1
|
Wang S, Tu Y, Yu H, Li Z, Feng J, Liu S. Animal models and related techniques for dentin study. Odontology 2025; 113:42-60. [PMID: 39225758 DOI: 10.1007/s10266-024-00987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
The intricate and protracted process of dentin formation has been extensively explored, thanks to the significant advancements facilitated by the use of animal models and related techniques. Despite variations in their effectiveness, taking into account factors such as sensitivity, visibility, and reliability, these models or techniques are indispensable tools for investigating the complexities of dentin formation. This article focuses on the latest advances in animal models and related technologies, shedding light on the key molecular mechanisms that are essential in dentin formation. A deeper understanding of this phenomenon enables the careful selection of appropriate animal models, considering their suitability in unraveling the underlying molecular intricacies. These insights are crucial for the advancement of clinical drugs targeting dentin-related ailments and the development of comprehensive treatment strategies throughout the duration of the disease.
Collapse
Affiliation(s)
- Shuai Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China
- Department of Pediatrics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China
| | - Yan Tu
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Hao Yu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China
| | - Zhen Li
- Shanghai Fengxian District Dental Disease Prevention Institute, Shanghai, 201499, People's Republic of China
| | - Jinqiu Feng
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China.
- Department of Pediatrics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China.
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
2
|
Inubushi T, Nag P, Sasaki JI, Shiraishi Y, Yamashiro T. The significant role of glycosaminoglycans in tooth development. Glycobiology 2024; 34:cwae024. [PMID: 38438145 PMCID: PMC11031142 DOI: 10.1093/glycob/cwae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
This review delves into the roles of glycosaminoglycans (GAGs), integral components of proteoglycans, in tooth development. Proteoglycans consist of a core protein linked to GAG chains, comprised of repeating disaccharide units. GAGs are classified into several types, such as hyaluronic acid, heparan sulfate, chondroitin sulfate, dermatan sulfate, and keratan sulfate. Functioning as critical macromolecular components within the dental basement membrane, these GAGs facilitate cell adhesion and aggregation, and play key roles in regulating cell proliferation and differentiation, thereby significantly influencing tooth morphogenesis. Notably, our recent research has identified the hyaluronan-degrading enzyme Transmembrane protein 2 (Tmem2) and we have conducted functional analyses using mouse models. These studies have unveiled the essential role of Tmem2-mediated hyaluronan degradation and its involvement in hyaluronan-mediated cell adhesion during tooth formation. This review provides a comprehensive summary of the current understanding of GAG functions in tooth development, integrating insights from recent research, and discusses future directions in this field.
Collapse
Affiliation(s)
- Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Priyanka Nag
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Jun-Ichi Sasaki
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuki Shiraishi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Seki Y, Ohkuma RC, Miyakawa Y, Karakida T, Yamamoto R, Yamakoshi Y. Hyaluronan and chondroitin sulfate in chicken-vegetable bone broth delay osteoporosis progression. J Food Sci 2024; 89:1791-1803. [PMID: 38317402 DOI: 10.1111/1750-3841.16962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Bone broth has recently gained worldwide recognition as a superfood that supplements several nutrients lacking in modern human diets; however, little is known of its efficacy on osteoporosis. Therefore, we aimed to identify the components of chicken-vegetable bone broth (CVBB) that are associated with osteoporosis prevention and verified the efficacy of these components using in vivo studies. In biochemical and cell biological experiments, CVBB was fractionated using ion exchange chromatography (IEC), and the effect of each IEC fraction on osteoclast differentiation was evaluated based on tartrate-resistant acid phosphatase (TRAP) activity, TRAP staining, and quantitative polymerase chain reaction analysis using mouse macrophage-like cells (RAW264 cell). In animal experiments, an ovariectomized (OVX) rat model was generated, followed by whole bone broth (OVX/CVBB) or IEC fraction (OVX/CVBB-Ext) administration and bone structural parameter characterization of OVX rat tibia based on micro-CT. Four CVBB fractions were obtained using IEC, and the fraction containing both hyaluronan and chondroitin sulfate (CVBB-Ext) led to the maximum inhibition of RAW264 cell differentiation. CVBB-Ext downregulated the expression of osteoclast differentiation marker genes. In animal experiments, the OVX group showed a clear decrease in bone density compared to that in the Sham operation group. The OVX/CVBB and OVX/CVBB-Ext groups showed increased bone mineral density and bone volume/tissue volume values compared to those in the OVX/control group. These results suggested that CVBB and CVBB-Ext slowed osteoporosis progression. Therefore, we conclude that hyaluronan and chondroitin sulfate in CVBB are key substances that impede osteoporosis progression. PRACTICAL APPLICATION: This study provides practical information on the effects of bone broth ingredients on osteoporosis to expand the current knowledge on the efficacy of bone broth, which is a widely consumed food. These results may help in the future development of bone broth as a dietary supplement for managing osteoporosis.
Collapse
Affiliation(s)
- Yuka Seki
- Fourth Undergraduate Student, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama, Japan
| | - Risako Chiba Ohkuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama, Japan
| | - Yuri Miyakawa
- Department of Pediatric Dentistry, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama, Japan
| | - Takeo Karakida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama, Japan
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama, Japan
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama, Japan
| |
Collapse
|
4
|
The Modified Shields Classification and 12 Families with Defined DSPP Mutations. Genes (Basel) 2022; 13:genes13050858. [PMID: 35627243 PMCID: PMC9141616 DOI: 10.3390/genes13050858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in Dentin Sialophosphoprotein (DSPP) are known to cause, in order of increasing severity, dentin dysplasia type-II (DD-II), dentinogenesis imperfecta type-II (DGI-II), and dentinogenesis imperfecta type-III (DGI-III). DSPP mutations fall into two groups: a 5′-group that affects protein targeting and a 3′-group that shifts translation into the −1 reading frame. Using whole-exome sequence (WES) analyses and Single Molecule Real-Time (SMRT) sequencing, we identified disease-causing DSPP mutations in 12 families. Three of the mutations are novel: c.53T>C/p.(Val18Ala); c.3461delG/p.(Ser1154Metfs*160); and c.3700delA/p.(Ser1234Alafs*80). We propose genetic analysis start with WES analysis of proband DNA to identify mutations in COL1A1 and COL1A2 causing dominant forms of osteogenesis imperfecta, 5′-DSPP mutations, and 3′-DSPP frameshifts near the margins of the DSPP repeat region, and SMRT sequencing when the disease-causing mutation is not identified. After reviewing the literature and incorporating new information showing distinct differences in the cell pathology observed between knockin mice with 5′-Dspp or 3′-Dspp mutations, we propose a modified Shields Classification based upon the causative mutation rather than phenotypic severity such that patients identified with 5′-DSPP defects be diagnosed as DGI-III, while those with 3′-DSPP defects be diagnosed as DGI-II.
Collapse
|
5
|
Kao YH, Igarashi N, Abduweli Uyghurturk D, Li Z, Zhang Y, Ohshima H, MacDougall M, Takano Y, Den Besten P, Nakano Y. Fluoride Alters Signaling Pathways Associated with the Initiation of Dentin Mineralization in Enamel Fluorosis Susceptible Mice. Biol Trace Elem Res 2021; 199:3021-3034. [PMID: 33113116 DOI: 10.1007/s12011-020-02434-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/11/2020] [Indexed: 12/21/2022]
Abstract
Fluoride can alter the formation of mineralized tissues, including enamel, dentin, and bone. Dentin fluorosis occurs in tandem with enamel fluorosis. However, the pathogenesis of dentin fluorosis and its mechanisms are poorly understood. In this study, we report the effects of fluoride on the initiation of dentin matrix formation and odontoblast function. Mice from two enamel fluorosis susceptible strains (A/J and C57BL/6J) were given either 0 or 50 ppm fluoride in drinking water for 4 weeks. In both mouse strains, there was no overall change in dentin thickness, but fluoride treatment resulted in a significant increase in the thickness of the predentin layer. The lightly mineralized layer (LL), which lies at the border between predentin and fully mineralized dentin and is associated with dentin phosphoprotein (DPP), was absent in fluoride exposed mice. Consistent with a possible reduction of DPP, fluoride-treated mice showed reduced immunostaining for dentin sialoprotein (DSP). Fluoride reduced RUNX2, the transcription regulator of dentin sialophosphoprotein (DSPP), that is cleaved to form both DPP and DSP. In fluoride-treated mouse odontoblasts, the effect of fluoride was further seen in the upstream of RUNX2 as the reduced nuclear translocation of β-catenin and phosphorylated p65/NFκB. In vitro, MD10-F2 pre-odontoblast cells showed inhibition of the Dspp mRNA level in the presence of 10 μM fluoride, and qPCR analysis showed a significantly downregulated level of mRNAs for RUNX2, β-catenin, and Wnt10b. These findings indicate that in mice, systemic exposure to excess fluoride resulted in reduced Wnt/β-catenin signaling in differentiating odontoblasts to downregulate DSPP production via RUNX2.
Collapse
Affiliation(s)
- Yu-Hsing Kao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Nanase Igarashi
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Dawud Abduweli Uyghurturk
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Zhu Li
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Yan Zhang
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
- Center for Children's Oral Health Research, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mary MacDougall
- Faculty of Dentistry, The University of British Columbia, Vancouver, Canada
| | - Yoshiro Takano
- Biostructural Science, Graduate School of Tokyo Medical and Dental University, Tokyo, Japan
| | - Pamela Den Besten
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
- Center for Children's Oral Health Research, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Yukiko Nakano
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA.
