1
|
Nagy N, Hádinger N, Tóth O, Rácz GA, Pintér T, Gál Z, Urbán M, Gócza E, Hiripi L, Acsády L, Vértessy BG. Characterization of dUTPase expression in mouse postnatal development and adult neurogenesis. Sci Rep 2024; 14:13139. [PMID: 38849394 PMCID: PMC11161619 DOI: 10.1038/s41598-024-63405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
The enzyme dUTPase has an essential role in maintaining genomic integrity. In mouse, nuclear and mitochondrial isoforms of the enzyme have been described. Here we present the isoform-specific mRNA expression levels in different murine organs during development using RT-qPCR. In this study, we analyzed organs of 14.5-day embryos and of postnatal 2-, 4-, 10-week- and 13-month-old mice. We demonstrate organ-, sex- and developmental stage-specific differences in the mRNA expression levels of both isoforms. We found high mRNA expression level of the nuclear isoform in the embryo brain, and the expression level remained relatively high in the adult brain as well. This was surprising, since dUTPase is known to play an important role in proliferating cells, and mass production of neural cells is completed by adulthood. Thus, we investigated the pattern of the dUTPase protein expression specifically in the adult brain with immunostaining and found that dUTPase is present in the germinative zones, the subventricular and the subgranular zones, where neurogenesis occurs and in the rostral migratory stream where neuroblasts migrate to the olfactory bulb. These novel findings suggest that dUTPase may have a role in cell differentiation and indicate that accurate dTTP biosynthesis can be vital, especially in neurogenesis.
Collapse
Affiliation(s)
- Nikolett Nagy
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
| | - Nóra Hádinger
- Laboratory of Thalamus Research, Institute of Experimental Medicine, HUN-REN, Szigony utca 43, 1083, Budapest, Hungary
| | - Otília Tóth
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Gergely Attila Rácz
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Tímea Pintér
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
| | - Zoltán Gál
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
| | - Martin Urbán
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
| | - Elen Gócza
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
| | - László Hiripi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
- Laboratory Animal Science Coordination Center, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - László Acsády
- Laboratory of Thalamus Research, Institute of Experimental Medicine, HUN-REN, Szigony utca 43, 1083, Budapest, Hungary
| | - Beáta G Vértessy
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
- Department of Applied Biotechnology and Food Sciences, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary.
| |
Collapse
|
2
|
Wang L, Zhang H, Chen W, Chen H, Xiao J, Chen X. Recent advances in DNA glycosylase assays. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
do Canto AM, Donatti A, Geraldis JC, Godoi AB, da Rosa DC, Lopes-Cendes I. Neuroproteomics in Epilepsy: What Do We Know so Far? Front Mol Neurosci 2021; 13:604158. [PMID: 33488359 PMCID: PMC7817846 DOI: 10.3389/fnmol.2020.604158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Epilepsies are chronic neurological diseases that affect approximately 2% of the world population. In addition to being one of the most frequent neurological disorders, treatment for patients with epilepsy remains a challenge, because a proportion of patients do not respond to the antiseizure medications that are currently available. This results in a severe economic and social burden for patients, families, and the healthcare system. A characteristic common to all forms of epilepsy is the occurrence of epileptic seizures that are caused by abnormal neuronal discharges, leading to a clinical manifestation that is dependent on the affected brain region. It is generally accepted that an imbalance between neuronal excitation and inhibition generates the synchronic electrical activity leading to seizures. However, it is still unclear how a normal neural circuit becomes susceptible to the generation of seizures or how epileptogenesis is induced. Herein, we review the results of recent proteomic studies applied to investigate the underlying mechanisms leading to epilepsies and how these findings may impact research and treatment for these disorders.
Collapse
Affiliation(s)
- Amanda M. do Canto
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Amanda Donatti
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Jaqueline C. Geraldis
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Alexandre B. Godoi
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Douglas C. da Rosa
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| |
Collapse
|
4
|
Kara H, Chazal N, Bouaziz S. Is Uracil-DNA Glycosylase UNG2 a New Cellular Weapon Against HIV-1? Curr HIV Res 2020; 17:148-160. [PMID: 31433761 DOI: 10.2174/1570162x17666190821154331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/01/2019] [Accepted: 08/09/2019] [Indexed: 01/12/2023]
Abstract
Uracil-DNA glycosylase-2 (UNG2) is a DNA repair protein that removes uracil from single and double-stranded DNA through a basic excision repair process. UNG2 is packaged into new virions by interaction with integrase (IN) and is needed during the early stages of the replication cycle. UNG2 appears to play both a positive and negative role during HIV-1 replication; UNG2 improves the fidelity of reverse transcription but the nuclear isoform of UNG2 participates in the degradation of cDNA and the persistence of the cellular genome by repairing its uracil mismatches. In addition, UNG2 is neutralized by Vpr, which redirects it to the proteasome for degradation, suggesting that UNG2 may be a new cellular restriction factor. So far, we have not understood why HIV-1 imports UNG2 via its IN and why it causes degradation of endogenous UNG2 by redirecting it to the proteasome via Vpr. In this review, we propose to discuss the ambiguous role of UNG2 during the HIV-1 replication cycle.
Collapse
Affiliation(s)
- Hesna Kara
- Cibles Therapeutiques et Conception de Medicaments (CiTCoM), CNRS UMR8038, Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, Paris, France
| | - Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR9004, Universite de Montpellier, Montpellier, France
| | - Serge Bouaziz
- Cibles Therapeutiques et Conception de Medicaments (CiTCoM), CNRS UMR8038, Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, Paris, France
| |
Collapse
|
5
|
Ertuzun T, Semerci A, Cakir ME, Ekmekcioglu A, Gok MO, Soltys DT, de Souza-Pinto NC, Sezerman U, Muftuoglu M. Investigation of base excision repair gene variants in late-onset Alzheimer's disease. PLoS One 2019; 14:e0221362. [PMID: 31415677 PMCID: PMC6695184 DOI: 10.1371/journal.pone.0221362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/05/2019] [Indexed: 12/03/2022] Open
Abstract
Base excision repair (BER) defects and concomitant oxidative DNA damage accumulation play a role in the etiology and progression of late-onset Alzheimer’s disease (LOAD). However, it is not known whether genetic variant(s) of specific BER genes contribute to reduced BER activity in LOAD patients and whether they are associated with risk, development and/or progression of LOAD. Therefore, we performed targeted next generation sequencing for three BER genes, uracil glycosylase (UNG), endonuclease VIII-like DNA glycosylase 1 (NEIL1) and polymerase β (POLβ) including promoter, exonic and intronic regions in peripheral blood samples and postmortem brain tissues (temporal cortex, TC and cerebellum, CE) from LOAD patients, high-pathology control and cognitively normal age-matched controls. In addition, the known LOAD risk factor, APOE was included in this study to test whether any BER gene variants associate with APOE variants, particularly APOE ε4. We show that UNG carry five significant variants (rs1610925, rs2268406, rs80001089, rs1018782 and rs1018783) in blood samples of Turkish LOAD patients compared to age-matched controls and one of them (UNG rs80001089) is also significant in TC from Brazilian LOAD patients (p<0.05). The significant variants present only in CE and TC from LOAD are UNG rs2569987 and POLβ rs1012381950, respectively. There is also significant epistatic relationship (p = 0.0410) between UNG rs80001089 and NEIL1 rs7182283 in TC from LOAD subjects. Our results suggest that significant BER gene variants may be associated with the risk of LOAD in non-APOE ε4 carriers. On the other hand, there are no significant UNG, NEIL1 and POLβ variants that could affect their protein level and function, suggesting that there may be other factors such as post-transcriptional or–translational modifications responsible for the reduced activities and protein levels of these genes in LOAD pathogenesis. Further studies with increased sample size are needed to confirm the relationship between BER variants and LOAD risk.
