1
|
Rubtsova MP, Nikishin DA, Vyssokikh MY, Koriagina MS, Vasiliev AV, Dontsova OA. Telomere Reprogramming and Cellular Metabolism: Is There a Link? Int J Mol Sci 2024; 25:10500. [PMID: 39408829 PMCID: PMC11476947 DOI: 10.3390/ijms251910500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Telomeres-special DNA-protein structures at the ends of linear eukaryotic chromosomes-define the proliferation potential of cells. Extremely short telomeres promote a DNA damage response and cell death to eliminate cells that may have accumulated mutations after multiple divisions. However, telomere elongation is associated with the increased proliferative potential of specific cell types, such as stem and germ cells. This elongation can be permanent in these cells and is activated temporally during immune response activation and regeneration processes. The activation of telomere lengthening mechanisms is coupled with increased proliferation and the cells' need for energy and building resources. To obtain the necessary nutrients, cells are capable of finely regulating energy production and consumption, switching between catabolic and anabolic processes. In this review, we focused on the interconnection between metabolism programs and telomere lengthening mechanisms during programmed activation of proliferation, such as in germ cell maturation, early embryonic development, neoplastic lesion growth, and immune response activation. It is generally accepted that telomere disturbance influences biological processes and promotes dysfunctionality. Here, we propose that metabolic conditions within proliferating cells should be involved in regulating telomere lengthening mechanisms, and telomere length may serve as a marker of defects in cellular functionality. We propose that it is possible to reprogram metabolism in order to regulate the telomere length and proliferative activity of cells, which may be important for the development of approaches to regeneration, immune response modulation, and cancer therapy. However, further investigations in this area are necessary to improve the understanding and manipulation of the molecular mechanisms involved in the regulation of proliferation, metabolism, and aging.
Collapse
Affiliation(s)
- Maria P. Rubtsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| | - Denis A. Nikishin
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (D.A.N.); (A.V.V.)
| | - Mikhail Y. Vyssokikh
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Maria S. Koriagina
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| | - Andrey V. Vasiliev
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (D.A.N.); (A.V.V.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga A. Dontsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| |
Collapse
|
2
|
Hu H, Yan HL, Nguyen THD. Structural biology of shelterin and telomeric chromatin: the pieces and an unfinished puzzle. Biochem Soc Trans 2024; 52:1551-1564. [PMID: 39109533 DOI: 10.1042/bst20230300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
The six-subunit shelterin complex binds to mammalian telomeres and protects them from triggering multiple DNA damage response pathways. The loss of this protective function by shelterin can have detrimental effects on cells. In this review, we first discuss structural studies of shelterin, detailing the contributions of each subunit and inter-subunit interactions in protecting chromosome ends. We then examine the influence of telomeric chromatin dynamics on the function of shelterin at telomeres. These studies provide valuable insights and underscore the challenges that future research must tackle to attain high-resolution structures of shelterin.
Collapse
Affiliation(s)
- Hongmiao Hu
- MRC Laboratory of Molecular Biology, Cambridge, U.K
| | | | | |
Collapse
|
3
|
Brankiewicz-Kopcinska W, Kallingal A, Krzemieniecki R, Baginski M. Targeting shelterin proteins for cancer therapy. Drug Discov Today 2024; 29:104056. [PMID: 38844065 DOI: 10.1016/j.drudis.2024.104056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
As a global health challenge, cancer prompts continuous exploration for innovative therapies that are also based on new targets. One promising avenue is targeting the shelterin protein complex, a safeguard for telomeres crucial in preventing DNA damage. The role of shelterin in modulating ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and Rad3-related (ATR) kinases, key players in the DNA damage response (DDR), establishes its significance in cancer cells. Disrupting these defence mechanisms of shelterins, especially in cancer cells, renders telomeres vulnerable, potentially leading to genomic instability and hindering cancer cell survival. In this review, we outline recent approaches exploring shelterins as potential anticancer targets, highlighting the prospect of developing selective molecules to exploit telomere vulnerabilities toward new innovative cancer treatments.
Collapse
Affiliation(s)
- Wioletta Brankiewicz-Kopcinska
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland; Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.
| | - Anoop Kallingal
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland
| | - Radoslaw Krzemieniecki
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
4
|
Kallingal A, Krzemieniecki R, Maciejewska N, Brankiewicz-Kopcińska W, Baginski M. TRF1 and TRF2: pioneering targets in telomere-based cancer therapy. J Cancer Res Clin Oncol 2024; 150:353. [PMID: 39012375 PMCID: PMC11252209 DOI: 10.1007/s00432-024-05867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024]
Abstract
This article presents an in-depth exploration of the roles of Telomere Repeat-binding Factors 1 and 2 (TRF1 and TRF2), and the shelterin complex, in the context of cancer biology. It emphasizes their emerging significance as potential biomarkers and targets for therapeutic intervention. Central to the shelterin complex, TRF1 and TRF2 are crucial in maintaining telomere integrity and genomic stability, their dysregulation often being a hallmark of cancerous cells. The article delves into the diagnostic and prognostic capabilities of TRF1 and TRF2 across various cancer types, highlighting their sensitivity and specificity. Furthermore, it reviews current strides in drug discovery targeting the shelterin complex, detailing specific compounds and their modes of action. The review candidly addresses the challenges in developing therapies aimed at the shelterin complex, including drug resistance, off-target effects, and issues in drug delivery. By synthesizing recent research findings, the article sheds light on the intricate relationship between telomere biology and cancer development. It underscores the urgency for continued research to navigate the existing challenges and fully leverage the therapeutic potential of TRF1, TRF2, and the shelterin complex in the realm of cancer treatment.
Collapse
Affiliation(s)
- Anoop Kallingal
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, 80-233, Poland.
| | - Radosław Krzemieniecki
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Natalia Maciejewska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, 80-233, Poland
| | | | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, 80-233, Poland
| |
Collapse
|
5
|
Wang C, Huang Y, Yang Y, Li R, Li Y, Qiu H, Wu J, Shi G, Ma W, Songyang Z. ILF3 safeguards telomeres from aberrant homologous recombination as a telomeric R-loop reader. Protein Cell 2024; 15:493-511. [PMID: 37991243 PMCID: PMC11214836 DOI: 10.1093/procel/pwad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/09/2023] [Indexed: 11/23/2023] Open
Abstract
Telomeres are specialized structures at the ends of linear chromosomes that protect genome stability. The telomeric repeat-containing RNA (TERRA) that is transcribed from subtelomeric regions can invade into double-stranded DNA regions and form RNA:DNA hybrid-containing structure called R-loop. In tumor cells, R-loop formation is closely linked to gene expression and the alternative lengthening of telomeres (ALT) pathway. Dysregulated R-loops can cause stalled replication forks and telomere instability. However, how R-loops are recognized and regulated, particularly at telomeres, is not well understood. We discovered that ILF3 selectively associates with telomeric R-loops and safeguards telomeres from abnormal homologous recombination. Knocking out ILF3 results in excessive R-loops at telomeres and triggers telomeric DNA damage responses. In addition, ILF3 deficiency disrupts telomere homeostasis and causes abnormalities in the ALT pathway. Using the proximity-dependent biotin identification (BioID) technology, we mapped the ILF3 interactome and discovered that ILF3 could interact with several DNA/RNA helicases, including DHX9. Importantly, ILF3 may aid in the resolution of telomeric R-loops through its interaction with DHX9. Our findings suggest that ILF3 may function as a reader of telomeric R-loops, helping to prevent abnormal homologous recombination and maintain telomere homeostasis.
Collapse
Affiliation(s)
- Chuanle Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruofei Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingying Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongxin Qiu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiali Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Dos Santos GA, Viana NI, Pimenta R, de Camargo JA, Guimaraes VR, Romão P, Candido P, Dos Santos VG, Ghazarian V, Reis ST, Leite KRM, Srougi M. Upregulation of shelterin and CST genes and longer telomeres are associated with unfavorable prognostic characteristics in prostate cancer. Cancer Genet 2024; 284-285:20-29. [PMID: 38503134 DOI: 10.1016/j.cancergen.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
INTRODUCTION Search for new clinical biomarkers targets in prostate cancer (PC) is urgent. Telomeres might be one of these targets. Telomeres are the extremities of linear chromosomes, essential for genome stability and control of cell divisions. Telomere homeostasis relies on the proper functioning of shelterin and CST complexes. Telomeric dysfunction and abnormal expression of its components are reported in most cancers and are associated with PC. Despite this, there are only a few studies about the expression of the main telomere complexes and their relationship with PC progression. We aimed to evaluate the role of shelterin (POT1, TRF2, TPP1, TIN2, and RAP1) and CST (CTC1, STN1, and TEN1) genes and telomere length in the progression of PC. METHODS We evaluated genetic alterations of shelterin and CST by bioinformatics in samples of localized (n = 499) and metastatic castration-resistant PC (n = 444). We also analyzed the expression of the genes using TCGA (localized PC n = 497 and control n = 152) and experimental approaches, with surgical specimens (localized PC n = 81 and BPH n = 10) and metastatic cell lines (LNCaP, DU145, PC3 and PNT2 as control) by real-time PCR. Real-time PCR also determined the telomere length in the same experimental samples. All acquired data were associated with clinical parameters. RESULTS Genetic alterations are uncommon in PC, but POT1, TIN2, and TEN1 showed significantly more amplifications in the metastatic cancer. Except for CTC1 and TEN1, which are differentially expressed in localized PC samples, we did not detect an expression pattern relative to control and cell lines. Nevertheless, except for TEN1, the upregulation of all genes is associated with a worse prognosis in localized PC. We also found that increased telomere length is associated with disease aggressiveness in localized PC. CONCLUSION The upregulation of shelterin and CST genes creates an environment that favors telomere elongation, giving selective advantages for localized PC cells to progress to more aggressive stages of the disease.
