1
|
Winter AJ, de Courcy-Ireland F, Phillips AP, Barker JM, Bakar NA, Akter N, Wang L, Song Z, Crosby J, Williams C, Willis CL, Crump MP. An Integrated Module Performs Selective 'Online' Epoxidation in the Biosynthesis of the Antibiotic Mupirocin. Angew Chem Int Ed Engl 2024:e202410502. [PMID: 39105412 DOI: 10.1002/anie.202410502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
The delineation of the complex biosynthesis of the potent antibiotic mupirocin, which consists of a mixture of pseudomonic acids (PAs) isolated from Pseudomonas fluorescens NCIMB 10586, presents significant challenges, and the timing and mechanisms of several key transformations remain elusive. Particularly intriguing are the steps that process the linear backbone from the initial polyketide assembly phase to generate the first cyclic intermediate PA-B. These include epoxidation as well as incorporation of the tetrahydropyran (THP) ring and fatty acid side chain required for biological activity. Herein, we show that the mini-module MmpE performs a rare online (ACP-substrate) epoxidation and is integrated ('in-cis') into the polyketide synthase via a docking domain. A linear polyketide fragment with six asymmetric centres was synthesised using a convergent approach and used to demonstrate substrate flux via an atypical KS0 and a previously unannotated ACP (MmpE_ACP). MmpE_ACP-bound synthetic substrates were critical in demonstrating successful epoxidation in vitro by the purified MmpE oxidoreductase domain. Alongside feeding studies, these results confirm the timing as well as chain length dependence of this selective epoxidation. These mechanistic studies pinpoint the location and nature of the polyketide substrate prior to the key formation of the THP ring and esterification that generate PA-B.
Collapse
Affiliation(s)
- Ashley J Winter
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
| | | | | | - Joseph M Barker
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
| | - Nurfarhanim A Bakar
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
- Department of Engineering and Sciences, School of Liberal Arts and Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Nahida Akter
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
- Department of Chemistry, University of Barisal, 8200, Barisal, Bangladesh
| | - Luoyi Wang
- Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhongshu Song
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
| | - John Crosby
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
| | | | | | - Matthew P Crump
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
| |
Collapse
|
2
|
Wennström M, Schultz N, Gallardo PM, Serrano GE, Beach TG, Bose S, Hansson O. The Relationship between p-tau217, p-tau231, and p-tau205 in the Human Brain Is Affected by the Cellular Environment and Alzheimer's Disease Pathology. Cells 2024; 13:331. [PMID: 38391945 PMCID: PMC10887205 DOI: 10.3390/cells13040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
The levels of p-tau217 and p-tau231 in cerebrospinal fluid (CSF) are associated with early amyloid beta (Aß) changes in the brain, while the CSF levels of p-tau205 are foremost related to tau pathology in the later stages of the disease. To investigate if the three p-tau variants are found to the same degree in different tau structures and if their co-localization is affected by the diagnosis and presence of Aß plaques, we immunostained sections of the entorhinal cortex (EC) and inferior temporal gyrus (ITG) from non-demented controls (NC), patients with Alzheimer's disease (AD), and primary age-related tauopathy (PART) against p-tau217, p-tau231, and p-tau205 together with Methoxi-X04. An analysis using confocal microscopy showed that the co-localization variable, the Pearson correlation coefficient (PCC), was significantly higher between p-tau231 and p-tau205 in neurofibrillary tangles compared to neuropil threads and dystrophic neurites in plaques. The PCC value between all three p-tau variants in the neuropil threads was significantly lower in the ECs of patients with AD compared to the NC and in the ITGs of patients with AD, with a high Aß load compared to PART. The lowered value was associated with proportionally higher amounts of non-colocalized p-tau231 and p-tau217 compared to p-tau205, and the PCC values were negatively correlated with Aß and the tangle loads in patients with AD, but positively correlated with tangles in PART. These results suggest that the proportion of and co-localization between p-tau217, p-tau231, and p-tau205 are dependent on cellular localization and are altered in response to AD pathology in a spatial-temporal manner.
Collapse
Affiliation(s)
- Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden; (N.S.); (P.M.G.)
| | - Nina Schultz
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden; (N.S.); (P.M.G.)
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 21146 Malmö, Sweden;
| | - Paula Mille Gallardo
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden; (N.S.); (P.M.G.)
| | | | | | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Suchira Bose
- Eli Lilly and Company, Arlington Square West, Bracknell RG12 1PU, UK;
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 21146 Malmö, Sweden;
- Memory Clinic, Skåne University Hospital, 20205 Malmö, Sweden
| |
Collapse
|
3
|
Decrypting the programming of β-methylation in virginiamycin M biosynthesis. Nat Commun 2023; 14:1327. [PMID: 36899003 PMCID: PMC10006238 DOI: 10.1038/s41467-023-36974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
During biosynthesis by multi-modular trans-AT polyketide synthases, polyketide structural space can be expanded by conversion of initially-formed electrophilic β-ketones into β-alkyl groups. These multi-step transformations are catalysed by 3-hydroxy-3-methylgluratryl synthase cassettes of enzymes. While mechanistic aspects of these reactions have been delineated, little information is available concerning how the cassettes select the specific polyketide intermediate(s) to target. Here we use integrative structural biology to identify the basis for substrate choice in module 5 of the virginiamycin M trans-AT polyketide synthase. Additionally, we show in vitro that module 7, at minimum, is a potential additional site for β-methylation. Indeed, analysis by HPLC-MS coupled with isotopic labelling and pathway inactivation identifies a metabolite bearing a second β-methyl at the expected position. Collectively, our results demonstrate that several control mechanisms acting in concert underpin β-branching programming. Furthermore, variations in this control - whether natural or by design - open up avenues for diversifying polyketide structures towards high-value derivatives.
Collapse
|
4
|
Winter AJ, Rowe MT, Weir ANM, Akter N, Mbatha SZ, Walker PD, Williams C, Song Z, Race PR, Willis CL, Crump MP. Programmed Iteration Controls the Assembly of the Nonanoic Acid Side Chain of the Antibiotic Mupirocin. Angew Chem Int Ed Engl 2022; 61:e202212393. [PMID: 36227272 PMCID: PMC10098928 DOI: 10.1002/anie.202212393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/12/2022]
Abstract
Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol).
Collapse
Affiliation(s)
- Ashley J Winter
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Matthew T Rowe
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Angus N M Weir
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Nahida Akter
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | - Paul D Walker
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | - Zhongshu Song
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Paul R Race
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Matthew P Crump
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| |
Collapse
|
5
|
Winter AJ, Rowe MT, Weir ANM, Akter N, Mbatha SZ, Walker PD, Williams C, Song Z, Race PR, Willis CL, Crump MP. Programmed Iteration Controls the Assembly of the Nonanoic Acid Side Chain of the Antibiotic Mupirocin. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202212393. [PMID: 38505625 PMCID: PMC10947060 DOI: 10.1002/ange.202212393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/11/2022]
Abstract
Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol).
