1
|
Négrerie M. Iron transitions during activation of allosteric heme proteins in cell signaling. Metallomics 2020; 11:868-893. [PMID: 30957812 DOI: 10.1039/c8mt00337h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allosteric heme proteins can fulfill a very large number of different functions thanks to the remarkable chemical versatility of heme through the entire living kingdom. Their efficacy resides in the ability of heme to transmit both iron coordination changes and iron redox state changes to the protein structure. Besides the properties of iron, proteins may impose a particular heme geometry leading to distortion, which allows selection or modulation of the electronic properties of heme. This review focusses on the mechanisms of allosteric protein activation triggered by heme coordination changes following diatomic binding to proteins as diverse as the human NO-receptor, cytochromes, NO-transporters and sensors, and a heme-activated potassium channel. It describes at the molecular level the chemical capabilities of heme to achieve very different tasks and emphasizes how the properties of heme are determined by the protein structure. Particularly, this reviews aims at giving an overview of the exquisite adaptability of heme, from bacteria to mammals.
Collapse
Affiliation(s)
- Michel Négrerie
- Laboratoire d'Optique et Biosciences, INSERM, CNRS, Ecole Polytechnique, 91120 Palaiseau, France.
| |
Collapse
|
2
|
Tsujino H, Uno T, Yamashita T, Katsuda M, Takada K, Saiki T, Maeda S, Takagi A, Masuda S, Kawano Y, Meguro K, Akai S. Correlation of indoleamine-2,3-dioxigenase 1 inhibitory activity of 4,6-disubstituted indazole derivatives and their heme binding affinity. Bioorg Med Chem Lett 2019; 29:126607. [DOI: 10.1016/j.bmcl.2019.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 02/04/2023]
|
3
|
Otomo A, Ishikawa H, Mizuno M, Kimura T, Kubo M, Shiro Y, Aono S, Mizutani Y. A Study of the Dynamics of the Heme Pocket and C-helix in CooA upon CO Dissociation Using Time-Resolved Visible and UV Resonance Raman Spectroscopy. J Phys Chem B 2016; 120:7836-43. [PMID: 27457181 DOI: 10.1021/acs.jpcb.6b05634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CooA is a CO-sensing transcriptional activator from the photosynthetic bacterium Rhodospirillum rubrum that binds CO at the heme iron. The heme iron in ferrous CooA has two axial ligands: His77 and Pro2. CO displaces Pro2 and induces a conformational change in CooA. The dissociation of CO and/or ligation of the Pro2 residue are believed to trigger structural changes in the protein. Visible time-resolved resonance Raman spectra obtained in this study indicated that the ν(Fe-His) mode, arising from the proximal His77-iron stretch, does not shift until 50 μs after the photodissociation of CO. Ligation of the Pro2 residue to the heme iron was observed around 50 μs after the photodissociation of CO, suggesting that the ν(Fe-His) band exhibits no shift until the ligation of Pro2. UV resonance Raman spectra suggested structural changes in the vicinity of Trp110 in the C-helix upon CO binding, but no or very small spectral changes in the time-resolved UV resonance Raman spectra were observed from 100 ns to 100 μs after the photodissociation of CO. These results strongly suggest that the conformational change of CooA is induced by the ligation of Pro2 to the heme iron.
Collapse
Affiliation(s)
- Akihiro Otomo
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Haruto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tetsunari Kimura
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Minoru Kubo
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yoshitsugu Shiro
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Shigetoshi Aono
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences , 5-1 Higashiyama, Myodaiji, Okazaki 444-8786, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
4
|
Shimizu T, Huang D, Yan F, Stranava M, Bartosova M, Fojtíková V, Martínková M. Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors. Chem Rev 2015; 115:6491-533. [PMID: 26021768 DOI: 10.1021/acs.chemrev.5b00018] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Toru Shimizu
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
- §Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 983-8551, Japan
| | - Dongyang Huang
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fang Yan
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Martin Stranava
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Martina Bartosova
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Veronika Fojtíková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Markéta Martínková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| |
Collapse
|
5
|
Abstract
The haem-based sensors are chimeric multi-domain proteins responsible for the cellular adaptive responses to environmental changes. The signal transduction is mediated by the sensing capability of the haem-binding domain, which transmits a usable signal to the cognate transmitter domain, responsible for providing the adequate answer. Four major families of haem-based sensors can be recognized, depending on the nature of the haem-binding domain: (i) the haem-binding PAS domain, (ii) the CO-sensitive carbon monoxide oxidation activator, (iii) the haem NO-binding domain, and (iv) the globin-coupled sensors. The functional classification of the haem-binding sensors is based on the activity of the transmitter domain and, traditionally, comprises: (i) sensors with aerotactic function; (ii) sensors with gene-regulating function; and (iii) sensors with unknown function. We have implemented this classification with newly identified proteins, that is, the Streptomyces avermitilis and Frankia sp. that present a C-terminal-truncated globin fused to an N-terminal cofactor-free monooxygenase, the structural-related class of non-haem globins in Bacillus subtilis, Moorella thermoacetica, and Bacillus anthracis, and a haemerythrin-coupled diguanylate cyclase in Vibrio cholerae. This review summarizes the structures, the functions, and the structure-function relationships known to date on this broad protein family. We also propose unresolved questions and new possible research approaches.