- Center for Children's Oral Health Research, School of Dentistry, University of California San Francisco, San Francisco, USA.
| |
Collapse
|
6
|
Protocols for Studying Formation and Mineralization of Dental Tissues In Vivo: Extraction Protocol for Isolating Dentin Matrix Proteins from Developing Teeth. Methods Mol Biol 2019. [PMID: 30838582 DOI: 10.1007/978-1-4939-9012-2_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
The organic material in developing dentin is 90% type I collagen and 10% non-collagenous proteins. The key to understanding dentin biomineralization is to study how these proteins collectively precipitate and organize hydroxyapatite crystals. The first step in characterizing the proteins within a mineralizing matrix is to efficiently extract and isolate the essential molecular participants and elucidate their structural and biochemical properties. In this study, we expanded previous approaches to develop an improved strategy for the extraction of extracellular matrix proteins from the dentin of developing teeth. Proteins in dentin powder were sequentially extracted in the order Tris-guanidine buffer, HCl-formic acid solution, acetic acid-NaCl solution, Tris-NaCl buffer, and a second Tris-guanidine buffer. Individual fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), by gelatin or casein zymography, and by Western blot analysis using dentin sialoprotein (DSP)- or dentin glycoprotein (DGP)-specific antibodies. This approach was used to purify assorted porcine dentin non-collagenous proteins.
Collapse
|
7
|
Yamakoshi Y, Simmer JP. Structural features, processing mechanism and gene splice variants of dentin sialophosphoprotein. JAPANESE DENTAL SCIENCE REVIEW 2018; 54:183-196. [PMID: 30302137 PMCID: PMC6175968 DOI: 10.1016/j.jdsr.2018.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/12/2018] [Accepted: 03/22/2018] [Indexed: 12/03/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) plays an important role in the formation of dentin. Understanding its structure and function would provide important insights into the regulation of dentin mineralization. For the past 15 years, we have been studying DSPP-derived proteins isolated from pig dentin. Porcine DSPP is synthesized and secreted by odontoblasts and processed into three proteins, i.e., dentin sialoprotein (DSP), dentin glycoprotein (DGP), and dentin phosphoprotein (DPP), by bone morphogenetic protein 1 and matrix metalloproteinase-20 and -2. DSP is a proteoglycan that forms covalent dimers, DGP is a phosphorylated glycoprotein, and DPP is a highly phosphorylated intrinsically disordered protein with genetic polymorphisms. Furthermore, DPP is not detected in dental pulp. This is possibly due to the existence of two mRNA variants of the DSPP gene: one that encodes the DSP region alone and another that encodes full-length DSPP. The mRNA variant encoding DSP alone is expressed in dental pulp and odontoblasts, but the variant encoding full-length DSPP is predominantly expressed in odontoblasts and barely in dental pulp.
Collapse
Affiliation(s)
- Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, 48103, USA
| |
Collapse
|
8
|
Abstract
Transforming growth factor-beta (TGF-β) is critical for cell proliferation and differentiation in dental pulp. Here, we show the dynamic mechanisms of TGF-β in porcine dental pulp, odontoblasts and dentin. The mRNA of latent TGF-β1 and TGF-β3 is predominantly expressed in odontoblasts, whereas the mRNA expression level of latent TGF-β2 is high in dental pulp. TGF-β1 is a major isoform of TGF-β, and latent TGF-β1, synthesized in dental pulp, is primarily activated by matrix metalloproteinase 11 (MMP11). Activated TGF-β1 enhances the mRNA expression levels of MMP20 and full-length dentin sialophosphoprotein (DSPP) in dental pulp cells, coinciding with the induction of odontoblast differentiation. Latent TGF-β1 synthesized in odontoblasts is primarily activated by MMP2 and MMP20 in both odontoblasts and dentin. The activity level of TGF-β1 was reduced in the dentin of MMP20 null mice, although the amount of latent TGF-β1 expression did not change between wild-type and MMP20 null mice. TGF-β1 activity was reduced with the degradation of DSPP-derived proteins that occurs with ageing. We propose that to exert its multiple biological functions, TGF-β1 is involved in a complicated dynamic interaction with matrix metalloproteinases (MMPs) and/or DSPP-derived proteins present in dental pulp, odontoblasts and dentin.
Collapse
|
9
|
Stape THS, Tjäderhane L, Tezvergil-Mutluay A, Da Silva WG, Dos Santos Silva AR, da Silva WJ, Marques MR. In situ analysis of gelatinolytic activity in human dentin. Acta Histochem 2018; 120:136-141. [PMID: 29373132 DOI: 10.1016/j.acthis.2017.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/27/2017] [Accepted: 12/29/2017] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinases (MMPs) such as gelatinases are differentially expressed in human tissues. These enzymes cleave specific substrates involved in cell signaling, tissue development and remodeling and tissue breakdown. Recent evidences show that gelatinases are crucial for normal dentin development and their activity is maintained throughout the entire tooth function in the oral cavity. Due to the lack of information about the exact location and activity of gelatinases in mature human dentin, the present study was designed to examine gelatinolytic levels in sound dentin. In situ zymography using confocal microscopy was performed on both mineralized and demineralized dentin samples. Sites presenting gelatinase activity were identified throughout the entire biological tissue pursuing different gelatinolytic levels for distinct areas: predentin and dentinal tubule regions presented higher gelatinolytic activity compared to intertubular dentin. Dentin regions with higher gelatinolytic activity immunohistochemically were partially correlated with MMP-2 expression. The maintenance of gelatinolytic activity in mature dentin may have biological implications related to biomineralization of predentin and tubular/peritubular dentinal regions, as well as regulation of defensive mechanisms of the dentin-pulp complex.
Collapse
Affiliation(s)
- Thiago Henrique Scarabello Stape
- Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland; Department of Restorative Dentistry and Cariology, University of Turku, Turku, Finland
| | - Leo Tjäderhane
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland and Helsinki University Hospital, Helsinki, Finland; Research Unit of Oral Health Sciences, and Medical Research Center Oulu (MRC Oulu), Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Arzu Tezvergil-Mutluay
- Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland; Department of Restorative Dentistry and Cariology, University of Turku, Turku, Finland
| | - Wagner Gomes Da Silva
- Department of Oral Diagnosis, Semiology Area, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Alan Roger Dos Santos Silva
- Department of Oral Diagnosis, Semiology Area, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Wander José da Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Marcelo Rocha Marques
- Department of Morphology Division of Histology, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil.
| |
Collapse
|
10
|
Abstract
By the Shields classification, articulated over 30 years ago, inherited dentin defects are divided into 5 types: 3 types of dentinogenesis imperfecta (DGI), and 2 types of dentin dysplasia (DD). DGI type I is osteogenesis imperfecta (OI) with DGI. OI with DGI is caused, in most cases, by mutations in the 2 genes encoding type I collagen. Many genes are required to generate the enzymes that catalyze collagen’s diverse post-translational modifications and its assembly into fibers, fibrils, bundles, and networks. Rare inherited diseases of bone are caused by defects in these genes, and some are occasionally found to include DGI as a feature. Appreciation of the complicated genetic etiology of DGI associated with bony defects splintered the DGI type I description into a multitude of more precisely defined entities, all with their own designations. In contrast, DD-II, DGI-II, and DGI-III, each with its own pattern of inherited defects limited to the dentition, have been found to be caused by various defects in DSPP (dentin sialophosphoprotein), a gene encoding the major non-collagenous proteins of dentin. Only DD-I, an exceedingly rare condition featuring short, blunt roots with obliterated pulp chambers, remains untouched by the revolution in genetics, and its etiology is still a mystery. A major surprise in the characterization of genes underlying inherited dentin defects is the apparent lack of roles played by the genes encoding the less-abundant non-collagenous proteins in dentin, such as dentin matrix protein 1 ( DMP1), integrin-binding sialoprotein ( IBSP), matrix extracellular phosphoglycoprotein ( MEPE), and secreted phosphoprotein-1, or osteopontin ( SPP1, OPN). This review discusses the development of the dentin extracellular matrix in the context of its evolution, and discusses the phenotypes and clinical classifications of isolated hereditary defects of tooth dentin in the context of recent genetic data respecting their genetic etiologies.
Collapse
Affiliation(s)
- J-W Kim
- Seoul National University, School of Dentistry Department of Pediatric Dentistry & Dental Research Institute, 28-2 Yongon-dong, Chongno-gu, Seoul, Korea 110-749
| | | |
Collapse
|
11
|
Yamamoto R, Yamakoshi Y. Dentin sialophosphoprotein-derived proteins in porcine pulp and dentin - Gene expression and function. J Oral Biosci 2016; 58:120-127. [PMID: 32512680 DOI: 10.1016/j.job.2016.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/13/2016] [Accepted: 06/09/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Dentin sialophosphoprotein (DSPP) is the most abundant non-collagenous protein in dentin and is critical for the proper mineralization of tooth dentin. DSPP is processed by proteases into three major domains: dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP). Two mRNA variants are expressed from the Dspp gene. The larger transcript encodes full-length DSPP (DSP+DGP+DPP). The shorter transcript encodes only DSP. HIGHLIGHT We fractionated DSPP-derived proteins from the dental pulp of developing porcine incisors using heparin chromatography. DSP was identified, but little DPP could be detected in any fraction. Expression of full-length Dspp mRNA, determined by qPCR analysis, was significantly higher in odontoblasts than in pulp. Expression of DSP-only mRNA was almost equal in odontoblasts and in the body of pulp. Expression of full-length Dspp mRNA was also significantly higher than expression of DSP-only mRNA in odontoblasts. Both the full-length and DSP-only Dspp mRNA showed only trace expression in the pulp tip. We purified TGF-β1-unbound or -bound to DPP and DSP using high performance liquid chromatography (HPLC) and measured its alkaline phosphatase stimulating activity in human periodontal cells with or without TGF-β receptor inhibitor. We also incubated carrier-free human recombinant TGF-β1 (CF-hTGF-β1) protein with TGF-β1-unbound DPP or DSP and characterized binding ability. CONCLUSION DSP-only is expressed throughout odontoblast differentiation, while full-length DSPP is predominantly expressed by odontoblasts only after they have differentiated from mesenchymal cells. DPP and DSP rescued the loss of TGF-β1 activity. Type I collagen was infrequently bound to CF-hTGF-β1.