Collapse
Affiliation(s)
| | | | | | - Nahida Akter
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | | | - Paul D. Walker
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | | | - Zhongshu Song
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Paul R. Race
- School of BiochemistryUniversity of BristolBristolBS8 1TDUK
| | | | | |
Collapse
|
6
|
Chen L, Wei X, Matsuda Y. Depside Bond Formation by the Starter-Unit Acyltransferase Domain of a Fungal Polyketide Synthase. J Am Chem Soc 2022; 144:19225-19230. [PMID: 36223511 DOI: 10.1021/jacs.2c08585] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Depsides are polyphenolic molecules comprising two or more phenolic acid derivatives linked by an ester bond, which is called a depside bond in these molecules. Despite more than a century of intensive research on depsides, the biosynthetic mechanism of depside bond formation remains unclear. In this study, we discovered a polyketide synthase, DrcA, from the fungus Aspergillus duricaulis CBS 481.65 and found that DrcA synthesizes CJ-20,557 (1), a heterodimeric depside composed of 3-methylorsellinic acid and 3,5-dimethylorsellinic acid. Moreover, we determined that depside bond formation is catalyzed by the starter-unit acyltransferase (SAT) domain of DrcA. Remarkably, this is a previously undescribed form of SAT domain chemistry. Further investigation revealed that 1 is transformed into duricamidepside (2), a depside-amino acid conjugate, by the single-module nonribosomal peptide synthetase DrcB.
Collapse
Affiliation(s)
- Lin Chen
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Xingxing Wei
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
7
|
Thongkawphueak T, Winter AJ, Williams C, Maple HJ, Soontaranon S, Kaewhan C, Campopiano DJ, Crump MP, Wattana-Amorn P. Solution Structure and Conformational Dynamics of a Doublet Acyl Carrier Protein from Prodigiosin Biosynthesis. Biochemistry 2021; 60:219-230. [PMID: 33416314 DOI: 10.1021/acs.biochem.0c00830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The acyl carrier protein (ACP) is an indispensable component of both fatty acid and polyketide synthases and is primarily responsible for delivering acyl intermediates to enzymatic partners. At present, increasing numbers of multidomain ACPs have been discovered with roles in molecular recognition of trans-acting enzymatic partners as well as increasing metabolic flux. Further structural information is required to provide insight into their function, yet to date, the only high-resolution structure of this class to be determined is that of the doublet ACP (two continuous ACP domains) from mupirocin synthase. Here we report the solution nuclear magnetic resonance (NMR) structure of the doublet ACP domains from PigH (PigH ACP1-ACP2), which is an enzyme that catalyzes the formation of the bipyrrolic intermediate of prodigiosin, a potent anticancer compound with a variety of biological activities. The PigH ACP1-ACP2 structure shows each ACP domain consists of three conserved helices connected by a linker that is partially restricted by interactions with the ACP1 domain. Analysis of the holo (4'-phosphopantetheine, 4'-PP) form of PigH ACP1-ACP2 by NMR revealed conformational exchange found predominantly in the ACP2 domain reflecting the inherent plasticity of this ACP. Furthermore, ensemble models obtained from SAXS data reveal two distinct conformers, bent and extended, of both apo (unmodified) and holo PigH ACP1-ACP2 mediated by the central linker. The bent conformer appears to be a result of linker-ACP1 interactions detected by NMR and might be important for intradomain communication during the biosynthesis. These results provide new insights into the behavior of the interdomain linker of multiple ACP domains that may modulate protein-protein interactions. This is likely to become an increasingly important consideration for metabolic engineering in prodigiosin and other related biosynthetic pathways.
Collapse
Affiliation(s)
- Thitapa Thongkawphueak
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Ashley J Winter
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Christopher Williams
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.,BrisSynBio, Centre for Synthetic Biology Research, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, U.K
| | - Hannah J Maple
- School of Social and Community Medicine, University of Bristol, Oakfield House, Bristol BS8 2BN, U.K
| | - Siriwat Soontaranon
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Chonthicha Kaewhan
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Dominic J Campopiano
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.,BrisSynBio, Centre for Synthetic Biology Research, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, U.K
| | - Pakorn Wattana-Amorn
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
8
|
Walker PD, Weir ANM, Willis CL, Crump MP. Polyketide β-branching: diversity, mechanism and selectivity. Nat Prod Rep 2021; 38:723-756. [PMID: 33057534 DOI: 10.1039/d0np00045k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2008 to August 2020 Polyketides are a family of natural products constructed from simple building blocks to generate a diverse range of often complex chemical structures with biological activities of both pharmaceutical and agrochemical importance. Their biosynthesis is controlled by polyketide synthases (PKSs) which catalyse the condensation of thioesters to assemble a functionalised linear carbon chain. Alkyl-branches may be installed at the nucleophilic α- or electrophilic β-carbon of the growing chain. Polyketide β-branching is a fascinating biosynthetic modification that allows for the conversion of a β-ketone into a β-alkyl group or functionalised side-chain. The overall transformation is catalysed by a multi-protein 3-hydroxy-3-methylglutaryl synthase (HMGS) cassette and is reminiscent of the mevalonate pathway in terpene biosynthesis. The first step most commonly involves the aldol addition of acetate to the electrophilic carbon of the β-ketothioester catalysed by a 3-hydroxy-3-methylglutaryl synthase (HMGS). Subsequent dehydration and decarboxylation selectively generates either α,β- or β,γ-unsaturated β-alkyl branches which may be further modified. This review covers 2008 to August 2020 and summarises the diversity of β-branch incorporation and the mechanistic details of each catalytic step. This is extended to discussion of polyketides containing multiple β-branches and the selectivity exerted by the PKS to ensure β-branching fidelity. Finally, the application of HMGS in data mining, additional β-branching mechanisms and current knowledge of the role of β-branches in this important class of biologically active natural products is discussed.