Collapse
|
6
|
Affiliation(s)
- Taku YAMASHITA
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
7
|
Komori H, Inagaki S, Yoshioka S, Aono S, Higuchi Y. Crystal Structure of CO-sensing Transcription Activator CooA Bound to Exogenous Ligand Imidazole. J Mol Biol 2007; 367:864-71. [PMID: 17292914 DOI: 10.1016/j.jmb.2007.01.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 01/11/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
CooA is a CO-dependent transcriptional activator and transmits a CO-sensing signal to a DNA promoter that controls the expression of the genes responsible for CO metabolism. CooA contains a b-type heme as the active site for sensing CO. CO binding to the heme induces a conformational change that switches CooA from an inactive to an active DNA-binding form. Here, we report the crystal structure of an imidazole-bound form of CooA from Carboxydothermus hydrogenoformans (Ch-CooA). In the resting form, Ch-CooA has a six-coordinate ferrous heme with two endogenous axial ligands, the alpha-amino group of the N-terminal amino acid and a histidine residue. The N-terminal amino group of CooA that is coordinated to the heme iron is replaced by CO. This substitution presumably triggers a structural change leading to the active form. The crystal structure of Ch-CooA reveals that imidazole binds to the heme, which replaces the N terminus, as does CO. The dissociated N terminus is positioned approximately 16 A from the heme iron in the imidazole-bound form. In addition, the heme plane is rotated by 30 degrees about the normal of the porphyrin ring compared to that found in the inactive form of Rhodospirillum rubrum CooA. Even though the ligand exchange, imidazole-bound Ch-CooA remains in the inactive form for DNA binding. These results indicate that the release of the N terminus resulting from imidazole binding is not sufficient to activate CooA. The structure provides new insights into the structural changes required to achieve activation.
Collapse
Affiliation(s)
- Hirofumi Komori
- Department of Life Science, Graduate School of Life Science, University of Hyogo and Himeji Institute of Technology, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | | | | | | | | |
Collapse
|
8
|
Moore LJ, Mettert EL, Kiley PJ. Regulation of FNR Dimerization by Subunit Charge Repulsion. J Biol Chem 2006; 281:33268-75. [PMID: 16959764 DOI: 10.1074/jbc.m608331200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dimerization of the global anaerobic transcription factor FNR is essential for FNR activity. Under aerobic conditions FNR is an inactive monomeric species because it lacks the oxygen labile [4Fe-4S] cluster required for dimerization. In this study, we investigated the protein side chains that inhibit FNR dimerization under aerobic conditions. Substitution of Asp(154) within the predicted dimerization helix with residues containing neutral or positively charged side chains increased FNR activity under aerobic conditions, whereas replacement of Asp(154) with Glu inhibited FNR activity similar to WT-FNR. Similar results were obtained when making analogous substitutions of Glu(150). In vitro analysis of representative FNR mutant proteins indicated that their increased activity under aerobic conditions resulted from an [4Fe-4S] independent mechanism of dimerization. In addition, simultaneous substitution of residues 150 and 154 with Lys restored inhibition of FNR activity under aerobic growth conditions. Collectively, these data indicate that charge repulsion by side chains at positions 150 and 154 is necessary to inhibit dimerization under aerobic conditions. They also suggest that a [4Fe-4S]-dependent conformational change overcomes charge repulsion between subunits under anaerobic conditions. Comparison of the trypsin sensitivity of [4Fe-4S]-FNR and apoFNR indicated that there are no major differences in protease sensitivity between these forms, whereas circular dichroism suggested that small changes in secondary structure occur between the cluster-containing FNR and apoFNR. Thus, the [4Fe-4S]-dependent conformational change necessary to overcome inter-subunit charge repulsion and create a subunit interface more favorable for dimerization must be small.