Collapse
Affiliation(s)
- Tugce Ertuzun
- Department of Molecular Biology and Genetics
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Asli Semerci
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Mehmet Emin Cakir
- Department of Neurology, Medeniyet University, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Aysegul Ekmekcioglu
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Mehmet Oguz Gok
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Daniela T. Soltys
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Nadja C. de Souza-Pinto
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Meltem Muftuoglu
- Department of Molecular Biology and Genetics
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
6
|
Chen M, Li W, Ma C, Wu K, He H, Wang K. Fluorometric determination of the activity of uracil-DNA glycosylase by using graphene oxide and exonuclease I assisted signal amplification. Mikrochim Acta 2019; 186:110. [PMID: 30637581 DOI: 10.1007/s00604-019-3247-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
The base-excision repair enzyme uracil-DNA glycosylase (UDG) plays a crucial role in the maintenance of genome integrity. The authors describe a fluorometric method for the detection of the activity of UDG. It is making use of (a) a 3'-FAM-labeled hairpin DNA probe with two uracil deoxyribonucleotides in the self-complementary duplex region of its hairpin structure, (b) exonuclease I (Exo I) that catalyzes the release of FAM from the UDG-induced stretched ssDNA probe, and (c) graphene oxide that quenches the green FAM fluorescence of the intact hairpin DNA probe in the absence of UDG. If Exo I causes the release of FAM from the hairpin DNA probe, the fluorescence peaking at 517 nm is turned off in the absence of UDG but turned on in its presence. The resulting assay has a wide linear range (0.008 to 1 U·mL-1) and a detection limit as low as 0.005 U·mL-1. It has good specificity for UDG over potentially interfering enzymes and gave satisfactory results when applied to biological samples. Conceivably, the method may be used in a wide range of applications such as in diagnosis, drug screening, and in studying the repair of DNA lesions. Graphical abstract Schematic presentation of a fluorometric strategy for detection of the activity of uracil-DNA glycosylase by using on graphene oxide and exonuclease I assisted signal amplification.
Collapse
Affiliation(s)
- Mingjian Chen
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Wenkai Li
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha, 410013, China. .,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410081, China.
| | - Kefeng Wu
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Hailun He
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410081, China
| |
Collapse
|
7
|
Soltys DT, Pereira CP, Rowies FT, Farfel JM, Grinberg LT, Suemoto CK, Leite RE, Rodriguez RD, Ericson NG, Bielas JH, Souza-Pinto NC. Lower mitochondrial DNA content but not increased mutagenesis associates with decreased base excision repair activity in brains of AD subjects. Neurobiol Aging 2019; 73:161-170. [DOI: 10.1016/j.neurobiolaging.2018.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/13/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022]
|
8
|
Kim E, Hong IS. A Novel Approach for the Detection of BER Enzymes by Real-Time PCR. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Euntaek Kim
- Department of Chemistry; Kongju National University; Chungnam 314-701 Republic of Korea
| | - In Seok Hong
- Department of Chemistry; Kongju National University; Chungnam 314-701 Republic of Korea
| |
Collapse
|
9
|
Wang J, Pan M, Wei J, Liu X, Wang F. A C-HCR assembly of branched DNA nanostructures for amplified uracil-DNA glycosylase assays. Chem Commun (Camb) 2017; 53:12878-12881. [DOI: 10.1039/c7cc07057h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The amplified and selective detection of uracil-DNA glycosylase was enabled by a two-layered cascaded hybridization chain reaction machinery.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Min Pan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Jie Wei
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Xiaoqing Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Fuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| |
Collapse
|
10
|
Xu J, Begley P, Church SJ, Patassini S, Hollywood KA, Jüllig M, Curtis MA, Waldvogel HJ, Faull RLM, Unwin RD, Cooper GJS. Graded perturbations of metabolism in multiple regions of human brain in Alzheimer's disease: Snapshot of a pervasive metabolic disorder. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1084-92. [PMID: 26957286 PMCID: PMC4856736 DOI: 10.1016/j.bbadis.2016.03.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/10/2016] [Accepted: 03/04/2016] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that displays pathological characteristics including senile plaques and neurofibrillary tangles. Metabolic defects are also present in AD-brain: for example, signs of deficient cerebral glucose uptake may occur decades before onset of cognitive dysfunction and tissue damage. There have been few systematic studies of the metabolite content of AD human brain, possibly due to scarcity of high-quality brain tissue and/or lack of reliable experimental methodologies. Here we sought to: 1) elucidate the molecular basis of metabolic defects in human AD-brain; and 2) identify endogenous metabolites that might guide new approaches for therapeutic intervention, diagnosis or monitoring of AD. Brains were obtained from nine cases with confirmed clinical/neuropathological AD and nine controls matched for age, sex and post-mortem delay. Metabolite levels were measured in post-mortem tissue from seven regions: three that undergo severe neuronal damage (hippocampus, entorhinal cortex and middle-temporal gyrus); three less severely affected (cingulate gyrus, sensory cortex and motor cortex); and one (cerebellum) that is relatively spared. We report a total of 55 metabolites that were altered in at least one AD-brain region, with different regions showing alterations in between 16 and 33 metabolites. Overall, we detected prominent global alterations in metabolites from several pathways involved in glucose clearance/utilization, the urea cycle, and amino-acid metabolism. The finding that potentially toxigenic molecular perturbations are widespread throughout all brain regions including the cerebellum is consistent with a global brain disease process rather than a localized effect of AD on regional brain metabolism.
