1
|
Pua LJW, Mai CW, Chung FFL, Khoo ASB, Leong CO, Lim WM, Hii LW. Functional Roles of JNK and p38 MAPK Signaling in Nasopharyngeal Carcinoma. Int J Mol Sci 2022; 23:ijms23031108. [PMID: 35163030 PMCID: PMC8834850 DOI: 10.3390/ijms23031108] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) family members integrate signals that affect proliferation, differentiation, survival, and migration in a cell context- and cell type-specific way. JNK and p38 MAPK activities are found upregulated in nasopharyngeal carcinoma (NPC). Studies have shown that activation of JNK and p38 MAPK signaling can promote NPC oncogenesis by mechanisms within the cancer cells and interactions with the tumor microenvironment. They regulate multiple transcription activities and contribute to tumor-promoting processes, ranging from cell proliferation to apoptosis, inflammation, metastasis, and angiogenesis. Current literature suggests that JNK and p38 MAPK activation may exert pro-tumorigenic functions in NPC, though the underlying mechanisms are not well documented and have yet to be fully explored. Here, we aim to provide a narrative review of JNK and p38 MAPK pathways in human cancers with a primary focus on NPC. We also discuss the potential therapeutic agents that could be used to target JNK and p38 MAPK signaling in NPC, along with perspectives for future works. We aim to inspire future studies further delineating JNK and p38 MAPK signaling in NPC oncogenesis which might offer important insights for better strategies in diagnosis, prognosis, and treatment decision-making in NPC patients.
Collapse
Affiliation(s)
- Lesley Jia Wei Pua
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.J.W.P.); (C.-O.L.)
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (A.S.-B.K.)
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (A.S.-B.K.)
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia;
| | - Alan Soo-Beng Khoo
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (A.S.-B.K.)
| | - Chee-Onn Leong
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.J.W.P.); (C.-O.L.)
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (A.S.-B.K.)
- AGTC Genomics, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Wei-Meng Lim
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (A.S.-B.K.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Correspondence: (W.-M.L.); (L.-W.H.)
| | - Ling-Wei Hii
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (A.S.-B.K.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Correspondence: (W.-M.L.); (L.-W.H.)
| |
Collapse
|
2
|
Lee IS, Kim CS, Kim J, Jo K, Hyun SW, Zhang H, Noh M, Kwon YG, Kim M, Kim JS. Extract of Moutan radicis cortex and Cinnamomi ramulus ameliorates laser-induced choroidal neovascularization in Brown-Norway rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153794. [PMID: 34775362 DOI: 10.1016/j.phymed.2021.153794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/17/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Moutan radicis cortex (MRC) and Cinnamomi ramulus (CR) are commonly used in eastern Asian traditional medicine to treat various diseases including cerebrovascular and cardiovascular, and have wide spectrum of pharmacological activities. However, the effect against laser-induced choroidal neovascularization (CNV) of extract of MRC and CR (1:1) (MRCCR) has not yet been studied. PURPOSE Our aim was to investigate the inhibitory effect of MRCCR on pathological CNV in laser-treated Brown-Norway (BN) rats. METHODS MRCCR (60, 90 mg/kg) was orally administered twice per day for 15 days from the day of CNV formation in laser-treated BN rats. Effects of MRCCR or its constituents on cell migration, tube formation, hyperpermeability and phosphorylation of FAK/p38 MAPK were confirmed in humane retinal microvascular endothelial cells or human retinal pigment epithelial cells. RESULTS MRCCR significantly reduced the CNV lesions areas and the extent of fluorescein leakage. MRCCR and its constituents such as ellagic acid, paeonol or gallic acid decreased cell migration, tube formation or hyperpermeability. MRCCR inhibited the phosphorylation of FAK and p38 MAPK. CONCLUSION Combining the oral MRCCR and intravitreal injection of anti-VEGF medicine may result in a more potent therapeutic effect and consequently bring the reduction in eye injection numbers for patients with wet AMD.
Collapse
Affiliation(s)
- Ik Soo Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Chan-Sik Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Junghyun Kim
- Department of Oral pathology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kyuhyung Jo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Soo Wang Hyun
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; Practical Research Division, Honam National Institute of Biological Resources, Mokpo, 58762, Republic of Korea
| | | | - MinYoung Noh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120749, Republic of Korea
| | - Young-Guen Kwon
- Curacle Co. Ltd, Seongnam 13449, Republic of Korea; Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120749, Republic of Korea
| | - MyungHwa Kim
- Curacle Co. Ltd, Seongnam 13449, Republic of Korea
| | - Jin Sook Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| |
Collapse
|
3
|
Xiao ST, Kuang CY. Endothelial progenitor cells and coronary artery disease: Current concepts and future research directions. World J Clin Cases 2021; 9:8953-8966. [PMID: 34786379 PMCID: PMC8567528 DOI: 10.12998/wjcc.v9.i30.8953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Vascular injury is a frequent pathology in coronary artery disease. To repair the vasculature, scientists have found that endothelial progenitor cells (EPCs) have excellent properties associated with angiogenesis. Over time, research on EPCs has made encouraging progress regardless of pathology or clinical technology. This review focuses on the origins and cell markers of EPCs, and the connection between EPCs and coronary artery disease. In addition, we summarized various studies of EPC-capturing stents and EPC infusion therapy, and aim to learn from past technology to predict the future.
Collapse
Affiliation(s)
- Sen-Tong Xiao
- Department of Cardiovascular Diseases, People’s Hospital Affiliated to Guizhou Medical University, Guiyang 550003, Guizhou Province, China
| | - Chun-Yan Kuang
- Department of Cardiovascular Diseases, Guizhou Provincial People's Hospital, Guiyang 550003, Guizhou Province, China
| |
Collapse
|
4
|
IL-6 trans-Signaling Impairs Sprouting Angiogenesis by Inhibiting Migration, Proliferation and Tube Formation of Human Endothelial Cells. Cells 2020; 9:cells9061414. [PMID: 32517159 PMCID: PMC7349366 DOI: 10.3390/cells9061414] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Sprouting angiogenesis is the formation of new capillaries from existing vessels in response to tissue hypoxia due to growth/development, repair/healing, and also chronic inflammation. In this study, we aimed to elucidate the effect of IL-6, a pleiotropic cytokine with both pro-inflammatory and anti-inflammatory functions, in regulating the sprouting angiogenic response of endothelial cells (ECs). We found that activation of IL-6 trans-signaling inhibited the migration, proliferation, and tube formation ability of ECs. In addition, inhibition of the autocrine IL-6 classic-signaling by depleting endogenous IL-6 from ECs impaired their tube formation ability. At the molecular level, we found that IL-6 trans-signaling in ECs upregulated established endogenous anti-angiogenic factors such as CXCL10 and SERPINF1 while at the same time downregulated known endogenous pro-angiogenic factors such as cKIT and CXCL8. Furthermore, prior activation of ECs by IL-6 trans-signaling alters their response to vascular endothelial growth factor-A (VEGF-A), causing an increased p38, but decreased Erk1/2 phosphorylation. Collectively, our data demonstrated the dual facets of IL-6 in regulating the sprouting angiogenic function of ECs. In addition, we shed light on molecular mechanisms behind the IL-6 trans-signaling mediated impairment of endothelial sprouting angiogenic response.
Collapse
|
5
|
Cho KH, Choi JI, Kim JO, Jung JE, Kim DW, Kim M. Therapeutic mechanism of cord blood mononuclear cells via the IL-8-mediated angiogenic pathway in neonatal hypoxic-ischaemic brain injury. Sci Rep 2020; 10:4446. [PMID: 32157146 PMCID: PMC7064601 DOI: 10.1038/s41598-020-61441-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/25/2020] [Indexed: 01/08/2023] Open
Abstract
In a clinical trial of cerebral palsy, the level of plasma interleukin-8 (IL-8) was increased, correlated with motor improvement, after human umbilical cord blood mononuclear cell (hUCBC) infusion. This study aimed to elucidate the role of IL-8 in the therapeutic effects of hUCBCs in a mouse model of hypoxic-ischaemic brain injury (HI). In P7 HI mouse brains, hUCBC administration at day 7 after HI upregulated the gene expression of Cxcl2, the mouse IL-8 homologue and increased the expression of its receptor, CXCR2. hUCBC administration restored the sequential downstream signalling axis of p-p38/p-MAPKAPK2, NFκB, and angiogenic factors, which were downregulated by HI. An in vitro assay revealed the downregulation of the angiogenic pathway by CXCR2 knockdown and p38 inhibition. In vivo p38 inhibition prior to hUCBC administration in HI mouse brains produced identical results. Behavioural outcomes revealed a therapeutic effect (ps < 0.01) of hUCBC or IL-8 administration, which was correlated with decreases in infarct size and angiogenic findings in the striatum. In conclusion, the response of the host to hUCBC administration in mice upregulated Cxcl2, which led to the activation of the IL-8-mediated p-p38 signalling pathway. The upregulation of the downstream pathway and angiogenic growth factors via NFκB can be inferred to be the potential therapeutic mechanism of hUCBCs.