Collapse
Affiliation(s)
- Gabriel Arantes Dos Santos
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.
| | - Nayara I Viana
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Minas Gerais State University (UEMG), Passos, Minas Gerais, Brazil
| | - Ruan Pimenta
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; D'Or Institute for Research and Education (IDOR), Sao Paulo, Brazil
| | - Juliana Alves de Camargo
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Vanessa R Guimaraes
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Poliana Romão
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Patrícia Candido
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Vinicius Genuino Dos Santos
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Vitória Ghazarian
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sabrina T Reis
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Minas Gerais State University (UEMG), Passos, Minas Gerais, Brazil
| | - Katia Ramos Moreira Leite
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Miguel Srougi
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; D'Or Institute for Research and Education (IDOR), Sao Paulo, Brazil
| |
Collapse
|
7
|
Olson CL, Wuttke DS. Guardians of the Genome: How the Single-Stranded DNA-Binding Proteins RPA and CST Facilitate Telomere Replication. Biomolecules 2024; 14:263. [PMID: 38540683 PMCID: PMC10968030 DOI: 10.3390/biom14030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 04/26/2024] Open
Abstract
Telomeres act as the protective caps of eukaryotic linear chromosomes; thus, proper telomere maintenance is crucial for genome stability. Successful telomere replication is a cornerstone of telomere length regulation, but this process can be fraught due to the many intrinsic challenges telomeres pose to the replication machinery. In addition to the famous "end replication" problem due to the discontinuous nature of lagging strand synthesis, telomeres require various telomere-specific steps for maintaining the proper 3' overhang length. Bulk telomere replication also encounters its own difficulties as telomeres are prone to various forms of replication roadblocks. These roadblocks can result in an increase in replication stress that can cause replication forks to slow, stall, or become reversed. Ultimately, this leads to excess single-stranded DNA (ssDNA) that needs to be managed and protected for replication to continue and to prevent DNA damage and genome instability. RPA and CST are single-stranded DNA-binding protein complexes that play key roles in performing this task and help stabilize stalled forks for continued replication. The interplay between RPA and CST, their functions at telomeres during replication, and their specialized features for helping overcome replication stress at telomeres are the focus of this review.
Collapse
Affiliation(s)
- Conner L. Olson
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Deborah S. Wuttke
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
8
|
Lu X, Liu L. Genome stability from the perspective of telomere length. Trends Genet 2024; 40:175-186. [PMID: 37957036 DOI: 10.1016/j.tig.2023.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Telomeres and their associated proteins protect the ends of chromosomes to maintain genome stability. Telomeres undergo progressive shortening with each cell division in mammalian somatic cells without telomerase, resulting in genome instability. When telomeres reach a critically short length or are recognized as a damage signal, cells enter a state of senescence, followed by cell cycle arrest, programmed cell death, or immortalization. This review provides an overview of recent advances in the intricate relationship between telomeres and genome instability. Alongside well-established mechanisms such as chromosomal fusion and telomere fusion, we will delve into the perspective on genome stability by examining the role of retrotransposons. Retrotransposons represent an emerging pathway to regulate genome stability through their interactions with telomeres.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, Tianjin 300350, China.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, Tianjin 300350, China; Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, Tianjin 300071, China; Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300000, China.
| |
Collapse
|
9
|
Li B. Telomere maintenance in African trypanosomes. Front Mol Biosci 2023; 10:1302557. [PMID: 38074093 PMCID: PMC10704157 DOI: 10.3389/fmolb.2023.1302557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 02/12/2024] Open
Abstract
Telomere maintenance is essential for genome integrity and chromosome stability in eukaryotic cells harboring linear chromosomes, as telomere forms a specialized structure to mask the natural chromosome ends from DNA damage repair machineries and to prevent nucleolytic degradation of the telomeric DNA. In Trypanosoma brucei and several other microbial pathogens, virulence genes involved in antigenic variation, a key pathogenesis mechanism essential for host immune evasion and long-term infections, are located at subtelomeres, and expression and switching of these major surface antigens are regulated by telomere proteins and the telomere structure. Therefore, understanding telomere maintenance mechanisms and how these pathogens achieve a balance between stability and plasticity at telomere/subtelomere will help develop better means to eradicate human diseases caused by these pathogens. Telomere replication faces several challenges, and the "end replication problem" is a key obstacle that can cause progressive telomere shortening in proliferating cells. To overcome this challenge, most eukaryotes use telomerase to extend the G-rich telomere strand. In addition, a number of telomere proteins use sophisticated mechanisms to coordinate the telomerase-mediated de novo telomere G-strand synthesis and the telomere C-strand fill-in, which has been extensively studied in mammalian cells. However, we recently discovered that trypanosomes lack many telomere proteins identified in its mammalian host that are critical for telomere end processing. Rather, T. brucei uses a unique DNA polymerase, PolIE that belongs to the DNA polymerase A family (E. coli DNA PolI family), to coordinate the telomere G- and C-strand syntheses. In this review, I will first briefly summarize current understanding of telomere end processing in mammals. Subsequently, I will describe PolIE-mediated coordination of telomere G- and C-strand synthesis in T. brucei and implication of this recent discovery.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
10
|
Zade NH, Khattar E. POT1 mutations cause differential effects on telomere length leading to opposing disease phenotypes. J Cell Physiol 2023; 238:1237-1255. [PMID: 37183325 DOI: 10.1002/jcp.31034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
The protection of telomere protein (POT1) is a telomere-binding protein and is an essential component of the six-membered shelterin complex, which is associated with the telomeres. POT1 directly binds to the 3' single-stranded telomeric overhang and prevents the activation of DNA damage response at telomeres thus preventing the telomere-telomere fusions and genomic instability. POT1 also plays a pivotal role in maintaining telomere length by regulating telomerase-mediated telomere elongation. Mutations in POT1 proteins result in three different telomere phenotypes, which include long, short, or aberrant telomere length. Long telomeres predispose individuals to cancer, while short or aberrant telomere phenotypes result in pro-aging diseases referred to as telomeropathies. Here, we review the function of POT1 proteins in telomere length hemostasis and how the spectrum of mutations reported in POT1 can be segregated toward developing very distinct disease phenotypes of cancer and telomeropathies.
Collapse
Affiliation(s)
- Nikita Harish Zade
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| |
Collapse
|
11
|
Gouhier C, Pons-Rejraji H, Dollet S, Chaput L, Bourgne C, Berger M, Pereira B, Tchirkov A, Brugnon F. Freezing Does Not Alter Sperm Telomere Length despite Increasing DNA Oxidation and Fragmentation. Genes (Basel) 2023; 14:genes14051039. [PMID: 37239399 DOI: 10.3390/genes14051039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Correlations were reported between sperm telomere length (STL) and male fertility, sperm DNA fragmentation, and oxidation. Sperm freezing is widely used for assisted reproductive techniques, fertility preservation, and sperm donation. However, its impact on STL remains unknown. For this study, semen surplus from patients who underwent routine semen analysis were used. The impact of slow freezing on STL was analyzed by performing qPCR before and after freezing. Sperm populations with different STL were evaluated using Q-FISH. The relationship between sperm DNA oxidation, DNA fragmentation, and STL was assessed in fresh and frozen sperm samples. No significant impact of slow freezing on STL was observed, neither measured by qPCR nor Q-FISH. However, Q-FISH allowed for the distinguishing of sperm populations with different STLs within individual sperm samples. Slow freezing induced different STL distributions for some of the analyzed sperm samples, but no correlation was found between STL and sperm DNA fragmentation or oxidation. Slow freezing does not alter STL despite increasing sperm DNA oxidation and fragmentation. As STL alterations could be transmitted to offspring, the lack of impact of the slow freezing method on STL ensures the safety of this procedure.
Collapse
Affiliation(s)
- Charlène Gouhier
- CHU Clermont-Ferrand, Laboratoire AMP-CECOS, F-63003 Clermont-Ferrand, France
| | - Hanae Pons-Rejraji
- CHU Clermont-Ferrand, Laboratoire AMP-CECOS, F-63003 Clermont-Ferrand, France
- UMR 1240 INSERM, IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Sandra Dollet
- UMR 1240 INSERM, IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Laure Chaput
- CHU Clermont-Ferrand, Laboratoire AMP-CECOS, F-63003 Clermont-Ferrand, France
- UMR 1240 INSERM, IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Céline Bourgne
- CHU Clermont Ferrand, Laboratoire d'Hématologie Biologique, F-63003 Clermont-Ferrand, France
| | - Marc Berger
- CHU Clermont Ferrand, Laboratoire d'Hématologie Biologique, F-63003 Clermont-Ferrand, France
| | - Bruno Pereira
- CHU Clermont-Ferrand, DRCI-Délégation Recherche Clinique et Innovation, F-63000 Clermont-Ferrand, France
| | - Andrei Tchirkov
- CHU Clermont-Ferrand, Service de Cytogénétique Médicale, F-63003 Clermont-Ferrand, France
| | - Florence Brugnon
- CHU Clermont-Ferrand, Laboratoire AMP-CECOS, F-63003 Clermont-Ferrand, France
- UMR 1240 INSERM, IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| |
Collapse
|
12
|
Soman A, Korolev N, Nordenskiöld L. Telomeric chromatin structure. Curr Opin Struct Biol 2022; 77:102492. [PMID: 36335846 DOI: 10.1016/j.sbi.2022.102492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Eukaryotic DNA is packaged into nucleosomes, which further condenses into chromosomes. The telomeres, which form the protective end-capping of chromosomes, play a pivotal role in ageing and cancer. Recently, significant advances have been made in understanding the nucleosomal and telomeric chromatin structure at the molecular level. In addition, recent studies shed light on the nucleosomal organisation at telomeres revealing its ultrastructural organisation, the atomic structure at the nucleosome level, its dynamic properties, and higher-order packaging of telomeric chromatin. Considerable advances have furthermore been made in understanding the structure, function and organisation of shelterin, telomerase and CST complexes. Here we discuss these recent advances in the organisation of telomeric nucleosomes and chromatin and highlight progress in the structural understanding of shelterin, telomerase and CST complexes.