Collapse
Affiliation(s)
- Jingshu Xu
- School of Biological Sciences, Faculty of Science and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Paul Begley
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Stephanie J Church
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Stefano Patassini
- School of Biological Sciences, Faculty of Science and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Katherine A Hollywood
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Mia Jüllig
- School of Biological Sciences, Faculty of Science and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand; Auckland Science Analytical Services, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard D Unwin
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Garth J S Cooper
- School of Biological Sciences, Faculty of Science and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand; Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK; Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
The Response to Oxidative DNA Damage in Neurons: Mechanisms and Disease. Neural Plast 2016; 2016:3619274. [PMID: 26942017 PMCID: PMC4752990 DOI: 10.1155/2016/3619274] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/24/2015] [Indexed: 11/26/2022] Open
Abstract
There is a growing body of evidence indicating that the mechanisms that control genome stability are of key importance in the development and function of the nervous system. The major threat for neurons is oxidative DNA damage, which is repaired by the base excision repair (BER) pathway. Functional mutations of enzymes that are involved in the processing of single-strand breaks (SSB) that are generated during BER have been causally associated with syndromes that present important neurological alterations and cognitive decline. In this review, the plasticity of BER during neurogenesis and the importance of an efficient BER for correct brain function will be specifically addressed paying particular attention to the brain region and neuron-selectivity in SSB repair-associated neurological syndromes and age-related neurodegenerative diseases.
Collapse
|
12
|
Elevated levels of plasma homocysteine, deficiencies in dietary folic acid and uracil–DNA glycosylase impair learning in a mouse model of vascular cognitive impairment. Behav Brain Res 2015; 283:215-26. [DOI: 10.1016/j.bbr.2015.01.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 11/30/2022]
|
13
|
Lu YJ, Hu DP, Deng Q, Wang ZY, Huang BH, Fang YX, Zhang K, Wong WL. Sensitive and selective detection of uracil-DNA glycosylase activity with a new pyridinium luminescent switch-on molecular probe. Analyst 2015; 140:5998-6004. [DOI: 10.1039/c5an01158b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new pyridinium-based switch-on molecular probe shows excellent sensitive and selective for luminescent detection of uracil-DNA glycosylase activity.
Collapse
Affiliation(s)
- Yu-Jing Lu
- Institute of Natural Medicine and Green Chemistry
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P.R. China
| | - Dong-Ping Hu
- Institute of Natural Medicine and Green Chemistry
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P.R. China
| | - Qiang Deng
- Institute of Natural Medicine and Green Chemistry
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P.R. China
| | - Zheng-Ya Wang
- Institute of Natural Medicine and Green Chemistry
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P.R. China
| | - Bao-Hua Huang
- Institute of Natural Medicine and Green Chemistry
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P.R. China
| | - Yan-Xiong Fang
- Institute of Natural Medicine and Green Chemistry
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P.R. China
| | - Kun Zhang
- Institute of Natural Medicine and Green Chemistry
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P.R. China
| | - Wing-Leung Wong
- Department of Science and Environmental Studies
- Centre for Education in Environmental Sustainability
- The Hong Kong Institute of Education
- P.R. China
| |
Collapse
|
14
|
Real time monitoring uracil excision using uracil-containing molecular beacons. Anal Chim Acta 2014; 819:71-7. [DOI: 10.1016/j.aca.2014.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 01/29/2014] [Accepted: 02/05/2014] [Indexed: 11/20/2022]
|
15
|
A short review on the implications of base excision repair pathway for neurons: relevance to neurodegenerative diseases. Mitochondrion 2013; 16:38-49. [PMID: 24220222 DOI: 10.1016/j.mito.2013.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022]
Abstract
Oxidative DNA damage results from the attack by reactive oxygen and nitrogen species (ROS/RNS) on human genome. This includes base modifications such as oxidized bases, abasic (AP) sites, and single-strand breaks (SSBs), all of which are repaired by the base excision repair (BER) pathway, one among the six known repair pathways. BER-pathway in mammalian cells involves several evolutionarily conserved proteins and is also linked to genome replication and transcription. The BER-pathway enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease (APE1), form complexes with downstream repair enzymes via protein-protein and DNA-protein interactions. An emerging concept for BER proteins is their involvement in non-canonical functions associated to RNA metabolism, which is opening new interesting perspectives. Various mechanisms that are underlined in maintaining neuronal cell genome integrity are identified, but are inconclusive in providing protection against oxidative damage in neurodegenerative disorders, main emphasis is given towards the role played by the proteins of BER-pathway that is discussed. In addition, mechanisms of action of BER-pathway in nuclear vs. mitochondria as well as the non-canonical functions are discussed in connection to human neurodegenerative diseases.
Collapse
|
16
|
Eldin P, Chazal N, Fenard D, Bernard E, Guichou JF, Briant L. Vpr expression abolishes the capacity of HIV-1 infected cells to repair uracilated DNA. Nucleic Acids Res 2013; 42:1698-710. [PMID: 24178031 PMCID: PMC3919559 DOI: 10.1093/nar/gkt974] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpr protein binds to the cellular uracil–DNA glycosylase UNG2 and induces its degradation through the assembly with the DDB1-CUL4 ubiquitin ligase complex. This interaction counteracts the antiviral activity exerted by UNG2 on HIV-1 gene transcription, as previously reported by us. In this work, we show that Vpr expression in the context of HIV-1 infection markedly decreases UNG2 expression in transformed or primary CD4+ T lymphocytes. We demonstrate for the first time that Vpr-UNG2 interaction significantly impairs the uracil excision activity of infected cells. The loss of uracil excision activity coincides with a significant accumulation of uracilated bases in the genome of infected cells without changes in cell division. Although UNG2 expression and uracil–DNA glycosylase activity are recovered after the peak of retroviral replication, the mutagenic effect of transient DNA uracilation in cycling cells should be taken into account. Therefore, the possible consequences of Vpr-mediated temporary depletion of endogenous nuclear UNG2 and subsequent alteration of the genomic integrity of infected cells need to be evaluated in the physiopathogenesis of HIV infection.
Collapse
Affiliation(s)
- Patrick Eldin
- Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé (CPBS) - UMR 5236-CNRS - Université Montpellier 1 and 2, Montpellier, France and Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, Université Montpellier 1 and 2, Montpellier, France
| | | | | | | | | | | |
Collapse
|
17
|
Canugovi C, Misiak M, Ferrarelli LK, Croteau DL, Bohr VA. The role of DNA repair in brain related disease pathology. DNA Repair (Amst) 2013; 12:578-87. [PMID: 23721970 DOI: 10.1016/j.dnarep.2013.04.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxidative DNA damage is implicated in brain aging, neurodegeneration and neurological diseases. Damage can be created by normal cellular metabolism, which accumulates with age, or by acute cellular stress conditions which create bursts of oxidative damage. Brain cells have a particularly high basal level of metabolic activity and use distinct oxidative damage repair mechanisms to remove oxidative damage from DNA and dNTP pools. Accumulation of this damage in the background of a functional DNA repair response is associated with normal aging, but defective repair in brain cells can contribute to neurological dysfunction. Emerging research strongly associates three common neurodegenerative conditions, Alzheimer's, Parkinson's and stroke, with defects in the ability to repair chronic or acute oxidative damage in neurons. This review explores the current knowledge of the role of oxidative damage repair in preserving brain function and highlights the emerging models and methods being used to advance our knowledge of the pathology of neurodegenerative disease.