Collapse
Affiliation(s)
- Kye Hee Cho
- Department of Rehabilitation Medicine, CHA Gumi Medical Center, CHA University College of Medicine, Gumi, Gyeongsangbukdo, Republic of Korea
| | - Jee In Choi
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam, Republic of Korea
| | - Jin-Ock Kim
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Joo Eun Jung
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam, Republic of Korea. .,Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University College of Medicine, Seongnam, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
6
|
Icli B, Li H, Pérez-Cremades D, Wu W, Ozdemir D, Haemmig S, Guimaraes RB, Manica A, Marchini JF, Orgill DP, Feinberg MW. MiR-4674 regulates angiogenesis in tissue injury by targeting p38K signaling in endothelial cells. Am J Physiol Cell Physiol 2020; 318:C524-C535. [PMID: 31913696 PMCID: PMC7099516 DOI: 10.1152/ajpcell.00542.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 01/22/2023]
Abstract
Neoangiogenesis is critical for tissue repair in response to injury such as myocardial ischemia or dermal wound healing. MicroRNAs are small noncoding RNAs and important regulators of angiogenesis under physiological and pathological disease states. Therefore, identification of microRNAs that may restore impaired angiogenesis in response to tissue injury may provide new targets for therapy. Using a microRNA microarray profiling approach, we identified a human-specific microRNA, miR-4674, that was significantly decreased in patients after myocardial tissue injury and had an endothelial cell (EC)-enriched expression pattern. Functionally, overexpression of miR-4674 markedly attenuated EC proliferation, migration, network tube formation, and spheroid sprouting, whereas blockade of miR-4674 had the opposite effects. Transcriptomic profiling, gene set enrichment analyses, bioinformatics, 3'-untranslated region (3'-UTR) reporter and microribonucleoprotein immunoprecipitation (miRNP-IP) assays, and small interfering RNA dependency studies revealed that miR-4674 regulates VEGF stimulated-p38 mitogen-activated protein kinase (MAPK) signaling and targets interleukin 1 receptor-associated kinase 1 (Irak1) and BICD cargo adaptor 2 (Bicd2) in ECs. Furthermore, Irak1 and Bicd2 were necessary for miR-4674-driven EC proliferation and migration. Finally, neutralization of miR-4674 increased angiogenesis, Irak1 and Bicd2 expression, and p38 phosphorylation in human skin organoids as a model of tissue injury. Collectively, targeting miR-4674 may provide a novel therapeutic target for tissue repair in pathological disease states associated with impaired angiogenesis.
Collapse
Affiliation(s)
- Basak Icli
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hao Li
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel Pérez-Cremades
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Physiology, University of Valencia and Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA) Biomedical Research Institute, Valencia, Spain
| | - Winona Wu
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Denizhan Ozdemir
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Stefan Haemmig
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raphael Boesch Guimaraes
- Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, Rio Grande do Sul, Brazil
| | - Andre Manica
- Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, Rio Grande do Sul, Brazil
| | - Julio F Marchini
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Multiple Targets Directed Multiple Ligands: An In Silico and In Vitro Approach to Evaluating the Effect of Triphala on Angiogenesis. Biomolecules 2020; 10:biom10020177. [PMID: 31979409 PMCID: PMC7072423 DOI: 10.3390/biom10020177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is critical in both physiological and pathological conditions and targeting angiogenesis is a promising strategy for the development of therapies against cancer; however, cells develop resistance to anti-angiogenic therapy, necessitating a more effective strategy. Natural medicines have been used in anti-cancer therapy for many years, but the mechanisms behind these have not generally been explored. Triphala churna (THL), an Indian ayurvedic herbal formulation made from the dried fruits of three medicinal plants, is used as a herbal drug for the treatment of various diseases, including cancer. THL contains over fifteen phytochemicals with different pharmacological effects, especially inhibition of tumor progression. In this study, we examined the effect of these compounds against different targets using docking and in vitro studies. Results showed that THL has a prediction efficacy of (−)436.7, and it inhibited angiogenesis by blocking multiple components of the VEGF/VEGFR2 signaling pathway. The anti-angiogenic effect was mediated by the combined effect of the two top ranked phytochemicals, punicalagin (−424.8) and chebulagic acid (−414.8). The new approach developed in this study to determine the potential efficacy of herbal formulation could be a useful strategy to assess the efficacy of different herbal formulations.
Collapse
|
8
|
Meng S, Gu Q, Yang X, Lv J, Owusu I, Matrone G, Chen K, Cooke JP, Fang L. TBX20 Regulates Angiogenesis Through the Prokineticin 2-Prokineticin Receptor 1 Pathway. Circulation 2019; 138:913-928. [PMID: 29545372 DOI: 10.1161/circulationaha.118.033939] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Angiogenesis is integral for embryogenesis, and targeting angiogenesis improves the outcome of many pathological conditions in patients. TBX20 is a crucial transcription factor for embryonic development, and its deficiency is associated with congenital heart disease. However, the role of TBX20 in angiogenesis has not been described. METHODS Loss- and gain-of-function approaches were used to explore the role of TBX20 in angiogenesis both in vitro and in vivo. Angiogenesis gene array was used to identify key downstream targets of TBX20. RESULTS Unbiased gene array survey showed that TBX20 knockdown profoundly reduced angiogenesis-associated PROK2 (prokineticin 2) gene expression. Indeed, loss of TBX20 hindered endothelial cell migration and in vitro angiogenesis. In a murine angiogenesis model using subcutaneously implanted Matrigel plugs, we observed that TBX20 deficiency markedly reduced PROK2 expression and restricted intraplug angiogenesis. Furthermore, recombinant PROK2 administration enhanced angiogenesis and blood flow recovery in murine hind-limb ischemia. In zebrafish, transient knockdown of tbx20 by morpholino antisense oligos or genetic disruption of tbx20 by CRISPR/Cas9 impaired angiogenesis. Furthermore, loss of prok2 or its cognate receptor prokr1a also limited angiogenesis. In contrast, overexpression of prok2 or prokr1a rescued the impaired angiogenesis in tbx20-deficient animals. CONCLUSIONS Our study identifies TBX20 as a novel transcription factor regulating angiogenesis through the PROK2-PROKR1 (prokineticin receptor 1) pathway in both development and disease and reveals a novel mode of angiogenic regulation whereby the TBX20-PROK2-PROKR1 signaling cascade may act as a "biological capacitor" to relay and sustain the proangiogenic effect of vascular endothelial growth factor. This pathway may be a therapeutic target in the treatment of diseases with dysregulated angiogenesis.
Collapse
Affiliation(s)
- Shu Meng
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Qilin Gu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Xiaojie Yang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Jie Lv
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Iris Owusu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Gianfranco Matrone
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Kaifu Chen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - John P Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| |
Collapse
|
9
|
Icli B, Wu W, Ozdemir D, Li H, Haemmig S, Liu X, Giatsidis G, Cheng HS, Avci SN, Kurt M, Lee N, Guimaraes RB, Manica A, Marchini JF, Rynning SE, Risnes I, Hollan I, Croce K, Orgill DP, Feinberg MW. MicroRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells. FASEB J 2019; 33:5599-5614. [PMID: 30668922 PMCID: PMC6436660 DOI: 10.1096/fj.201802063rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/02/2019] [Indexed: 12/26/2022]
Abstract
Angiogenesis is a critical process in repair of tissue injury that is regulated by a delicate balance between pro- and antiangiogenic factors. In disease states associated with impaired angiogenesis, we identified that miR-135a-3p is rapidly induced and serves as an antiangiogenic microRNA (miRNA) by targeting endothelial cell (EC) p38 signaling in vitro and in vivo. MiR-135a-3p overexpression significantly inhibited EC proliferation, migration, and network tube formation in matrigel, whereas miR-135-3p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3'-UTR reporter and miRNA ribonucleoprotein complex -immunoprecipitation assays, and small interfering RNA dependency studies revealed that miR-135a-3p inhibits the p38 signaling pathway in ECs by targeting huntingtin-interacting protein 1 (HIP1). Local delivery of miR-135a-3p inhibitors to wounds of diabetic db/db mice markedly increased angiogenesis, granulation tissue thickness, and wound closure rates, whereas local delivery of miR-135a-3p mimics impaired these effects. Finally, through gain- and loss-of-function studies in human skin organoids as a model of tissue injury, we demonstrated that miR-135a-3p potently modulated p38 signaling and angiogenesis in response to VEGF stimulation by targeting HIP1. These findings establish miR-135a-3p as a pivotal regulator of pathophysiological angiogenesis and tissue repair by targeting a VEGF-HIP1-p38K signaling axis, providing new targets for angiogenic therapy to promote tissue repair.-Icli, B., Wu, W., Ozdemir, D., Li, H., Haemmig, S., Liu, X., Giatsidis, G., Cheng, H. S., Avci, S. N., Kurt, M., Lee, N., Guimaraes, R. B., Manica, A., Marchini, J. F., Rynning, S. E., Risnes, I., Hollan, I., Croce, K., Orgill, D. P., Feinberg, M. W. MicroRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells.