Collapse
Affiliation(s)
- Aghil Soman
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
13
|
Vilkeviciute A, Gedvilaite G, Banevicius M, Kriauciuniene L, Zaliuniene D, Dobiliene O, Liutkeviciene R. Relative Leukocyte Telomere Length and Genetic Variants in Telomere-Related Genes and Serum Levels Role in Age-Related Macular Degeneration. Cells 2022; 11:cells11233847. [PMID: 36497103 PMCID: PMC9740443 DOI: 10.3390/cells11233847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Telomere shortening is well known to be associated with ageing. Age is the most decisive risk factor for age-related macular degeneration (AMD) development. The older the individual, the higher the AMD risk. For this reason, we aimed to find any associations between telomere length, distribution of genetic variants in telomere-related genes (TERT, TERT-CLPTM1, TRF1, TRF2, and TNKS2), and serum TERF-1 and TERF2 levels on AMD development. METHODS Our study enrolled 342 patients with AMD and 177 healthy controls. Samples of DNA from peripheral blood leukocytes were extracted by DNA salting-out method. The genotyping of TERT rs2736098, rs401681 in TERT-CLPTM1 locus, TRF1 rs1545827, rs10107605, TNKS2 rs10509637, rs10509639, and TRF2 rs251796 and relative leukocyte telomere length (T/S) measurement were carried out using the real-time polymerase chain reaction method. Serum TERF-1 and TERF2 levels were measured by enzymatic immunoassay (ELISA). RESULTS We found longer telomeres in early AMD patients compared to the control group. Additionally, we revealed that minor allele C at TRF1 rs10107605 was associated with decreases the odds of both early and exudative AMD. Each minor allele G at TRF2 rs251796 and TRF1 rs1545827 C/T genotype and C/T+T/T genotypes, compared to the C/C genotype, increases the odds of having shorter telomeres. Furthermore, we found elevated TERF1 serum levels in the early AMD group compared to the control group. CONCLUSIONS In conclusion, these results suggest that relative leukocyte telomere length and genetic variants of TRF1 and TRF2 play a role in AMD development. Additionally, TERF1 is likely to be associated with early AMD.
Collapse
Affiliation(s)
- Alvita Vilkeviciute
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Greta Gedvilaite
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Correspondence:
| | - Mantas Banevicius
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Dalia Zaliuniene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Olivija Dobiliene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
14
|
Borges G, Criqui M, Harrington L. Tieing together loose ends: telomere instability in cancer and aging. Mol Oncol 2022; 16:3380-3396. [PMID: 35920280 PMCID: PMC9490142 DOI: 10.1002/1878-0261.13299] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Telomere maintenance is essential for maintaining genome integrity in both normal and cancer cells. Without functional telomeres, chromosomes lose their protective structure and undergo fusion and breakage events that drive further genome instability, including cell arrest or death. One means by which this loss can be overcome in stem cells and cancer cells is via re-addition of G-rich telomeric repeats by the telomerase reverse transcriptase (TERT). During aging of somatic tissues, however, insufficient telomerase expression leads to a proliferative arrest called replicative senescence, which is triggered when telomeres reach a critically short threshold that induces a DNA damage response. Cancer cells express telomerase but do not entirely escape telomere instability as they often possess short telomeres; hence there is often selection for genetic alterations in the TERT promoter that result in increased telomerase expression. In this review, we discuss our current understanding of the consequences of telomere instability in cancer and aging, and outline the opportunities and challenges that lie ahead in exploiting the reliance of cells on telomere maintenance for preserving genome stability.
Collapse
Affiliation(s)
- Gustavo Borges
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
| | - Mélanie Criqui
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
| | - Lea Harrington
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
- Departments of Medicine and Biochemistry and Molecular MedicineUniversity of MontrealQCCanada
| |
Collapse
|
15
|
Abstract
Shelterin is a multiprotein complex that plays central roles in telomere biology. Mutations in shelterin result in premature aging diseases and familial cancer predisposition. Mechanistic understanding of these so-called telomereopathies is hampered by our lack of knowledge regarding the structure and stoichiometry of shelterin. Here, we use multiple methods to probe the stoichiometry and conformational states of shelterin and reveal that it forms a fully dimeric complex with extensive conformational heterogeneity. Our results highlight the dynamic nature of this essential complex and explain why its high-resolution structure determination has yet to be achieved. Human shelterin is a six-subunit complex—composed of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1—that binds telomeres, protects them from the DNA-damage response, and regulates the maintenance of telomeric DNA. Although high-resolution structures have been generated of the individual structured domains within shelterin, the architecture and stoichiometry of the full complex are currently unknown. Here, we report the purification of shelterin subcomplexes and reconstitution of the entire complex using full-length, recombinant subunits. By combining negative-stain electron microscopy (EM), cross-linking mass spectrometry (XLMS), AlphaFold modeling, mass photometry, and native mass spectrometry (MS), we obtain stoichiometries as well as domain-scale architectures of shelterin subcomplexes and determine that they feature extensive conformational heterogeneity. For POT1/TPP1 and POT1/TPP1/TIN2, we observe high variability in the positioning of the POT1 DNA-binding domain, the TPP1 oligonucleotide/oligosaccharide–binding (OB) fold, and the TIN2 TRFH domain with respect to the C-terminal domains of POT1. Truncation of unstructured linker regions in TIN2, TPP1, and POT1 did not reduce the conformational variability of the heterotrimer. Shelterin and TRF1-containing subcomplexes form fully dimeric stoichiometries, even in the absence of DNA substrates. Shelterin and its subcomplexes showed extensive conformational variability, regardless of the presence of DNA substrates. We conclude that shelterin adopts a multitude of conformations and argue that its unusual architectural variability is beneficial for its many functions at telomeres.
Collapse
|
16
|
Saini D, Jain V, Das B. Evaluation of natural chronic low dose radiation exposure on telomere length and transcriptional response of shelterin complex in individuals residing in Kerala coast, India. Mutat Res 2022; 825:111797. [PMID: 36116241 DOI: 10.1016/j.mrfmmm.2022.111797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The high level natural radiation areas (HLNRA) of Kerala coast provide unique opportunity to study the biological effect of chronic low dose ionizing radiation (LDIR) on human population below 100 mSv. The radiation level in this area varies from < 1.0-45 mGy /year due to patchy distribution of monazite in the sand, which contains 232Th (8-10%), 238U (0.3%), and their decay products. Telomere length attrition has been correlated to DNA damage due to genotoxic agents. The objective of the present study is to evaluate the effect of natural chronic LDIR exposure on telomere length and transcriptional response of telomere specific and DNA damage repair genes in peripheral blood mononuclear cells (PBMCs) of individuals from normal level natural radiation areas (NLNRA) and HLNRA of Kerala coast, southwest India. Blood samples were collected from 71 random male donors (24-80 years) from NLNRA (≤1.50 mGy/year; N = 19) and two HLNRA dose groups [1.51-10 mGy/year (N = 17); > 10 mGy/year, (N = 35)]. Genomic DNA was isolated from PBMCs and relative telomere length (RTL) was determined using real time q-PCR. Radio-adaptive response (RAR) study was carried out in PBMCs of 40 random males from NLNRA (N = 20) and HLNRA (>10 mGy/year; N = 20), where PBMCs were given a challenged dose of 2.0 Gy gamma radiation at 4 h. Transcriptional profile of telomere specific (TRF1, TRF2, POT1, TIN2, TPP1, RAP1), DNA damage response (RAD17, ATM, CHEK1) and base excision repair pathway (BER) (OGG1, XRCC1, NTH1, NEIL1, MUTYH, MBD4) genes were analysed at basal level and after a challenge dose of 2.0 Gy at 4 h. Our results did not show any significant effect of chronic LDR on RTL among the individuals from NLNRA and two HLNRA groups (p = 0.195). However, influence of age on RTL was clearly evident among NLNRA and HLNRA individuals. At basal level, TRF1, TRF2, TIN2, MBD4, NEIL1 and RAD17 showed significant up-regulation, whereas XRCC1 was significantly down regulated in HLNRA individuals. After a challenge dose of 2.0 Gy, significant transcriptional up-regulation was observed at telomere specific (TRF2, POT1) and BER (MBD4, NEIL1) genes in HLNRA individuals as compared to NLNRA suggesting their role in RAR. In conclusion, elevated level of natural chronic LDR exposure did not have any adverse effect on telomere length in Kerala coast. Significant transcriptional response at TRF2, MBD4 and NEIL1 at basal level and with a challenge dose of 2.0 Gy suggested their active involvement in efficient repair and telomere maintenance in individuals from HLNRA of Kerala coast.
Collapse
Affiliation(s)
- Divyalakshmi Saini
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Mumbai University, Fort Mumbai, India
| | - Vinay Jain
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute (HBNI), Anushakti Nagar, Trombay, Mumbai 400 094, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Mumbai University, Fort Mumbai, India; Homi Bhabha National Institute (HBNI), Anushakti Nagar, Trombay, Mumbai 400 094, India.
| |
Collapse
|
17
|
A comprehensive review on acridone based derivatives as future anti-cancer agents and their structure activity relationships. Eur J Med Chem 2022; 239:114527. [PMID: 35717872 DOI: 10.1016/j.ejmech.2022.114527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 11/03/2022]
Abstract
The development of drug resistance and severe side-effects has reduced the clinical efficacy of the existing anti-cancer drugs available in the market. Thus, there is always a constant need to develop newer anti-cancer drugs with minimal adverse effects. Researchers all over the world have been focusing on various alternative strategies to discover novel, potent, and target specific molecules for cancer therapy. In this direction, several heterocyclic compounds are being explored but amongst them one promising heterocycle is acridone which has attracted the attention of medicinal chemists and gained huge biological importance as acridones are found to act on different therapeutically proven molecular targets, overcome ABC transporters mediated drug resistance and DNA intercalation in cancer cells. Some of these acridone derivatives have reached clinical studies as these heterocycles have shown huge potential in cancer therapeutics and imaging. Here, the authors have attempted to compile and make some recommendations of acridone based derivatives concerning their cancer biological targets and in vitro-cytotoxicity based on drug design and novelty to increase their therapeutic potential. This review also provides some important insights on the design, receptor targeting and future directions for the development of acridones as possible clinically effective anti-cancer agents.