Collapse
Affiliation(s)
- Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| |
Collapse
|
12
|
Hase N, Ozeki N, Hiyama T, Yamaguchi H, Kawai R, Kondo A, Nakata K, Mogi M. Products of dentin matrix protein-1 degradation by interleukin-1β-induced matrix metalloproteinase-3 promote proliferation of odontoblastic cells. Biosci Trends 2016; 9:228-36. [PMID: 26355224 DOI: 10.5582/bst.2015.01092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have previously reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation in mouse embryonic stem cell (ESC)-derived odontoblast-like cells, suggesting that MMP-3 plays a potentially unique physiological role in regeneration by odontoblast-like cells. MMPs are able to process virtually any component of the extracellular matrix, including collagen, laminin and bioactive molecules. Because odontoblasts produce dentin matrix protein-1 (DMP-1), we examined whether the degraded products of DMP-1 by MMP-3 contribute to enhanced proliferation in odontoblast-like cells. IL-1β increased mRNA and protein levels of odontoblastic marker proteins, including DMP-1, but not osteoblastic marker proteins, such as osteocalcin and osteopontin. The recombinant active form of MMP-3 could degrade DMP-1 protein but not osteocalcin and osteopontin in vitro. The exogenous degraded products of DMP-1 by MMP-3 resulted in increased proliferation of odontoblast-like cells in a dose-dependent manner. Treatment with a polyclonal antibody against DMP-1 suppressed IL-1β-induced cell proliferation to a basal level, but identical treatment had no effect on the IL-1β-induced increase in MMP-3 expression and activity. Treatment with siRNA against MMP-3 potently suppressed the IL-1β-induced increase in DMP-1 expression and suppressed cell proliferation (p < 0.05). Similarly, treatment with siRNAs against Wnt5a and Wnt5b suppressed the IL-1β-induced increase in DMP-1 expression and suppressed cell proliferation (p < 0.05). Rat KN-3 cells, representative of authentic odontoblasts, showed similar responses to the odontoblast-like cells. Taken together, our current study demonstrates the sequential involvement of Wnt5, MMP-3, DMP-1 expression, and DMP-1 degradation products by MMP-3, in effecting IL-1β-induced proliferation of ESC-derived odontoblast-like cells.
Collapse
Affiliation(s)
- Naoko Hase
- Department of Endodontics, School of Dentistry, Aichi Gakuin University
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Yang J, Kawasaki K, Lee M, Reid BM, Nunez SM, Choi M, Seymen F, Koruyucu M, Kasimoglu Y, Estrella-Yuson N, Lin BPJ, Simmer JP, Hu JCC. The dentin phosphoprotein repeat region and inherited defects of dentin. Mol Genet Genomic Med 2016; 4:28-38. [PMID: 26788535 PMCID: PMC4707025 DOI: 10.1002/mgg3.176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/12/2022] Open
Abstract
Nonsyndromic dentin defects classified as type II dentin dysplasia and types II and III dentinogenesis imperfecta are caused by mutations in DSPP (dentin sialophosphoprotein). Most reported disease‐causing DSPP mutations occur within the repetitive DPP (dentin phosphoprotein) coding sequence. We characterized the DPP sequences of five probands with inherited dentin defects using single molecule real‐time (SMRT) DNA sequencing. Eight of the 10 sequences matched previously reported DPP length haplotypes and two were novel. Alignment with known DPP sequences showed 32 indels arranged in 36 different patterns. Sixteen of the 32 indels were not represented in more than one haplotype. The 25 haplotypes with confirmed indels were aligned to generate a tree that describes how the length variations might have evolved. Some indels were independently generated in multiple lines. A previously reported disease‐causing DSPP mutation in Family 1 was confirmed and its position clarified (c.3135delC; p.Ser1045Argfs*269). A novel frameshift mutation (c.3504_3508dup; p.Asp1170Alafs*146) caused the dentin defects in Family 2. A COL1A2 (c.2027G>A or p.Gly676Asp) missense mutation, discovered by whole‐exome sequencing, caused the dentin defects in Family 3. We conclude that SMRT sequencing characterizes the DPP repeat region without cloning and can improve our understanding of normal and pathological length variations in DSPP alleles.
Collapse
Affiliation(s)
- Jie Yang
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210 Eisenhower PlaceAnn ArborMichigan; Department of Pediatric DentistrySchool and Hospital of StomatologyPeking University22 South AvenueZhongguancun Haidian DistrictBeijing100081China
| | - Kazuhiko Kawasaki
- Department of Anthropology Pennsylvania State University University Park Pennsylvania 16802
| | - Moses Lee
- Department of Biomedical Sciences Seoul National University College of Medicine 275-1 Yongon-dong, Chongno-gu Seoul 110-768 Korea
| | - Bryan M Reid
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan
| | - Stephanie M Nunez
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan
| | - Murim Choi
- Department of Biomedical Sciences Seoul National University College of Medicine 275-1 Yongon-dong, Chongno-gu Seoul 110-768 Korea
| | - Figen Seymen
- Department of Pedodontics Faculty of Dentistry Istanbul University Istanbul Turkey
| | - Mine Koruyucu
- Department of Pedodontics Faculty of Dentistry Istanbul University Istanbul Turkey
| | - Yelda Kasimoglu
- Department of Pedodontics Faculty of Dentistry Istanbul University Istanbul Turkey
| | - Ninna Estrella-Yuson
- Department of Paediatric Dentistry Women's and Children's Hospital 72 King William Road North Adelaide South Australia 5006 Australia
| | - Brent P J Lin
- Department of Pediatric Dentistry School of Dentistry University of California San Francisco California
| | - James P Simmer
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan
| |
Collapse
|
14
|
Accelerated enamel mineralization in Dspp mutant mice. Matrix Biol 2016; 52-54:246-259. [PMID: 26780724 DOI: 10.1016/j.matbio.2016.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/21/2022]
Abstract
Dentin sialophosphoprotein (DSPP) is one of the major non-collagenous proteins present in dentin, cementum and alveolar bone; it is also transiently expressed by ameloblasts. In humans many mutations have been found in DSPP and are associated with two autosomal-dominant genetic diseases - dentinogenesis imperfecta II (DGI-II) and dentin dysplasia (DD). Both disorders result in the development of hypomineralized and mechanically compromised teeth. The erupted mature molars of Dspp(-/-) mice have a severe hypomineralized dentin phenotype. Since dentin and enamel formations are interdependent, we decided to investigate the process of enamel onset mineralization in young Dspp(-/-) animals. We focused our analysis on the constantly erupting mouse incisor, to capture all of the stages of odontogenesis in one tooth, and the unerupted first molars. Using high-resolution microCT, we revealed that the onset of enamel matrix deposition occurs closer to the cervical loop and both secretion and maturation of enamel are accelerated in Dspp(-/-) incisors compared to the Dspp(+/-) control. Importantly, these differences did not translate into major phenotypic differences in mature enamel in terms of the structural organization, mineral density or hardness. The only observable difference was the reduction in thickness of the outer enamel layer, while the total enamel thickness remained unchanged. We also observed a compromised dentin-enamel junction, leading to delamination between the dentin and enamel layers. The odontoblast processes were widened and lacked branching near the DEJ. Finally, for the first time we demonstrate expression of Dspp mRNA in secretory ameloblasts. In summary, our data show that DSPP is important for normal mineralization of both dentin and enamel.
Collapse
|
15
|
Yamamoto R, Oida S, Yamakoshi Y. Dentin Sialophosphoprotein-derived Proteins in the Dental Pulp. J Dent Res 2015; 94:1120-7. [PMID: 25951824 DOI: 10.1177/0022034515585715] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Porcine dentin sialophosphoprotein (DSPP), the most abundant noncollagenous protein in dentin, is critical for proper mineralization of tooth dentin. DSPP is processed by proteases into 3 major domains: dentin sialoprotein (DSP), dentin glycoprotein (DGP), and dentin phosphoprotein (DPP). There are at least 2 mRNA variants expressed from the Dspp gene: one encodes the full-length DSPP protein (DSP+DGP+DPP); the other encodes only DSP. The shorter transcript is generated through the use of a polyadenylation signal within intron 4, immediately following the DSP coding region (DGP and DPP are encoded by exon 5). We fractionated DSPP-derived proteins from the dental pulp of developing porcine incisors using heparin chromatography. DSP was identified, but little DPP could be detected in any fractions. BMP-1 digestion of DSPP-derived proteins extracted from dental pulp did not generate new DPP bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (indicating an absence of intact DSPP), although the results suggested another BMP-1 cleavage site within DSP. We further purified DSPP-derived protein by reversed-phase high-performance liquid chromatography. Its amino acid composition was similar to DSP. Expression of the full-length Dspp mRNA by quantitative real-time polymerase chain reaction analysis was significantly higher in odontoblasts than in pulp, while expression of the DSP-only mRNA was almost equal in odontoblasts and in the body of the pulp. Expression of the full-length Dspp mRNA was also significantly higher than the expression of DSP-only mRNA in odontoblasts. Both the full-length and the DSP-only Dspp mRNA showed only trace expression in the pulp tip. We conclude that use of the 3' polyadenylation signal in exon 5 predominates in fully differentiated odontoblasts, while both polyadenylation signals are used throughout odontoblast differentiation.