Collapse
Affiliation(s)
- Basak Icli
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Winona Wu
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Denizhan Ozdemir
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Hao Li
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefan Haemmig
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xin Liu
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Giorgio Giatsidis
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Henry S. Cheng
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Seyma Nazli Avci
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Merve Kurt
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathan Lee
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raphael Boesche Guimaraes
- Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, Rio Grande do Sul, Brazil
| | - Andre Manica
- Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, Rio Grande do Sul, Brazil
| | - Julio F. Marchini
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Stein Erik Rynning
- Department of Cardiac Surgery, LHL Hospital Gardermoen, Jessheim, Norway
| | - Ivar Risnes
- Department of Cardiac Surgery, LHL Hospital Gardermoen, Jessheim, Norway
| | - Ivana Hollan
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Rheumatology Department, Lillehamer Hospital for Rheumatic Diseases, Lillehamer, Norway
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Kevin Croce
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis P. Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark W. Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Lichtenauer M, Jung C. TBX20 and the PROK2-PROKR1 pathway-new kid on the block in angiogenesis research. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S8. [PMID: 30613584 DOI: 10.21037/atm.2018.08.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
11
|
Chen C, Shenoy AK, Padia R, Fang D, Jing Q, Yang P, Su SB, Huang S. Suppression of lung cancer progression by isoliquiritigenin through its metabolite 2, 4, 2', 4'-Tetrahydroxychalcone. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:243. [PMID: 30285892 PMCID: PMC6171243 DOI: 10.1186/s13046-018-0902-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/03/2018] [Indexed: 02/03/2023]
Abstract
Background Licorice is an herb extensively used for both culinary and medicinal purposes. Various constituents of licorice have been shown to exhibit anti-tumorigenic effect in diverse cancer types. However, majority of these studies focus on the aspect of their growth-suppressive role. In this study, we systematically analyzed known licorice’s constituents on the goal of identifying component(s) that can effectively suppress both cell migration and growth. Methods Effect of licorice’s constituents on cell growth was evaluated by MTT assay while cell migration was assessed by both wound-healing and Transwell assays. Cytoskeleton reorganization and focal adhesion assembly were visualized by immunofluorescence staining with labeled phalloidin and anti-paxillin antibody. Activity of Src in cells was judged by western blot using phosphor-Src416 antibody while Src kinase activity was measured using Promega Src kinase assay system. Anti-tumorigenic capabilities of isoliquiritigenin (ISL) and 2, 4, 2′, 4’-Tetrahydroxychalcone (THC) were investigated using lung cancer xenograft model. Results Using a panel of lung cancer cell lines, ISL was identified as the only licorice’s constituent capable of inhibiting both cell migration and growth. ISL-led inhibition in cell migration resulted from impaired cytoskeleton reorganization and focal adhesion assembly. Assessing the phosphorylation of 141 cytoskeleton dynamics-associated proteins revealed that ISL reduced the abundance of Tyr421-phosphorylation of cortactin, Tyr925- and Tyr861-phosphorylation of FAK, indicating the involvement of Src because these sites are known to be phosphorylated by Src. Enigmatically, ISL inhibited Src in cells while displayed no effect on Src activity in cell-free system. The discrepancy was explained by the observation that THC, one of the major ISL metabolite identified in lung cancer cells abrogated Src activity both in cells and cell-free system. Similar to ISL, THC deterred cell migration and abolished cytoskeleton reorganization/focal adhesion assembly. Furthermore, we showed both ISL and THC suppressed in vitro lung cancer cell invasion and in vivo tumor progression. Conclusion Our study suggests that ISL inhibits lung cancer cell migration and tumorigenesis by interfering with Src through its metabolite THC. As licorice is safely used for culinary purposes, our study suggests that ISL or THC may be safely used as a Src inhibitor. Electronic supplementary material The online version of this article (10.1186/s13046-018-0902-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Changliang Chen
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Anitha K Shenoy
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.,Department of Pharmaceutics and Biomedical Sciences, California Health Sciences University, Clovis, CA, USA
| | - Ravi Padia
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Dongdong Fang
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Jing
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Ping Yang
- Instrumental Analysis Center, School of Pharmacy, Fudan University, Shanghai, China
| | - Shi-Bing Su
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Shuang Huang
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China. .,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| |
Collapse
|
12
|
Zuo S, Dai G, Wang L, Wen Y, Huang Z, Yang W, Ma W, Ren X. Suppression of angiogenesis and tumor growth by recombinant T4 phages displaying extracellular domain of vascular endothelial growth factor receptor 2. Arch Virol 2018; 164:69-82. [PMID: 30259141 DOI: 10.1007/s00705-018-4026-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/04/2018] [Indexed: 12/27/2022]
Abstract
Tumor growth, invasion and metastasis are dependent on angiogenesis. The Vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) signaling pathway plays a pivotal role in tumor angiogenesis and therefore represents a reasonable target for anti-angiogenesis/anti-tumor therapy. In the present study, we generated T4 recombinant phages expressing the extracellular domain of VEGFR2 (T4-VEGFR2) and investigated their anti-angiogenic activity. The T4-VEGFR2 phages were able to bind to VEGF specifically and inhibit VEGF-mediated phosphorylation of VEGFR2 and its downstream kinases such as extracellular signal-regulated kinase (ERK) and p38 mitogen activated protein kinase (MAPK). The in vitro experiments showed that the T4-VEGFR2 phages could inhibit VEGF-stimulated cell proliferation and migration of endothelial cells. Finally, administration of T4-VEGFR2 phages was able to suppress tumor growth and decrease microvascular density in murine models of Lewis lung carcinoma and colon carcinoma, and prolong the survival of tumor bearing mice. In conclusion, this study reveals that the recombinant T4-VEGFR2 phages generated using T4-based phage display system can inhibit VEGF-mediated tumor angiogenesis and the T4 phage display technology can therefore be used for the development of novel anti-cancer strategies.
Collapse
Affiliation(s)
- Shuguang Zuo
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China. .,Institute of Infection and Immunity, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China.
| | - Gongpeng Dai
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Liping Wang
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Yuqing Wen
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Zhiang Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Wenyi Yang
- Department of Gastroenterology, The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Wanli Ma
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Xuequn Ren
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China. .,Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China.
| |
Collapse
|
13
|
AAV-Mediated angiotensin 1-7 overexpression inhibits tumor growth of lung cancer in vitro and in vivo. Oncotarget 2018; 8:354-363. [PMID: 27861149 PMCID: PMC5352125 DOI: 10.18632/oncotarget.13396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/11/2016] [Indexed: 11/25/2022] Open
Abstract
Ang-(1-7) inhibits lung cancer cell growth both in vitro and in vivo. However, the molecular mechanism of action is unclear and also the rapid degradation of Ang-(1-7) in vivo limits its clinical application. Here, we have demonstrated that Ang- (1-7) inhibits lung cancer cell growth by interrupting pre-replicative complex assembly and restrains epithelial-mesenchymal transition via Cdc6 inhibition. Furthermore, we constructed a mutant adeno-associated viral vector AAV8 (Y733F) that produced stable and high efficient Ang-(1-7) expression in a xenograft tumor model. The results show that AAV8-mediated Ang-(1-7) over-expression can remarkably suppress tumor growth in vivo by down-regulating Cdc6 and anti-angiogenesis. Ang-(1-7) over-expression via the AAV8 method may be a promising strategy for lung cancer treatment.
Collapse
|
14
|
Koga M, Kanaoka Y, Sugiyama K, Ohishi K, Ejima Y, Hisanaga M, Kataoka Y, Yamauchi A. Varenicline promotes endothelial cell migration by lowering vascular endothelial-cadherin levels via the activated α7 nicotinic acetylcholine receptor–mitogen activated protein kinase axis. Toxicology 2017; 390:1-9. [DOI: 10.1016/j.tox.2017.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 11/15/2022]
|
15
|
Calvo N, Carriere P, Martin MJ, Gentili C. RSK activation via ERK modulates human colon cancer cells response to PTHrP. J Mol Endocrinol 2017; 59:13-27. [PMID: 28385776 DOI: 10.1530/jme-16-0216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 04/06/2017] [Indexed: 12/17/2022]
Abstract
Parathyroid hormone-related peptide (PTHrP) is associated with several human cancers such as colon carcinoma. This disease is a complex multistep process that involves enhanced cell cycle progression and migration. Recently we obtained evidence that in the human colorectal adenocarcinoma Caco2 cells, exogenous PTHrP increases the proliferation and positively modulates cell cycle progression via ERK1/2, p38 MAPK and PI3K. The purpose of this study was to explore if the serine/threonine kinase RSK, which is involved in the progress of many cancers and it is emerging as a potential therapeutic target, mediates PTHrP effects on cancer colon cells. Western blot analysis revealed that PTHrP increases RSK phosphorylation via ERK1/2 signaling pathway but not through p38 MAPK. By performing subcellular fractionation, we found that the peptide also induces the nuclear localization of activated RSK, where many of its substrates are located. RSK participates in cell proliferation, in the upregulation of cyclin D1 and CDK6 and in the downregulation of p53 induced by PTHrP. Wound healing and transwell filter assays revealed that cell migration increased after PTHrP treatment. In addition, the hormone increases the protein expression of the focal adhesion kinase FAK, a regulator of cell motility. We observed that PTHrP induces cell migration and modulates FAK protein expression through ERK/RSK signaling pathway but not via p38 MAPK pathway. Finally, in vivo studies revealed that the hormone activates RSK in xenografts tumor. Taken together, our findings provide new insights into the deregulated cell cycle and migration that is characteristic of tumor intestinal cells.
Collapse
Affiliation(s)
- Natalia Calvo
- Departamento de BiologíaBioquímica y Farmacia, INBIOSUR, Universidad Nacional del Sur (UNS) - CONICET, Bahía Blanca, Argentina
| | - Pedro Carriere
- Departamento de BiologíaBioquímica y Farmacia, INBIOSUR, Universidad Nacional del Sur (UNS) - CONICET, Bahía Blanca, Argentina
| | - María Julia Martin
- Departamento de BiologíaBioquímica y Farmacia, INBIOSUR, Universidad Nacional del Sur (UNS) - CONICET, Bahía Blanca, Argentina
| | - Claudia Gentili
- Departamento de BiologíaBioquímica y Farmacia, INBIOSUR, Universidad Nacional del Sur (UNS) - CONICET, Bahía Blanca, Argentina
| |
Collapse
|
16
|
Ramírez-Rodríguez GB, Perera-Murcia GR, Ortiz-López L, Vega-Rivera NM, Babu H, García-Anaya M, González-Olvera JJ. Vascular endothelial growth factor influences migration and focal adhesions, but not proliferation or viability, of human neural stem/progenitor cells derived from olfactory epithelium. Neurochem Int 2017; 108:417-425. [PMID: 28600187 DOI: 10.1016/j.neuint.2017.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 01/19/2023]
Abstract
In humans, new neurons are continuously added in the olfactory epithelium even in the adulthood. The resident neural stem/progenitor cells (hNS/PCs-OE) in the olfactory epithelium are influenced by several growth factors and neurotrophins. Among these modulators the vascular endothelial growth factor (VEGF) has attracted attention due its implicated in cell proliferation, survival and migration of other type of neural/stem progenitor cells. Interestingly, VEGFr2 receptor expression in olfactory epithelium has been described in amphibians but not in humans. Here we show that VEGFr is expressed in the hNS/PCs-OE. We also investigated the effect of VEGF on the hNS/PCs-OE proliferation, viability and migration in vitro. Additionally, pharmacological approaches showed that VEGF (0.5 ng/ml)-stimulated migration of hNS/PCs-OE was blocked with the compound DMH4, which prevents the activation of VEGFr2. Similar effects were found with the inhibitors for Rac (EHT1864) and p38MAPK (SB203850) proteins, respectively. These observations occurred with changes in focal adhesion contacts. However, no effects of VEGF on proliferation or viability were found in hNS/PCs-OE. Our results suggest that hNS/PCs-OE respond to VEGF involving VEGFr2, Rac and p38MAPK.