Collapse
Affiliation(s)
- Chandrika Canugovi
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
18
|
Bosshard M, Markkanen E, van Loon B. Base excision repair in physiology and pathology of the central nervous system. Int J Mol Sci 2012. [PMID: 23203191 PMCID: PMC3546685 DOI: 10.3390/ijms131216172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Relatively low levels of antioxidant enzymes and high oxygen metabolism result in formation of numerous oxidized DNA lesions in the tissues of the central nervous system. Accumulation of damage in the DNA, due to continuous genotoxic stress, has been linked to both aging and the development of various neurodegenerative disorders. Different DNA repair pathways have evolved to successfully act on damaged DNA and prevent genomic instability. The predominant and essential DNA repair pathway for the removal of small DNA base lesions is base excision repair (BER). In this review we will discuss the current knowledge on the involvement of BER proteins in the maintenance of genetic stability in different brain regions and how changes in the levels of these proteins contribute to aging and the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthias Bosshard
- Institute for Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | | | | |
Collapse
|
19
|
Forestier A, Douki T, Sauvaigo S, De Rosa V, Demeilliers C, Rachidi W. Alzheimer's disease-associated neurotoxic peptide amyloid-β impairs base excision repair in human neuroblastoma cells. Int J Mol Sci 2012. [PMID: 23203093 PMCID: PMC3509609 DOI: 10.3390/ijms131114766] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in developed countries. It is characterized by two major pathological hallmarks, one of which is the extracellular aggregation of the neurotoxic peptide amyloid-β (Aβ), which is known to generate oxidative stress. In this study, we showed that the presence of Aβ in a neuroblastoma cell line led to an increase in both nuclear and mitochondrial DNA damage. Unexpectedly, a concomitant decrease in basal level of base excision repair, a major route for repairing oxidative DNA damage, was observed at the levels of both gene expression and protein activity. Moreover, the addition of copper sulfate or hydrogen peroxide, used to mimic the oxidative stress observed in AD-affected brains, potentiates Aβ-mediated perturbation of DNA damage/repair systems in the "Aβ cell line". Taken together, these findings indicate that Aβ could act as double-edged sword by both increasing oxidative nuclear/mitochondrial damage and preventing its repair. The synergistic effects of increased ROS production, accumulated DNA damage and impaired DNA repair could participate in, and partly explain, the massive loss of neurons observed in Alzheimer's disease since both oxidative stress and DNA damage can trigger apoptosis.
Collapse
Affiliation(s)
- Anne Forestier
- Nucleic Acids Lesions Laboratory, SCIB/INAC, CEA, Joseph Fourier University-Grenoble 1, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France; E-Mails: (A.F.); (T.D.); (S.S.); (V.R.)
| | - Thierry Douki
- Nucleic Acids Lesions Laboratory, SCIB/INAC, CEA, Joseph Fourier University-Grenoble 1, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France; E-Mails: (A.F.); (T.D.); (S.S.); (V.R.)
| | - Sylvie Sauvaigo
- Nucleic Acids Lesions Laboratory, SCIB/INAC, CEA, Joseph Fourier University-Grenoble 1, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France; E-Mails: (A.F.); (T.D.); (S.S.); (V.R.)
| | - Viviana De Rosa
- Nucleic Acids Lesions Laboratory, SCIB/INAC, CEA, Joseph Fourier University-Grenoble 1, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France; E-Mails: (A.F.); (T.D.); (S.S.); (V.R.)
| | | | - Walid Rachidi
- Nucleic Acids Lesions Laboratory, SCIB/INAC, CEA, Joseph Fourier University-Grenoble 1, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France; E-Mails: (A.F.); (T.D.); (S.S.); (V.R.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-438-785-011; Fax: +33-438-785-090
| |
Collapse
|
20
|
Yang JL, Sykora P, Wilson DM, Mattson MP, Bohr VA. The excitatory neurotransmitter glutamate stimulates DNA repair to increase neuronal resiliency. Mech Ageing Dev 2011; 132:405-11. [PMID: 21729715 DOI: 10.1016/j.mad.2011.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 05/27/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
Abstract
Glutamate is the most abundant excitatory neurotransmitter in the vertebrate central nervous system and plays an important role in synaptic plasticity required for learning and memory. Activation of glutamate ionotropic receptors promptly triggers membrane depolarization and Ca(2+) influx, resulting in the activation of several different protein kinases and transcription factors. For example, glutamate-mediated Ca(2+) influx activates Ca(2+)/calmodulin-dependent kinase, protein kinase C, and mitogen activated protein kinases resulting in activation of transcription factors such as cyclic AMP response element binding protein (CREB). Abnormally prolonged exposure to glutamate causes neuronal injury, and such "excitotoxicity" has been implicated in many acute and chronic diseases including ischemic stroke, epilepsy, amyotrophic lateral sclerosis, Alzheimer's, Huntington's and Parkinson's diseases. Interestingly, although glutamate-induced Ca(2+) influx can cause DNA damage by a mitochondrial reactive oxygen species-mediated mechanism, the Ca(2+) simultaneously activates CREB, resulting in up-regulation of the DNA repair and redox protein apurinic/apyrimidinic endonuclease 1. Here, we review connections between physiological or aberrant glutamate receptor activation, Ca(2+)-mediated signaling, oxidative DNA damage and repair efficiency, and neuronal vulnerability. We conclude that glutamate signaling involves an adaptive cellular stress response pathway that enhances DNA repair capability, thereby protecting neurons against injury and disease.
Collapse
Affiliation(s)
- Jenq-Lin Yang
- Laboratory of Molecular Gerontology, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
21
|
Li P, Hu X, Gan Y, Gao Y, Liang W, Chen J. Mechanistic insight into DNA damage and repair in ischemic stroke: exploiting the base excision repair pathway as a model of neuroprotection. Antioxid Redox Signal 2011; 14:1905-18. [PMID: 20677909 PMCID: PMC3078503 DOI: 10.1089/ars.2010.3451] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stroke is a common cause of death and serious long-term adult disability. Oxidative DNA damage is a severe consequence of oxidative stress associated with ischemic stroke. The accumulation of DNA lesions, including oxidative base modifications and strand breaks, triggers cell death in neurons and other vulnerable cell populations in the ischemic brain. DNA repair systems, particularly base excision repair, are endogenous defense mechanisms that combat oxidative DNA damage. The capacity for DNA repair may affect the susceptibility of neurons to ischemic stress and influence the pathological outcome of stroke. This article reviews the accumulated understanding of molecular pathways by which oxidative DNA damage is triggered and repaired in ischemic cells, and the potential impact of these pathways on ischemic neuronal cell death/survival. Genetic or pharmacological strategies that target the signaling molecules in DNA repair responses are promising for potential clinically effective treatment. Further understanding of mechanisms for oxidative DNA damage and its repair processes may lead to new avenues for stroke management.
