the lysine carbamate. In conclusion, we establish the functional role of the carboxylated lysine in OXA-1 and highlight its specific role in acylation and deacylation.
Collapse
Affiliation(s)
- Kyle D Schneider
- Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, USA
| | | | | | | | | | | |
Collapse
|
42
|
Sala C, Haouz A, Saul FA, Miras I, Rosenkrands I, Alzari PM, Cole ST. Genome-wide regulon and crystal structure of BlaI (Rv1846c) from Mycobacterium tuberculosis. Mol Microbiol 2009; 71:1102-16. [PMID: 19154333 DOI: 10.1111/j.1365-2958.2008.06583.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Comparative genomics with Staphylococcus aureus suggested the existence of a regulatory system governing beta-lactamase (BlaC) production in Mycobacterium tuberculosis. The crystal structure of Rv1846c, a winged helix regulator of previously unknown function, was solved thus revealing strong similarity to the BlaI and MecI repressors of S. aureus, which both respond to beta-lactam treatment. Using chromatin immunoprecipitation and hybridization to microarrays (ChIP-on-chip), the Rv1846c regulon was shown to comprise five separate genomic loci. Two of these mediate responses and resistance to beta-lactam antibiotics (rv1845c, rv1846c-rv1847; blaC-sigC); two encode membrane proteins of unknown function (rv1456c, rv3921c) while the last codes for ATP synthase (rv1303-atpBEFHAGDC-rv1312). The ChIP-on-chip findings were confirmed independently using electrophoretic mobility shift assays, DNAse footprinting and transcript analysis leading to Rv1846c being renamed BlaI. When cells were treated with beta-lactams, BlaI was released from its operator sites causing derepression of the regulon and upregulation of ATP synthase transcription. The existence of a potential regulatory loop between cell wall integrity and ATP production was previously unknown.
Collapse
Affiliation(s)
- Claudia Sala
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
43
|
The role of OXA-1 beta-lactamase Asp(66) in the stabilization of the active-site carbamate group and in substrate turnover. Biochem J 2008; 410:455-62. [PMID: 18031291 DOI: 10.1042/bj20070573] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The OXA-1 beta-lactamase is one of the few class D enzymes that has an aspartate residue at position 66, a position that is proximal to the active-site residue Ser(67). In class A beta-lactamases, such as TEM-1 and SHV-1, residues adjacent to the active-site serine residue play a crucial role in inhibitor resistance and substrate selectivity. To probe the role of Asp(66) in substrate affinity and catalysis, we performed site-saturation mutagenesis at this position. Ampicillin MIC (minimum inhibitory concentration) values for the full set of Asp(66) mutants expressed in Escherichia coli DH10B ranged from < or =8 microg/ml for cysteine, proline and the basic amino acids to > or =256 microg/ml for asparagine, leucine and the wild-type aspartate. Replacement of aspartic acid by asparagine at position 66 also led to a moderate enhancement of extended-spectrum cephalosporin resistance. OXA-1 shares with other class D enzymes a carboxylated residue, Lys(70), that acts as a general base in the catalytic mechanism. The addition of 25 mM bicarbonate to Luria-Bertani-broth agar resulted in a > or =16-fold increase in MICs for most OXA-1 variants with amino acid replacements at position 66 when expressed in E. coli. Because Asp(66) forms hydrogen bonds with several other residues in the OXA-1 active site, we propose that this residue plays a role in stabilizing the CO2 bound to Lys(70) and thereby profoundly affects substrate turnover.