Collapse
Affiliation(s)
- P D Walker
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - A N M Weir
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - C L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - M P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
9
|
Artificial covalent linkage of bacterial acyl carrier proteins for fatty acid production. Sci Rep 2019; 9:16011. [PMID: 31690733 PMCID: PMC6831569 DOI: 10.1038/s41598-019-52344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/10/2019] [Indexed: 11/23/2022] Open
Abstract
Acyl carrier proteins (ACPs) are essential to the production of fatty acids. In some species of marine bacteria, ACPs are arranged into tandem repeats joined by peptide linkers, an arrangement that results in high fatty acid yields. By contrast, Escherichia coli, a relatively low producer of fatty acids, uses a single-domain ACP. In this work, we have engineered the native E. coli ACP into tandem di- and tri-domain constructs joined by a naturally occurring peptide linker from the PUFA synthase of Photobacterium profundum. The size of these tandem fused ACPs was determined by size exclusion chromatography to be higher (21 kDa, 36 kDa and 141 kDa) than expected based on the amino acid sequence (12 kDa, 24 kDa and 37 kDa, respectively) suggesting the formation of a flexible extended conformation. Structural studies using small-angle X-ray scattering (SAXS), confirmed this conformational flexibility. The thermal stability for the di- and tri-domain constructs was similar to that of the unfused ACP, indicating a lack of interaction between domains. Lastly, E. coli cultures harboring tandem ACPs produced up to 1.6 times more fatty acids than wild-type ACP, demonstrating the viability of ACP fusion as a method to enhance fatty acid yield in bacteria.
Collapse
|
10
|
Dodge GJ, Maloney FP, Smith JL. Protein-protein interactions in "cis-AT" polyketide synthases. Nat Prod Rep 2018; 35:1082-1096. [PMID: 30188553 PMCID: PMC6207950 DOI: 10.1039/c8np00058a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to the end of 2018 Polyketides are a valuable source of bioactive and clinically important molecules. The biosynthesis of these chemically complex molecules has led to the discovery of equally complex polyketide synthase (PKS) pathways. Crystallography has yielded snapshots of individual catalytic domains, di-domains, and multi-domains from a variety of PKS megasynthases, and cryo-EM studies have provided initial views of a PKS module in a series of defined biochemical states. Here, we review the structural and biochemical results that shed light on the protein-protein interactions critical to catalysis by PKS systems with an embedded acyltransferase. Interactions include those that occur both within and between PKS modules, as well as with accessory enzymes.
Collapse
Affiliation(s)
- Greg J Dodge
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA 48109.
| | | | | |
Collapse
|
11
|
A comprehensive catalogue of polyketide synthase gene clusters in lichenizing fungi. J Ind Microbiol Biotechnol 2018; 45:1067-1081. [PMID: 30206732 DOI: 10.1007/s10295-018-2080-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
Abstract
Lichens are fungi that form symbiotic partnerships with algae. Although lichens produce diverse polyketides, difficulties in establishing and maintaining lichen cultures have prohibited detailed studies of their biosynthetic pathways. Creative, albeit non-definitive, methods have been developed to assign function to biosynthetic gene clusters in lieu of techniques such as gene knockout and heterologous expressions that are commonly applied to easily cultivatable organisms. We review a total of 81 completely sequenced polyketide synthase (PKS) genes from lichenizing fungi, comprising to our best efforts all complete and reported PKS genes in lichenizing fungi to date. This review provides an overview of the approaches used to locate and sequence PKS genes in lichen genomes, current approaches to assign function to lichen PKS gene clusters, and what polyketides are proposed to be biosynthesized by these PKS. We conclude with remarks on prospects for genomics-based natural products discovery in lichens. We hope that this review will serve as a guide to ongoing research efforts on polyketide biosynthesis in lichenizing fungi.
Collapse
|
12
|
Bertrand RL, Abdel-Hameed M, Sorensen JL. Lichen Biosynthetic Gene Clusters. Part I. Genome Sequencing Reveals a Rich Biosynthetic Potential. JOURNAL OF NATURAL PRODUCTS 2018; 81:723-731. [PMID: 29485276 DOI: 10.1021/acs.jnatprod.7b00769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lichens are symbionts of fungi and algae that produce diverse secondary metabolites with useful properties. Little is known of lichen natural product biosynthesis because of the challenges of working with lichenizing fungi. We describe the first attempt to comprehensively profile the genetic secondary metabolome of a lichenizing fungus. An Illumina platform combined with the Antibiotics and Secondary Metabolites Analysis Shell (FungiSMASH, version 4.0) was used to sequence and annotate assembled contigs of the fungal partner of Cladonia uncialis. Up to 48 putative gene clusters are described comprising type I and type III polyketide synthases (PKS), nonribosomal peptide synthetases (NRPS), hybrid PKS-NRPS, and terpene synthases. The number of gene clusters revealed by this work dwarfs the number of known secondary metabolites from C. uncialis, suggesting that lichenizing fungi have an unexplored biosynthetic potential.
Collapse
Affiliation(s)
- Robert L Bertrand
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Mona Abdel-Hameed
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - John L Sorensen
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| |
Collapse
|
13
|
Vander Wood DA, Keatinge-Clay AT. The modules of trans-acyltransferase assembly lines redefined with a central acyl carrier protein. Proteins 2018. [PMID: 29524261 DOI: 10.1002/prot.25493] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Here, the term "module" is redefined for trans-acyltransferase (trans-AT) assembly lines to agree with how its domains cooperate and evolutionarily co-migrate. The key domain in both the polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) modules of assembly lines is the acyl carrier protein (ACP). ACPs not only relay growing acyl chains through the assembly line but also collaborate with enzymes in modules, both in cis and in trans, to add a specific chemical moiety. A ketosynthase (KS) downstream of ACP often plays the role of gatekeeper, ensuring that only a single intermediate generated by the enzymes of a module is passed downstream. Bioinformatic analysis of 526 ACPs from 33 characterized trans-AT assembly lines reveals ACPs from the same module type generally clade together, reflective of the co-evolution of these domains with their cognate enzymes. While KSs downstream of ACPs from the same module type generally also clade together, KSs upstream of ACPs do not-in disagreement with the traditional definition of a module. Beyond nomenclature, the presented analysis impacts our understanding of module function, the evolution of assembly lines, pathway prediction, and assembly line engineering.