Collapse
Affiliation(s)
- R Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama, Japan
| | - S Oida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama, Japan
| | - Y Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama, Japan
| |
Collapse
|
16
|
Suzuki S, Kobuke S, Haruyama N, Hoshino H, Kulkarni AB, Nishimura F. Adhesive and migratory effects of phosphophoryn are modulated by flanking peptides of the integrin binding motif. PLoS One 2014; 9:e112490. [PMID: 25396425 PMCID: PMC4232355 DOI: 10.1371/journal.pone.0112490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/18/2014] [Indexed: 12/17/2022] Open
Abstract
Phosphophoryn (PP) is generated from the proteolytic cleavage of dentin sialophosphoprotein (DSPP). Gene duplications in the ancestor dentin matrix protein-1 (DMP-1) genomic sequence created the DSPP gene in toothed animals. PP and DMP-1 are phosphorylated extracellular matrix proteins that belong to the family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs). Many SIBLING members have been shown to evoke various cell responses through the integrin-binding Arg-Gly-Asp (RGD) domain; however, the RGD-dependent function of PP is not yet fully understood. We demonstrated that recombinant PP did not exhibit any obvious cell adhesion ability, whereas the simultaneously purified recombinant DMP-1 did. A cell adhesion inhibitory analysis was performed by pre-incubating human osteosarcoma MG63 cells with various PP peptides before seeding onto vitronectin. The results obtained revealed that the incorporation of more than one amino acid on both sides of the PP-RGD domain was unable to inhibit the adhesion of MG63 cells onto vitronectin. Furthermore, the inhibitory activity of a peptide containing the PP-RGD domain with an open carboxyl-terminal side (H-463SDESDTNSESANESGSRGDA482-OH) was more potent than that of a peptide containing the RGD domain with an open amino-terminal side (H-478SRGDASYTSDESSDDDNDSDSH499-OH). This phenomenon was supported by the potent cell adhesion and migration abilities of the recombinant truncated PP, which terminated with Ala482. Furthermore, various point mutations in Ala482 and/or Ser483 converted recombinant PP into cell-adhesive proteins. Therefore, we concluded that the Ala482-Ser483 flanking sequence, which was detected in primates and mice, was the key peptide bond that allowed the PP-RGD domain to be sequestered. The differential abilities of PP and DMP-1 to act on integrin imply that DSPP was duplicated from DMP-1 to serve as a crucial extracellular protein for tooth development rather than as an integrin-mediated signaling molecule.
Collapse
Affiliation(s)
- Shigeki Suzuki
- Department of Dental Science for Health Promotion, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
- * E-mail:
| | - Seiji Kobuke
- Department of Dental Science for Health Promotion, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Naoto Haruyama
- Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroaki Hoshino
- Department of Dental Science for Health Promotion, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ashok B. Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fusanori Nishimura
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Japan
| |
Collapse
|
17
|
Gibson MP, Jani P, Wang X, Lu Y, Qin C. Overexpressing the NH 2-terminal fragment of dentin sialophosphoprotein (DSPP) aggravates the periodontal defects in Dspp knockout mice. J Oral Biosci 2014; 56:143-148. [PMID: 25386098 DOI: 10.1016/j.job.2014.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Previous studies have shown that dentin sialophosphoprotein (DSPP) is not only essential to the formation and mineralization of dentin but also plays an important role in forming and maintaining a healthy periodontium. Under physiological conditions, DSPP is proteolytically processed into the NH2-terminal and COOH-terminal fragments, and these fragments are believed to perform different functions in the mineralized tissues. Previous studies in our group have demonstrated that the NH2-terminal fragment of DSPP inhibits the formation and mineralization of dentin, while the role of this fragment in periodontium is unclear. METHODS We analyzed the periodontal tissues of the transgenic mice overexpressing the NH2-terminal fragment of DSPP in the Dspp knockout background (referred to as "Dspp KO/DSP Tg" mice), in comparison with wild type mice and Dspp knockout mice. The approaches used in this study included histology, micro-computed tomography, back scattered scanning electron microscopy and resin-casted scanning electron microscopy. RESULTS Dspp KO/DSP Tg mice exhibited a greater reduction of the alveolar bone, more remarkably altered canalicular systems around the osteocytes, less cementum, more radical migration of the epithelial attachment towards the apical direction, and more severe inflammation in molar furcation region, than in the Dspp knockout mice. CONCLUSION Overexpressing the NH2-terminal fragment of DSPP worsened the periodontal defects in Dspp knockout mice, indicating that the NH2-terminal fragment of DSPP may exert an inhibitory role in the formation and mineralization of hard tissues in the periodontium.
Collapse
Affiliation(s)
- Monica Prasad Gibson
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - Priyam Jani
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - Xiaofang Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| |
Collapse
|
18
|
de La Dure-Molla M, Philippe Fournier B, Berdal A. Isolated dentinogenesis imperfecta and dentin dysplasia: revision of the classification. Eur J Hum Genet 2014; 23:445-51. [PMID: 25118030 DOI: 10.1038/ejhg.2014.159] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 11/09/2022] Open
Abstract
Dentinogenesis imperfecta is an autosomal dominant disease characterized by severe hypomineralization of dentin and altered dentin structure. Dentin extra cellular matrix is composed of 90% of collagen type I and 10% of non-collagenous proteins among which dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP) are crucial in dentinogenesis. These proteins are encoded by a single gene: dentin sialophosphoprotein (DSPP) and undergo several post-translational modifications such as glycosylation and phosphorylation to contribute and to control mineralization. Human mutations of this DSPP gene are responsible for three isolated dentinal diseases classified by Shield in 1973: type II and III dentinogenesis imperfecta and type II dentin dysplasia. Shield classification was based on clinical phenotypes observed in patient. Genetics results show now that these three diseases are a severity variation of the same pathology. So this review aims to revise and to propose a new classification of the isolated forms of DI to simplify diagnosis for practitioners.
Collapse
Affiliation(s)
- Muriel de La Dure-Molla
- 1] Centre de Recherche des Cordeliers, INSERM UMRS 872, Laboratory of Molecular Oral Pathophysiology, Paris, France [2] Paris-Descartes University, Paris, France [3] The Pierre-and-Marie-Curie University, Paris, France [4] Paris-Diderot, School of Dentistry, Paris, France [5] Reference Center for Dental Rare Disease, MAFACE Rothschild Hospital, AP-HP, Paris, France
| | - Benjamin Philippe Fournier
- 1] Centre de Recherche des Cordeliers, INSERM UMRS 872, Laboratory of Molecular Oral Pathophysiology, Paris, France [2] Paris-Descartes University, Paris, France [3] The Pierre-and-Marie-Curie University, Paris, France [4] Paris-Diderot, School of Dentistry, Paris, France [5] Reference Center for Dental Rare Disease, MAFACE Rothschild Hospital, AP-HP, Paris, France
| | - Ariane Berdal
- 1] Centre de Recherche des Cordeliers, INSERM UMRS 872, Laboratory of Molecular Oral Pathophysiology, Paris, France [2] Paris-Descartes University, Paris, France [3] The Pierre-and-Marie-Curie University, Paris, France [4] Paris-Diderot, School of Dentistry, Paris, France [5] Reference Center for Dental Rare Disease, MAFACE Rothschild Hospital, AP-HP, Paris, France
| |
Collapse
|
19
|
Choi YJ, Kim SW, Yoon JH, Choi BH, Kim TH, Kim KS. Identification of genomic regions associated with piglet survival and mortality. J Biomed Res 2014. [DOI: 10.12729/jbr.2014.15.2.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Yamakoshi Y, Kinoshita S, Izuhara L, Karakida T, Fukae M, Oida S. DPP and DSP are Necessary for Maintaining TGF-β1 Activity in Dentin. J Dent Res 2014; 93:671-7. [PMID: 24799420 DOI: 10.1177/0022034514534690] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/15/2014] [Indexed: 11/16/2022] Open
Abstract
Porcine dentin sialophosphoprotein (DSPP) is the most abundant non-collagenous protein in dentin. It is processed by proteases into 3 independent proteins: dentin sialoprotein (DSP), dentin glycoprotein (DGP), and dentin phosphoprotein (DPP). We fractionated DPP and DSP along with TGF-β activity by ion exchange (IE) chromatography from developing pig molars and measured their alkaline phosphatase (ALP)-stimulating activity in human periodontal (HPDL) cells with or without TGF-β receptor inhibitor. We then purified TGF-β-unbound or -bound DPP and DSP by reverse-phase high-performance liquid chromatography (RP-HPLC) using the ALP-HPDL system. The TGF-β isoform bound to DPP and DSP was identified as being TGF-β1 by both ELISA and LC-MS/MS analysis. We incubated carrier-free human recombinant TGF-β1 (CF-hTGF-β1) with TGF-β-unbound DPP or DSP and characterized the binding on IE-HPLC using the ALP-HPDL system. When only CF-hTGF-β1 was incubated, approximately 3.6% of the ALP-stimulating activity remained. DPP and DSP rescued the loss of TGF-β1 activity. Approximately 19% and 10% of the ALP stimulating activities were retained by the binding of TGF-β to DPP and DSP, respectively. The type I collagen infrequently bound to CF-hTGF-β1. We conclude that both DPP and DSP help retain TGF-β1 activity in porcine dentin.
Collapse
Affiliation(s)
- Y Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - S Kinoshita
- Department of Pediatric Dentistry, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - L Izuhara
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo 105-0003, Japan
| | - T Karakida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - M Fukae
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - S Oida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| |
Collapse
|
21
|
Gibson MP, Liu Q, Zhu Q, Lu Y, Jani P, Wang X, Liu Y, Paine ML, Snead ML, Feng JQ, Qin C. Role of the NH2 -terminal fragment of dentin sialophosphoprotein in dentinogenesis. Eur J Oral Sci 2013; 121:76-85. [PMID: 23489896 DOI: 10.1111/eos.12020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2012] [Indexed: 01/30/2023]
Abstract
Dentin sialophosphoprotein (DSPP) is a large precursor protein that is proteolytically processed into a NH2 -terminal fragment [composed of dentin sialoprotein (DSP) and a proteoglycan form (DSP-PG)] and a COOH-terminal fragment [dentin phosphoprotein (DPP)]. In vitro studies indicate that DPP is a strong initiator and regulator of hydroxyapatite crystal formation and growth, but the role(s) of the NH2 -terminal fragment of DSPP (i.e., DSP and DSP-PG) in dentinogenesis remain unclear. This study focuses on the function of the NH2 -terminal fragment of DSPP in dentinogenesis. Here, transgenic (Tg) mouse lines expressing the NH2 -terminal fragment of DSPP driven by a 3.6-kb type I collagen promoter (Col 1a1) were generated and cross-bred with Dspp null mice to obtain mice that express the transgene but lack the endogenous Dspp (Dspp KO/DSP Tg). We found that dentin from the Dspp KO/DSP Tg mice was much thinner, more poorly mineralized, and remarkably disorganized compared with dentin from the Dspp KO mice. The fact that Dspp KO/DSP Tg mice exhibited more severe dentin defects than did the Dspp null mice indicates that the NH2 -terminal fragment of DSPP may inhibit dentin mineralization or may serve as an antagonist against the accelerating action of DPP and serve to prevent predentin from being mineralized too rapidly during dentinogenesis.