Collapse
Affiliation(s)
- Gerardo Bernabé Ramírez-Rodríguez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 Ciudad de México, Mexico.
| | - Gerardo Rodrigo Perera-Murcia
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 Ciudad de México, Mexico
| | - Leonardo Ortiz-López
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 Ciudad de México, Mexico
| | - Nelly Maritza Vega-Rivera
- Laboratory of Neuropsychopharmacology, Division of Neuroscience, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 Ciudad de México, Mexico
| | - Harish Babu
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Maria García-Anaya
- Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 Ciudad de México, Mexico
| | - Jorge Julio González-Olvera
- Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 Ciudad de México, Mexico
| |
Collapse
|
17
|
Pei N, Wan R, Chen X, Li A, Zhang Y, Li J, Du H, Chen B, Wei W, Qi Y, Zhang Y, Katovich MJ, Sumners C, Zheng H, Li H. Angiotensin-(1-7) Decreases Cell Growth and Angiogenesis of Human Nasopharyngeal Carcinoma Xenografts. Mol Cancer Ther 2015; 15:37-47. [PMID: 26671566 DOI: 10.1158/1535-7163.mct-14-0981] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 10/27/2015] [Indexed: 11/16/2022]
Abstract
Angiotensin-(1-7) [Ang-(1-7)] is an endogenous, heptapeptide hormone acting through the Mas receptor (MasR), with antiproliferative and antiangiogenic properties. Recent studies have shown that Ang-(1-7) has an antiproliferative action on lung adenocarcinoma cells and prostate cancer cells. In this study, we report that MasR levels were significantly upregulated in nasopharyngeal carcinoma (NPC) specimens and NPC cell lines. Viral vector-mediated expression of Ang-(1-7) dramatically suppressed NPC cell proliferation and migration in vitro. These effects were completely blocked by the specific Ang-(1-7) receptor antagonist A-779, suggesting that they are mediated by the Ang-(1-7) receptor Mas. In this study, Ang-(1-7) not only caused a significant reduction in the growth of human nasopharyngeal xenografts, but also markedly decreased vessel density, suggesting that the heptapeptide inhibits angiogenesis to reduce tumor size. Mechanistic investigations revealed that Ang-(1-7) inhibited the expression of the proangiogenic factors VEGF and PlGF. Taken together, the data suggest that upregulation of MasR could be used as a diagnostic marker of NPC and Ang-(1-7) may be a novel therapeutic agent for nasopharyngeal cancer therapy because it exerts significant antiangiogenic activity.
Collapse
Affiliation(s)
- Nana Pei
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China. Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Renqiang Wan
- Department of Otolaryngology-Head and Neck Surgery, Guangdong NO.2 Provincial People's Hospital, Guangzhou, Guangdong, China
| | - Xinglu Chen
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Andrew Li
- Department of Biomedical Engineering, The Johns University School of Medicine, Baltimore, Maryland
| | - Yanling Zhang
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinlong Li
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyan Du
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Baihong Chen
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenjin Wei
- Beijing Minhai Biotechnology Co. Ltd., Beijing, China
| | - Yanfei Qi
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Yi Zhang
- Department of Pharmacology, University of Florida, Gainesville, Florida
| | - Michael J Katovich
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Haifa Zheng
- Beijing Minhai Biotechnology Co. Ltd., Beijing, China.
| | - Hongwei Li
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Jang EJ, Jeong HO, Park D, Kim DH, Choi YJ, Chung KW, Park MH, Yu BP, Chung HY. Src Tyrosine Kinase Activation by 4-Hydroxynonenal Upregulates p38, ERK/AP-1 Signaling and COX-2 Expression in YPEN-1 Cells. PLoS One 2015; 10:e0129244. [PMID: 26466383 PMCID: PMC4605600 DOI: 10.1371/journal.pone.0129244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/06/2015] [Indexed: 01/02/2023] Open
Abstract
4-Hydroxynonenal (4-HNE), a major end product of lipid peroxidation, is highly reactive and involved in various cellular processes, such as inflammatory signaling. However, to date, the mechanistic roles of 4-HNE in inflammatory signaling related to protein tyrosine kinases have not been elucidated. In the present study, we investigated the interaction between 4-HNE and Src (a non-receptor tyrosine kinase) for its involvement in the molecular modulation of the inflammatory signaling pathway utilizing the YPEN-1 cell system. Immunoprecipitation experiments showed that 4-HNE phosphorylates (activates) Src at Tyr416 via adduct formation. In addition, LC-MS/MS and a docking simulation model revealed an addiction site at the Cys248 residue of Src, resulting in the stimulation of downstream p38, ERK/AP-1 and cyclooxygenase-2 (COX-2) signaling in YPEN-1 cells. The role of 4-HNE-activated Src in downstream inflammatory signaling was further investigated using dasatinib (a Src inhibitor) and by siRNA knockdown of Src. p38 and ERK were directly regulated by Src, as revealed by immunoblotting of the phosphorylated forms of mitogen-activated protein kinases (MAPKs), which are key elements in the signaling transduction pathway initiated by Src. The study also shows that Src modulates the HNE-enhanced activation of AP-1 and the expression of COX-2 (a target gene of AP-1). Together, the results of this study show that 4-HNE stimulates Src tyrosine kinase in activation of the inflammation process.
Collapse
Affiliation(s)
- Eun Ji Jang
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hyoung Oh Jeong
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 609–735, Republic of Korea
| | - Daeui Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 609–735, Republic of Korea
| | - Dae Hyun Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yeon Ja Choi
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ki Wung Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min Hi Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229–3900, United States of America
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
- * E-mail:
| |
Collapse
|
19
|
Weddell JC, Imoukhuede PI. Quantitative characterization of cellular membrane-receptor heterogeneity through statistical and computational modeling. PLoS One 2014; 9:e97271. [PMID: 24827582 PMCID: PMC4020774 DOI: 10.1371/journal.pone.0097271] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/16/2014] [Indexed: 12/20/2022] Open
Abstract
Cell population heterogeneity can affect cellular response and is a major factor in drug resistance. However, there are few techniques available to represent and explore how heterogeneity is linked to population response. Recent high-throughput genomic, proteomic, and cellomic approaches offer opportunities for profiling heterogeneity on several scales. We have recently examined heterogeneity in vascular endothelial growth factor receptor (VEGFR) membrane localization in endothelial cells. We and others processed the heterogeneous data through ensemble averaging and integrated the data into computational models of anti-angiogenic drug effects in breast cancer. Here we show that additional modeling insight can be gained when cellular heterogeneity is considered. We present comprehensive statistical and computational methods for analyzing cellomic data sets and integrating them into deterministic models. We present a novel method for optimizing the fit of statistical distributions to heterogeneous data sets to preserve important data and exclude outliers. We compare methods of representing heterogeneous data and show methodology can affect model predictions up to 3.9-fold. We find that VEGF levels, a target for tuning angiogenesis, are more sensitive to VEGFR1 cell surface levels than VEGFR2; updating VEGFR1 levels in the tumor model gave a 64% change in free VEGF levels in the blood compartment, whereas updating VEGFR2 levels gave a 17% change. Furthermore, we find that subpopulations of tumor cells and tumor endothelial cells (tEC) expressing high levels of VEGFR (>35,000 VEGFR/cell) negate anti-VEGF treatments. We show that lowering the VEGFR membrane insertion rate for these subpopulations recovers the anti-angiogenic effect of anti-VEGF treatment, revealing new treatment targets for specific tumor cell subpopulations. This novel method of characterizing heterogeneous distributions shows for the first time how different representations of the same data set lead to different predictions of drug efficacy.