Collapse
|
18
|
Natural Product Library Screens Identify Sanguinarine Chloride as a Potent Inhibitor of Telomerase Expression and Activity. Cells 2022; 11:cells11091485. [PMID: 35563795 PMCID: PMC9104802 DOI: 10.3390/cells11091485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Reverse transcriptase hTERT is essential to telomerase function in stem cells, as well as in 85–90% of human cancers. Its high expression in stem cells or cancer cells has made telomerase/hTERT an attractive therapeutic target for anti-aging and anti-tumor applications. In this study, we screened a natural product library containing 800 compounds using an endogenous hTERT reporter. Eight candidates have been identified, in which sanguinarine chloride (SC) and brazilin (Braz) were selected due to their leading inhibition. SC could induce an acute and strong suppressive effect on the expression of hTERT and telomerase activity in multiple cancer cells, whereas Braz selectively inhibited telomerase in certain types of cancer cells. Remarkably, SC long-term treatment could cause telomere attrition and cell growth retardation, which lead to senescence features in cancer cells, such as the accumulation of senescence-associated β-galactosidase (SA-β-gal)-positive cells, the upregulation of p16/p21/p53 pathways and telomere dysfunction-induced foci (TIFs). Additionally, SC exhibited excellent capabilities of anti-tumorigenesis, both in vitro and in vivo. In the mechanism, the compound down-regulated several active transcription factors including p65, a subunit of NF-κB complex, and reintroducing p65 could alleviate its suppression of the hTERT/telomerase. Moreover, SC could directly bind hTERT and inhibit telomerase activity in vitro. In conclusion, we identified that SC not only down-regulates the hTERT gene’s expression, but also directly affects telomerase/hTERT. The dual function makes this compound an attractive drug candidate for anti-tumor therapy.
Collapse
|
19
|
Yin S, Zhang F, Lin S, Chen W, Weng K, Liu D, Wang C, He Z, Chen Y, Ma W, Huang J, Huang Y, Songyang Z. TIN2 deficiency leads to ALT-associated phenotypes and differentiation defects in embryonic stem cells. Stem Cell Reports 2022; 17:1183-1197. [PMID: 35395177 PMCID: PMC9120858 DOI: 10.1016/j.stemcr.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Telomere integrity is critical for embryonic development, and core telomere-binding proteins, such as TIN2, are key to maintaining telomere stability. Here, we report that homozygous Tin2S341X resulted in embryonic lethality in mice and reduced expression of Tin2 in the derived mouse embryonic stem cells (mESCs). Homozygous mutant mESCs were able to self-renew and remain undifferentiated but displayed many phenotypes associated with alternative lengthening of telomeres (ALT), including excessively long and heterogeneous telomeres, increased ALT-associated promyelocytic leukemia (PML) bodies, and unstable chromosomal ends. These cells also showed upregulation of Zscan4 expression and elevated targeting of DAXX/ATRX and H3K9me3 marks on telomeres. Furthermore, the mutant mESCs were impeded in their differentiation capacity. Upon differentiation, DAXX/ATRX and PML bodies disassociated from telomeres in these cells, where elevated DNA damage was also apparent. Our results reveal differential responses to telomere dysfunction in mESCs versus differentiated cells and highlight the critical role of TIN2 in embryonic development.
Collapse
Affiliation(s)
- Shanshan Yin
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Fangyingnan Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Song Lin
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai Weng
- Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Dan Liu
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chuanle Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zibin He
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| |
Collapse
|
20
|
Telomeric Repeat-Containing RNA (TERRA): A Review of the Literature and First Assessment in Cutaneous T-Cell Lymphomas. Genes (Basel) 2022; 13:genes13030539. [PMID: 35328092 PMCID: PMC8953746 DOI: 10.3390/genes13030539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 01/11/2023] Open
Abstract
Telomeric Repeat-containing RNA (TERRA) are long non-coding RNAs transcribed from telomeric DNA sequences from multiple chromosome ends. Major research efforts have been made to understand TERRA roles and functions in several physiological and pathological processes. We summarize herein available data regarding TERRA’s roles in human cells and we report the first investigation in cutaneous T-cells lymphomas (CTCL) using real-time PCR. Among the TERRA analysed, our data suggest a particular role for TERRA 16p downregulation and TERRA 11q upregulation in CTCL lymphomagenesis.
Collapse
|
21
|
Telomeres and Cancer. Life (Basel) 2021; 11:life11121405. [PMID: 34947936 PMCID: PMC8704776 DOI: 10.3390/life11121405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation. This review describes the telomere functions, the role of functional modulators, the implications in cancer development, and the future therapeutic opportunities.
Collapse
|
22
|
Paul T, Liou W, Cai X, Opresko PL, Myong S. TRF2 promotes dynamic and stepwise looping of POT1 bound telomeric overhang. Nucleic Acids Res 2021; 49:12377-12393. [PMID: 34850123 PMCID: PMC8643667 DOI: 10.1093/nar/gkab1123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022] Open
Abstract
Human telomeres are protected by shelterin proteins, but how telomeres maintain a dynamic structure remains elusive. Here, we report an unexpected activity of POT1 in imparting conformational dynamics of the telomere overhang, even at a monomer level. Strikingly, such POT1-induced overhang dynamics is greatly enhanced when TRF2 engages with the telomere duplex. Interestingly, TRF2, but not TRF2ΔB, recruits POT1-bound overhangs to the telomere ds/ss junction and induces a discrete stepwise movement up and down the axis of telomere duplex. The same steps are observed regardless of the length of the POT1-bound overhang, suggesting a tightly regulated conformational dynamic coordinated by TRF2 and POT1. TPP1 and TIN2 which physically connect POT1 and TRF2 act to generate a smooth movement along the axis of the telomere duplex. Our results suggest a plausible mechanism wherein telomeres maintain a dynamic structure orchestrated by shelterin.
Collapse
Affiliation(s)
- Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wilson Liou
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xinyi Cai
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh, Hillman Cancer Center, 5117 Centre Avenue, Suite 2.6a, Pittsburgh, PA 15213, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|
23
|
Wang C, Songyang Z, Huang Y. TRIM28 inhibits alternative lengthening of telomere phenotypes by protecting SETDB1 from degradation. Cell Biosci 2021; 11:149. [PMID: 34330324 PMCID: PMC8325274 DOI: 10.1186/s13578-021-00660-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/15/2021] [Indexed: 01/04/2023] Open
Abstract
Background About 10–15% of tumor cells extend telomeres through the alternative lengthening of telomeres (ALT) mechanism, which is a recombination-dependent replication pathway. It is generally believed that ALT cells are related to the chromatin modification of telomeres. However, the mechanism of ALT needs to be further explored. Results Here we found that TRIM28/KAP1 is preferentially located on the telomeres of ALT cells and interacts with telomeric shelterin/telosome complex. Knocking down TRIM28 in ALT cells delayed cell growth, decreased the level of C-circle which is one kind of extrachromosomal circular telomeric DNA, increased the frequency of ALT-associated promyelocytic leukemia bodies (APBs), led to telomere prolongation and increased the telomere sister chromatid exchange in ALT cells. Mechanistically, TRIM28 protects telomere histone methyltransferase SETDB1 from degradation, thus maintaining the H3K9me3 heterochromatin state of telomere DNA. Conclusions Our work provides a model that TRIM28 inhibits alternative lengthening of telomere phenotypes by protecting SETDB1 from degradation. In general, our results reveal the mechanism of telomere heterochromatin maintenance and its effect on ALT, and TRIM28 may serve as a target for the treatment of ALT tumor cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00660-y.
Collapse
Affiliation(s)
- Chuanle Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Yan Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
24
|
Kim MJ, Ko YJ, Yun JH, Lee W. Solution structure of the Myb domain of Terfa derived from Zebrafish interacting with both human and plant telomeric DNA. Biochem Biophys Res Commun 2021; 559:252-258. [PMID: 33984809 DOI: 10.1016/j.bbrc.2021.04.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Telomeric repeat binding factor a (Terfa) derived from zebrafish is a homologous protein with human telomeric repeat binding factor 2 (TRF2). Terfa is known as a senescence-associated biomarker in various research through the zebrafish animal model. In addition, according to the findings so far, it has been confirmed that human or plant telomere binding proteins bind to telomeric DNA specialized for each species, but, in our result, Terfa shows it strongly binds to both human or plant type telomeric DNA. Here we characterized the DNA binding properties and demonstrate the solution structure of Terfa and identified residues participating in the interaction with both human and plant telomeric DNA. In DNA recognition of human and plant telomere binding proteins, the N-terminal loop and the α-helix 3 part of Myb domain were bound majorly, whereas, in the case of Terfa, the N-terminal loop, the α-helix 1-2 loop, and α-helix 2 of the Myb domain were dominantly bound. Therefore, when Terfa recognizes DNA, it was found that the binding module differs from previously known telomere binding proteins. The comparison of the structure of the telomere binding proteins provides an opportunity to understand more specifically how the structural properties of each telomere binding protein are associated with telomeric DNA binding from an evolutionary point of view.
Collapse
Affiliation(s)
- Min-Jung Kim
- PCG-Biotech, Ltd., Yonsei Engineering Research Park, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Yoon-Joo Ko
- Nuclear Magnetic Resonance Laboratory, National Center for Inter-University Research Facilities, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
| | - Ji-Hye Yun
- PCG-Biotech, Ltd., Yonsei Engineering Research Park, Yonsei University, Seoul, 120-749, Republic of Korea.
| | - Weontae Lee
- PCG-Biotech, Ltd., Yonsei Engineering Research Park, Yonsei University, Seoul, 120-749, Republic of Korea; Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea.
| |
Collapse
|
25
|
Piñeiro‐Hermida S, Martínez P, Blasco MA. Short and dysfunctional telomeres protect from allergen-induced airway inflammation. Aging Cell 2021; 20:e13352. [PMID: 33942458 PMCID: PMC8135011 DOI: 10.1111/acel.13352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022] Open
Abstract
Asthma is a chronic inflammatory disease affecting 300 million people worldwide. As telomere shortening is a well-established hallmark of aging and that asthma incidence decreases with age, here we aimed to study the role of short telomeres in asthma pathobiology. To this end, wild-type and telomerase-deficient mice with short telomeres (third-generation (G3 Tert-/- mice)) were challenged with intranasal house dust mite (HDM) extract. We also challenged with HDM wild-type mice in which we induced a telomere dysfunction by the administration of 6-thio-2´-deoxyguanosine (6-thio-dG). Following HDM exposure, G3 Tert-/- and 6-thio-dG treated mice exhibited attenuated eosinophil counts and presence of hematopoietic stem cells in the bone marrow, as well as lower levels of IgE and circulating eosinophils. Accordingly, both G3 Tert-/- and 6-thio-dG treated wild-type mice displayed reduced airway hyperresponsiveness (AHR), as indicated by decreased airway remodeling and allergic airway inflammation markers in the lung. Furthermore, G3 Tert-/- and 6-thio-dG treated mice showed lower differentiation of Club cells, attenuating goblet cell hyperplasia. Club cells of G3 Tert-/- and 6-thio-dG treated mice displayed increased DNA damage and senescence and reduced proliferation. Thus, short/dysfunctional telomeres play a protective role in murine asthma by impeding both AHR and mucus secretion after HDM exposure. Therefore, our findings imply that telomeres play a relevant role in allergen-induced airway inflammation.