Collapse
Affiliation(s)
- Peiying Li
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
22
|
Jeppesen DK, Bohr VA, Stevnsner T. DNA repair deficiency in neurodegeneration. Prog Neurobiol 2011; 94:166-200. [PMID: 21550379 DOI: 10.1016/j.pneurobio.2011.04.013] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/18/2011] [Accepted: 04/22/2011] [Indexed: 01/17/2023]
Abstract
Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby causing Huntington's disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage may be linked with the age-associated neurodegenerative disorders Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Mutation in the WRN protein leads to the premature aging disease Werner syndrome, a disorder that features neurodegeneration. In this article we review the evidence linking deficiencies in the DNA repair pathways with neurodegeneration.
Collapse
Affiliation(s)
- Dennis Kjølhede Jeppesen
- Danish Centre for Molecular Gerontology and Danish Aging Research Center, University of Aarhus, Department of Molecular Biology, Aarhus, Denmark
| | | | | |
Collapse
|
23
|
Zeitlin SG, Chapados BR, Baker NM, Tai C, Slupphaug G, Wang JYJ. Uracil DNA N-glycosylase promotes assembly of human centromere protein A. PLoS One 2011; 6:e17151. [PMID: 21399697 PMCID: PMC3047565 DOI: 10.1371/journal.pone.0017151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/19/2011] [Indexed: 11/19/2022] Open
Abstract
Uracil is removed from DNA by the conserved enzyme Uracil DNA N-glycosylase (UNG). Previously, we observed that inhibiting UNG in Xenopus egg extracts blocked assembly of CENP-A, a histone H3 variant. CENP-A is an essential protein in all species, since it is required for chromosome segregation during mitosis. Thus, the implication of UNG in CENP-A assembly implies that UNG would also be essential, but UNG mutants lacking catalytic activity are viable in all species. In this paper, we present evidence that UNG2 colocalizes with CENP-A and H2AX phosphorylation at centromeres in normally cycling cells. Reduction of UNG2 in human cells blocks CENP-A assembly, and results in reduced cell proliferation, associated with increased frequencies of mitotic abnormalities and rapid cell death. Overexpression of UNG2 induces high levels of CENP-A assembly in human cells. Using a multiphoton laser approach, we demonstrate that UNG2 is rapidly recruited to sites of DNA damage. Taken together, our data are consistent with a model in which the N-terminus of UNG2 interacts with the active site of the enzyme and with chromatin.
Collapse
Affiliation(s)
- Samantha G Zeitlin
- Moores UCSD Cancer Center and Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California, United States of America.
| | | | | | | | | | | |
Collapse
|
24
|
Homocysteine promotes proliferation and activation of microglia. Neurobiol Aging 2010; 31:2069-79. [DOI: 10.1016/j.neurobiolaging.2008.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/20/2008] [Accepted: 11/25/2008] [Indexed: 12/24/2022]
|
25
|
Pulukuri SMK, Knost JA, Estes N, Rao JS. Small interfering RNA-directed knockdown of uracil DNA glycosylase induces apoptosis and sensitizes human prostate cancer cells to genotoxic stress. Mol Cancer Res 2009; 7:1285-93. [PMID: 19671688 DOI: 10.1158/1541-7786.mcr-08-0508] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Uracil DNA glycosylase (UNG) is the primary enzyme responsible for removing uracil residues from DNA. Although a substantial body of evidence suggests that DNA damage plays a role in cancer cell apoptosis, the underlying mechanisms are poorly understood. In particular, very little is known about the role of base excision repair of misincorporated uracil in cell survival. To test the hypothesis that the repair of DNA damage associated with uracil misincorporation is critical for cancer cell survival, we used small interfering RNA (siRNA) to target the human UNG gene. In a dose-dependent and time-dependent manner, siRNA specifically inhibited UNG expression and modified the expression of several genes at both mRNA and protein levels. In LNCaP cells, p53, p21, and Bax protein levels increased, whereas Bcl2 levels decreased. In DU145 cells, p21 levels were elevated, although mutant p53 and Bax levels remained unchanged. In PC3 cells, UNG inhibition resulted in elevated p21 and Bax levels. In all three cell lines, UNG inhibition reduced cell proliferation, induced apoptosis, and increased cellular sensitivity to genotoxic stress. Furthermore, an in vitro cleavage experiment using uracil-containing double-stranded DNA as a template has shown that siRNA-mediated knockdown of UNG expression significantly reduced the uracil-excising activity of UNG in human prostate cancer cells, which was associated with DNA damage analyzed by comet assay. Taken together, these findings indicate that RNA interference-directed targeting of UNG is a convenient, novel tool for studying the biological role of UNG and raises the potential of its application for prostate cancer therapy.
Collapse
Affiliation(s)
- Sai Murali Krishna Pulukuri
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | | | | | | |
Collapse
|
26
|
Yoshizawa K, Jelezcova E, Brown AR, Foley JF, Nyska A, Cui X, Hofseth LJ, Maronpot RM, Wilson SH, Sepulveda AR, Sobol RW. Gastrointestinal hyperplasia with altered expression of DNA polymerase beta. PLoS One 2009; 4:e6493. [PMID: 19654874 PMCID: PMC2716528 DOI: 10.1371/journal.pone.0006493] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 07/07/2009] [Indexed: 01/13/2023] Open
Abstract
Background Altered expression of DNA polymerase β (Pol β) has been documented in a large percentage of human tumors. However, tumor prevalence or predisposition resulting from Pol β over-expression has not yet been evaluated in a mouse model. Methodology/Principal Findings We have recently developed a novel transgenic mouse model that over-expresses Pol β. These mice present with an elevated incidence of spontaneous histologic lesions, including cataracts, hyperplasia of Brunner's gland and mucosal hyperplasia in the duodenum. In addition, osteogenic tumors in mice tails, such as osteoma and osteosarcoma were detected. This is the first report of elevated tumor incidence in a mouse model of Pol β over-expression. These findings prompted an evaluation of human gastrointestinal tumors with regard to Pol β expression. We observed elevated expression of Pol β in stomach adenomas and thyroid follicular carcinomas, but reduced Pol β expression in esophageal adenocarcinomas and squamous carcinomas. Conclusions/Significance These data support the hypothesis that balanced and proficient base excision repair protein expression and base excision repair capacity is required for genome stability and protection from hyperplasia and tumor formation.