Collapse
Affiliation(s)
- Jared C. Weddell
- Department of Bioengineering, University of Illinois Urbana Champaign, Urbana, Illinois, United States of America
| | - P. I. Imoukhuede
- Department of Bioengineering, University of Illinois Urbana Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
20
|
Rodrigues T, Kudoh T, Roudnicky F, Lim YF, Lin YC, Koch CP, Seno M, Detmar M, Schneider G. Steering Target Selectivity and Potency by Fragment-Based De Novo Drug Design. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Rodrigues T, Kudoh T, Roudnicky F, Lim YF, Lin YC, Koch CP, Seno M, Detmar M, Schneider G. Steering target selectivity and potency by fragment-based de novo drug design. Angew Chem Int Ed Engl 2013; 52:10006-9. [PMID: 24030898 DOI: 10.1002/anie.201304847] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Indexed: 11/09/2022]
Abstract
Kinase inhibitors: Ligand-based de novo design is validated as a viable technology for rapidly generating innovative compounds possessing the desired biochemical profile. The study discloses the discovery of the most selective vascular endothelial growth factor receptor-2 (VEGFR-2) kinase inhibitor (right in scheme) known to date as prime lead for antiangiogenic drug development.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Wolfgang-Pauli-Str. 10, 8093 Zürich (Switzerland)
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang F, Bai Y, Yu W, Han N, Huang L, Zhao M, Zhou A, Zhao M, Li X. Anti-angiogenic effect of KH902 on retinal neovascularization. Graefes Arch Clin Exp Ophthalmol 2013; 251:2131-9. [PMID: 23740520 DOI: 10.1007/s00417-013-2392-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/25/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022] Open
|
23
|
Kobayashi Y, Qi X, Chen G. MK2 Regulates Ras Oncogenesis through Stimulating ROS Production. Genes Cancer 2012; 3:521-30. [PMID: 23264852 DOI: 10.1177/1947601912462718] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 09/01/2012] [Indexed: 12/17/2022] Open
Abstract
Ras signals through both mitogenic and stress pathways and studies of Ras regulatory effects of stress pathways hold great promise to control Ras-dependent malignancies. Our previous work showed Ras activation of a stress kinase (MAPK-activated protein kinase 2 [MK2]), and here, we examine regulatory effects of MK2 on Ras oncogenesis. MK2 knockout was shown to increase Ras transformation in mouse embryonic fibroblasts (MEFs) in vitro and to enhance the resultant tumor growth in mice, indicating a tumor suppressor activity. In Ras-dependent and -independent human colon cancer, however, MK2-forced expression increases and MK2 depletion decreases the malignant growth, suggesting its oncogenic activity. The oncogenic activity of MK2 couples with its activation by both stress and mitogenic signals through extracellular signal-regulated kinase and p38α pathways, whereas its tumor-suppressing effect links to its stimulation only by stress downstream of p38α. Of interest, MK2 was shown to decrease intracellular levels of reactive oxygen species (ROS) in MEFs but increase its production in human colon cancer cells, and experiments with antioxidants revealed that ROS is required for Ras oncogenesis in both systems. These results indicate that MK2 can increase or decrease Ras oncogenesis dependent of its ROS regulatory activities.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | |
Collapse
|
24
|
Lala N, Girish GV, Cloutier-Bosworth A, Lala PK. Mechanisms in decorin regulation of vascular endothelial growth factor-induced human trophoblast migration and acquisition of endothelial phenotype. Biol Reprod 2012; 87:59. [PMID: 22699486 DOI: 10.1095/biolreprod.111.097881] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Extravillous trophoblast (EVT) cells of the human placenta invade the uterine decidua and utero-placental arteries to establish an efficient exchange of key molecules between maternal and fetal blood. Trophoblast invasion is stringently regulated in situ both positively and negatively by a variety of factors at the fetal-maternal interface to maintain a healthy utero-placental homeostasis. One such factor, decorin, a transforming growth factor (TGF)-beta binding, leucine-rich proteoglycan produced by the decidua, negatively regulates EVT proliferation, migration, and invasiveness independent of TGF-beta. We reported that these decorin actions were mediated by its binding to multiple tyrosine kinase receptors, including vascular endothelial growth factor receptor (VEGFR)-2. The present study explores the mechanisms underlying decorin antagonism of VEGF (VEGF-A) stimulation of endovascular differentiation of EVT using our EVT cell line, HTR-8/SVneo. We observe that decorin inhibits VEGF-induced EVT cell migration and endothelial-like tube formation on matrigel. VEGF activates MAPKs (p38 MAPK, MEK3/6, and ERK1/2) in EVT cells, and the activation is blocked in both cases by decorin. Employing selective MAPK inhibitors, we show that both p38 and ERK pathways contribute independently to VEGF-induced EVT migration and capillary-like tube formation. VEGF upregulates the vascular endothelial (VE) markers VE-cadherin and beta-catenin in EVT and endothelial cells, and this upregulation is blocked by decorin and MAPK inhibitors. These results suggest that decorin inhibits VEGF-A stimulation of trophoblast migration and endovascular differentiation by interfering with p38 MAPK and ERK1/2 activation. Thus decorin-mediated dual impediment of endovascular differentiation of the EVT and angiogenesis may have implications for pathogenesis of preeclampsia, a hypoinvasive trophoblast disorder in pregnancy.
Collapse
Affiliation(s)
- Neena Lala
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
25
|
miR-20a represses endothelial cell migration by targeting MKK3 and inhibiting p38 MAP kinase activation in response to VEGF. Angiogenesis 2012; 15:593-608. [PMID: 22696064 DOI: 10.1007/s10456-012-9283-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/28/2012] [Indexed: 01/01/2023]
Abstract
Endothelial cell migration induced in response to vascular endothelial growth factor (VEGF) is a crucial step of angiogenesis and it depends on the activation of the p38 MAP-kinase pathway downstream of VEGFR2. In this study, we investigated the role of microRNAs (miRNAs) in regulating these processes. We found that the VEGF-induced p38 activation and cell migration are modulated by overexpression of Argonaute 2, a key protein in the functioning of miRNAs. Thereafter, we found that miR-20a expression is increased by VEGF and that its ectopic expression inhibits VEGF-induced actin remodeling and cell migration. Moreover, the expression of miR-20a impairs the formation of branched capillaries in a tissue-engineered model of angiogenesis. In addition, the lentivirus-mediated expression of miR-20a precursor (pmiR-20a) is associated with a decrease in the VEGF-induced activation of p38. In contrast, these processes are increased by inhibiting miR-20a with a specific antagomir. Interestingly, miR-20a does not modulate VEGFR2 or p38 protein expression level. miR-20a does not affect either the expression of other known actors of the p38 MAP kinase pathway except MKK3. Indeed, by using quantitative PCR and Western Blot analysis, we found that pmiR-20a decreases the expression of MKK3 and we obtained evidence indicating that miR-20a specifically binds to the 3'UTR region of MKK3 mRNA. In accordance, the VEGF-induced activation of p38 and cell migration are impaired when the MKK3 expression is knocked down by siRNA. We conclude that miR-20a acts in a feedback loop to repress the expression of MKK3 and to negatively regulate the p38 pathway-mediated VEGF-induced endothelial cell migration and angiogenesis.
Collapse
|
26
|
Li N, Chen J, Bai Y, Bai WY. Role of the p38MAPK signaling pathway in EGF-induced u-PA expression in esophageal adenocarcinoma SEG-1 cells. Shijie Huaren Xiaohua Zazhi 2012; 20:1458-1462. [DOI: 10.11569/wcjd.v20.i16.1458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of epidermal growth factor (EGF) on the mRNA and protein expression of urokinase-type plasminogen activator (u-PA) in esophageal adenocarcinoma SEG-1 cells and to detect the role of the p38MAPK signaling pathway in this process.
METHODS: After SEG-1 cells non-pre-incubated or pre-incubated with SB203580 (a p38MAPK inhibitor) for two hours were treated with EGF (100 μg/L) for different durations, the protein expression of total p38MAPK, phosphorylated p38MAPK and u-PA was determined by Western blot, and the expression of u-PA mRNA was examined by reverse transcription-polymerase chain reaction (RT-PCR).
RESULTS: Treatment with EGF significantly increased the mRNA and protein expressions of u-PA and induced p38 kinase phosphorylation in SEG-1 cells in a time-dependent manner. SB203580 could sufficiently suppress EGF-induced p38MAPK phosphorylation and significantly attenuate EGF-induced u-PA mRNA and protein expression in SEG-1 cells in a dose-dependent manner.
CONCLUSION: EGF can significantly induce u-PA in SEG-1 cells by activating the p38MAPK signaling pathway.
Collapse
|
27
|
Blockade of VEGF-induced GSK/β-catenin signaling, uPAR expression and increased permeability by dominant negative p38α. Exp Eye Res 2012; 100:101-8. [PMID: 22564969 DOI: 10.1016/j.exer.2012.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 02/11/2012] [Accepted: 03/21/2012] [Indexed: 11/23/2022]
Abstract
The goal of this study was to define the role of p38alpha MAP kinase in VEGF-induced vascular permeability increase. Activation of p38 is correlated with increased permeability in endothelial cells treated with VEGF or high glucose and in retinas of diabetic animal models. We have shown previously that p38 inhibitors preserve endothelial barrier function and block VEGF-induced GSK/beta-catenin signaling. Here, we present data demonstrating that adenoviral vector delivery of a dominant negative p38alpha mutant blocks this signaling pathway and preserves barrier function. This p38alpha mutant was altered on its ATP-binding site, which eliminates its kinase activity. Bovine retinal endothelial (BRE) cells were transduced with recombinant adenovirus containing the p38alpha mutants or empty vector. Successful transduction was confirmed by expression of GFP and p38 increase. Blockade of p38 activity by p38alpha mutant was demonstrated by inhibition of VEGF-induced phosphorylation of a p38 target, MAP kinase activated protein kinase 2 (MK-2). The mutant also prevented VEGF-induced GSK phosphorylation and beta-catenin cytosolic accumulation and nuclear translocation as shown by cell fractionation and Western blotting. Quantitative real-time PCR demonstrated that this mutant inhibited VEGF-induced uPAR gene expression. Importantly, this same mutant also strongly abrogated VEGF-induced endothelial barrier breakdown as determined by measuring transcellular electrical resistance and tracer flux through endothelial cell monolayer. This study indicates a critical role of p38alpha in VEGF-induced permeability and offers a new strategy for developing potent and specific therapies for treatment of retinal diseases associated with vascular barrier dysfunction.