Collapse
Affiliation(s)
- Sergio Piñeiro‐Hermida
- Telomeres and Telomerase Group Molecular Oncology Program Spanish National Cancer Centre (CNIO) Madrid Spain
| | - Paula Martínez
- Telomeres and Telomerase Group Molecular Oncology Program Spanish National Cancer Centre (CNIO) Madrid Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group Molecular Oncology Program Spanish National Cancer Centre (CNIO) Madrid Spain
| |
Collapse
|
26
|
Abooshahab R, Dass CR. The biological relevance of pigment epithelium-derived factor on the path from aging to age-related disease. Mech Ageing Dev 2021; 196:111478. [PMID: 33812881 DOI: 10.1016/j.mad.2021.111478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 01/07/2023]
Abstract
Pigment epithelium-derived factor (PEDF) is an endogenously produced protein that contributes to cell growth arrest, and reduced levels of PEDF are associated with the progression of cellular senescence and the aging process. However, the mechanisms underlying PEDF regulation of these events are not completely clear. Increased PEDF activity may induce anti-aging processes, suggesting the potential therapeutic value of PEDF as an anti-aging and age-related disease. In this review, we recapitulate the molecular and cellular mechanisms of aging following the characteristics and specific roles of the PEDF in cell cycle arrest and its relevance to cellular senescence and aging pathways. In this context, the discovery and fluctuations of PEDF in age-related diseases are summarised. In light of the importance of PEDF in cellular senescence and aging processes, better comprehension of the mechanism(s) of PEDF in the regulation of cell cycle and the aging process can conceivably facilitate the development of therapeutic strategies for diseases that occur with aging.
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Curtin Medical School, Curtin University, Bentley, 6102, Australia; Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley, 6102, Australia; Curtin Health Innovation Research Institute, Bentley, 6102, Australia.
| |
Collapse
|
27
|
Piñeiro-Hermida S, Autilio C, Martínez P, Bosch F, Pérez-Gil J, Blasco MA. Telomerase treatment prevents lung profibrotic pathologies associated with physiological aging. J Cell Biol 2021; 219:152010. [PMID: 32777016 PMCID: PMC7659728 DOI: 10.1083/jcb.202002120] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/23/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023] Open
Abstract
Short/dysfunctional telomeres are at the origin of idiopathic pulmonary fibrosis (IPF) in patients mutant for telomere maintenance genes. However, it remains unknown whether physiological aging leads to short telomeres in the lung, thus leading to IPF with aging. Here, we find that physiological aging in wild-type mice leads to telomere shortening and a reduced proliferative potential of alveolar type II cells and club cells, increased cellular senescence and DNA damage, increased fibroblast activation and collagen deposits, and impaired lung biophysics, suggestive of a fibrosis-like pathology. Treatment of both wild-type and telomerase-deficient mice with telomerase gene therapy prevented the onset of lung profibrotic pathologies. These findings suggest that short telomeres associated with physiological aging are at the origin of IPF and that a potential treatment for IPF based on telomerase activation would be of interest not only for patients with telomerase mutations but also for sporadic cases of IPF associated with physiological aging.
Collapse
Affiliation(s)
- Sergio Piñeiro-Hermida
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - Fátima Bosch
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| |
Collapse
|
28
|
Arantes Dos Santos G, Viana NI, Pimenta R, Reis ST, Ramos Moreira Leite K, Srougi M. Hypothesis: The triad androgen receptor, zinc finger proteins and telomeres modulates the global gene expression pattern during prostate cancer progression. Med Hypotheses 2021; 150:110566. [PMID: 33799157 DOI: 10.1016/j.mehy.2021.110566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023]
Abstract
Currently, the biggest challenge for prostate cancer (PCa) is to understand the mechanism by which the disease acquires the castration-resistant phenotype and progresses to a fatal disease. PCa has a high genetic heterogeneity, and cannot be separated into well-defined molecular subtypes. Despite this, there is consensus about the role of the androgen receptor (AR) in all stages of the disease, including the transition to the castration-resistant phenotype. Since AR is a transcription factor, we investigated the possibility of PCa presenting a pattern of global gene expression during disease progression. By analyzing the TCGA and CCLE datasets, we were able to find a pattern of waves of genes being expressed during each stage of disease progression. This phenomenon suggests the existence of a mechanism that globally regulates gene expression, being AR, telomeres, and zinc finger proteins (ZNF), three important players. The AR modulates the telomere biology, and its transcription is regulated by ZNF. Recently, a study suggested that the telomere length might influence the expression of ZNF. Thus, we hypothesized that changes in the triad AR, telomeres, and ZNF control gene expression during the progression of PCa.
Collapse
Affiliation(s)
- Gabriel Arantes Dos Santos
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; D'Or Institute for Research and Education (IDOR), Sao Paulo, SP, Brazil.
| | - Nayara Izabel Viana
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ruan Pimenta
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; D'Or Institute for Research and Education (IDOR), Sao Paulo, SP, Brazil
| | - Sabrina T Reis
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Athens University Center (UniAtenas), Passos, MG, Brazil; Minas Gerais State University (UEMG), Passos, MG, Brazil
| | - Katia Ramos Moreira Leite
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Miguel Srougi
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; D'Or Institute for Research and Education (IDOR), Sao Paulo, SP, Brazil
| |
Collapse
|
29
|
Banevicius M, Gedvilaite G, Vilkeviciute A, Kriauciuniene L, Zemaitiene R, Liutkeviciene R. Association of relative leukocyte telomere length and genetic variants in telomere-related genes ( TERT, TERT-CLPTM1, TRF1, TNKS2, TRF2) with atrophic age-related macular degeneration. Ophthalmic Genet 2021; 42:189-194. [PMID: 33565341 DOI: 10.1080/13816810.2021.1881976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: In an experimental model, telomere shortening inhibits neovascularization. It is thus possible that telomere shortening might have a role in the pathogenesis of geographic atrophy in case of age-related macular degeneration (AMD). This is why we aimed to find any associated differences of telomere length and genetic variants in telomere-related genes (TERT, TERT-CLPTM1, TRF1, TNKS2, and TRF2) in patients with atrophic AMD compared to healthy controls.Methods: The study enrolled patients with atrophic AMD (n = 56) and healthy (n = 73) controls. Samples of DNA from peripheral blood leukocytes were extracted by DNA salting-out method. The genotyping of TERT rs2736098, rs401681 in TERT-CLPTM1 locus, TRF1 rs1545827, rs10107605, TNKS2 rs10509637, rs10509639, and TRF2 rs251796 and relative leukocyte telomere length (T/S) measurement were carried out using a real-time polymerase chain reaction method. The results were assessed using the statistical analysis method of "IBM SPSS Statistics 20.0".Results: We found statistically significantly higher T/S in atrophic AMD patients than in healthy controls (T/S, median (IQR): 1.638 (1.110) vs. 0.764 (0.801), p < .001). Also, statistically significant differences were found in TRF1 rs10107605 allele (A and C) distributions between the atrophic AMD and control groups (88.36% and 11.64% vs. 95.54% and 4.46%, respectively, p = .041), as well as between the short telomere and long telomere groups (86.92% and 13.08% vs. 96.09% and 3.91%, respectively, p = .008).Conclusions: Our research revealed the leukocyte telomere length having a role in atrophic AMD development, also the association between TRF1 rs10107605 and the telomere length.