Collapse
Affiliation(s)
- Monica P Gibson
- Texas A&M Health Science Center Baylor College of Dentistry, Dallas, TX 75246, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Zhu Q, Gibson MP, Liu Q, Liu Y, Lu Y, Wang X, Feng JQ, Qin C. Proteolytic processing of dentin sialophosphoprotein (DSPP) is essential to dentinogenesis. J Biol Chem 2012; 287:30426-35. [PMID: 22798071 DOI: 10.1074/jbc.m112.388587] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DSPP, which plays a crucial role in dentin formation, is processed into the NH(2)-terminal and COOH-terminal fragments. We believe that the proteolytic processing of DSPP is an essential activation step for its biological function in biomineralization. We tested this hypothesis by analyzing transgenic mice expressing the mutant D452A-DSPP in the Dspp-knock-out (Dspp-KO) background (referred to as "Dspp-KO/D452A-Tg" mice). We employed multipronged approaches to characterize the dentin of the Dspp-KO/D452A-Tg mice, in comparison with Dspp-KO mice and mice expressing the normal DSPP transgene in the Dspp-KO background (named Dspp-KO/normal-Tg mice). Our analyses showed that 90% of the D452A-DSPP in the dentin of Dspp-KO/D452A-Tg mice was not cleaved, indicating that D452A substitution effectively blocked the proteolytic processing of DSPP in vivo. While the expression of the normal DSPP fully rescued the dentin defects of the Dspp-KO mice, expressing the D452A-DSPP failed to do so. These results indicate that the proteolytic processing of DSPP is an activation step essential to its biological function in dentinogenesis.
Collapse
Affiliation(s)
- Qinglin Zhu
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, TX 75246, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tjäderhane L, Haapasalo M. The dentin-pulp border: a dynamic interface between hard and soft tissues. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00266.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Yuan G, Yang G, Song G, Chen Z, Chen S. Immunohistochemical localization of the NH(2)-terminal and COOH-terminal fragments of dentin sialoprotein in mouse teeth. Cell Tissue Res 2012; 349:605-14. [PMID: 22581382 DOI: 10.1007/s00441-012-1418-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
Abstract
Dentin sialoprotein (DSP) is a major non-collagenous protein in dentin. Mutation studies in human, along with gene knockout and transgenic experiments in mice, have confirmed the critical role of DSP for dentin formation. Our previous study reported that DSP is processed into fragments in mouse odontoblast-like cells. In order to gain insights into the function of DSP fragments, we further evaluated the expression pattern of DSP in the mouse odontoblast-like cells using immunohistochemistry and western blot assay with antibodies against the NH(2)-terminal and COOH-terminal regions of DSP. Then, the distribution profiles of the DSP NH(2)-terminal and COOH-terminal fragments and osteopontin (OPN) were investigated in mouse teeth at different ages by immunohistochemistry. In the odontoblast-like cells, multiple low molecular weight DSP fragments were detected, suggesting that part of the DSP protein was processed in the odontoblast-like cells. In mouse first lower molars, immunoreactions for anti-DSP-NH(2) antibody were intense in the predentin matrix but weak in mineralized dentin; in contrast, for anti-DSP-COOH antibody, strong immunoreactions were found in mineralized dentin, in particular dentinal tubules but weak in predentin. Therefore, DSP NH(2)-terminal and COOH-terminal fragments from odontoblasts were secreted to different parts of teeth, suggesting that they may play distinct roles in dentinogenesis. Meanwhile, both DSP antibodies showed weak staining in reactionary dentin (RD), whereas osteopontin (OPN) was clearly positive in RD. Therefore, DSP may be less crucial for RD formation than OPN.
Collapse
Affiliation(s)
- Guohua Yuan
- Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China 430079
| | | | | | | | | |
Collapse
|
26
|
Suzuki S, Haruyama N, Nishimura F, Kulkarni AB. Dentin sialophosphoprotein and dentin matrix protein-1: Two highly phosphorylated proteins in mineralized tissues. Arch Oral Biol 2012; 57:1165-75. [PMID: 22534175 DOI: 10.1016/j.archoralbio.2012.03.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/23/2012] [Accepted: 03/20/2012] [Indexed: 12/15/2022]
Abstract
Dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) are highly phosphorylated proteins that belong to the family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs), and are essential for proper development of hard tissues such as teeth and bones. In order to understand how they contribute to tissue organization, DSPP and DMP-1 have been analyzed for over a decade using both in vivo and in vitro techniques. Among the five SIBLINGs, the DSPP and DMP-1 genes are located next to each other and their gene and protein structures are most similar. In this review we examine the phenotypes of the genetically engineered mouse models of DSPP and DMP-1 and also introduce complementary in vitro studies into the molecular mechanisms underlying these phenotypes. DSPP affects the mineralization of dentin more profoundly than DMP-1. In contrast, DMP-1 significantly affects bone mineralization and importantly controls serum phosphate levels by regulating serum FGF-23 levels, whereas DSPP does not show any systemic effects. DMP-1 activates integrin signalling and is endocytosed into the cytoplasm whereupon it is translocated to the nucleus. In contrast, DSPP only activates integrin-dependent signalling. Thus it is now clear that both DSPP and DMP-1 contribute to hard tissue mineralization and the tissues affected by each are different presumably as a result of their different expression levels. In fact, in comparison with DMP-1, the functional analysis of cell signalling by DSPP remains relatively unexplored.
Collapse
Affiliation(s)
- Shigeki Suzuki
- Department of Dental Science for Health Promotion, Division of Cervico-Gnathostomatology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| | | | | | | |
Collapse
|
27
|
Hereditary dentine diseases resulting from mutations in DSPP gene. J Dent 2012; 40:542-8. [PMID: 22521702 DOI: 10.1016/j.jdent.2012.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES This review groups the newest results of molecular analyses of DSPP gene for patients diagnosed either with dentinogenesis imperfecta type II/III or dentine dysplasia and tries to link the phenotypes with specific mutations in the DSPP gene. DATA The review includes biochemical data introducing a specificity of DSPP protein which justifies it as a critical factor for dentine mineralization and maturation. The majority of the review analyzes mutations in the DSPP gene which result in phenotypes of dentinogenesis imperfecta types II or/and III or dentine dysplasia. SOURCES An electronic search was conducted in the databases of Pub Med and supplemented by manual study of relevant references. STUDY SELECTION 52 out of 108 references were finally selected for the review based on the novelty and/or originality of data. CONCLUSION Hereditary dentine disorders dentinogenesis imperfecta type II/III and dentine dysplasia are currently proposed to be one disease with distinct clinical manifestations reflecting various mutations in the same DSPP gene. For years both disorders were linked exclusively to mutations in the DSP code but a growing number of papers describe mutations which manifest a similar phenotype but are localized in the strongly repetitive sequence of the 3' terminus of the DSPP which codes DPP protein. Our search suggests that the localization of mutation in the sequence of the DSPP gene might result in a different phenotype due to the diverse cellular fate of the mutated protein. Thus comprehensive research on the cellular fate and processing of both normal and mutated DSPP is still required.
Collapse
|
28
|
Yun YR, Kim HW, Kang W, Jeon E, Lee S, Lee HY, Kim CH, Jang JH. Expression and purification recombinant human dentin sialoprotein in Escherichia coli and its effects on human dental pulp cells. Protein Expr Purif 2012; 83:47-51. [PMID: 22445741 DOI: 10.1016/j.pep.2012.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/06/2012] [Accepted: 03/08/2012] [Indexed: 01/09/2023]
Abstract
Dentin sialoprotein (DSP) is cleaved from dentin sialophosphoprotein (DSPP) and most abundant dentinal non-collagenous proteins in dentin. DSP is believed to participate in differentiation and mineralization of cells. In this study, we first constructed recombinant human DSP (rhDSP) in Escherichia coli (E. coli) and investigated its odontoblastic differentiation effects on human dental pulp cells (hDPCs). Cell adhesion activity was measured by crystal violet assay and cell proliferation activity was measured by MTT assay. To assess mineralization activity of rhDSP, Alizarin Red S staining was performed. In addition, the mRNA levels of collagen type І (Col І), alkaline phosphatase (ALP), and osteocalcin (OCN) were measured due to their use as mineralization markers for odontoblast-/osteoblast-like differentiation of hDPCs. The obtained rhDSP in E. coli was approximately identified by SDS-PAGE and Western blot. Initially, rhDSP significantly enhanced hDPCs adhesion activity and proliferation (p<0.05). In Alizarin Red S staining, stained hDPCs increased in a time-dependent manner. This odontoblastic differentiation activity was also verified through mRNA levels of odontoblast-related markers. Here, we first demonstrated that rhDSP may be an important regulatory ECM in determining the hDPCs fate including cell adhesion, proliferation, and odontoblastic differentiation activity. These findings indicate that rhDSP can induce growth and differentiation on hDPCs, leading to improve tooth repair and regeneration.
Collapse
Affiliation(s)
- Ye-Rang Yun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Expression of dentine sialophosphoprotein in mouse nasal cartilage. Arch Oral Biol 2011; 57:607-13. [PMID: 22088564 DOI: 10.1016/j.archoralbio.2011.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Dentine sialophosphoprotein (DSPP) was initially thought to be unique for dentine formation during tooth development, whilst recent reports have shown a much broader expression pattern such as in bone, periodontium and inner ear. Our goal was to explore its expression and potential impact during early nasal cartilage formation in comparison with tooth development. STUDY DESIGN We investigated DSPP expression in the nasal cartilage by immunohistochemistry and in situ hybridisation. We also cloned a 719bp partial DSPP cDNA from nasal cartilage and analysed its homology to the published mouse DSPP cDNA sequence. In addition, quantitative RT-PCR was undertaken to compare the expression pattern of DSPP in nasal cartilage and tooth germs during embryonic development. RESULTS The expression of DSPP in mouse nasal chondrocytes was detected using in situ hybridisation and immunohistochemical staining. The quantitative RT-PCR data showed that expression levels of DSPP in nasal cartilage are similar to that of tooth: low at E18, and increased during development with the peak level at P3. Furthermore, DSPP levels in nasal cartilage are lower than tooth but higher than bone. CONCLUSION DSPP is expressed in nasal cartilage, and a similar temporal expression pattern in cartilage and tooth indicates the potential importance of DSPP during development.