Collapse
|
28
|
BCAR1 protein plays important roles in carcinogenesis and predicts poor prognosis in non-small-cell lung cancer. PLoS One 2012; 7:e36124. [PMID: 22558353 PMCID: PMC3338601 DOI: 10.1371/journal.pone.0036124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/26/2012] [Indexed: 12/22/2022] Open
Abstract
Objective Our previous study suggested the potential clinical implications of BCAR1 in non-small-cell lung cancer (NSCLC) (Mol Diagn Ther. 2011. 15(1): 31–40). Herein, we aim to evaluate the predictive power of BCAR1 as a marker for poor prognosis in NSCLC cases, verify the carcinogenic roles of BCAR1 in the A549 lung adenocarcinoma cell line, and testify to the BCAR1/phospho-p38 axis. Methods Between January 2006 and June 2010, there were a total of 182 patients with NSCLC (151 cases with available follow up data, and 31 cases lost to follow-up due to the invalid contact information). We inspected BCAR1, phospho-BCAR1(Tyr410), phospho-p38(Thr180/Tyr182) and p38 expression in NSCLC tissues and matched adjacent normal tissues by immunoblotting and IHC. After BCAR1 -RNA interference in A549 cells, we inspected the protein expression (BCAR1, phospho-BCAR1, phospho-p38 and p38) and performed cell biology experiments (cell growth, migration and cycle). Results BCAR1 was overexpressed in NSCLC tissues (177/182) and cell lines (A549 and Calu-3). However, it was not detected in the normal adjacent tissue in 161 of the 182 cases. Higher BCAR1 levels were strongly associated with more poorly differentiated NSCLC and predicted poorer prognosis. BCAR1 knockdown caused cell growth arrest, cell migration inhibition and cell cycle arrest of A549 cells. Overexpression of BCAR1 was associated with activation of p38 in NSCLC cases, and BCAR1 knockdown caused reduction of phospho-p38 levels in A549 cells. Conclusion Overexpression of BCAR1 is a predictor of poor prognosis in NSCLC and plays important carcinogenic roles in carcinogenesis, probably via activation of p38 MAPK. However, further investigations are required immediately.
Collapse
|
29
|
Kampa M, Pelekanou V, Gallo D, Notas G, Troullinaki M, Pediaditakis I, Charalampopoulos I, Jacquot Y, Leclercq G, Castanas E. ERα17p, an ERα P295 -T311 fragment, modifies the migration of breast cancer cells, through actin cytoskeleton rearrangements. J Cell Biochem 2012; 112:3786-96. [PMID: 21826705 DOI: 10.1002/jcb.23309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recently, our knowledge on estrogen receptor alpha (ERα) functions and fate has progressed: ERα enters in repeated transcription-modulating cycles (nucleus/cytoplasm/membrane trafficking processes and proteasomal degradation) that are governed by specific protein-protein interactions. Receptor fragments, especially those resulting from the proteolysis of its ligand binding domain, as well as corresponding synthetic peptides, have been studied with respect to their estrogenic/antiestrogenic potency. A peptide, corresponding to the human ERα P(295) -T(311) sequence (ERα17p) has been shown to alter breast cancer cell fate, triggering proliferation, or apoptosis. The aim of this work was to explore the effect of ERα17p on breast cancer cell migration and actin cytoskeleton dynamics and further analyze the mechanism of its membrane action. We show that ERα17p increases (MCF-7 and SK-BR-3 cells) or decreases (T47D and MDA-MB-231 cells) migration of breast cancer cells, in an ERα-independent manner, by mechanism(s) depending on Rho/ROCK and PI3K/Akt signaling pathways. Moreover, the peptide enhances the association of both estrogens and androgens to membranes and modifies cell migration, induced by E(2) -BSA. Additionally, initial evidence of a possible agonistic action of the peptide on GPR30 is also provided. ERα17p can be considered as a cell migration-modulator and could therefore constitute a therapeutic challenge, even in anti-estrogen-resistant tumors.
Collapse
Affiliation(s)
- Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine University of Crete, Heraklion, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chang YM, Chi WY, Lai TY, Chen YS, Tsai FJ, Tsai CH, Kuo WW, Cheng YC, Lin CC, Huang CY. Dilong: role in peripheral nerve regeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:380809. [PMID: 21799677 PMCID: PMC3136393 DOI: 10.1093/ecam/neq079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 05/25/2010] [Indexed: 01/18/2023]
Abstract
Dilong, also known as earthworm, has been widely used in traditional Chinese medicine (TCM) for thousands of years. Schwann cell migration and proliferation are critical for the regeneration of injured nerves and Schwann cells provide an essentially supportive role for neuron regeneration. However, the molecular mechanisms of migration and proliferation induced by dilongs in Schwann cells remain unclear. Here, we discuss the molecular mechanisms that includes (i) migration signaling, MAPKs (mitogen-activated protein kinases), mediated PAs and MMP2/9 pathway; (ii) survival and proliferative signaling, IGF-I (insulin-like growth factor-I)-mediated PI3K/Akt pathways and (iii) cell cycle regulation. Dilong stimulate RSC96 cell proliferation and migration. It can induce phosphorylation of ERK1/2 and p38, but not JNK, and activate the downstream signaling expression of PAs (plasminogen activators) and MMPs (matrix metalloproteinases) in a time-dependent manner. In addition, Dilong stimulated ERK1/2 and p38 phosphorylation was attenuated by pretreatment with chemical inhibitors (U0126 and SB203580), and small interfering ERK1/2 and p38 RNA, resulting in migration and uPA-related signal pathway inhibition. Dilong also induces the phosphorylation of IGF-I-mediated PI3K/Akt pathway, activates protein expression of PCNA (proliferating cell nuclear antigen) and cell cycle regulatory proteins (cyclin D1, cyclin E and cyclin A) in a time-dependent manner. In addition, it accelerates G1-phase progression with earlier S-phase entry and significant numbers of cells entered the S-phase. The siRNA-mediated knockdown of PI3K that significantly reduces PI3K protein expression levels, resulting in Bcl2 survival factor reduction, revealing a marked blockage of G1 to S transition in proliferating cells. These results reveal the unknown RSC96 cell migration and proliferation mechanism induced by dilong, which find use as a new medicine for nerve regeneration.
Collapse
Affiliation(s)
- Yung-Ming Chang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
VEGF non-angiogenic functions in adult organ homeostasis: therapeutic implications. J Mol Med (Berl) 2011; 89:635-45. [DOI: 10.1007/s00109-011-0739-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/19/2011] [Accepted: 02/14/2011] [Indexed: 12/21/2022]
|
32
|
Cell surface heparan sulfates mediate internalization of the PWWP/HATH domain of HDGF via macropinocytosis to fine-tune cell signalling processes involved in fibroblast cell migration. Biochem J 2011; 433:127-38. [PMID: 20964630 DOI: 10.1042/bj20100589] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
HDGF (hepatoma-derived growth factor) stimulates cell proliferation by functioning on both sides of the plasma membrane as a ligand for membrane receptor binding to trigger cell signalling and as a stimulator for DNA synthesis in the nucleus. Although HDGF was initially identified as a secretory heparin-binding protein, the biological significance of its heparin-binding ability remains to be determined. In the present study we demonstrate that cells devoid of surface HS (heparan sulfate) were unable to internalize HDGF, HATH (N-terminal domain of HDGF consisting of amino acid residues 1-100, including the PWWP motif) and HATH(K96A) (single-site mutant form of HATH devoid of receptor binding activity), suggesting that the binding of HATH to surface HS is important for HDGF internalization. We further demonstrate that both HATH and HATH(K96A) could be internalized through macropinocytosis after binding to the cell surface HS. Interestingly, HS-mediated HATH(K96A) internalization is found to exhibit an inhibitory effect on cell migration and proliferation in contrast with that observed for HATH action on NIH 3T3 cells, suggesting that HDGF exploits the innate properties of both cell surface HS and membrane receptor via the HATH domain to affect related cell signalling processes. The present study indicates that MAPK (mitogen-activated protein kinase) signalling pathways could be affected by the HS-mediated HATH internalization to regulate cell migration in NIH 3T3 fibroblasts, as judged from the differential effect of HATH and HATH(K96A) treatment on the expression level of matrix metalloproteases.
Collapse
|
33
|
Chang YM, Shih YT, Chen YS, Liu CL, Fang WK, Tsai CH, Tsai FJ, Kuo WW, Lai TY, Huang CY. Schwann Cell Migration Induced by Earthworm Extract via Activation of PAs and MMP2/9 Mediated through ERK1/2 and p38. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:395458. [PMID: 19808845 PMCID: PMC3135425 DOI: 10.1093/ecam/nep131] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 08/06/2009] [Indexed: 12/03/2022]
Abstract
The earthworm, which has stasis removal and wound-healing functions, is a widely used Chinese herbal medicine in China. Schwann cell migration is critical for the regeneration of injured nerves. Schwann cells provide an essentially supportive activity for neuron regeneration. However, the molecular migration mechanisms induced by earthworms in Schwann cells remain unclear. Here, we investigate the roles of MAPK (ERK1/2, JNK and p38) pathways for earthworm-induced matrix-degrading proteolytic enzyme (PAs and MMP2/9) production in Schwann cells. Moreover, earthworm induced phosphorylation of ERK1/2 and p38, but not JNK, activate the downstream signaling expression of PAs and MMPs in a time-dependent manner. Earthworm-stimulated ERK1/2 and p38 phosphorylation was attenuated by pretreatment with U0126 and SB203580, resulting in migration and uPA-related signal pathway inhibition. The results were confirmed using small interfering ERK1/2 and p38 RNA. These results demonstrated that earthworms can stimulate Schwann cell migration and up-regulate PAs and MMP2/9 expression mediated through the MAPK pathways, ERK1/2 and p38. Taken together, our data suggests the MAPKs (ERK1/2, p38)-, PAs (uPA, tPA)-, MMP (MMP2, MMP9) signaling pathway of Schwann cells regulated by earthworms might play a major role in Schwann cell migration and nerve regeneration.