Collapse
|
44
|
Jordan S, Hutchings MI, Mascher T. Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 2008; 32:107-46. [PMID: 18173394 DOI: 10.1111/j.1574-6976.2007.00091.x] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Sina Jordan
- Department of General Microbiology, Georg-August-University, Grisebachstrasse 8, Göttingen, Germany
| | | | | |
Collapse
|
45
|
Cha J, Vakulenko SB, Mobashery S. Characterization of the β-Lactam Antibiotic Sensor Domain of the MecR1 Signal Sensor/Transducer Protein from Methicillin-Resistant Staphylococcus aureus. Biochemistry 2007; 46:7822-31. [PMID: 17550272 DOI: 10.1021/bi7005459] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved two mechanisms for resistance to beta-lactam antibiotics. One is production of a beta-lactamase, and the other is that of penicillin-binding protein 2a (PBP 2a). The expression of these two proteins is regulated by the bla and mec operons, respectively. BlaR1 and MecR1 are beta-lactam sensor/signal transducer proteins, which experience acylation by beta-lactam antibiotics on the cell surface and transduce the signal into the cytoplasm. The C-terminal surface domain of MecR1 (MecRS) has been cloned, expressed, and purified to homogeneity. This protein has been characterized by documenting that it has a critical and unusual Nzeta-carboxylated lysine at position 394. Furthermore, the kinetics of interactions with beta-lactam antibiotics were evaluated, a process that entails conformational changes for the protein that might be critical for the signal transduction event. Kinetics of acylation of MecRS are suggestive that signal sensing may be the step where the two systems are substantially different from one another.
Collapse
Affiliation(s)
- Jooyoung Cha
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
46
|
Cha J, Mobashery S. Lysine N(zeta)-decarboxylation in the BlaR1 protein from Staphylococcus aureus at the root of its function as an antibiotic sensor. J Am Chem Soc 2007; 129:3834-5. [PMID: 17343387 DOI: 10.1021/ja070472e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jooyoung Cha
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
47
|
Marrero A, Mallorquí-Fernández G, Guevara T, García-Castellanos R, Gomis-Rüth FX. Unbound and acylated structures of the MecR1 extracellular antibiotic-sensor domain provide insights into the signal-transduction system that triggers methicillin resistance. J Mol Biol 2006; 361:506-21. [PMID: 16846613 DOI: 10.1016/j.jmb.2006.06.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 06/15/2006] [Accepted: 06/16/2006] [Indexed: 11/25/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains are responsible for most hospital-onset bacterial infections. Lately, they have become a major threat to the community through infections of skin, soft tissue and respiratory tract, and subsequent septicaemia or septic shock. MRSA strains are resistant to most beta-lactam antibiotics (BLAs) as a result of the biosynthesis of a penicillin-binding protein with low affinity for BLAs, called PBP2a, PBP2' or MecA. This response is regulated by the chromosomal mec-divergon, which encodes a signal-transduction system including a transcriptional repressor, MecI, and a sensor/transducer, MecR1, as well as the structural mecA gene. This system is similar to those encoded by bla divergons in S. aureus and Bacillus licheniformis. MecR1 comprises an integral-membrane latent metalloprotease domain facing the cytosol and an extracellular sensor domain. The latter binds BLAs and transmits a signal through the membrane that eventually triggers activation of the metalloprotease moiety, which in turn switches off MecI-induced repression of mecA transcription. The MecR1 sensor domain, MecR1-PBD, reveals a two-domain structure of alpha/beta-type fold reminiscent of penicillin-binding proteins and beta-lactamases, and a catalytic serine residue as the ultimate cause for BLA-binding. Covalent complexes with benzylpenicillin and oxacillin provide evidence that serine acylation does not entail significant structural changes, thus supporting the hypothesis that additional extracellular segments of MecR1 are involved in signal transmission. The chemical nature of the residues shaping the active-site cleft favours stabilisation of the acyl enzyme complexes in MecR1-PBD, in contrast to the closely related OXA beta-lactamases, where the cleft is more likely to promote subsequent hydrolysis. The present structural data provide insights into the mec-encoded BLA-response mechanism and an explanation for kinetic differences in signal transmission with the related bla-encoded systems.