Collapse
Affiliation(s)
- Drew A Vander Wood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
14
|
The Swinholide Biosynthesis Gene Cluster from a Terrestrial Cyanobacterium, Nostoc sp. Strain UHCC 0450. Appl Environ Microbiol 2018; 84:AEM.02321-17. [PMID: 29150506 PMCID: PMC5772238 DOI: 10.1128/aem.02321-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/03/2017] [Indexed: 12/02/2022] Open
Abstract
Swinholides are 42-carbon ring polyketides with a 2-fold axis of symmetry. They are potent cytotoxins that disrupt the actin cytoskeleton. Swinholides were discovered from the marine sponge Theonella sp. and were long suspected to be produced by symbiotic bacteria. Misakinolide, a structural variant of swinholide, was recently demonstrated to be the product of a symbiotic heterotrophic proteobacterium. Here, we report the production of swinholide A by an axenic strain of the terrestrial cyanobacterium Nostoc sp. strain UHCC 0450. We located the 85-kb trans-AT polyketide synthase (PKS) swinholide biosynthesis gene cluster from a draft genome of Nostoc sp. UHCC 0450. The swinholide and misakinolide biosynthesis gene clusters share an almost identical order of catalytic domains, with 85% nucleotide sequence identity, and they group together in phylogenetic analysis. Our results resolve speculation around the true producer of swinholides and demonstrate that bacteria belonging to two distantly related phyla both produce structural variants of the same natural product. In addition, we described a biosynthesis cluster from Anabaena sp. strain UHCC 0451 for the synthesis of the cytotoxic and antifungal scytophycin. All of these biosynthesis gene clusters were closely related to each other and created a group of cytotoxic macrolide compounds produced by trans-AT PKSs of cyanobacteria and proteobacteria. IMPORTANCE Many of the drugs in use today originate from natural products. New candidate compounds for drug development are needed due to increased drug resistance. An increased knowledge of the biosynthesis of bioactive compounds can be used to aid chemical synthesis to produce novel drugs. Here, we show that a terrestrial axenic culture of Nostoc cyanobacterium produces swinholides, which have been previously found only from marine sponge or samples related to them. Swinholides are polyketides with a 2-fold axis of symmetry, and they are potent cytotoxins that disrupt the actin cytoskeleton. We describe the biosynthesis gene clusters of swinholide from Nostoc cyanobacteria, as well as the related cytotoxic and antifungal scytophycin from Anabaena cyanobacteria, and we study the evolution of their trans-AT polyketide synthases. Interestingly, swinholide is closely related to misakinolide produced by a symbiotic heterotrophic proteobacterium, demonstrating that bacteria belonging to two distantly related phyla and different habitats can produce similar natural products.
Collapse
|
15
|
Abstract
The enzymology of 135 assembly lines containing primarily cis-acyltransferase modules is comprehensively analyzed, with greater attention paid to less common phenomena. Diverse online transformations, in which the substrate and/or product of the reaction is an acyl chain bound to an acyl carrier protein, are classified so that unusual reactions can be compared and underlying assembly-line logic can emerge. As a complement to the chemistry surrounding the loading, extension, and offloading of assembly lines that construct primarily polyketide products, structural aspects of the assembly-line machinery itself are considered. This review of assembly-line phenomena, covering the literature up to 2017, should thus be informative to the modular polyketide synthase novice and expert alike.
Collapse
Affiliation(s)
- Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
16
|
Enhanced production of polyunsaturated fatty acids by enzyme engineering of tandem acyl carrier proteins. Sci Rep 2016; 6:35441. [PMID: 27752094 PMCID: PMC5067506 DOI: 10.1038/srep35441] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/29/2016] [Indexed: 11/25/2022] Open
Abstract
In some microorganisms, polyunsaturated fatty acids (PUFAs) are biosynthesized by PUFA synthases characterized by tandem acyl carrier proteins (ACPs) in subunit A. These ACPs were previously shown to be important for PUFA productivity. In this study, we examined their function in more detail. PUFA productivities increased depending on the number of ACPs without profile changes in each subunit A of eukaryotic and prokaryotic PUFA synthases. We also constructed derivative enzymes from subunit A with 5 × ACPs. Enzymes possessing one inactive ACP at any position produced ~30% PUFAs compared with the parental enzyme but unexpectedly had ~250% productivity compared with subunit A with 4 × ACPs. Enzymes constructed by replacing the 3rd ACP with an inactive ACP from another subunit A or ACP-unrelated sequences produced ~100% and ~3% PUFAs compared with the parental 3rd ACP-inactive enzyme, respectively. These results suggest that both the structure and number of ACP domains are important for PUFA productivity.
Collapse
|
17
|
Kleigrewe K, Gerwick L, Sherman DH, Gerwick WH. Unique marine derived cyanobacterial biosynthetic genes for chemical diversity. Nat Prod Rep 2016; 33:348-64. [PMID: 26758451 DOI: 10.1039/c5np00097a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyanobacteria are a prolific source of structurally unique and biologically active natural products that derive from intriguing biochemical pathways. Advancements in genome sequencing have accelerated the identification of unique modular biosynthetic gene clusters in cyanobacteria and reveal a wealth of unusual enzymatic reactions involved in their construction. This article examines several interesting mechanistic transformations involved in cyanobacterial secondary metabolite biosynthesis with a particular focus on marine derived modular polyketide synthases (PKS), nonribosomal peptide synthetases (NRPS) and combinations thereof to form hybrid natural products. Further, we focus on the cyanobacterial genus Moorea and the co-evolution of its enzyme cassettes that create metabolic diversity. Progress in the development of heterologous expression systems for cyanobacterial gene clusters along with chemoenzymatic synthesis makes it possible to create new analogs. Additionally, phylum-wide genome sequencing projects have enhanced the discovery rate of new natural products and their distinctive enzymatic reactions. Summarizing, cyanobacterial biosynthetic gene clusters encode for a large toolbox of novel enzymes that catalyze unique chemical reactions, some of which may be useful in synthetic biology.
Collapse
Affiliation(s)
- Karin Kleigrewe
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA.
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA.
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, USA
| |
Collapse
|
18
|
Helfrich EJN, Piel J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 2016; 33:231-316. [DOI: 10.1039/c5np00125k] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review discusses the biosynthesis of natural products that are generated bytrans-AT polyketide synthases, a family of catalytically versatile enzymes that represents one of the major group of proteins involved in the production of bioactive polyketides.
Collapse
Affiliation(s)
- Eric J. N. Helfrich
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| | - Jörn Piel
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
19
|
Abstract
This review covers a breakthrough in the structural biology of the gigantic modular polyketide synthases (PKS): the structural characterization of intact modules by single-particle cryo-electron microscopy and small-angle X-ray scattering.
Collapse
Affiliation(s)
- Kira J. Weissman
- Molecular and Structural Enzymology Group
- Université de Lorraine
- IMoPA
- UMR 7365
- Vandœuvre-lès-Nancy
| |
Collapse
|
20
|
Production of proteasome inhibitor syringolin A by the endophyte Rhizobium sp. strain AP16. Appl Environ Microbiol 2014; 80:3741-8. [PMID: 24727275 DOI: 10.1128/aem.00395-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Syringolin A, the product of a mixed nonribosomal peptide synthetase/polyketide synthase encoded by the syl gene cluster, is a virulence factor secreted by certain Pseudomonas syringae strains. Together with the glidobactins produced by a number of beta- and gammaproteobacterial human and animal pathogens, it belongs to the syrbactins, a structurally novel class of proteasome inhibitors. In plants, proteasome inhibition by syringolin A-producing P. syringae strains leads to the suppression of host defense pathways requiring proteasome activity, such as the ones mediated by salicylic acid and jasmonic acid. Here we report the discovery of a syl-like gene cluster with some unusual features in the alphaproteobacterial endophyte Rhizobium sp. strain AP16 that encodes a putative syringolin A-like synthetase whose components share 55% to 65% sequence identity (72% to 79% similarity) at the amino acid level. As revealed by average nucleotide identity (ANI) calculations, this strain likely belongs to the same species as biocontrol strain R. rhizogenes K84 (formely known as Agrobacterium radiobacter K84), which, however, carries a nonfunctional deletion remnant of the syl-like gene cluster. Here we present a functional analysis of the syl-like gene cluster of Rhizobium sp. strain AP16 and demonstrate that this endophyte synthesizes syringolin A and some related minor variants, suggesting that proteasome inhibition by syrbactin production can be important not only for pathogens but also for endophytic bacteria in the interaction with their hosts.