Collapse
Affiliation(s)
- Yung-Ming Chang
- Graduate Institute of Chinese Medical Science, China Medical University, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li Y, Zhang M, Chen H, Dong Z, Ganapathy V, Thangaraju M, Huang S. Ratio of miR-196s to HOXC8 messenger RNA correlates with breast cancer cell migration and metastasis. Cancer Res 2010; 70:7894-904. [PMID: 20736365 DOI: 10.1158/0008-5472.can-10-1675] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Expression profiling has identified metastasis-associated microRNAs (miRNA) but technical limitations hinder the discovery of metastasis-suppressing miRNAs. In this study, we sought metastasis-suppressing miRNAs by functional screening. Individual miRNAs were lentivirally introduced into metastatic MDA-MB-231 breast cancer cells and analyzed for effects on cell migration, a critical step in cancer metastasis. Among 486 miRNAs screened, 14 were identified that included all of the members of the miRNA-196 family (miR-196a1, miR-196a2, and miR-196b). Enforced expression of miR-196a1/2 or miR-196b abrogated in vitro invasion and in vivo spontaneous metastasis of breast cancer cells, indicating that members of the miR-196 family are potent metastasis suppressors. We found that miR-196 inhibited the expression of transcription factor HOXC8. Functional linkage was implied by small interfering RNA-mediated knockdown of HOXC8, which suppressed cell migration and metastasis, and by ectopic expression of HOXC8, which prevented the effects of miR-196 on cell migration and metastasis. Unlike other metastasis-associated miRNAs that have been described, the expressions of miR-196 were not correlated with breast cancer cell migration or the metastatic status of clinical breast tumor specimens. Instead, we detected an excellent correlation between the ratio of miR-196 to HOXC8 messages and the migratory behavior of breast cancer cell lines as well as the metastatic status of clinical samples. Our findings identify miRNA-196s as potent metastasis suppressors and reveal that the ratio of miR-196s to HOXC8 mRNA might be an indicator of the metastatic capability of breast tumors.
Collapse
Affiliation(s)
- Yong Li
- Departments of Biochemistry and Molecular Biology, Cellular Biology and Anatomy, and Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Liao WX, Feng L, Zheng J, Chen DB. Deciphering mechanisms controlling placental artery endothelial cell migration stimulated by vascular endothelial growth factor. Endocrinology 2010; 151:3432-44. [PMID: 20463056 PMCID: PMC2903938 DOI: 10.1210/en.2009-1305] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vascular endothelial growth factor (VEGF) stimulated fetoplacental artery endothelial (oFPAE) cell migration and activated multiple signaling pathways including ERK2/1, p38MAPK, Jun N-terminal kinase (JNK1/2), v-Akt murine thymoma viral oncogene homolog 1 (Akt1), and c-Src in oFPAE cells. VEGF-induced cell migration was blocked by specific kinase inhibitors of JNK1/2 (SP600125), c-Src (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d] pyrimidine), and phosphatidylinositol 3-kinase/Akt (wortmannin) but not ERK2/1 (U0126) and p38MAPK (SB203580). VEGF-induced cell migration was associated with dynamic actin reorganization and focal adhesion as evidenced by increased stress fiber formation and phosphorylation of cofilin-1 and focal adhesion kinase (FAK) and paxillin. Inhibition of JNK1/2, c-Src, and phosphatidylinositol 3-kinase/Akt suppressed VEGF-induced stress fiber formation and cofilin-1 phosphorylation. c-Src inhibition suppressed VEGF-induced phosphorylation of focal adhesion kinase, paxillin, and focal adhesion. VEGF-induced cell migration requires endogenous nitric oxide (NO) as: 1) VEGF-stimulated phosphorylation of endothelial NO synthase (eNOS) via activation of Akt, JNK1/2, and Src; 2) a NO donor diethylenetriamine-NO-stimulated cell migration; and 3) NO synthase inhibition blocked VEGF-induced cell migration. Targeted down-regulation and overexpression of caveolin-1 both inhibited VEGF-induced cell migration. Caveolin-1 down-regulation suppressed VEGF-stimulated phosphorylation of Akt, JNK, eNOS, c-Src, and FAK; however, basal activities of c-Src and FAK were elevated in parallel with increased stress fiber formation and focal adhesion. Caveolin-1 overexpression also inhibited VEGF-induced phosphorylation of Akt, JNK, c-Src, FAK, and eNOS. Thus, VEGF-induced placental endothelial cell migration requires activation of complex pathways that are paradoxically regulated by caveolin-1.
Collapse
Affiliation(s)
- Wu-xiang Liao
- Department of Obstetrics and Gynecology, University of California-Irvine, Orange, CA 92673, USA
| | | | | | | |
Collapse
|
36
|
Yang J, Duh EJ, Caldwell RB, Behzadian MA. Antipermeability function of PEDF involves blockade of the MAP kinase/GSK/beta-catenin signaling pathway and uPAR expression. Invest Ophthalmol Vis Sci 2010; 51:3273-80. [PMID: 20089873 DOI: 10.1167/iovs.08-2878] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Pigment epithelium-derived factor (PEDF) is a potent inhibitor of vascular endothelial growth factor (VEGF)-induced endothelial permeability. The goal of this study was to understand the mechanism by which PEDF blocks VEGF-induced increases in vascular permeability. METHODS The paracellular permeability of bovine retinal endothelial (BRE) cells was measured by assaying transendothelial cell electrical resistance and tracer flux. Western blot analysis was used to show phosphorylation of VEGFR2, MAP kinases, and glycogen synthase kinase 3 (GSK3)-beta. Confocal imaging and Western blot analysis were used to determine subcellular distribution of beta-catenin. Real-time RT-PCR and Western blot analysis were used to quantify urokinase plasminogen activator receptor (uPAR) expression. RESULTS PEDF blocked VEGF-induced phosphorylation of extracellular signal-regulated kinase (ERK), p38 MAP kinase, the p38 substrate MAP kinase-activated protein kinase-2 (MAPKAPK-2), and GSK3-beta, but it had no effect on the phosphorylation of VEGFR2. In addition, the VEGF-induced transcriptional activation of beta-catenin and uPAR expression were blocked by PEDF and by inhibitors of p38 and MEK. Finally, the VEGF-induced increase in permeability was blocked by both PEDF and the same kinase inhibitors. CONCLUSIONS The data suggest that p38 MAP kinase and ERK act upstream of GSK/beta-catenin in VEGF-induced activation of the uPA/uPAR system and that PEDF-mediated inhibition of the VEGF-induced increase in vascular permeability involves blockade of this pathway. These findings are important for developing precise and potent therapies for treatment of diseases characterized by vascular barrier dysfunction.
Collapse
|
37
|
Cheng CY, Hsieh HL, Sun CC, Lin CC, Luo SF, Yang CM. IL-1β induces urokinse-plasminogen activator expression and cell migration through PKCα, JNK1/2, and NF-κB in A549 cells. J Cell Physiol 2009; 219:183-93. [DOI: 10.1002/jcp.21669] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Jiménez E, Pérez de la Blanca E, Urso L, González I, Salas J, Montiel M. Angiotensin II induces MMP 2 activity via FAK/JNK pathway in human endothelial cells. Biochem Biophys Res Commun 2009; 380:769-74. [PMID: 19338750 DOI: 10.1016/j.bbrc.2009.01.142] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
Matrix metalloproteinases (MMPs) play an important role in the pathogenesis of cardiovascular diseases and are modified in response to a variety of stimuli such as bioactive peptides, cytokines and/or grown factors. In this study, we demonstrated that angiotensin II (Ang II) induces a time- and dose-dependent increase in the activity of metalloproteinase 2 (MMP 2) in human umbilical vein endothelial cells (HUVEC). The effect of Ang II was markedly attenuated in cells pretreated with wortmannin and LY294002, two selective inhibitors of phosphatidylinositol-3-kinase (PI3K), indicating that PI3K plays a key role in regulating MMP 2 activity. Similar results were observed when HUVEC were pretreated with genistein, a non-selective tyrosine kinases inhibitor, or with the specific Src-family tyrosine kinase inhibitor PP2, demonstrating the involvement of protein tyrosine kinases, and particularly Src-family tyrosine kinases on the downstream signaling pathway of Ang II receptors. Furthermore, Ang II-induced MMP 2 activation was markedly blocked by SP600125, a selective c-Jun N-terminal kinase (JNK) inhibitor, or pre-treatment of cells with antisense oligonucleotide to focal adhesion kinase (FAK), indicating that both molecules were important for the activation of MMP 2 by Ang II receptor stimulation. In conclusion, these results suggest that Ang II mediates an increase in MMP 2 activity in macrovascular endothelial cells through signal transduction pathways dependent on PI3K and Src-family tyrosine kinases activation, as well as JNK and FAK phosphorylation.
Collapse
Affiliation(s)
- Eugenio Jiménez
- Departamento de Bioquímica y Biología Molecular, Universidad de Málaga, Boulevard Louis Pasteur 32, 29071 Málaga, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Cicek M, Fukuyama R, Cicek MS, Sizemore S, Welch DR, Sizemore N, Casey G. BRMS1 contributes to the negative regulation of uPA gene expression through recruitment of HDAC1 to the NF-kappaB binding site of the uPA promoter. Clin Exp Metastasis 2009; 26:229-37. [PMID: 19165610 DOI: 10.1007/s10585-009-9235-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 01/05/2009] [Indexed: 11/28/2022]
Abstract
The BRMS1 metastasis suppressor was recently shown to negatively regulate NF-kappaB signaling and down regulate NF-kappaB-dependent uPA expression. Here we confirm that BRMS1 expression correlates with reduced NF-kappaB DNA binding activity in independently derived human melanoma C8161.9 cells stably expressing BRMS1. We show that knockdown of BRMS1 expression in these cells using small interfering RNA (siRNA) leads to the reactivation of NF-kappaB DNA binding activity and re-expression of uPA. Further, we confirm that BRMS1 expression does not alter IKKbeta kinase activity suggesting that BRMS1-dependent uPA regulation does not occur through inhibition of the classical upstream activators of NF-kappaB. BRMS1 has been implicated as a corepressor of HDAC1 and consistent with this, we show that BRMS1 promotes HDAC1 recruitment to the NF-kappaB binding site of the uPA promoter and is associated with reduced H3 acetylation. We also confirm that BRMS1 expression stimulates disassociation of p65 from the NF-kappaB binding site of the uPA promoter consistent with its reduced DNA binding activity. These data suggest that BRMS1 recruits HDAC1 to the NF-kappaB binding site of the uPA promoter, modulates histone acetylation of p65 on the uPA promoter, leading to reduced NF-kappaB binding activity on its consensus sequence, and reduced transactivation of uPA expression.