Collapse
Affiliation(s)
- Mantas Banevicius
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Lithuania
| | - Greta Gedvilaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Alvita Vilkeviciute
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Lithuania
| | - Loresa Kriauciuniene
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Lithuania.,Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Reda Zemaitiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Lithuania.,Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| |
Collapse
|
30
|
Lim CJ, Cech TR. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nat Rev Mol Cell Biol 2021; 22:283-298. [PMID: 33564154 DOI: 10.1038/s41580-021-00328-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
The regulation of telomere length in mammals is crucial for chromosome end-capping and thus for maintaining genome stability and cellular lifespan. This process requires coordination between telomeric protein complexes and the ribonucleoprotein telomerase, which extends the telomeric DNA. Telomeric proteins modulate telomere architecture, recruit telomerase to accessible telomeres and orchestrate the conversion of the newly synthesized telomeric single-stranded DNA tail into double-stranded DNA. Dysfunctional telomere maintenance leads to telomere shortening, which causes human diseases including bone marrow failure, premature ageing and cancer. Recent studies provide new insights into telomerase-related interactions (the 'telomere replisome') and reveal new challenges for future telomere structural biology endeavours owing to the dynamic nature of telomere architecture and the great number of structures that telomeres form. In this Review, we discuss recently determined structures of the shelterin and CTC1-STN1-TEN1 (CST) complexes, how they may participate in the regulation of telomere replication and chromosome end-capping, and how disease-causing mutations in their encoding genes may affect specific functions. Major outstanding questions in the field include how all of the telomere components assemble relative to each other and how the switching between different telomere structures is achieved.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA. .,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
31
|
Salimi-Jeda A, Badrzadeh F, Esghaei M, Abdoli A. The role of telomerase and viruses interaction in cancer development, and telomerase-dependent therapeutic approaches. Cancer Treat Res Commun 2021; 27:100323. [PMID: 33530025 DOI: 10.1016/j.ctarc.2021.100323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022]
Abstract
Human telomerase reverse transcriptase (hTERT) is an enzyme that is critically involved in elongating and maintaining telomeres length to control cell life span and replicative potential. Telomerase activity is continuously expressed in human germ-line cells and most cancer cells, whereas it is suppressed in most somatic cells. In normal cells, by reducing telomerase activity and progressively shortening the telomeres, the cells progress to the senescence or apoptosis process. However, in cancer cells, telomere lengths remain constant due to telomerase's reactivation, and cells continue to proliferate and inhibit apoptosis, and ultimately lead to cancer development and human death due to metastasis. Studies demonstrated that several DNA and RNA oncoviruses could interact with telomerase by integrating their genome sequence within the host cell telomeres specifically. Through the activation of the hTERT promoter and lengthening the telomere, these cells contributes to cancer development. Since oncoviruses can activate telomerase and increase hTERT expression, there are several therapeutic strategies based on targeting the telomerase of cancer cells like telomerase-targeted peptide vaccines, hTERT-targeting dendritic cells (DCs), hTERT-targeting gene therapy, and hTERT-targeting CRISPR/Cas9 system that can overcome tumor-mediated toleration mechanisms and specifically apoptosis in cancer cells. This study reviews available data on the molecular structure of telomerase and the role of oncoviruses and telomerase interaction in cancer development and telomerase-dependent therapeutic approaches to conquest the cancer cells.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Fariba Badrzadeh
- Faculti of Medicine, Golestan University of Medical sciences, Golestan, Iran.
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
32
|
Engin AB, Engin A. The Connection Between Cell Fate and Telomere. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:71-100. [PMID: 33539012 DOI: 10.1007/978-3-030-49844-3_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abolition of telomerase activity results in telomere shortening, a process that eventually destabilizes the ends of chromosomes, leading to genomic instability and cell growth arrest or death. Telomere shortening leads to the attainment of the "Hayflick limit", and the transition of cells to state of senescence. If senescence is bypassed, cells undergo crisis through loss of checkpoints. This process causes massive cell death concomitant with further telomere shortening and spontaneous telomere fusions. In functional telomere of mammalian cells, DNA contains double-stranded tandem repeats of TTAGGG. The Shelterin complex, which is composed of six different proteins, is required for the regulation of telomere length and stability in cells. Telomere protection by telomeric repeat binding protein 2 (TRF2) is dependent on DNA damage response (DDR) inhibition via formation of T-loop structures. Many protein kinases contribute to the DDR activated cell cycle checkpoint pathways, and prevent DNA replication until damaged DNA is repaired. Thereby, the connection between cell fate and telomere length-associated telomerase activity is regulated by multiple protein kinase activities. Contrarily, inactivation of DNA damage checkpoint protein kinases in senescent cells can restore cell-cycle progression into S phase. Therefore, telomere-initiated senescence is a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres. In this review, in addition to the above mentioned, the choice of main repair pathways, which comprise non-homologous end joining and homologous recombination in telomere uncapping telomere dysfunctions, are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
33
|
Li X, Liu J, Zhou G, Sang Y, Zhang Y, Jing L, Shi Z, Zhou X, Sun Z. BDE-209 and DBDPE induce male reproductive toxicity through telomere-related cell senescence and apoptosis in SD rat. ENVIRONMENT INTERNATIONAL 2021; 146:106307. [PMID: 33395949 DOI: 10.1016/j.envint.2020.106307] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Decabrominated diphenyl ether (BDE-209) and decabromodiphenyl ethane (DBDPE) are common flame retardants utilized in many kinds of electronic and textile products. Due to their persistence and bioaccumulation, BDE-209 and DBDPE extensively exist in the surrounding environment and wild animals. Previous studies have indicated that BDE-209 could induce male reproductive toxicity, whereas those of DBDPE remains relatively rare. In this study, we investigated the effects of both BDE-209 and DBDPE on reproductive system in male SD rats, and explored the potential mechanisms under the reproductive toxicity of BDE-209 and DBDPE. Male rats were orally administered with BDE-209 and DBDPE (0, 5, 50 and 500 mg/kg/day) for a 28-day exposure experiment. The current results showed that BDE-209 and DBDPE led to testicular damage in physiological structure, decreased the sperm number and motility, and increased the sperm malformation rates in rat. Moreover, BDE-209 and DBDPE could damage the telomeric function by shortening telomere length and reducing telomerase activity, which consequently caused cell senescence and apoptosis in testis of rat. This could contribute to the decline of sperm quality and quantity. In conclusion, BDE-209 and DBDPE led to reproductive toxicity by inducing telomere dysfunction and the related cell senescence and apoptosis in testis of SD rat. Comparatively, BDE-209 had more severe effects on male reproduction. Our findings may provide new insight into the potential deleterious effects of BFRs on male reproductive health.
Collapse
Affiliation(s)
- Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jianhui Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yujian Sang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhixiong Shi
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
34
|
Timashev LA, De Lange T. Characterization of t-loop formation by TRF2. Nucleus 2020; 11:164-177. [PMID: 32564646 PMCID: PMC7529409 DOI: 10.1080/19491034.2020.1783782] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022] Open
Abstract
T-loops are thought to hide telomeres from DNA damage signaling and DSB repair pathways. T-loop formation requires the shelterin component TRF2, which represses ATM signaling and NHEJ. Here we establish that TRF2 alone, in the absence of other shelterin proteins can form t-loops. Mouse and human cells contain two isoforms of TRF2, one of which is uncharacterized. We show that both isoforms protect telomeres and form t-loops. The isoforms are not cell cycle regulated and t-loops are present in G1, S, and G2. Using the DNA wrapping deficient TRF2 Topless mutant, we confirm its inability to form t-loops and repress ATM. However, since the mutant is also defective in repression of NHEJ and telomeric localization, the role of topological changes in telomere protection remains unclear. Finally, we show that Rad51 does not affect t-loop frequencies or telomere protection. Therefore, alternative models for how TRF2 forms t-loops should be explored.
Collapse
Affiliation(s)
- Leonid A. Timashev
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| | - Titia De Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| |
Collapse
|
35
|
Glousker G, Briod A, Quadroni M, Lingner J. Human shelterin protein POT1 prevents severe telomere instability induced by homology-directed DNA repair. EMBO J 2020; 39:e104500. [PMID: 33073402 PMCID: PMC7705456 DOI: 10.15252/embj.2020104500] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 01/05/2023] Open
Abstract
The evolutionarily conserved POT1 protein binds single-stranded G-rich telomeric DNA and has been implicated in contributing to telomeric DNA maintenance and the suppression of DNA damage checkpoint signaling. Here, we explore human POT1 function through genetics and proteomics, discovering that a complete absence of POT1 leads to severe telomere maintenance defects that had not been anticipated from previous depletion studies in human cells. Conditional deletion of POT1 in HEK293E cells gives rise to rapid telomere elongation and length heterogeneity, branched telomeric DNA structures, telomeric R-loops, and telomere fragility. We determine the telomeric proteome upon POT1-loss, implementing an improved telomeric chromatin isolation protocol. We identify a large set of proteins involved in nucleic acid metabolism that engage with telomeres upon POT1-loss. Inactivation of the homology-directed repair machinery suppresses POT1-loss-mediated telomeric DNA defects. Our results unravel as major function of human POT1 the suppression of telomere instability induced by homology-directed repair.
Collapse
Affiliation(s)
- Galina Glousker
- School of Life SciencesSwiss Institute for Experimental Cancer Research (ISREC)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Anna‐Sophia Briod
- School of Life SciencesSwiss Institute for Experimental Cancer Research (ISREC)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | | | - Joachim Lingner
- School of Life SciencesSwiss Institute for Experimental Cancer Research (ISREC)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
36
|
Ogłuszka M, te Pas MFW, Poławska E, Nawrocka A, Stepanow K, Pierzchała M. Omega-3 Alpha-Linolenic Fatty Acid Affects the Level of Telomere Binding Protein TRF1 in Porcine Skeletal Muscle. Animals (Basel) 2020; 10:ani10061090. [PMID: 32599751 PMCID: PMC7341232 DOI: 10.3390/ani10061090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/17/2023] Open
Abstract
Omega-3 fatty acids are health-promoting nutrients that contribute to the amelioration of age-related diseases. Recent studies have reported the role of these fatty acids in the aging process, explicitly impacting telomere biology. The shelterin protein complex, located at the extremities of chromosomes, ensures telomere protection and length regulation. Here, we analyzed the impact of dietary omega-3 alpha-linolenic fatty acid from linseed oil on skeletal muscle telomere biology using an animal model of female pigs. Fifteen animals were supplemented with linseed oil for nine weeks and an equal number of individuals were fed with a control diet. Linseed-oil-supplemented animals showed an increased level of alpha-linolenic acid in skeletal muscles compared to control animals. There was no difference between groups in the telomere length measured in leukocytes and muscles. However, muscles of the linseed-oil-supplemented pigs showed lower levels of the shelterin TRF1 protein compared to the control group. Our results suggest that omega-3 linolenic acid counteracts the elevation of TRF1 levels, which increase with age and due to the presence of reactive oxygen species in muscle. The observed effect may be due to attenuation of oxidative stress.
Collapse
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (E.P.); (A.N.); (K.S.); (M.P.)
- Correspondence:
| | - Marinus F. W. te Pas
- Animal Breeding and Genomics, Wageningen UR Livestock Research, 6700AH Wageningen, The Netherlands;
| | - Ewa Poławska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (E.P.); (A.N.); (K.S.); (M.P.)
| | - Agata Nawrocka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (E.P.); (A.N.); (K.S.); (M.P.)
| | - Kamila Stepanow
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (E.P.); (A.N.); (K.S.); (M.P.)