Collapse
|
21
|
Gao SS, Hothersall J, Wu J, Murphy AC, Song Z, Stephens ER, Thomas CM, Crump MP, Cox RJ, Simpson TJ, Willis CL. Biosynthesis of Mupirocin by Pseudomonas fluorescens NCIMB 10586 Involves Parallel Pathways. J Am Chem Soc 2014; 136:5501-7. [DOI: 10.1021/ja501731p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shu-Shan Gao
- School of
Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Joanne Hothersall
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Ji’en Wu
- School of
Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | | | - Zhongshu Song
- School of
Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Elton R. Stephens
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | | | - Matthew P. Crump
- School of
Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Russell J. Cox
- School of
Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | | | | |
Collapse
|
22
|
Davison J, Dorival J, Rabeharindranto H, Mazon H, Chagot B, Gruez A, Weissman KJ. Insights into the function of trans-acyl transferase polyketide synthases from the SAXS structure of a complete module. Chem Sci 2014. [DOI: 10.1039/c3sc53511h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Combined analysis by SAXS, NMR and homology modeling reveals the structure of an apo module from a trans-acyltransferase polyketide synthase.
Collapse
Affiliation(s)
- Jack Davison
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Jonathan Dorival
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Hery Rabeharindranto
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Hortense Mazon
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Benjamin Chagot
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Arnaud Gruez
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Kira J. Weissman
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| |
Collapse
|
23
|
Haines AS, Dong X, Song Z, Farmer R, Williams C, Hothersall J, Płoskoń E, Wattana-Amorn P, Stephens ER, Yamada E, Gurney R, Takebayashi Y, Masschelein J, Cox RJ, Lavigne R, Willis CL, Simpson TJ, Crosby J, Winn PJ, Thomas CM, Crump MP. A conserved motif flags acyl carrier proteins for β-branching in polyketide synthesis. Nat Chem Biol 2013; 9:685-692. [PMID: 24056399 PMCID: PMC4658705 DOI: 10.1038/nchembio.1342] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/22/2013] [Indexed: 11/14/2022]
Abstract
Type I PKSs often utilise programmed β-branching, via enzymes of an “HMG-CoA synthase (HCS) cassette”, to incorporate various side chains at the second carbon from the terminal carboxylic acid of growing polyketide backbones. We identified a strong sequence motif in Acyl Carrier Proteins (ACPs) where β-branching is known. Substituting ACPs confirmed a correlation of ACP type with β-branching specificity. While these ACPs often occur in tandem, NMR analysis of tandem β-branching ACPs indicated no ACP-ACP synergistic effects and revealed that the conserved sequence motif forms an internal core rather than an exposed patch. Modelling and mutagenesis identified ACP Helix III as a probable anchor point of the ACP-HCS complex whose position is determined by the core. Mutating the core affects ACP functionality while ACP-HCS interface substitutions modulate system specificity. Our method for predicting β-carbon branching expands the potential for engineering novel polyketides and lays a basis for determining specificity rules.
Collapse
Affiliation(s)
- Anthony S Haines
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Xu Dong
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | - Zhongshu Song
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | - Rohit Farmer
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Joanne Hothersall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Eliza Płoskoń
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | | | - Elton R Stephens
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Erika Yamada
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rachel Gurney
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Yuiko Takebayashi
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Joleen Masschelein
- Division of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 - box 2462, 3001 Heverlee, Belgium
| | - Russell J Cox
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | - Rob Lavigne
- Division of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 - box 2462, 3001 Heverlee, Belgium
| | | | - Thomas J Simpson
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | - John Crosby
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | - Peter J Winn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Matthew P Crump
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| |
Collapse
|
24
|
Trujillo U, Vázquez-Rosa E, Oyola-Robles D, Stagg LJ, Vassallo DA, Vega IE, Arold ST, Baerga-Ortiz A. Solution structure of the tandem acyl carrier protein domains from a polyunsaturated fatty acid synthase reveals beads-on-a-string configuration. PLoS One 2013; 8:e57859. [PMID: 23469090 PMCID: PMC3585217 DOI: 10.1371/journal.pone.0057859] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 01/29/2013] [Indexed: 01/10/2023] Open
Abstract
The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP domains for increasing the yield of fatty acids in bacterial cultures.
Collapse
Affiliation(s)
- Uldaeliz Trujillo
- Department of Biochemistry, University of Puerto Rico – Medical Sciences Campus, San Juan, Puerto Rico
| | - Edwin Vázquez-Rosa
- Department of Biology, University of Puerto Rico – Rio Piedras Campus, San Juan, Puerto Rico
| | - Delise Oyola-Robles
- Department of Biochemistry, University of Puerto Rico – Medical Sciences Campus, San Juan, Puerto Rico
| | - Loren J. Stagg
- Department of Biochemistry and Molecular Biology and Center for Biomolecular Structure and Function, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David A. Vassallo
- Department of Biochemistry, University of Puerto Rico – Medical Sciences Campus, San Juan, Puerto Rico
| | - Irving E. Vega
- Department of Biology, University of Puerto Rico – Rio Piedras Campus, San Juan, Puerto Rico
| | - Stefan T. Arold
- Department of Biochemistry and Molecular Biology and Center for Biomolecular Structure and Function, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abel Baerga-Ortiz
- Department of Biochemistry, University of Puerto Rico – Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
25
|
Tsunematsu Y, Ishiuchi K, Hotta K, Watanabe K. Yeast-based genome mining, production and mechanistic studies of the biosynthesis of fungal polyketide and peptide natural products. Nat Prod Rep 2013; 30:1139-49. [DOI: 10.1039/c3np70037b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Crosby J, Crump MP. The structural role of the carrier protein--active controller or passive carrier. Nat Prod Rep 2012; 29:1111-37. [PMID: 22930263 DOI: 10.1039/c2np20062g] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Common to all FASs, PKSs and NRPSs is a remarkable component, the acyl or peptidyl carrier protein (A/PCP). These take the form of small individual proteins in type II systems or discrete folded domains in the multi-domain type I systems and are characterized by a fold consisting of three major α-helices and between 60-100 amino acids. This protein is central to these biosynthetic systems and it must bind and transport a wide variety of functionalized ligands as well as mediate numerous protein-protein interactions, all of which contribute to efficient enzyme turnover. This review covers the structural and biochemical characterization of carrier proteins, as well as assessing their interactions with different ligands, and other synthase components. Finally, their role as an emerging tool in biotechnology is discussed.