Collapse
Affiliation(s)
- Muzaffer Cicek
- Endocrine Research Unit, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Mehta VB, Zhou Y, Radulescu A, Besner GE. HB-EGF stimulates eNOS expression and nitric oxide production and promotes eNOS dependent angiogenesis. Growth Factors 2008; 26:301-15. [PMID: 18925469 DOI: 10.1080/08977190802393596] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is a member of the epidermal growth factor (EGF) family of ligands that is expressed by many cell types including endothelial cells. We have previously shown that HB-EGF stimulates angiogenesis in vitro in human umbilical vein endothelial cells (HUVEC). Nitric oxide (NO) derived from endothelial nitric oxide synthase (eNOS) is an important regulator of angiogenesis. However, the role of HB-EGF in regulation of eNOS has not yet been investigated. Whether HB-EGF-induced endothelial cell migration and vascular network formation are mediated via production of NO from eNOS is also unknown. To address these questions, we stimulated HUVEC with HB-EGF and evaluated the expression of eNOS at the mRNA and protein levels. HB-EGF significantly upregulated expression of eNOS mRNA, stimulated eNOS protein production, and increased NO release from HUVEC. HB-EGF phosphorylated eNOS in a phosphatidylinositol 3-kinase (PI3K) dependent fashion, and stimulated in vitro angiogenesis. eNOS siRNA inhibited HB-EGF-stimulated HUVEC migration in a scratch assay. NG-nitro-L-arginine-methyl-ester (L-NAME) and L-N5-(1-lminoethyl)ornithine,dihydochloride (L-NIO) (specific inhibitors of eNOS) also abolished HB-EGF-induced HUVEC migration and angiogenesis. More importantly, we found that HB-EGF also promotes angiogenesis in vivo in the Marigel plug assay. Lastly, inhibition of the p38 MAPK pathway enhanced HB-EGF-induced EC migration and angiogenesis. We conclude that HB-EGF, through its interaction with EGF receptors (EGFR), stimulates eNOS activation and NO production via a PI3K-dependent pathway. Thus, activation of eNOS appears to be one of the key signaling pathways necessary for HB-EGF mediated angiogenesis. These novel findings highlight an important role for HB-EGF as a regulator of endothelial cell function.
Collapse
Affiliation(s)
- Veela B Mehta
- Department of Pediatric Surgery, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | | | | | | |
Collapse
|
41
|
Nakagawa H, Matsumiya T, Sakaki H, Imaizumi T, Kubota K, Kusumi A, Kobayashi W, Kimura H. Expression of vascular endothelial growth factor by photodynamic therapy with mono-l-aspartyl chlorin e6 (NPe6) in oral squamous cell carcinoma. Oral Oncol 2007; 43:544-50. [PMID: 17257889 DOI: 10.1016/j.oraloncology.2006.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/17/2006] [Accepted: 03/20/2006] [Indexed: 10/23/2022]
Abstract
Photodynamic therapy (PDT) is a method for treating pre-cancerous and cancerous lesions of the skin, bladder and oral cavity. However, tumour recurrence after PDT remains problematic despite good initial response. Some studies have shown that PDT induces vascular endothelial growth factor (VEGF) expression in human oral squamous cell carcinoma and other organs. However, little is known about VEGF expression applied to PDT in human carcinoma cell lines. No studies have been conducted of PDT using Npe6 (Npe6-mediated PDT), a second-generation photosensitizer, in the human oral carcinoma cell line, HSC-3 cells. We investigated the expression of VEGF, c-jun and c-fos proto-oncogenes in HSC-3 cells in response to Npe6-mediated PDT. We also addressed the possibility that oxidative damage induced by PDT could lead to an angiogenic response, via VEGF expression. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that Npe6-mediated PDT induced the expression of mRNAs for VEGF, c-jun and c-fos in time- and concentration-dependent manners. Desferrioxamine (DFX), an iron chelator, induced VEGF expression, but the expression pattern was different to that of Npe6-mediated PDT. The expression mRNAs for VEGF, c-jun and c-fos induced by Npe6-mediated PDT were inhibited by SB203580, p38 MAPK inhibitors, and the expression of VEGF mRNA was inhibited by cycloheximide (CHX), a protein synthesis inhibitor. The c-jun mRNA expression was inhibited, whereas the c-fos mRNA expression was enhanced by N-acetyl-L-cysteine (NAC), a free radical scavenger. We conclude that Npe6-mediated PDT induces the expression of VEGF, c-jun and c-fos in human oral carcinoma cell line, HSC-3 cell, and at least partly, through the activation of p38 MAPK.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Department of Dentistry and Oral Surgery, Hirosaki University School of Medicine, Hirosaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Endothelial cell migration is essential to angiogenesis. This motile process is directionally regulated by chemotactic, haptotactic, and mechanotactic stimuli and further involves degradation of the extracellular matrix to enable progression of the migrating cells. It requires the activation of several signaling pathways that converge on cytoskeletal remodeling. Then, it follows a series of events in which the endothelial cells extend, contract, and throw their rear toward the front and progress forward. The aim of this review is to give an integrative view of the signaling mechanisms that govern endothelial cell migration in the context of angiogenesis.
Collapse
Affiliation(s)
- Laurent Lamalice
- Le Centre de recherche en cancérologie, l'Université Laval, L'Hôtel-Dieu de Québec, Québec, Canada
| | | | | |
Collapse
|
43
|
Betapudi V, Licate LS, Egelhoff TT. Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration. Cancer Res 2006; 66:4725-33. [PMID: 16651425 DOI: 10.1158/0008-5472.can-05-4236] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Initial stages of tumor cell metastasis involve an epithelial-mesenchyme transition that involves activation of amoeboid migration and loss of cell-cell adhesion. The actomyosin cytoskeleton has fundamental but poorly understood roles in these events. Myosin II, an abundant force-producing protein, has roles in cell body translocation and retraction of the posterior of the cell during migration. Recent studies have suggested that this protein may also have roles in leading edge protrusive events. The metastasis-promoting protein metastasin-1, a regulator of myosin II assembly, colocalizes with myosin IIA at the leading edge of cancer cells, suggesting direct roles for myosin II in metastatic behavior. We have assessed the roles of specific myosin II isoforms during lamellar spreading of MDA-MB-231 breast cancer cells on extracellular matrix. We find that the two major myosin II isoforms IIA and IIB are both expressed in these cells, and both are recruited dramatically to the lamellar margin during active spreading on fibronectin. There is also a transient increase in regulatory light chain phosphorylation that correlates the recruitment of myosin IIA and myosin IIB into this spreading margin. Pharmacologic inhibition of myosin II or myosin light chain kinase dramatically reduced spreading. Depletion of myosin IIA via small interfering RNA impaired migration but enhanced lamellar spreading, whereas depletion of myosin IIB impaired not only migration but also impaired initial rates of lamellar spreading. These results indicate that both isoforms are critical for the mechanics of cell migration, with myosin IIB seeming to have a preferential role in the mechanics of lamellar protrusion.
Collapse
Affiliation(s)
- Venkaiah Betapudi
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
44
|
Robidoux J, Cao W, Quan H, Daniel KW, Moukdar F, Bai X, Floering LM, Collins S. Selective activation of mitogen-activated protein (MAP) kinase kinase 3 and p38alpha MAP kinase is essential for cyclic AMP-dependent UCP1 expression in adipocytes. Mol Cell Biol 2005; 25:5466-79. [PMID: 15964803 PMCID: PMC1157000 DOI: 10.1128/mcb.25.13.5466-5479.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The sympathetic nervous system regulates the activity and expression of uncoupling protein 1 (UCP1) through the three beta-adrenergic receptor subtypes and their ability to raise intracellular cyclic AMP (cAMP) levels. Unexpectedly, we recently discovered that the cAMP-dependent regulation of multiple genes in brown adipocytes, including Ucp1, occurred through the p38 mitogen-activated protein kinases (MAPK) (W. Cao, K. W. Daniel, J. Robidoux, P. Puigserver, A. V. Medvedev, X. Bai, L. M. Floering, B. M. Spiegelman, and S. Collins, Mol. Cell. Biol. 24:3057-3067, 2004). However, no well-defined pathway linking cAMP accumulation or cAMP-dependent protein kinase (PKA) to p38 MAPK has been described. Therefore, in the present study using both in vivo and in vitro models, we have initiated a retrograde approach to define the required components, beginning with the p38 MAPK isoforms themselves and the MAP kinase kinase(s) that regulates them. Our strategy included ectopic expression of wild-type and mutant kinases as well as targeted inhibition of gene expression using small interfering RNA. The results indicate that the beta-adrenergic receptors and PKA lead to a highly selective activation of the p38alpha isoform of MAPK, which in turn promotes Ucp1 gene transcription. In addition, this specific activation of p38alpha relies solely on the presence of MAP kinase kinase 3, despite the expression in brown fat of MKK3, -4, and -6. Finally, of the three scaffold proteins of the JIP family expressed in brown adipocytes, only JIP2 co-immunoprecipitates p38alpha MAPK and MKK3. Therefore, in the brown adipocyte the recently described scaffold protein JIP2 assembles the required factors MKK3 and p38alpha MAPK linking PKA to the control of thermogenic gene expression.
Collapse
Affiliation(s)
- Jacques Robidoux
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|