Collapse
|
30
|
Xu Y, Zhang H, Yang H, Zhao X, Lovas S, Lundberg YYW. Expression, functional, and structural analysis of proteins critical for otoconia development. Dev Dyn 2011; 239:2659-73. [PMID: 20803598 DOI: 10.1002/dvdy.22405] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Otoconia, developed during late gestation and perinatal stages, couple mechanic force to the sensory hair cells in the vestibule for motion detection and bodily balance. In the present work, we have investigated whether compensatory deposition of another protein(s) may have taken place to partially alleviate the detrimental effects of Oc90 deletion by analyzing a comprehensive list of plausible candidates, and have found a drastic increase in the deposition of Sparc-like 1 (aka Sc1 or hevin) in Oc90 null versus wt otoconia. We show that such up-regulation is specific to Sc1, and that stable transfection of Oc90 and Sc1 full-length expression constructs in NIH/3T3 cells indeed promotes matrix calcification. Analysis and modeling of Oc90 and Sc1 protein structures show common features that may be critical requirements for the otoconial matrix backbone protein. Such information will serve as the foundation for future regenerative purposes.
Collapse
Affiliation(s)
- Yinfang Xu
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | | | | | | | | | | |
Collapse
|
31
|
Yamakoshi Y, Nagano T, Hu JC, Yamakoshi F, Simmer JP. Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments. BMC BIOCHEMISTRY 2011; 12:6. [PMID: 21291557 PMCID: PMC3039539 DOI: 10.1186/1471-2091-12-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 02/03/2011] [Indexed: 01/04/2023]
Abstract
Background Dentin sialophosphoprotein (Dspp) is a multidomain, secreted protein that is critical for the formation of tooth dentin. Mutations in DSPP cause inherited dentin defects categorized as dentin dysplasia type II and dentinogenesis imperfecta type II and type III. Dentin sialoprotein (Dsp), the N-terminal domain of dentin sialophosphoprotein (Dspp), is a highly glycosylated proteoglycan, but little is known about the number, character, and attachment sites of its carbohydrate moieties. Results To identify its carbohydrate attachment sites we isolated Dsp from developing porcine molars and digested it with endoproteinase Glu-C or pronase, fractionated the digestion products, identified fractions containing glycosylated peptides using a phenol sulfuric acid assay, and characterized the glycopeptides by N-terminal sequencing, amino acid analyses, or LC/MSMS. To determine the average number of sialic acid attachments per N-glycosylation, we digested Dsp with glycopeptidase A, labeled the released N-glycosylations with 2-aminobenzoic acid, and quantified the moles of released glycosylations by comparison to labeled standards of known concentration. Sialic acid was released by sialidase digestion and quantified by measuring β-NADH reduction of pyruvic acid, which was generated stoichiometrically from sialic acid by aldolase. To determine its forms, sialic acid released by sialidase digestion was labeled with 1,2-diamino-4,5-methyleneoxybenzene (DMB) and compared to a DMB-labeled sialic acid reference panel by RP-HPLC. To determine the composition of Dsp glycosaminoglycan (GAG) attachments, we digested Dsp with chondroitinase ABC and compared the chromotagraphic profiles of the released disaccharides to commercial standards. N-glycosylations were identified at Asn37, Asn77, Asn136, Asn155, Asn161, and Asn176. Dsp averages one sialic acid per N-glycosylation, which is always in the form of N-acetylneuraminic acid. O-glycosylations were tentatively assigned at Thr200, Thr216 and Thr316. Porcine Dsp GAG attachments were found at Ser238 and Ser250 and were comprised of chondroitin 6-sulfate and chondroitin 4-sulfate in a ratio of 7 to 3, respectively. Conclusions The distribution of porcine Dsp posttranslational modifications indicate that porcine Dsp has an N-terminal domain with at least six N-glycosylations and a C-terminal domain with two GAG attachments and at least two O-glycosylations.
Collapse
Affiliation(s)
- Yasuo Yamakoshi
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Goldberg M, Kulkarni AB, Young M, Boskey A. Dentin: structure, composition and mineralization. Front Biosci (Elite Ed) 2011; 3:711-35. [PMID: 21196346 DOI: 10.2741/e281] [Citation(s) in RCA: 410] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We review firstly the specificities of the different types of dentin present in mammalian teeth. The outer layers include the mantle dentin, the Tomes' granular and the hyaline Hopewell-Smith's layers. Circumpulpal dentin forming the bulk of the tooth, comprises intertubular and peritubular dentin. In addition to physiological primary and secondary dentin formation, reactionary dentin is produced in response to pathological events. Secondly, we evaluate the role of odontoblasts in dentin formation, their implication in the synthesis and secretion of type I collagen fibrils and non-collagenous molecules. Thirdly, we study the composition and functions of dentin extracellular matrix (ECM) molecules implicated in dentinogenesis. As structural proteins they are mineralization promoters or inhibitors. They are also signaling molecules. Three different forms of dentinogenesis are identified: i) matrix vesicles are implicated in early dentin formation, ii) collagen and some proteoglycans are involved in the formation of predentin, further transformed into intertubular dentin, iii) the distal secretion of some non-collagenous ECM molecules and some serum proteins contribute to the formation of peritubular dentin.
Collapse
Affiliation(s)
- Michel Goldberg
- UMR-S 747, INSERM, Universite Paris Descartes, Paris, France.
| | | | | | | |
Collapse
|
34
|
Tsuchiya S, Simmer JP, Hu JCC, Richardson AS, Yamakoshi F, Yamakoshi Y. Astacin proteases cleave dentin sialophosphoprotein (Dspp) to generate dentin phosphoprotein (Dpp). J Bone Miner Res 2011; 26:220-8. [PMID: 20687161 PMCID: PMC3179315 DOI: 10.1002/jbmr.202] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dentin sialophosphoprotein (Dspp) is critical for proper dentin biomineralization because genetic defects in DSPP cause dentin dysplasia type II and dentinogenesis imperfecta types II and III. Dspp is processed by proteases into smaller subunits; the initial cleavage releases dentin phosphoprotein (Dpp). We incubated fluorescence resonance energy transfer (FRET) peptides containing the amino acid context of the Dpp cleavage site (YEFDGKSMQGDDPN, designated Dspp-FRET) or a mutant version of that context (YEFDGKSIEGDDPN, designated mutDspp-FRET) with BMP-1, MEP1A, MEP1B, MMP-2, MMP-8, MMP-9, MT1-MMP, MT3-MMP, Klk4, MMP-20, plasmin, or porcine Dpp and characterized the peptide cleavage products. Only BMP-1, MEP1A, and MEP1B cleaved Dspp-FRET at the G-D peptide bond that releases Dpp from Dspp in vivo. We isolated Dspp proteoglycan from dentin power and incubated it with the three enzymes that cleaved Dspp-FRET at the G-D bond. In each case, the released Dpp domain was isolated, and its N-terminus was characterized by Edman degradation. BMP-1 and MEP1A both cleaved native Dspp at the correct site to generate Dpp, making both these enzymes prime candidates for the protease that cleaves Dspp in vivo. MEP1B was able to degrade Dpp when the Dpp was at sufficiently high concentration to deplete free calcium ion concentration. Immunohistochemistry of developing porcine molars demonstrated that astacins are expressed by odontoblasts, a result that is consistent with RT-PCR analyses. We conclude that during odontogenesis, astacins in the predentin matrix cleave Dspp before the DDPN sequence at the N-terminus of Dpp to release Dpp from the parent Dspp protein.
Collapse
Affiliation(s)
- Shuhei Tsuchiya
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48108, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Two of the proteins found in significant quantity in the extracellular matrix (ECM) of dentin are dentin phosphoprotein (DPP) and dentin sialoprotein (DSP). DPP, the most abundant of the noncollagenous proteins (NCPs) in dentin is an unusually polyanionic protein, containing a large number of aspartic acids (Asp) and phosphoserines (Pse) in the repeating sequences of (Asp-Pse)(n). and (Asp-Pse-Pse)(n). The many negatively charged regions of DPP are thought to promote mineralization by binding calcium and presenting it to collagen fibers at the mineralization front during the formation of dentin. This purported role of DPP is supported by a sizeable pool of in vitro mineralization data showing that DPP is an important initiator and modulator for the formation and growth of hydroxyapatite (HA) crystals. Quite differently, DSP is a glycoprotein, with little or no phosphate. DPP and DSP are the cleavage products of dentin sialophosphoprotein (DSPP). Human and mouse genetic studies have demonstrated that mutations in, or knockout of, the Dspp gene result in mineralization defects in dentin and/or bone. The discoveries in the past 40 years with regard to DPP, DSP, and DSPP have greatly enhanced our understanding of biomineralization and set a new stage for future studies. In this review, we summarize the important and new developments made in the past four decades regarding the structure and regulation of the Dspp gene, the biochemical characteristics of DSPP, DPP, and DSP as well as the cell/tissue localizations and functions of these molecules.