Collapse
Affiliation(s)
- John Crosby
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | |
Collapse
|
27
|
ZHU LP, Li ZF, HAN K, LI SG, LI YZ. Novel Characters of Myxobacterial Modular Natural Product Assembly Lines*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Ishiuchi K, Nakazawa T, Ookuma T, Sugimoto S, Sato M, Tsunematsu Y, Ishikawa N, Noguchi H, Hotta K, Moriya H, Watanabe K. Establishing a New Methodology for Genome Mining and Biosynthesis of Polyketides and Peptides through Yeast Molecular Genetics. Chembiochem 2012; 13:846-54. [DOI: 10.1002/cbic.201100798] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Indexed: 12/28/2022]
|
29
|
Evans BS, Ntai I, Chen Y, Robinson SJ, Kelleher NL. Proteomics-based discovery of koranimine, a cyclic imine natural product. J Am Chem Soc 2011; 133:7316-9. [PMID: 21520944 DOI: 10.1021/ja2015795] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) are large enzymes responsible for the biosynthesis of medically and ecologically important secondary metabolites. In a previous report, we described a proteomics approach to screen for expressed NRPSs or PKSs from bacteria with or without sequenced genomes. Here we used this proteome mining approach to discover a novel natural product arising from rare adenylation (A) and reductase (Red) domains in its biosynthetic machinery. We also cloned the entire gene cluster and elucidated the biosynthesis of the new compound, which is produced by an unsequenced Bacillus sp. isolated from soil collected in Koran, Louisiana.
Collapse
Affiliation(s)
- Bradley S Evans
- Institute of Genomic Biology, University of Illinois Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
30
|
Grindberg RV, Ishoey T, Brinza D, Esquenazi E, Coates RC, Liu WT, Gerwick L, Dorrestein PC, Pevzner P, Lasken R, Gerwick WH. Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PLoS One 2011; 6:e18565. [PMID: 21533272 PMCID: PMC3075265 DOI: 10.1371/journal.pone.0018565] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/08/2011] [Indexed: 01/11/2023] Open
Abstract
Filamentous marine cyanobacteria are extraordinarily rich sources of structurally novel, biomedically relevant natural products. To understand their biosynthetic origins as well as produce increased supplies and analog molecules, access to the clustered biosynthetic genes that encode for the assembly enzymes is necessary. Complicating these efforts is the universal presence of heterotrophic bacteria in the cell wall and sheath material of cyanobacteria obtained from the environment and those grown in uni-cyanobacterial culture. Moreover, the high similarity in genetic elements across disparate secondary metabolite biosynthetic pathways renders imprecise current gene cluster targeting strategies and contributes sequence complexity resulting in partial genome coverage. Thus, it was necessary to use a dual-method approach of single-cell genomic sequencing based on multiple displacement amplification (MDA) and metagenomic library screening. Here, we report the identification of the putative apratoxin. A biosynthetic gene cluster, a potent cancer cell cytotoxin with promise for medicinal applications. The roughly 58 kb biosynthetic gene cluster is composed of 12 open reading frames and has a type I modular mixed polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS) organization and features loading and off-loading domain architecture never previously described. Moreover, this work represents the first successful isolation of a complete biosynthetic gene cluster from Lyngbya bouillonii, a tropical marine cyanobacterium renowned for its production of diverse bioactive secondary metabolites.
Collapse
Affiliation(s)
- Rashel V. Grindberg
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Thomas Ishoey
- J. Craig Venter Institute, San Diego, California, United States of America
| | - Dumitru Brinza
- Department of Computer Science and Engineering, Center for Algorithmic and Systems Biology, University of California San Diego, La Jolla, California, United States of America
| | - Eduardo Esquenazi
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - R. Cameron Coates
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Wei-ting Liu
- Departments of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- Departments of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Pavel Pevzner
- Department of Computer Science and Engineering, Center for Algorithmic and Systems Biology, University of California San Diego, La Jolla, California, United States of America
| | - Roger Lasken
- J. Craig Venter Institute, San Diego, California, United States of America
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
A natural plasmid uniquely encodes two biosynthetic pathways creating a potent anti-MRSA antibiotic. PLoS One 2011; 6:e18031. [PMID: 21483852 PMCID: PMC3069032 DOI: 10.1371/journal.pone.0018031] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/18/2011] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Understanding how complex antibiotics are synthesised by their producer bacteria is essential for creation of new families of bioactive compounds. Thiomarinols, produced by marine bacteria belonging to the genus Pseudoalteromonas, are hybrids of two independently active species: the pseudomonic acid mixture, mupirocin, which is used clinically against MRSA, and the pyrrothine core of holomycin. METHODOLOGY/PRINCIPAL FINDINGS High throughput DNA sequencing of the complete genome of the producer bacterium revealed a novel 97 kb plasmid, pTML1, consisting almost entirely of two distinct gene clusters. Targeted gene knockouts confirmed the role of these clusters in biosynthesis of the two separate components, pseudomonic acid and the pyrrothine, and identified a putative amide synthetase that joins them together. Feeding mupirocin to a mutant unable to make the endogenous pseudomonic acid created a novel hybrid with the pyrrothine via "mutasynthesis" that allows inhibition of mupirocin-resistant isoleucyl-tRNA synthetase, the mupirocin target. A mutant defective in pyrrothine biosynthesis was also able to incorporate alternative amine substrates. CONCLUSIONS/SIGNIFICANCE Plasmid pTML1 provides a paradigm for combining independent antibiotic biosynthetic pathways or using mutasynthesis to develop a new family of hybrid derivatives that may extend the effective use of mupirocin against MRSA.
Collapse
|
32
|
Gu L, Eisman EB, Dutta S, Franzmann TM, Walter S, Gerwick WH, Skiniotis G, Sherman DH. Tandem Acyl Carrier Proteins in the Curacin Biosynthetic Pathway Promote Consecutive Multienzyme Reactions with a Synergistic Effect. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Liangcai Gu
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109 (USA)
- Department of Genetics, Harvard Medical School, Boston, MA 02115 (USA)
| | - Eli B. Eisman
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109 (USA)
| | - Somnath Dutta
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
| | - Titus M. Franzmann
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
| | - Stefan Walter
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
| | - William H. Gerwick
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093 (USA)
| | - Georgios Skiniotis
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
| | - David H. Sherman
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109 (USA)
| |
Collapse
|
33
|
Gulder TAM, Freeman MF, Piel J. The Catalytic Diversity of Multimodular Polyketide Synthases: Natural Product Biosynthesis Beyond Textbook Assembly Rules. Top Curr Chem (Cham) 2011. [PMID: 21360321 DOI: 10.1007/128_2010_113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bacterial multimodular polyketide synthases (PKSs) are responsible for the biosynthesis of a wide range of pharmacologically active natural products. These megaenzymes contain numerous catalytic and structural domains and act as biochemical templates to generate complex polyketides in an assembly line-like fashion. While the prototypical PKS is composed of only a few different domain types that are fused together in a combinatorial fashion, an increasing number of enzymes is being found that contain additional components. These domains can introduce remarkably diverse modifications into polyketides. This review discusses our current understanding of such noncanonical domains and their role in expanding the biosynthetic versatility of bacterial PKSs.