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (E.P.); (A.N.); (K.S.); (M.P.)
| |
Collapse
|
37
|
p53 CRISPR Deletion Affects DNA Structure and Nuclear Architecture. J Clin Med 2020; 9:jcm9020598. [PMID: 32098416 PMCID: PMC7073688 DOI: 10.3390/jcm9020598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 01/10/2023] Open
Abstract
The TP53 gene is a key tumor suppressor. Although the tumor suppressor p53 was one of the first to be characterized as a transcription factor, with its main function potentiated by its interaction with DNA, there are still many unresolved questions about its mechanism of action. Here, we demonstrate a novel role for p53 in the maintenance of nuclear architecture of cells. Using three-dimensional (3D) imaging and spectral karyotyping, as well as super resolution microscopy of DNA structure, we observe significant differences in 3D telomere signatures, DNA structure and DNA-poor spaces as well gains or losses of chromosomes, between normal and tumor cells with CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-deleted or wild-type TP53. Additionally, treatment with Nutlin-3 results in differences in nuclear architecture of telomeres in wild-type but not in p53 knockout MCF-7 (Michigan Cancer Foundation-7) cells. Nutlin-3 binds to the p53-binding pocket of mouse double minute 2 (MDM2) and blocks the p53-MDM2 interaction. Moreover, we demonstrate that another p53 stabilizing small molecule, RITA (reactivation of p53 and induction of tumor cell apoptosis), also induces changes in 3D DNA structure, apparently in a p53 independent manner. These results implicate p53 activity in regulating nuclear organization and, additionally, highlight the divergent effects of the p53 targeting compounds Nutlin-3 and RITA.
Collapse
|
38
|
Sui J, Zhang S, Chen BPC. DNA-dependent protein kinase in telomere maintenance and protection. Cell Mol Biol Lett 2020; 25:2. [PMID: 31988640 PMCID: PMC6969447 DOI: 10.1186/s11658-020-0199-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
This review focuses on DNA-dependent protein kinase (DNA-PK), which is the key regulator of canonical non-homologous end-joining (NHEJ), the predominant mechanism of DNA double-strand break (DSB) repair in mammals. DNA-PK consists of the DNA-binding Ku70/80 heterodimer and the catalytic subunit DNA-PKcs. They assemble at DNA ends, forming the active DNA-PK complex, which initiates NHEJ-mediated DSB repair. Paradoxically, both Ku and DNA-PKcs are associated with telomeres, and they play crucial roles in protecting the telomere against fusions. Herein, we discuss possible mechanisms and contributions of Ku and DNA-PKcs in telomere regulation.
Collapse
Affiliation(s)
- Jiangdong Sui
- 1Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030 China
| | - Shichuan Zhang
- 2Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Benjamin P C Chen
- 3Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Rd., Dallas, TX 75390-9187 USA
| |
Collapse
|
39
|
Khattar E, Maung KZY, Chew CL, Ghosh A, Mok MMH, Lee P, Zhang J, Chor WHJ, Cildir G, Wang CQ, Mohd-Ismail NK, Chin DWL, Lee SC, Yang H, Shin YJ, Nam DH, Chen L, Kumar AP, Deng LW, Ikawa M, Gunaratne J, Osato M, Tergaonkar V. Rap1 regulates hematopoietic stem cell survival and affects oncogenesis and response to chemotherapy. Nat Commun 2019; 10:5349. [PMID: 31836706 PMCID: PMC6911077 DOI: 10.1038/s41467-019-13082-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/14/2019] [Indexed: 11/09/2022] Open
Abstract
Increased levels and non-telomeric roles have been reported for shelterin proteins, including RAP1 in cancers. Herein using Rap1 null mice, we provide the genetic evidence that mammalian Rap1 plays a major role in hematopoietic stem cell survival, oncogenesis and response to chemotherapy. Strikingly, this function of RAP1 is independent of its association with the telomere or with its known partner TRF2. We show that RAP1 interacts with many members of the DNA damage response (DDR) pathway. RAP1 depleted cells show reduced interaction between XRCC4/DNA Ligase IV and DNA-PK, and are impaired in DNA Ligase IV recruitment to damaged chromatin for efficient repair. Consistent with its role in DNA damage repair, RAP1 loss decreases double-strand break repair via NHEJ in vivo, and consequently reduces B cell class switch recombination. Finally, we discover that RAP1 levels are predictive of the success of chemotherapy in breast and colon cancer.
Collapse
Affiliation(s)
- Ekta Khattar
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Kyaw Ze Ya Maung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Chen Li Chew
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Arkasubhra Ghosh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Michelle Meng Huang Mok
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pei Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jun Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, 210023, Nanjing, P.R. China
| | - Wei Hong Jeff Chor
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Gökhan Cildir
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chelsia Qiuxia Wang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Nur Khairiah Mohd-Ismail
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Desmond Wai Loon Chin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yong-Jae Shin
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea
| | - Liming Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, 210023, Nanjing, P.R. China
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Lih Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
40
|
Louzon M, Coeurdassier M, Gimbert F, Pauget B, de Vaufleury A. Telomere dynamic in humans and animals: Review and perspectives in environmental toxicology. ENVIRONMENT INTERNATIONAL 2019; 131:105025. [PMID: 31352262 DOI: 10.1016/j.envint.2019.105025] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Telomeres (TLs) play major roles in stabilizing the genome and are usually shortened with ageing. The maintenance of TLs is ensured by two mechanisms involving telomerase (TA) enzyme and alternative lengthening telomeres (ALT). TL shortening and/or TA inhibition have been related to health effects on organisms (leading to reduced reproductive lifespan and survival), suggesting that they could be key processes in toxicity mechanisms (at molecular and cellular levels) and relevant as an early warning of exposure and effect of chemicals on human health and animal population dynamics. Consequently, a critical analysis of knowledge about relationships between TL dynamic and environmental pollution is essential to highlight the relevance of TL measurement in environmental toxicology. The first objective of this review is to provide a survey on the basic knowledge about TL structure, roles, maintenance mechanisms and causes of shortening in both vertebrates (including humans) and invertebrates. Overall, TL length decreases with ageing but some unexpected exceptions are reported (e.g., in species with different lifespans, such as the nematode Caenorhabditis elegans or the crustacean Homarus americanus). Inconsistent results reported in various biological groups or even between species of the same genus (e.g., the microcrustacean Daphnia sp.) indicate that the relation usually proposed between TL shortening and a decrease in TA activity cannot be generalized and depends on the species, stage of development or lifespan. Although the scientific literature provides evidence of the effect of ageing on TL shortening, much less information on the relationships between shortening, maintenance of TLs, influence of other endogenous and environmental drivers, including exposure to chemical pollutants, is available, especially in invertebrates. The second objective of this review is to connect knowledge on TL dynamic and exposure to contaminants. Most of the studies published on humans rely on correlative epidemiological approaches and few in vitro experiments. They have shown TL attrition when exposed to contaminants, such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), pesticides and metallic elements (ME). In other vertebrates, the studies we found deals mainly with birds and, overall, report a disturbance of TL dynamic consecutively to exposure to chemicals, including metals and organic compounds. In invertebrates, no data are available and the potential of TL dynamic in environmental risk assessment remains to be explored. On the basis of the main gaps identified some research perspectives (e.g., impact of endogenous and environmental drivers, dose response effects, link between TL length, TA activity, longevity and ageing) are proposed to better understand the potential of TL and TA measurements in humans and animals in environmental toxicology.
Collapse
Affiliation(s)
- Maxime Louzon
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Michael Coeurdassier
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Frédéric Gimbert
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Benjamin Pauget
- TESORA, Le Visium, 22 avenue Aristide Briand, 94110 Arcueil, France
| | - Annette de Vaufleury
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France.
| |
Collapse
|
41
|
Bejarano L, Louzame J, Montero JJ, Megías D, Flores JM, Blasco MA. Safety of Whole-Body Abrogation of the TRF1 Shelterin Protein in Wild-Type and Cancer-Prone Mouse Models. iScience 2019; 19:572-585. [PMID: 31446222 PMCID: PMC6713815 DOI: 10.1016/j.isci.2019.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 02/08/2023] Open
Abstract
Telomeres are considered potential anti-cancer targets. Most studies have focused on telomerase inhibition, but this strategy has largely failed in clinical trials. Direct disruption of the shelterin complex through TRF1 inhibition can block tumorigenesis in cancer mouse models by a mechanism that involves DNA damage induction and reduction of proliferation and stemness. Any anti-cancer target, however, must fulfill the requisite of not showing deleterious effects in healthy tissues. Here, we show that Trf1 genetic deletion in wild-type and cancer-prone p53- and Ink4Arf-deficient mice does not affect organismal viability and only induces mild phenotypes like decreased body weight and hair graying or hair loss, the skin being the most affected tissue. Importantly, we found that Trf1 is essential for tumorigenesis in p53- and Ink4Arf-deficient mice, as we did not find a single tumor originating from Trf1-deleted cells. These findings indicate a therapeutic window for targeting Trf1 in cancer treatment. Trf1 deletion does not affect organism viability in WT and cancer-prone mouse models Trf1 deletion only induces mild phenotypes in adult tissues, especially in the skin No tumors originate from Trf1-deleted cells
Collapse
Affiliation(s)
- Leire Bejarano
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Jessica Louzame
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Juán José Montero
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Biotechnology Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Juana M Flores
- Animal Surgery and Medicine Department, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain.
| |
Collapse
|
42
|
Lee M, Teber ET, Holmes O, Nones K, Patch AM, Dagg RA, Lau LMS, Lee JH, Napier CE, Arthur JW, Grimmond SM, Hayward NK, Johansson PA, Mann GJ, Scolyer RA, Wilmott JS, Reddel RR, Pearson JV, Waddell N, Pickett HA. Telomere sequence content can be used to determine ALT activity in tumours. Nucleic Acids Res 2019; 46:4903-4918. [PMID: 29718321 PMCID: PMC6007693 DOI: 10.1093/nar/gky297] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/10/2018] [Indexed: 01/16/2023] Open
Abstract
The replicative immortality of human cancer cells is achieved by activation of a telomere maintenance mechanism (TMM). To achieve this, cancer cells utilise either the enzyme telomerase, or the Alternative Lengthening of Telomeres (ALT) pathway. These distinct molecular pathways are incompletely understood with respect to activation and propagation, as well as their associations with clinical outcomes. We have identified significant differences in the telomere repeat composition of tumours that use ALT compared to tumours that do not. We then employed a machine learning approach to stratify tumours according to telomere repeat content with an accuracy of 91.6%. Importantly, this classification approach is applicable across all tumour types. Analysis of pathway mutations that were under-represented in ALT tumours, across 1,075 tumour samples, revealed that the autophagy, cell cycle control of chromosomal replication, and transcriptional regulatory network in embryonic stem cells pathways are involved in the survival of ALT tumours. Overall, our approach demonstrates that telomere sequence content can be used to stratify ALT activity in cancers, and begin to define the molecular pathways involved in ALT activation.