Collapse
Affiliation(s)
| | | | - Chunlin Qin
- CORRESPONDING AUTHOR: Chunlin Qin, D.D.S., Ph.D. Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center; 3302 Gaston Ave. Room 400, Dallas, TX 75246, USA ; Phone: +1-214-828-8292; Fax: +1-214-874-4538.
| |
Collapse
|
36
|
Sun Y, Ma S, Zhou J, Yamoah AK, Feng JQ, Hinton RJ, Qin C. Distribution of small integrin-binding ligand, N-linked glycoproteins (SIBLING) in the articular cartilage of the rat femoral head. J Histochem Cytochem 2010; 58:1033-43. [PMID: 20679519 DOI: 10.1369/jhc.2010.956771] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The small integrin-binding ligand, N-linked glycoprotein (SIBLING) family is closely related to osteogenesis. Until recently, little was known about their existence in articular cartilage. In this study, we systematically evaluated the presence and distribution of four SIBLING family members in rat femoral head cartilage: dentin matrix protein 1 (DMP1), bone sialoprotein (BSP), osteopontin (OPN), and dentin sialophosphoprotein (DSPP). First, non-collagenous proteins were extracted and then separated by ion-exchange chromatography. Next, the protein extracts eluted by chromatography were analyzed by Stains-all staining and Western immunoblotting. IHC was used to assess the distribution of these four SIBLING family members in the femoral head cartilage. Both approaches showed that all the four SIBLING family members are expressed in the femoral head cartilage. IHC showed that SIBLING members are distributed in various locations throughout the articular cartilage. The NH₂-terminal fragments of DMP1, BSP, and OPN are present in the cells and in the extracellular matrix, whereas the COOH-terminal fragment of DMP1 and the NH₂-terminal fragment of DSPP are primarily intracellularly localized in the chondrocytes. The presence of the SIBLING family members in the rat femoral head cartilage suggests that they may play important roles in chondrogenesis.
Collapse
Affiliation(s)
- Yao Sun
- Dept. of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, TX 75246, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhu Q, Sun Y, Prasad M, Wang X, Yamoah AK, Li Y, Feng J, Qin C. Glycosaminoglycan chain of dentin sialoprotein proteoglycan. J Dent Res 2010; 89:808-12. [PMID: 20400719 DOI: 10.1177/0022034510366902] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) is processed into dentin sialoprotein (DSP) and dentin phosphoprotein. A molecular variant of rat DSP, referred to as "HMW-DSP", has been speculated to be a proteoglycan form of DSP. To determine if HMW-DSP is the proteoglycan form of DSP and to identify the glycosaminoglycan side-chain attachment site(s), we further characterized HMW-DSP. Chondroitinase ABC treatment reduced the migration rate for portions of rat HMW-DSP to the level of DSP. Disaccharide analysis showed that rat HMW-DSP contains glycosaminoglycan chains made of chondroitin-4-sulfate and has an average of 31-32 disaccharides/mol. These observations confirmed that HMW-DSP is the proteoglycan form of DSP (renamed "DSP-PG"). Edman degradation and mass spectrometric analyses of tryptic peptides from rat DSP-PG, along with substitution analyses of candidate Ser residues in mouse DSPP, confirmed that 2 glycosaminoglycan chains are attached to Ser(241) and Ser(253) in the rat, or Ser(242) and Ser(254) in the mouse DSPP sequence.
Collapse
Affiliation(s)
- Q Zhu
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang B, Sun Y, Chen L, Guan C, Guo L, Qin C. Expression and distribution of SIBLING proteins in the predentin/dentin and mandible of hyp mice. Oral Dis 2010; 16:453-64. [PMID: 20233318 DOI: 10.1111/j.1601-0825.2010.01656.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Human X-linked hypophosphatemia (XLH) and its murine homologue, Hyp are caused by inactivating mutations in PHEX gene. The protein encoded by PHEX gene is an endopeptidase whose physiological substrate(s) has not been identified. Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP), two members of the Small Integrin-Binding LIgand, N-linked Glycoprotein (SIBLING) family are proteolytically processed. It has been speculated that PHEX endopeptidase may be responsible for the proteolytic cleavage of DMP1 and DSPP. To test this hypothesis and to analyse the distribution of SIBLING proteins in the predentin/dentin complex and mandible of Hyp mice, we compared the expression of four SIBLING proteins, DMP1, DSPP, bone sialoprotein (BSP) and osteopontin (OPN) between Hyp and wild-type mice. METHODS These SIBLING proteins were analysed by protein chemistry and immunohistochemistry. RESULTS (1) Dentin matrix protein 1 and DSPP fragments are present in the extracts of Hyp predentin/dentin and bone; (2) the level of DMP1 proteoglycan form, BSP and OPN is elevated in the Hyp bone. CONCLUSIONS The PHEX protein is not the enzyme responsible for the proteolytic processing of DMP1 and DSPP. The altered distribution of SIBLING proteins may be involved in the pathogenesis of bone and dentin defects in Hyp and XLH.
Collapse
Affiliation(s)
- B Zhang
- Department of Oral and Maxillofacial Surgery, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | | | | | | | | | | |
Collapse
|
39
|
Sun Y, Gandhi V, Prasad M, Yu W, Wang X, Zhu Q, Feng JQ, Hinton RJ, Qin C. Distribution of small integrin-binding ligand, N-linked glycoproteins (SIBLING) in the condylar cartilage of rat mandible. Int J Oral Maxillofac Surg 2010; 39:272-81. [PMID: 20097540 DOI: 10.1016/j.ijom.2009.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/22/2009] [Accepted: 12/22/2009] [Indexed: 02/04/2023]
Abstract
The Small Integrin-Binding LIgand, N-linked Glycoprotein (SIBLING) family is one category of non-collagenous proteins closely related to osteogenesis. In this study, the authors systematically evaluated the presence and distribution of four SIBLING family members, dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), bone sialoprotein (BSP) and osteopontin (OPN), in rat mandibular condylar cartilage using protein chemistry and immunohistochemistry. For protein chemistry, SIBLING proteins in the dissected condylar cartilage were extracted with 4M guanidium-HCl, separated by ion-exchange chromatography, and analyzed by Western immunoblotting. Immunohistochemistry was employed to assess the distribution of these four SIBLING proteins in the condylar cartilage of 2-, 5- and 8-week-old rats. Results from both approaches showed that all four members are expressed in the condylar cartilage. DSPP, unlike that observed in dentin and bone, exists as a full-length form (uncleaved) in the condylar cartilage. The NH(2)-terminal fragment of DMP1 is mainly detected in the matrix of the cartilage while the COOH-terminal fragment is primarily localized in the nuclei of cells in the chondroblastic and hypertrophic layers. The data obtained in this investigation provide clues about the potential roles of these SIBLING proteins in chondrogenesis.
Collapse
Affiliation(s)
- Y Sun
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A & M University System Health Science Center, Dallas, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Dentin sialophosphoprotein (DSPP) is critical for proper mineralization of tooth dentin, and understanding its structure and function should yield important insights into how dentin biomineralization is controlled. During the recent six years, I have focused on characterizing DSPP-derived proteins isolated from developing porcine teeth. Porcine DSPP is expressed and secreted by odontoblasts and is processed by BMP-1, MMP-20 and MMP-2 into three main parts: dentin sialoprotein (DSP), dentin glycoprotein (DGP), and dentin phosphoprotein (DPP). We have learned that DSP is a proteoglycan that forms covalent dimers, DGP is a phosphorylated glycoprotein, and DPP is a highly phosphorylated intrinsically disordered protein that shows extensive length polymorphisms due to the genetic heterogeneity of its coding region.
Collapse
Affiliation(s)
- Yasuo Yamakoshi
- Department of Biologic and Materials Sciences, University of Michigan Dental Research Lab, 1210 Eisenhower Place, Ann Arbor, MI 48108, Tel: 734-975-9358 (Office); Tel: 734-975-9326 (Lab); 734-975-9329 (Fax),
| |
Collapse
|
41
|
Suzuki S, Sreenath T, Haruyama N, Honeycutt C, Terse A, Cho A, Kohler T, Müller R, Goldberg M, Kulkarni AB. Dentin sialoprotein and dentin phosphoprotein have distinct roles in dentin mineralization. Matrix Biol 2009; 28:221-9. [PMID: 19348940 DOI: 10.1016/j.matbio.2009.03.006] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/17/2009] [Accepted: 03/25/2009] [Indexed: 10/20/2022]
Abstract
Dentin sialophosphoprotein (DSPP), a major non-collagenous matrix protein of odontoblasts, is proteolytically cleaved into dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). Our previous studies revealed that DSPP null mice display a phenotype similar to human autosomal dominant dentinogenesis imperfecta, in which teeth have widened predentin and irregular dentin mineralization resulting in sporadic unmineralized areas in dentin and frequent pulp exposure. Earlier in vitro studies suggested that DPP, but not DSP, plays a significant role in initiation and maturation of dentin mineralization. However, the precise in vivo roles of DSP and DPP are far from clear. Here we report the generation of DPPcKO mice, in which only DSP is expressed in a DSPP null background, resulting in a conditional DPP knockout. DPPcKO teeth show a partial rescue of the DSPP null phenotype with the restored predentin width, an absence of irregular unmineralized areas in dentin, and less frequent pulp exposure. Micro-computed tomography (micro-CT) analysis of DPPcKO molars further confirmed this partial rescue with a significant recovery in the dentin volume, but not in the dentin mineral density. These results indicate distinct roles of DSP and DPP in dentin mineralization, with DSP regulating initiation of dentin mineralization, and DPP being involved in the maturation of mineralized dentin.