Collapse
|
34
|
Gu L, Eisman EB, Dutta S, Franzmann TM, Walter S, Gerwick WH, Skiniotis G, Sherman DH. Tandem acyl carrier proteins in the curacin biosynthetic pathway promote consecutive multienzyme reactions with a synergistic effect. Angew Chem Int Ed Engl 2011; 50:2795-8. [PMID: 21387490 DOI: 10.1002/anie.201005280] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 01/12/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Liangcai Gu
- Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mupirocin: biosynthesis, special features and applications of an antibiotic from a gram-negative bacterium. Appl Microbiol Biotechnol 2011; 90:11-21. [PMID: 21336932 DOI: 10.1007/s00253-011-3128-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/12/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
Mupirocin is a polyketide antibiotic produced by Pseudomonas fluorescens. The biosynthetic cluster encodes 6 type I polyketide synthase multifunctional proteins and 29 single function proteins. The biosynthetic pathway belongs to the trans-AT group in which acyltransferase activity is provided by a separate polypeptide rather than in-cis as found in the original type I polyketide synthases. Special features of this group are in-cis methyltransferase domains and a trans-acting HMG-CoA synthase-cassette which insert α- and β- methyl groups respectively while enoyl reductase domains are absent from the condensing modules. In addition, for the mupirocin system, there is no obvious loading mechanism for initiation of the polyketide chain and many aspects of the pathway remain to be elucidated. Mupirocin inhibits isoleucyl-tRNA synthetase and has been used since 1985 to help prevent infection by methicillin-resistant Staphylococcus aureus, particularly within hospitals. Resistance to mupirocin was first detected in 1987 and high-level resistance in S. aureus is due to a plasmid-encoded second isoleucyl-tRNA synthetase, a more eukaryotic-like enzyme. Recent analysis of the biosynthetic pathway for thiomarinols from marine bacteria opens up possibilities to modify mupirocin so as to overcome this resistance.
Collapse
|
36
|
Zhang F, He HY, Tang MC, Tang YM, Zhou Q, Tang GL. Cloning and Elucidation of the FR901464 Gene Cluster Revealing a Complex Acyltransferase-less Polyketide Synthase Using Glycerate as Starter Units. J Am Chem Soc 2011; 133:2452-62. [DOI: 10.1021/ja105649g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hai-Yan He
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Man-Cheng Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yu-Min Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qiang Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
37
|
Süssmuth R, Müller J, von Döhren H, Molnár I. Fungal cyclooligomerdepsipeptides: From classical biochemistry to combinatorial biosynthesis. Nat Prod Rep 2011; 28:99-124. [DOI: 10.1039/c001463j] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Abstract
This review discusses the biosynthesis of natural products that are generated by trans-AT polyketide synthases, a family of catalytically versatile enzymes that have recently been recognized as one of the major group of proteins involved in the production of bioactive polyketides. 436 references are cited.
Collapse
Affiliation(s)
- Jörn Piel
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
39
|
Abstract
Mupirocin, a polyketide antibiotic produced by Pseudomonas fluorescens, is used to control the carriage of methicillin-resistant Staphylococcus aureus on skin and in nasal passages as well as for various skin infections. Low-level resistance to the antibiotic arises by mutation of the mupirocin target, isoleucyl-tRNA synthetase, whereas high-level resistance is due to the presence of an isoleucyl-tRNA synthetase with many similarities to eukaryotic enzymes. Mupirocin biosynthesis is carried out by a combination of type I multifunctional polyketide synthases and tailoring enzymes encoded in a 75 kb gene cluster. Chemical synthesis has also been achieved. This knowledge should allow the synthesis of new and modified antibiotics for the future.
Collapse
|
40
|
Evans BS, Kelleher NL. To cyclize or not to cyclize: catching enzyme evolution in the act. ACS Chem Biol 2009; 4:495-7. [PMID: 19606882 DOI: 10.1021/cb900154b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
If you look at the biggest genes in soil and marine bacteria, you tend to see the chemical blueprints for making natural products such as peptides and polyketides. Over the past decade, collective efforts of enzymologists working with synthetic and analytical chemists have been catching up with the data dump from microbial genome sequencing. Following this story line, we now understand how cyanobacteria construct scaffolds for the related natural products curacin and jamaicamide using subtle tweaks to non-standard biosynthetic machinery.
Collapse
Affiliation(s)
- Bradley S. Evans
- Department of Biochemistry
- The Institute of Genomic Biology, University of Illinois Urbana−Champaign, Urbana, Illinois 61802
| | - Neil L. Kelleher
- Department of Biochemistry
- Department of Chemistry
- The Institute of Genomic Biology, University of Illinois Urbana−Champaign, Urbana, Illinois 61802
| |
Collapse
|
41
|
Bumpus SB, Magarvey NA, Kelleher NL, Walsh CT, Calderone CT. Polyunsaturated fatty-acid-like trans-enoyl reductases utilized in polyketide biosynthesis. J Am Chem Soc 2008; 130:11614-6. [PMID: 18693732 PMCID: PMC2627581 DOI: 10.1021/ja8040042] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyketide biosynthesis is typically directed by cis-acting catalytic domains. In the case of the Bacillus subtilis secondary metabolite dihydrobacillaene, the cis-acting domains are not sufficient to generate the saturated C14'-C15' bond. In this communication, we identify PksE as a trans-acting enoyl reductase utilized in the biosynthesis of this portion of dihydrobacillaene. PksE is homologous to the enzymes predicted to serve as enoyl reductases in polyunsaturated fatty acid (PUFA) biosynthesis, and we confirmed this functional assignment in vitro. These results suggest a general enoyl reduction pathway in polyketide biosynthesis and a means by which PUFA-like biosynthetic machinery can modulate small-molecule function.