Collapse
Affiliation(s)
- Katsuhiko Yoshizawa
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- Department of Pathology II, Kansai Medical University, Moriguchi, Osaka, Japan
| | - Elena Jelezcova
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine & University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Ashley R. Brown
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine & University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Julie F. Foley
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Abraham Nyska
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Xiangli Cui
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Lorne J. Hofseth
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Robert M. Maronpot
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Samuel H. Wilson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Antonia R. Sepulveda
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert W. Sobol
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine & University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
27
|
Sagan D, Müller R, Kröger C, Hematulin A, Mörtl S, Eckardt-Schupp F. The DNA repair protein NBS1 influences the base excision repair pathway. Carcinogenesis 2009; 30:408-15. [PMID: 19126654 DOI: 10.1093/carcin/bgp004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
NBS1 fulfills important functions for the maintenance of genomic stability and cellular survival. Mutations in the NBS1 (Nijmegen Breakage Syndrome 1) gene are responsible for the Nijmegen breakage syndrome (NBS) in humans. The symptoms of this disease and the phenotypes of NBS1-defective cells, especially their enhanced radiosensitivity, can be explained by an impaired DNA double-strand break-induced signaling and a disturbed repair of these DNA lesions. We now provide evidence that NBS1 is also important for cellular survival after oxidative or alkylating stress where it is required for the proper initiation of base excision repair (BER). NBS1 downregulated cells show reduced activation of poly-(adenosine diphosphate-ribose)-polymerase-1 (PARP1) following genotoxic treatment with H(2)O(2) or methyl methanesulfonate, indicating impaired processing of damaged bases by BER as PARP1 activity is stimulated by the single-strand breaks intermediately generated during this repair pathway. Furthermore, extracts of these cells have a decreased capacity for the in vitro repair of a double-stranded oligonucleotide containing either uracil or 8-oxo-7,8-dihydroguanine to trigger BER. Our data presented here highlight for the first time a functional role for NBS1 in DNA maintenance by the BER pathway.
Collapse
Affiliation(s)
- Daniel Sagan
- Institute of Radiation Biology, Helmholtz Centre Munich-German Research Centre for Environmental Health, Neuherberg, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Sidorenko VS, Zharkov DO. Role of base excision repair DNA glycosylases in hereditary and infectious human diseases. Mol Biol 2008. [DOI: 10.1134/s0026893308050166] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Folate deficiency induces neurodegeneration and brain dysfunction in mice lacking uracil DNA glycosylase. J Neurosci 2008; 28:7219-30. [PMID: 18614692 DOI: 10.1523/jneurosci.0940-08.2008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung-/-) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung-/- embryonic fibroblasts, and conferred death of cultured Ung-/- hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung-/- but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung-/- mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency.
Collapse
|
30
|
Yang JL, Weissman L, Bohr VA, Mattson MP. Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair (Amst) 2008; 7:1110-20. [PMID: 18463003 DOI: 10.1016/j.dnarep.2008.03.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
By producing ATP and regulating intracellular calcium levels, mitochondria are vital for the function and survival of neurons. Oxidative stress and damage to mitochondrial DNA during the aging process can impair mitochondrial energy metabolism and ion homeostasis in neurons, thereby rendering them vulnerable to degeneration. Mitochondrial abnormalities have been documented in all of the major neurodegenerative disorders-Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis. Mitochondrial DNA damage and dysfunction may be downstream of primary disease processes such as accumulation of pathogenic proteins. However, recent experimental evidence demonstrates that mitochondrial DNA damage responses play important roles in aging and in the pathogenesis of neurodegenerative diseases. Therapeutic interventions that target mitochondrial regulatory systems have been shown effective in cell culture and animal models, but their efficacy in humans remains to be established.
Collapse
Affiliation(s)
- Jenq-Lin Yang
- Laboratory of Molecular Gerontology, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | | | | | | |
Collapse
|
31
|
Weissman L, Jo DG, Sørensen MM, de Souza-Pinto NC, Markesbery WR, Mattson MP, Bohr VA. Defective DNA base excision repair in brain from individuals with Alzheimer's disease and amnestic mild cognitive impairment. Nucleic Acids Res 2007; 35:5545-55. [PMID: 17704129 PMCID: PMC2018628 DOI: 10.1093/nar/gkm605] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oxidative stress is thought to play a role in the pathogenesis of Alzheimer's disease (AD) and increased oxidative DNA damage has been observed in brain tissue from AD patients. Base excision repair (BER) is the primary DNA repair pathway for small base modifications such as alkylation, deamination and oxidation. In this study, we have investigated alterations in the BER capacity in brains of AD patients. We employed a set of functional assays to measure BER activities in brain tissue from short post-mortem interval autopsies of 10 sporadic AD patients and 10 age-matched controls. BER activities were also measured in brain samples from 9 amnestic mild cognitive impairment (MCI) subjects. We found significant BER deficiencies in brains of AD patients due to limited DNA base damage processing by DNA glycosylases and reduced DNA synthesis capacity by DNA polymerase β. The BER impairment was not restricted to damaged brain regions and was also detected in the brains of amnestic MCI patients, where it correlated with the abundance of neurofibrillary tangles. These findings suggest that BER dysfunction is a general feature of AD brains which could occur at the earliest stages of the disease. The results support the hypothesis that defective BER may play an important role in the progression of AD.
Collapse
Affiliation(s)
- Lior Weissman
- Laboratories of Molecular Gerontology, Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA, College of Pharmacy, Sungkyunkwan University, Suwon, South Korea and Departments of Pathology and Laboratory Medicine, Neurology, and the Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky, Lexington, KY 40536, USA
| | - Dong-Gyu Jo
- Laboratories of Molecular Gerontology, Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA, College of Pharmacy, Sungkyunkwan University, Suwon, South Korea and Departments of Pathology and Laboratory Medicine, Neurology, and the Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky, Lexington, KY 40536, USA
| | - Martin M. Sørensen
- Laboratories of Molecular Gerontology, Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA, College of Pharmacy, Sungkyunkwan University, Suwon, South Korea and Departments of Pathology and Laboratory Medicine, Neurology, and the Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky, Lexington, KY 40536, USA
| | - Nadja C. de Souza-Pinto
- Laboratories of Molecular Gerontology, Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA, College of Pharmacy, Sungkyunkwan University, Suwon, South Korea and Departments of Pathology and Laboratory Medicine, Neurology, and the Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky, Lexington, KY 40536, USA
| | - William R. Markesbery
- Laboratories of Molecular Gerontology, Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA, College of Pharmacy, Sungkyunkwan University, Suwon, South Korea and Departments of Pathology and Laboratory Medicine, Neurology, and the Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky, Lexington, KY 40536, USA
| | - Mark P. Mattson
- Laboratories of Molecular Gerontology, Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA, College of Pharmacy, Sungkyunkwan University, Suwon, South Korea and Departments of Pathology and Laboratory Medicine, Neurology, and the Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky, Lexington, KY 40536, USA
| | - Vilhelm A. Bohr
- Laboratories of Molecular Gerontology, Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA, College of Pharmacy, Sungkyunkwan University, Suwon, South Korea and Departments of Pathology and Laboratory Medicine, Neurology, and the Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky, Lexington, KY 40536, USA
- *To whom correspondence should be addressed. +1 410 558 8162+1 410 558 8157
| |
Collapse
|
32
|
Liu B, Yang X, Wang K, Tan W, Li H, Tang H. Real-time monitoring of uracil removal by uracil-DNA glycosylase using fluorescent resonance energy transfer probes. Anal Biochem 2007; 366:237-43. [PMID: 17553452 DOI: 10.1016/j.ab.2007.04.049] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 04/18/2007] [Accepted: 04/29/2007] [Indexed: 01/23/2023]
Abstract
As a highly conserved damage repair protein, uracil-DNA glycosylase (UDG) mainly catalyzes the excision of uracil from DNA to sustain the genome integrity. Here a novel method for monitoring the uracil removal in real time is introduced. Double-stranded DNA probes modified with uracil residues that can occur in fluorescent resonance energy transfer (FRET) were used as substrates and detecting probes in a homogeneous solution. This method not only overcame the drawbacks of traditional radioactive assays, such as discontinuity and being time-consuming and complicated, but also was used to accurately determine the kinetic constant of UDG. The limit of detection of UDG was 0.033 U/ml. The KM and Kcat were 0.11 microM and 4 s(-1), respectively. In addition, the method was applied to investigate the influence of chemical drugs on UDG activity. The results showed that 10 mM fluorouracil (5-FU) and gentamicin are inhibitors to UDG. The in vitro detection of UDG in A549 cells showed that the activity of UDG was four times greater after the cells were treated with cisplatin. These results showed that this method can monitor uracil removal in real time and conveniently assay UDG activity with ultrasensitivity and excellent specificity in the homogeneous solution. This method is also amenable to high-throughput drug screening in vitro.