Collapse
Affiliation(s)
- Shigeki Suzuki
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health/DHHS, 30 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Arany S, Koyota S, Sugiyama T. Nerve growth factor promotes differentiation of odontoblast-like cells. J Cell Biochem 2009; 106:539-45. [DOI: 10.1002/jcb.22006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
|
44
|
George A, Veis A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev 2008; 108:4670-93. [PMID: 18831570 PMCID: PMC2748976 DOI: 10.1021/cr0782729] [Citation(s) in RCA: 499] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anne George
- Department of Oral Biology, Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
45
|
Yamakoshi Y, Lu Y, Hu JCC, Kim JW, Iwata T, Kobayashi K, Nagano T, Yamakoshi F, Hu Y, Fukae M, Simmer JP. Porcine dentin sialophosphoprotein: length polymorphisms, glycosylation, phosphorylation, and stability. J Biol Chem 2008; 283:14835-44. [PMID: 18359767 PMCID: PMC3762552 DOI: 10.1074/jbc.m800633200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/13/2008] [Indexed: 11/06/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) is critical for proper mineralization of tooth dentin, and mutations in DSPP cause inherited dentin defects. Dentin phosphoprotein (DPP) is the C-terminal cleavage product of DSPP that binds collagen and induces intrafibrillar mineralization. We isolated DPP from individual pigs and determined that its N-terminal and C-terminal domains are glycosylated and that DPP averages 155 phosphates per molecule. Porcine DPP is unstable at low pH and high temperatures, and complexing with collagen improves its stability. Surprisingly, we observed DPP size variations on SDS-PAGE for DPP isolated from individual pigs. These variations are not caused by differences in proteolytic processing or degrees of phosphorylation or glycosylation, but rather to allelic variations in Dspp. Characterization of the DPP coding region identified 4 allelic variants. Among the 4 alleles, 27 sequence variations were identified, including 16 length polymorphisms ranging from 3 to 63 nucleotides. None of the length variations shifted the reading frame, and all localized to the highly redundant region of the DPP code. The 4 alleles encode DPP domains having 551, 575, 589, or 594 amino acids and completely explain the DPP size variations. DPP length variations are polymorphic and are not associated with dentin defects.
Collapse
Affiliation(s)
- Yasuo Yamakoshi
- From the Departments of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48108
| | - Yuhe Lu
- From the Departments of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48108
| | - Jan C.-C. Hu
- Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, Michigan 48108
| | - Jung-Wook Kim
- the Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea 110-768
| | - Takanori Iwata
- the Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo 162-8666, Japan, and
| | - Kazuyuki Kobayashi
- the Departments of Periodontics and Endodontics, Tsurumi University, Yokohama 230-8501, Japan
| | - Takatoshi Nagano
- From the Departments of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48108
- the Departments of Periodontics and Endodontics, Tsurumi University, Yokohama 230-8501, Japan
| | - Fumiko Yamakoshi
- Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, Michigan 48108
| | - Yuanyuan Hu
- Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, Michigan 48108
| | - Makoto Fukae
- Biochemistry, School of Dental Medicine, Tsurumi University, Yokohama 230-8501, Japan
| | - James P. Simmer
- From the Departments of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48108
| |
Collapse
|
46
|
Huang B, Sun Y, Maciejewska I, Qin D, Peng T, McIntyre B, Wygant J, Butler WT, Qin C. Distribution of SIBLING proteins in the organic and inorganic phases of rat dentin and bone. Eur J Oral Sci 2008; 116:104-12. [PMID: 18353003 DOI: 10.1111/j.1600-0722.2008.00522.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The SIBLING protein family is a group of non-collagenous proteins (NCPs) that includes dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), bone sialoprotein (BSP), and osteopontin (OPN). In the present study, we compared these four proteins in different phases of rat dentin and bone. First, we extracted NCPs in the unmineralized matrices and cellular compartments using guanidium-HCl (G1). Second, we extracted NCPs closely associated with hydroxyapatite using an EDTA solution (E). Last, we extracted the remaining NCPs again with guanidium-HCl (G2). Each fraction of Q-Sepharose ion-exchange chromatography was analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Stains-All stain, and with western immunoblotting. In dentin, the NH(2)-terminal fragment of DSPP and its proteoglycan form were primarily present in the G1 extract, whereas the COOH-terminal fragment of DSPP was present exclusively in the E extract. The processed NH(2)-terminal fragment of DMP1 was present in G1 and E extracts, whereas the COOH-terminal fragment of DMP1 existed mainly in the E extract. Bone sialoprotein was present in all three extracts of dentin and bone, whereas OPN was present only in the G1 and E extracts of bone. The difference in the distribution of the SIBLING proteins between organic and inorganic phases supports the belief that these molecular species play different roles in dentinogenesis and osteogenesis.
Collapse
Affiliation(s)
- Bingzhen Huang
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A & M University System Health Science Center, Dallas, TX 75246, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Zhang X, Chen L, Liu J, Zhao Z, Qu E, Wang X, Chang W, Xu C, Wang QK, Liu M. A novel DSPP mutation is associated with type II dentinogenesis imperfecta in a Chinese family. BMC MEDICAL GENETICS 2007; 8:52. [PMID: 17686168 PMCID: PMC1995191 DOI: 10.1186/1471-2350-8-52] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 08/08/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hereditary defects of tooth dentin are classified into two main groups: dentin dysplasia (DD) (types I and II) and dentinogenesis imperfecta (DGI) (types I, II, and III). Type II DGI is one of the most common tooth defects with an autosomal dominant mode of inheritance. One disease-causing gene, the dentin sialophosphoprotein (DSPP) gene, has been reported for type II DGI. METHODS In this study, we characterized a four-generation Chinese family with type II DGI that consists of 18 living family members, including 8 affected individuals. Linkage analysis with polymorphic markers D4S1534 and D4S414 that span the DSPP gene showed that the family is linked to DSPP. All five exons and exon-intron boundaries of DSPP were sequenced in members of type II DGI family. RESULTS Direct DNA sequence analysis identified a novel mutation (c.49C-->T, p.Pro17Ser) in exon 1 of the DSPP gene. The mutation spot, the Pro17 residue, is the second amino acid of the mature DSP protein, and highly conserved during evolution. The mutation was identified in all affected individuals, but not in normal family members and 100 controls. CONCLUSION These results suggest that mutation p.Pro17Ser causes type II DGI in the Chinese family. This study identifies a novel mutation in the DSPP gene, and expands the spectrum of mutations that cause DGI.
Collapse
Affiliation(s)
- Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Lanying Chen
- Department of Bioengineering, Henan Urban Engineering College, Pingdingshan, 467001, China
| | - Jingyu Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhen Zhao
- Department of Bioengineering, Henan Urban Engineering College, Pingdingshan, 467001, China
| | - Erjun Qu
- Department of Bioengineering, Henan Urban Engineering College, Pingdingshan, 467001, China
| | - Xiaotao Wang
- Department of Bioengineering, Henan Urban Engineering College, Pingdingshan, 467001, China
| | - Wei Chang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
49
|
Iwata T, Yamakoshi Y, Simmer JP, Ishikawa I, Hu JCC. Establishment of porcine pulp-derived cell lines and expression of recombinant dentin sialoprotein and recombinant dentin matrix protein-1. Eur J Oral Sci 2007; 115:48-56. [PMID: 17305716 DOI: 10.1111/j.1600-0722.2007.00426.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The major non-collagenous proteins in dentin have extensive post-translational modifications (PTMs) that appear to be odontoblast-specific, so expression of recombinant dentin proteins in other cell types does not achieve the in vivo pattern of PTMs. We established cell lines from developing porcine dental papillae and used them to express recombinant dentin sialoprotein (DSP) and dentin matrix protein-1 (DMP1). Pulp cells were immortalized with pSV3-neo and clonally selected. Cell lines were characterized by reverse transcruption-polymerase chain reaction (RT-PCR) and assayed for alkaline phosphatase activity and mineralized nodule formation. One of the five cell lines (P4-2) exhibited an odontoblastic phenotype, as determined by expression of tooth-specific markers, response to cytokines, and ability to form mineralized nodules. DSP and DMP1 expression constructs were transiently transfected into various cell lines. DSP, expressed by P4-2 cells, contained chondroitin 6-sulfate, which is a defining modification of the DSP proteoglycan. DMP1 was secreted and cleaved by proteases, even in human kidney 293 cells, which normally do not express DMP1, demonstrating susceptibility to non-specific proteolysis. Both recombinant proteins enhanced P4-2 cell attachment in a dose-dependent manner. We conclude that we have immortalized porcine odontoblast-like cells which express recombinant dentin extracellular matrix components with post-translational modifications that closely resemble those produced in vivo.
Collapse
Affiliation(s)
- Takanori Iwata
- University of Michigan Dental Research Laboratory, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
50
|
Yamakoshi Y, Hu JCC, Iwata T, Kobayashi K, Fukae M, Simmer JP. Dentin sialophosphoprotein is processed by MMP-2 and MMP-20 in vitro and in vivo. J Biol Chem 2006; 281:38235-43. [PMID: 17046814 DOI: 10.1074/jbc.m607767200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) is a major secretory product of odontoblasts and is critical for proper tooth dentin formation. During dentinogenesis, DSPP is proteolytically cleaved into smaller subunits. These cleavages are proposed activation steps, and failure to make these cleavages is a potential cause of developmental tooth defects. We tested the hypothesis that dentin-resident matrix metalloproteinases catalyze the cleavages that process DSPP. We defined the exact DSPP cleavages that are catalyzed by proteases during crown formation by isolating DSPP-derived proteins from developing porcine molars and characterizing their N-terminal sequences and apparent size on SDS-PAGE and Western blots. The in vivo DSPP cleavage sites were on the N-terminal sides of Thr(200), Ser(330), Val(353), Leu(360), Ile(362), Ser(377), Ser(408), and Asp(458). The initial DSPP cleavage is between dentin glycoprotein (DGP) and dentin phosphoprotein (DPP), generating dentin sialoprotein (DSP)/DGP and DPP. Gelatin and casein zymograms identified MMP-2, MMP-20, and KLK4 in the dentin extracts. MMP-2 and MMP-20 were purified from over 150 g of porcine dentin powder and incubated with DSP-DGP and DPP. These enzymes show no activity in further cleaving DPP. MMP-20 cleaves DSP-DGP to generate DSP and DGP. MMP-20 also cleaves DSP at multiple sites, releasing N-terminal DSP cleavage products ranging in size from 25 to 38 kDa. MMP-2 makes multiple cleavages near the DSP C terminus, releasing larger forms of DGP, or "extended DGPs." Exact correspondence between DSPP cleavage sites that occur in vivo and those generated in vitro demonstrates that MMP-2 and MMP-20 process DSPP into smaller subunits in the dentin matrix during odontogenesis.
Collapse
Affiliation(s)
- Yasuo Yamakoshi
- Departments of Biologic and Materials Sciences, University of Michigan Dental Research Laboratory, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
| | | | | | | | | | | |
Collapse
|