Collapse
Affiliation(s)
- Michael Lee
- Telomere Length Regulation Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Erdahl T Teber
- Bioinformatics Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Oliver Holmes
- Genome Informatics Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Katia Nones
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ann-Marie Patch
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Rebecca A Dagg
- Cancer Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Loretta M S Lau
- Cancer Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Joyce H Lee
- Cancer Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Christine E Napier
- Cancer Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Jonathan W Arthur
- Bioinformatics Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Sean M Grimmond
- University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas K Hayward
- Melanoma Institute Australia, University of Sydney, North Sydney, New South Wales, Australia.,Oncogenomics Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Peter A Johansson
- Oncogenomics Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Graham J Mann
- Melanoma Institute Australia, University of Sydney, North Sydney, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, University of Sydney, North Sydney, New South Wales, Australia.,Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, New South Wales, Australia
| | - James S Wilmott
- Melanoma Institute Australia, University of Sydney, North Sydney, New South Wales, Australia.,Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - John V Pearson
- Genome Informatics Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nicola Waddell
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
43
|
Lee JH, Jung M, Hong J, Kim MK, Chung IK. Loss of RNA-binding protein HuR facilitates cellular senescence through posttranscriptional regulation of TIN2 mRNA. Nucleic Acids Res 2019; 46:4271-4285. [PMID: 29584879 PMCID: PMC5934620 DOI: 10.1093/nar/gky223] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 03/15/2018] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence can be induced by high levels of reactive oxygen species (ROS) produced by mitochondria. However, the mechanism by which elevated mitochondrial ROS levels are produced during replicative senescence is not yet fully understood. Here, we report that loss of the RNA-binding protein, human antigen R (HuR), during replicative senescence leads to an increase in ROS levels through enhanced mitochondrial localization of the telomeric protein TIN2. HuR binds to the 3′ untranslated region of TIN2 mRNA. This association decreases TIN2 protein levels by both destabilizing TIN2 mRNA and reducing its translation. Conversely, depletion of HuR levels enhances TIN2 expression, leading to increased mitochondrial targeting of TIN2. Mitochondrial localization of TIN2 increases ROS levels, which contributes to induction and maintenance of cellular senescence. Our findings provide compelling evidence for a novel role of HuR in controlling the process of cellular senescence by regulating TIN2-mediated mitochondrial ROS production, and for a useful therapeutic route for modulating intracellular ROS levels in treating both aging-related complications and cancer.
Collapse
Affiliation(s)
- Ji Hoon Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Misun Jung
- Department of Integrated Omics for Biomedical Science, Yonsei University, Seoul 03722, Korea
| | - Juyeong Hong
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Mi Kyung Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - In Kwon Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.,Department of Integrated Omics for Biomedical Science, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
44
|
Janovič T, Stojaspal M, Veverka P, Horáková D, Hofr C. Human Telomere Repeat Binding Factor TRF1 Replaces TRF2 Bound to Shelterin Core Hub TIN2 when TPP1 Is Absent. J Mol Biol 2019; 431:3289-3301. [DOI: 10.1016/j.jmb.2019.05.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
|
45
|
The role of telomere-binding modulators in pluripotent stem cells. Protein Cell 2019; 11:60-70. [PMID: 31350723 PMCID: PMC6949317 DOI: 10.1007/s13238-019-0651-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/07/2019] [Indexed: 01/24/2023] Open
Abstract
Pluripotent stem cells (PSCs) such as embryonic stem cells (ESCs), ESCs derived by somatic cell nuclear transfer (ntESCs), and induced pluripotent stem cells (iPSCs) have unlimited capacity for self-renewal and pluripotency and can give rise to all types of somatic cells. In order to maintain their self-renewal and pluripotency, PSCs need to preserve their telomere length and homeostasis. In recent years, increasing studies have shown that telomere reprogramming is essential for stem cell pluripotency maintenance and its induced pluripotency process. Telomere-associated proteins are not only required for telomere maintenance in both stem cells, their extra-telomeric functions have also been found to be critical as well. Here, we will discuss how telomeres and telomere-associated factors participate and regulate the maintenance of stem cell pluripotency.
Collapse
|
46
|
Quantitative Biology of Human Shelterin and Telomerase: Searching for the Weakest Point. Int J Mol Sci 2019; 20:ijms20133186. [PMID: 31261825 PMCID: PMC6651453 DOI: 10.3390/ijms20133186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
The repetitive telomeric DNA at chromosome ends is protected from unwanted repair by telomere-associated proteins, which form the shelterin complex in mammals. Recent works have provided new insights into the mechanisms of how human shelterin assembles and recruits telomerase to telomeres. Inhibition of telomerase activity and telomerase recruitment to chromosome ends is a promising target for anticancer therapy. Here, we summarize results of quantitative assessments and newly emerged structural information along with the status of the most promising approaches to telomerase inhibition in cancer cells. We focus on the mechanism of shelterin assembly and the mechanisms of how shelterin affects telomerase recruitment to telomeres, addressing the conceptual dilemma of how shelterin allows telomerase action and regulates other essential processes. We evaluate how the identified critical interactions of telomerase and shelterin might be elucidated in future research of new anticancer strategies.
Collapse
|
47
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
48
|
Laudadio I, Carissimi C, Fulci V. How RNAi machinery enters the world of telomerase. Cell Cycle 2019; 18:1056-1067. [PMID: 31014212 PMCID: PMC6592256 DOI: 10.1080/15384101.2019.1609834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/01/2019] [Accepted: 04/14/2019] [Indexed: 12/27/2022] Open
Abstract
Human telomerase holoenzyme consists of the catalytic component TERT and the template RNA TERC. However, a network of accessory proteins plays key roles in its assembly, localization and stability. Defects in genes involved in telomerase biology affect the renewal of critical stem cell populations and cause disorders such as telomeropathies. Moreover, activation of telomerase in somatic cells allows neoplastic cells to proliferate indefinitely, thus contributing to tumorigenesis. For these reasons, identification of new players involved in telomerase regulation is crucial for the determination of novel therapeutic targets and biomarkers. In the very last years, increasing evidence describes components of the RNAi machinery as a new layer of complexity in human telomerase activity. In this review, we will discuss how AGO2 and other proteins which collaborate with AGO2 in RNAi pathway play a pivotal role in TERC stability and function.
Collapse
Affiliation(s)
- Ilaria Laudadio
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Claudia Carissimi
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Valerio Fulci
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
49
|
The Emerging Roles of TERRA in Telomere Maintenance and Genome Stability. Cells 2019; 8:cells8030246. [PMID: 30875900 PMCID: PMC6468625 DOI: 10.3390/cells8030246] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
The finding that transcription occurs at chromosome ends has opened new fields of study on the roles of telomeric transcripts in chromosome end maintenance and genome stability. Indeed, the ends of chromosomes are required to be protected from activation of DNA damage response and DNA repair pathways. Chromosome end protection is achieved by the activity of specific proteins that associate with chromosome ends, forming telomeres. Telomeres need to be constantly maintained as they are in a heterochromatic state and fold into specific structures (T-loops), which may hamper DNA replication. In addition, in the absence of maintenance mechanisms, chromosome ends shorten at every cell division due to limitations in the DNA replication machinery, which is unable to fully replicate the extremities of chromosomes. Altered telomere structure or critically short chromosome ends generate dysfunctional telomeres, ultimately leading to replicative senescence or chromosome instability. Telomere biology is thus implicated in multiple human diseases, including cancer. Emerging evidence indicates that a class of long noncoding RNAs transcribed at telomeres, known as TERRA for “TElomeric Repeat-containing RNA,” actively participates in the mechanisms regulating telomere maintenance and chromosome end protection. However, the molecular details of TERRA activities remain to be elucidated. In this review, we discuss recent findings on the emerging roles of TERRA in telomere maintenance and genome stability and their implications in human diseases.
Collapse
|
50
|
Heterogeneous Nuclear Ribonucleoproteins A1 and A2 Function in Telomerase-Dependent Maintenance of Telomeres. Cancers (Basel) 2019; 11:cancers11030334. [PMID: 30857208 PMCID: PMC6468650 DOI: 10.3390/cancers11030334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 11/17/2022] Open
Abstract
The A/B subfamily of heterogeneous nuclear ribonucleoproteins (hnRNPs A/B), which includes hnRNP A1, A2/B1, and A3, plays an important role in cell proliferation. The simultaneous suppression of hnRNP A1/A2, but not the suppression of hnRNP A1 or A2 alone, has been shown to inhibit cell proliferation and induce apoptosis in cancer cells, but not in mortal normal cells. However, the molecular basis for such a differential inhibition of cell proliferation remains unknown. Here, we show that the simultaneous suppression of hnRNP A1 and hnRNP A2 resulted in dysfunctional telomeres and induced DNA damage responses in cancer cells. The inhibition of apoptosis did not alleviate the inhibition of cell proliferation nor the formation of dysfunctional telomeres in cancer cells depleted of hnRNP A1/A2. Moreover, while proliferation of mortal normal fibroblasts was not sensitive to the depletion of hnRNP A1/A2, the ectopic expression of hTERT in normal fibroblasts rendered these cells sensitive to proliferation inhibition, which was associated with the production of dysfunctional telomeres. Our study demonstrates that hnRNP A1 and A2 function to maintain telomeres in telomerase-expressing cells only, suggesting that the maintenance of functional telomeres in telomerase-expressing cancer cells employs factors that differ from those used in the telomerase-negative normal cells.
Collapse
|