Collapse
Affiliation(s)
- Bin Liu
- Institute of Life Science and Biotechnology, College of Chemistry and Chemical Engineering, Hunan University, and Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Zhang P, Dilley C, Mattson MP. DNA damage responses in neural cells: Focus on the telomere. Neuroscience 2007; 145:1439-48. [PMID: 17207936 PMCID: PMC1924472 DOI: 10.1016/j.neuroscience.2006.11.052] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 11/20/2006] [Accepted: 11/22/2006] [Indexed: 01/24/2023]
Abstract
Postmitotic neurons must survive for the entire life of the organism and be able to respond adaptively to adverse conditions of oxidative and genotoxic stress. Unrepaired DNA damage can trigger apoptosis of neurons which is typically mediated by the ataxia telangiectasia mutated (ATM)-p53 pathway. As in all mammalian cells, telomeres in neurons consist of TTAGGG DNA repeats and several associated proteins that form a nucleoprotein complex that prevents chromosome ends from being recognized as double strand breaks. Proteins that stabilize telomeres include TRF1 and TRF2, and proteins known to play important roles in DNA damage responses and DNA repair including ATM, Werner and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). We have been performing studies of developing and adult neurons aimed at understanding the effects of global and telomere-directed DNA damage responses in neuronal plasticity and survival in the contexts of aging and neurodegenerative disorders. Deficits in specific DNA repair proteins, including DNA-PKcs and uracil DNA glycosylase (UDG), render neurons vulnerable to adverse conditions of relevance to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease and stroke. Similarly, early postmitotic neurons with reduced telomerase activity exhibit accentuated responses to DNA damage and are prone to apoptosis demonstrating a pivotal role for telomere maintenance in both mitotic cells and postmitotic neurons. Our recent findings suggest key roles for TRF2 in regulating the differentiation and survival of neurons. TRF2 affects cell survival and differentiation by modulating DNA damage pathways, and gene expression. A better understanding of the molecular mechanisms by which neurons respond to global and telomere-specific DNA damage may reveal novel strategies for prevention and treatment of neurodegenerative disorders. Indeed, work in this and other laboratories has shown that dietary folic acid can protect neurons against Alzheimer's disease by keeping homocysteine levels low and thereby minimizing the misincorporation of uracil into DNA in neurons.
Collapse
Affiliation(s)
- P Zhang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
34
|
He S, Wang Q, He J, Pu H, Yang W, Ji J. Proteomic analysis and comparison of the biopsy and autopsy specimen of human brain temporal lobe. Proteomics 2006; 6:4987-96. [PMID: 16912969 DOI: 10.1002/pmic.200600078] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The proteomic study on human temporal lobe can help us to understand the physiological function of CNS in normal as well as in pathological state. Proteomic tools are potent for the assessment of protein stability post mortem. In this pilot study, the human temporal lobe biopsy specimen with chronic pharmacoresistant temporal lobe epilepsy (TLE) and autopsy specimen in control were separated by 2-DE. Using MALDI-TOF-MS and MS/MS, 375 protein spots were identified which were the products of 267 genes. Six down-regulated and 23 up-regulated protein spots in the autopsy specimen were ascertained after the gel image analysis with the ImageMaster software. A number of proteins that include neurotransmitter metabolic and glycolytic enzymes, cytoprotective proteins and cytoskeleton were found decreased while the precursor of apolipoprotein A-I increased in the TLE brain. We tried several methods to prepare the protein samples and found that DNase and RNase treatment, ultracentrifugation and Amersham clean-up kit purification can improve gel separation quality. This work optimized the sample preparation method and constructed a primary protein database of human temporal lobe and found some proteins with remarkable level change probably involved in the post-mortem process and chronic pharmacoresistant TLE pathogenesis.
Collapse
Affiliation(s)
- Sizhi He
- Department of Biochemistry and Molecular Biology, College of Life Sciences, National Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
When subjected to excessive oxidative stress, neurons may respond adaptively to overcome the stress, or they may activate a programmed cell death pathway called apoptosis. Apoptosis is characterized by alterations in mitochondria and the endoplasmic reticulum and activation of cysteine proteases called caspases. Increasing evidence suggests that apoptotic biochemical cascades are involved in the dysfunction and death of neurons in neurodegenerative disorders such as Alzheimer's, Parkinson, and Huntington's diseases. Studies of normal aging, of genetic mutations that cause disease, and of environmental factors that affect disease risk are revealing cellular and molecular alterations that may cause excessive oxidative stress and trigger neuronal apoptosis. Accumulation of self-aggregating proteins such as amyloid beta-peptide, tau, alpha-synuclein, and huntingtin may be involved in apoptosis both upstream and downstream of oxidative stress. Membrane-associated oxidative stress resulting in perturbed lipid metabolism and disruption of cellular calcium homeostasis may trigger apoptosis in several different neurodegenerative disorders. Counteracting neurodegenerative processes are an array of mechanisms including neurotrophic factor signaling, antioxidant enzymes, protein chaperones, antiapoptotic proteins, and ionostatic systems. Emerging findings suggest that the resistance of neurons to death during aging can be enhanced by modifications of diet and lifestyle.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA.
| |
Collapse
|
36
|
Wilson DM, McNeill DR. Base excision repair and the central nervous system. Neuroscience 2006; 145:1187-200. [PMID: 16934943 DOI: 10.1016/j.neuroscience.2006.07.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 07/10/2006] [Accepted: 07/14/2006] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species generated during normal cellular metabolism react with lipids, proteins, and nucleic acid. Evidence indicates that the accumulation of oxidative damage results in cellular dysfunction or deterioration. In particular, oxidative DNA damage can induce mutagenic replicative outcomes, leading to altered cellular function and/or cellular transformation. Additionally, oxidative DNA modifications can block essential biological processes, namely replication and transcription, triggering cell death responses. The major pathway responsible for removing oxidative DNA damage and restoring the integrity of the genome is base excision repair (BER). We highlight herein what is known about BER protein function(s) in the CNS, which in cooperation with the peripheral nervous system operates to control physical responses, motor coordination, and brain operation. Moreover, we describe evidence indicating that defective BER processing can promote post-mitotic (i.e. non-dividing) neuronal cell death and neurodegenerative disease. The focus of the review is on the core mammalian BER participants, i.e. the DNA glycosylases, AP endonuclease 1, DNA polymerase beta, X-ray cross-complementing 1, and the DNA ligases.