Collapse
Affiliation(s)
- Laura J Moore
- Department of Chemistry, Monmouth College, Monmouth, Illinois 61462, USA.
| | | | | |
Collapse
|
9
|
Ibrahim M, Kerby RL, Puranik M, Wasbotten IH, Youn H, Roberts GP, Spiro TG. Heme displacement mechanism of CooA activation: mutational and Raman spectroscopic evidence. J Biol Chem 2006; 281:29165-73. [PMID: 16873369 PMCID: PMC2756451 DOI: 10.1074/jbc.m605568200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heme-containing protein CooA of Rhodospirillum rubrum regulates the expression of genes involved in CO oxidation. CooA binds its target DNA sequence in response to CO binding to its heme. Activity measurements and resonance Raman (RR) spectra are reported for CooA variants that bind DNA even in the absence of CO, those in which the wild-type residues at the 121-126 positions, TSCMRT, are replaced by the residues AYLLRL or RYLLRL, and also for variants that bind DNA poorly in the presence of CO, such as L120S and L120F. The Fe-C and C-O stretching resonance Raman (RR) frequencies of all CooAs examined deviate from the expected back-bonding correlation in a manner indicating weakening of the Fe-His-77 proximal ligand bond, and the extent of weakening correlates positively with DNA binding activity. The (A/R) YLLRL variants have detectable populations of a 5-coordinate heme resulting from partial dissociation of the endogenous distal ligand, Pro-2. Selective excitation of this population reveals downshifted Fe-His-77-stretching RR bands, confirming the proximal bond weakening. These results support our previous hypothesis that the conformational change required for DNA binding is initiated by displacement of the heme into an adjacent hydrophobic cavity once CO displaces the Pro-2 ligand. Examination of the crystal structure reveals a physical basis for these results, and a mechanism is proposed to link heme displacement to conformational change.
Collapse
Affiliation(s)
- Mohammed Ibrahim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Robert L. Kerby
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin 53706
| | - Mrinalini Puranik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Ingar H. Wasbotten
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Hwan Youn
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin 53706
| | - Gary P. Roberts
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin 53706
| | - Thomas G. Spiro
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
10
|
Kubo M, Inagaki S, Yoshioka S, Uchida T, Mizutani Y, Aono S, Kitagawa T. Evidence for displacements of the C-helix by CO ligation and DNA binding to CooA revealed by UV resonance Raman spectroscopy. J Biol Chem 2006; 281:11271-8. [PMID: 16439368 DOI: 10.1074/jbc.m513261200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The UV and visible resonance Raman spectra are reported for CooA from Rhodospirillum rubrum, which is a transcriptional regulator activated by growth in a CO atmosphere. CO binding to heme in its sensor domain causes rearrangement of its DNA-binding domain, allowing binding of DNA with a specific sequence. The sensor and DNA-binding domains are linked by a hinge region that follows a long C-helix. UV resonance Raman bands arising from Trp-110 in the C-helix revealed local movement around Trp-110 upon CO binding. The indole side chain of Trp-110, which is exposed to solvent in the CO-free ferrous state, becomes buried in the CO-bound state with a slight change in its orientation but maintains a hydrogen bond with a water molecule at the indole nitrogen. This is the first experimental data supporting a previously proposed model involving displacement of the C-helix and heme sliding. The UV resonance Raman spectra for the CooA-DNA complex indicated that binding of DNA to CooA induces a further displacement of the C-helix in the same direction during transition to the complete active conformation. The Fe-CO and C-O stretching bands showed frequency shifts upon DNA binding, but the Fe-His stretching band did not. Moreover, CO-geminate recombination was more efficient in the DNA-bound state. These results suggest that the C-helix displacement in the DNA-bound form causes the CO binding pocket to narrow and become more negative.
Collapse
Affiliation(s)
- Minoru Kubo
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | | | | | | | | | | | | |
Collapse
|