Collapse
Affiliation(s)
- Aniebrys Marrero
- Institut de Biologia Molecular de Barcelona, C.I.D.-C.S.I.C. C/Jordi Girona, 18-26 08034 Barcelona, Spain
| | | | | | | | | |
Collapse
|
48
|
Thumanu K, Cha J, Fisher JF, Perrins R, Mobashery S, Wharton C. Discrete steps in sensing of beta-lactam antibiotics by the BlaR1 protein of the methicillin-resistant Staphylococcus aureus bacterium. Proc Natl Acad Sci U S A 2006; 103:10630-5. [PMID: 16815972 PMCID: PMC1502283 DOI: 10.1073/pnas.0601971103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemical sensing by cell-surface receptors to effect signal transduction is a ubiquitous biological event. Despite extensive structural biochemical study, detailed knowledge of how signal transduction occurs is largely lacking. We report herein a kinetic and structural study, obtained by stopped-flow IR spectroscopy, of the activation of the BlaR1 receptor of the Staphylococcus aureus bacterium by beta-lactam antibiotics. The cell-surface BlaR1 receptor alerts the bacterium to the presence of beta-lactam antibiotics, resulting in expression of the gene for a beta-lactamase enzyme. This enzyme hydrolytically destroys the remaining beta-lactam antibiotics. IR spectroscopic interrogation of the beta-lactam-BlaR1 receptor reaction has allowed the simultaneous measurement of the chemical events of receptor recognition of the beta-lactam and the characterization of the conformational changes in the BlaR1 receptor that result. The key chemical events in beta-lactam recognition are serine acylation and subsequent irreversible decarboxylation of the BlaR1 active site lysine carbamate. Both events are observed by stopped-flow IR kinetics and (13)C isotope-edited IR spectroscopy. The secondary structural changes in the BlaR1 receptor conformation that occur as a consequence of this acylation/decarboxylation are predicted to correlate to the signal transduction event accomplished by this receptor.
Collapse
Affiliation(s)
- Kanjana Thumanu
- *School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Jooyoung Cha
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Jed F. Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Richard Perrins
- *School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
- To whom correspondence may be addressed. E-mail:
or
| | - Christopher Wharton
- *School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
49
|
Yellaboina S, Ranjan S, Vindal V, Ranjan A. Comparative analysis of iron regulated genes in mycobacteria. FEBS Lett 2006; 580:2567-76. [PMID: 16631750 DOI: 10.1016/j.febslet.2006.03.090] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 03/20/2006] [Accepted: 03/28/2006] [Indexed: 11/22/2022]
Abstract
Iron dependent regulator, IdeR, regulates the expression of genes in response to intracellular iron levels in M. tuberculosis. Orthologs of IdeR are present in all the sequenced genomes of mycobacteria. We have used a computational approach to identify conserved IdeR regulated genes across the mycobacteria and the genes that are specific to each of the mycobacteria. Novel iron regulated genes that code for a predicted 4-hydroxy benzoyl coA hydrolase (Rv1847) and a protease dependent antibiotic regulatory system (Rv1846c, Rv0185c) are conserved across the mycobacteria. Although Mycobacterium natural-resistance-associated macrophage protein (Mramp) is present in all mycobacteria, it is, as predicted, an iron-regulated gene in only one species, M. avium subsp. paratuberculosis. We also observed an additional iron-regulated exochelin biosynthetic operon, which is present only in non-pathogenic Mycobacterium, M. smegmatis.
Collapse
Affiliation(s)
- Sailu Yellaboina
- Computational and Functional Genomics Group, Sun Centre of Excellence in Medical Bioinformatics, Centre for DNA Fingerprinting and Diagnostics, EMBnet India Node, Hyderabad 500076, India
| | | | | | | |
Collapse
|
50
|
Safo MK, Ko TP, Musayev FN, Zhao Q, Wang AHJ, Archer GL. Structure of the MecI repressor from Staphylococcus aureus in complex with the cognate DNA operator of mec. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:320-4. [PMID: 16582476 PMCID: PMC2222568 DOI: 10.1107/s1744309106009742] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 03/15/2006] [Indexed: 11/10/2022]
Abstract
The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of beta-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 A resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA, and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtual DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI-mec complex, but unlike the MecI-bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.
Collapse
Affiliation(s)
- Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | | | | | |
Collapse
|