Collapse
Affiliation(s)
- D M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
37
|
Abstract
The brain and nervous system are prone to oxidative stress, and are inadequately equipped with antioxidant defense systems to prevent 'ongoing' oxidative damage, let alone the extra oxidative damage imposed by the neurodegenerative diseases. Indeed, increased oxidative damage, mitochondrial dysfunction, accumulation of oxidized aggregated proteins, inflammation, and defects in protein clearance constitute complex intertwined pathologies that conspire to kill neurons. After a long lag period, therapeutic and other interventions based on a knowledge of redox biology are on the horizon for at least some of the neurodegenerative diseases.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
38
|
Eaton P. Protein thiol oxidation in health and disease: techniques for measuring disulfides and related modifications in complex protein mixtures. Free Radic Biol Med 2006; 40:1889-99. [PMID: 16716890 DOI: 10.1016/j.freeradbiomed.2005.12.037] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 12/06/2005] [Accepted: 12/11/2005] [Indexed: 11/23/2022]
Abstract
Oxidant species are known to contribute to disease and dysfunction in biological systems. However, evidence has been progressively accumulating that demonstrates a more fundamental role for many oxidant species in the regulation of everyday function of healthy cells. Redox dependent signaling events involving the post-translational, oxidative modification of proteins has now been accepted as an important regulatory process, although the full extent of such mechanisms is yet to be determined. Some protein cysteinyl thiols are known to be susceptible to a number of redox-dependent modifications, including an interchange between the reduced thiol and several different oxidized disulfide states. Here, the role of oxidants as regulatory entities is reviewed, as are the many different ways protein disulfide formation can be analysed in complex protein mixtures. This includes an overview of many of the Proteomic strategies that can be used to identify proteins that form disulfides when pro-oxidizing conditions arise in cells, as well as related methods for studying intermediates that may precede disulfide formation.
Collapse
Affiliation(s)
- Philip Eaton
- Department of Cardiology, Cardiovascular Division, The Rayne Institute, St Thomas' Hospital, King's College London, London SE1 7EH, UK.
| |
Collapse
|
39
|
Enokido Y, Suzuki E, Iwasawa K, Namekata K, Okazawa H, Kimura H. Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J 2005; 19:1854-6. [PMID: 16160063 DOI: 10.1096/fj.05-3724fje] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cystathionine beta-synthase (CBS; EC 4.2.1.22) is a key enzyme in the generation of cysteine from methionine. A deficiency of CBS leads to homocystinuria, an inherited human disease characterized by mental retardation, seizures, psychiatric disturbances, skeletal abnormalities, and vascular disorders; however, the underlying mechanisms remain largely unknown. Here, we show the regional and cellular distribution of CBS in the adult and developing mouse brain. In the adult mouse brain, CBS was expressed ubiquitously, but it is expressed most intensely in the cerebellar molecular layer and hippocampal dentate gyrus. Immunohistochemical analysis revealed that CBS is preferentially expressed in cerebellar Bergmann glia and in astrocytes throughout the brain. At early developmental stages, CBS was expressed in neuroepithelial cells in the ventricular zone, but its expression changed to radial glial cells and then to astrocytes during the late embryonic and neonatal periods. CBS was most highly expressed in juvenile brain, and a striking induction was observed in cultured astrocytes in response to EGF, TGF-alpha, cAMP, and dexamethasone. Moreover, CBS was significantly accumulated in reactive astrocytes in the hippocampus after kainic acid-induced seizures, and cerebellar morphological abnormalities were observed in CBS-deficient mice. Taken together, these results suggest that CBS plays a crucial role in the development and maintenance of the CNS and that radial glia/astrocyte dysfunction might be involved in the complex neuropathological features associated with abnormal homocysteine metabolism.
Collapse
Affiliation(s)
- Yasushi Enokido
- Department of Molecular Geneticsy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Kruman II, Mouton PR, Emokpae R, Cutler RG, Mattson MP. Folate deficiency inhibits proliferation of adult hippocampal progenitors. Neuroreport 2005; 16:1055-9. [PMID: 15973147 DOI: 10.1097/00001756-200507130-00005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurogenesis in the adult hippocampus may play important roles in learning and memory, and in recovery from injury. As recent findings suggest, the perturbance of homocysteine/folate or one-carbon metabolism can adversely affect both the developing and the adult brain, and increase the risk of neural tube defects and Alzheimer's disease. We report that dietary folic acid deficiency dramatically increased blood homocysteine levels and significantly reduced the number of proliferating cells in the dentate gyrus of the hippocampus in adult mice. In vitro, the perturbance of one-carbon metabolism repressed proliferation of cultured embryonic multipotent neuroepithelial progenitor cells and affected cell cycle distribution. Our results suggest that dietary folate deficiency inhibits proliferation of neuronal progenitor cells in the adult brain and thereby affects neurogenesis.
Collapse
Affiliation(s)
- Inna I Kruman
- Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351, USA.
| | | | | | | | | |
Collapse
|
41
|
Abstract
The tumor suppressor and transcription factor p53 is a key modulator of cellular stress responses, and activation of p53 can trigger apoptosis in many cell types including neurons. Apoptosis is a form of programmed cell death that occurs in neurons during development of the nervous system and may also be responsible for neuronal deaths that occur in neurological disorders such as stroke, and Alzheimer's and Parkinson's diseases. p53 production is rapidly increased in neurons in response to a range of insults including DNA damage, oxidative stress, metabolic compromise, and cellular calcium overload. Target genes induced by p53 in neurons include those encoding the pro-apoptotic proteins Bax and the BH3-only proteins PUMA and Noxa. In addition to such transcriptional control of the cell death machinery, p53 may more directly trigger apoptosis by acting at the level of mitochondria, a process that can occur in synapses (synaptic apoptosis). Preclinical data suggest that agents that inhibit p53 may be effective therapeutics for several neurodegenerative conditions.
Collapse
Affiliation(s)
- Carsten Culmsee
- Department Pharmazie, Pharmazeutische Biologie-Biotechnologie, Ludwig-Maximilians-Universität, München, Germany.
| | | |
Collapse
|