Collapse
Affiliation(s)
- Stefanie B. Bumpus
- Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801
| | - Nathan A. Magarvey
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115
| | - Neil L. Kelleher
- Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801
| | - Christopher T. Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115
| | - Christopher T. Calderone
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115
| |
Collapse
|
42
|
Wu J, Hothersall J, Mazzetti C, O'Connell Y, Shields JA, Rahman AS, Cox RJ, Crosby J, Simpson TJ, Thomas CM, Willis CL. In vivo mutational analysis of the mupirocin gene cluster reveals labile points in the biosynthetic pathway: the "leaky hosepipe" mechanism. Chembiochem 2008; 9:1500-8. [PMID: 18465759 DOI: 10.1002/cbic.200800085] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A common feature of the mupirocin and other gene clusters of the AT-less polyketide synthase (PKS) family of metabolites is the introduction of carbon branches by a gene cassette that contains a beta-hydroxy-beta-methylglutaryl CoA synthase (HMC) homologue and acyl carrier protein (ACP), ketosynthase (KS) and two crotonase superfamily homologues. In vivo studies of Pseudomonas fluorescens strains in which any of these components have been mutated reveal a common phenotype in which the two major isolable metabolites are the truncated hexaketide mupirocin H and the tetraketide mupiric acid. The structure of the latter has been confirmed by stereoselective synthesis. Mupiric acid is also the major metabolite arising from inactivation of the ketoreductase (KR) domain of module 4 of the modular PKS. A number of other mutations in the tailoring region of the mupirocin gene cluster also result in production of both mupirocin H and mupiric acid. To explain this common phenotype we propose a mechanistic rationale in which both mupirocin H and mupiric acid represent the products of selective and spontaneous release from labile points in the pathway that occur at significant levels when mutations block the pathway either close to or distant from the labile points.
Collapse
Affiliation(s)
- Ji'en Wu
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jiang H, Zirkle R, Metz JG, Braun L, Richter L, Van Lanen SG, Shen B. The Role of Tandem Acyl Carrier Protein Domains in Polyunsaturated Fatty Acid Biosynthesis. J Am Chem Soc 2008; 130:6336-7. [DOI: 10.1021/ja801911t] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Jiang
- Division of Pharmaceutical Sciences, University of Wisconsin National Cooperative Drug Discovery Group, and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53705, and Martek Biosciences Boulder Company, 4909 Nautilus Court North, Suite 208, Boulder, Colorado 80301
| | - Ross Zirkle
- Division of Pharmaceutical Sciences, University of Wisconsin National Cooperative Drug Discovery Group, and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53705, and Martek Biosciences Boulder Company, 4909 Nautilus Court North, Suite 208, Boulder, Colorado 80301
| | - James G. Metz
- Division of Pharmaceutical Sciences, University of Wisconsin National Cooperative Drug Discovery Group, and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53705, and Martek Biosciences Boulder Company, 4909 Nautilus Court North, Suite 208, Boulder, Colorado 80301
| | - Lisa Braun
- Division of Pharmaceutical Sciences, University of Wisconsin National Cooperative Drug Discovery Group, and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53705, and Martek Biosciences Boulder Company, 4909 Nautilus Court North, Suite 208, Boulder, Colorado 80301
| | - Leslie Richter
- Division of Pharmaceutical Sciences, University of Wisconsin National Cooperative Drug Discovery Group, and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53705, and Martek Biosciences Boulder Company, 4909 Nautilus Court North, Suite 208, Boulder, Colorado 80301
| | - Steven G. Van Lanen
- Division of Pharmaceutical Sciences, University of Wisconsin National Cooperative Drug Discovery Group, and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53705, and Martek Biosciences Boulder Company, 4909 Nautilus Court North, Suite 208, Boulder, Colorado 80301
| | - Ben Shen
- Division of Pharmaceutical Sciences, University of Wisconsin National Cooperative Drug Discovery Group, and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53705, and Martek Biosciences Boulder Company, 4909 Nautilus Court North, Suite 208, Boulder, Colorado 80301
| |
Collapse
|
44
|
Song D, Coughlin J, Ju J, Zhou X, Shen B, Zhao C, Deng Z. Alternative method for site-directed mutagenesis of complex polyketide synthase in Streptomyces albus JA3453. Acta Biochim Biophys Sin (Shanghai) 2008; 40:319-26. [PMID: 18401530 DOI: 10.1111/j.1745-7270.2008.00408.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sequence analysis of oxazolomycin (OZM) biosynthetic gene cluster from Streptomyces albus JA3453 revealed a gene, ozmH, encoding a hybrid polyketide and non-ribosomal peptide enzyme. Tandem ketosynthase (KS) domains (KS 10-1 and KS 10-2) were characterized and they show significant homology with known KSs. Using an alternative method that involves RecA-mediated homologous recombination, the negative selection marker sacB gene, and temperature-sensitive replications, site-directed mutagenesis of the catalytic triad amino acid cysteines were carried out in each of the tandem KS domains to test the function they play in OZM biosynthesis. HPLC-mass spectrometry analysis of the resulting mutant strains showed that KS 10-2 is essential for OZM biosynthesis but KS 10-1 is not indispensable and might serve as a "redundant" domain. These results confirmed the existence of an "extra domain" in complex polyketide synthase.
Collapse
Affiliation(s)
- Danfeng Song
- Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200030, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Analysis of modular-iterative mixed biosynthesis of lankacidin by heterologous expression and gene fusion. J Antibiot (Tokyo) 2008; 60:700-8. [PMID: 18057700 DOI: 10.1038/ja.2007.90] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lankacidin is a unique 17-membered macrocyclic antibiotic different from usual even-membered macrolides. Based on the gene organization of the lankacidin biosynthetic cluster coded on the linear plasmid pSLA2-L in Streptomyces rochei, we previously proposed a hypothesis of modular-iterative mixed polyketide biosynthesis for lankacidin. Two experimental evidences in this paper further strengthened this hypothesis. Heterologous expression of the lankacidin cluster (lkcA-lkcO) in Streptomyces lividans resulted in lankacidinol A production, indicating that the gene cluster is sufficient for the synthesis of the lankacidin skeleton. In addition, a gene fusant of lkcF and lkcG produced lankacidin at a similar level to the parent strain, suggesting that an iterative function of the LkcF protein is unlikely. These results are consistent with the hypothesis that LkcC is used four times and LkcA, LkcF and LkcG are used modularly to accomplish eight condensation reactions leading to the lankacidin skeleton.
Collapse
|
46
|
|
47
|
Calderone CT, Iwig DF, Dorrestein PC, Kelleher NL, Walsh CT. Incorporation of nonmethyl branches by isoprenoid-like logic: multiple beta-alkylation events in the biosynthesis of myxovirescin A1. ACTA ACUST UNITED AC 2007; 14:835-46. [PMID: 17656320 PMCID: PMC2084360 DOI: 10.1016/j.chembiol.2007.06.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/19/2007] [Accepted: 06/22/2007] [Indexed: 10/23/2022]
Abstract
Several polyketide secondary metabolites are predicted to undergo isoprenoid-like beta-alkylations during biosynthesis. One such secondary metabolite is myxovirescin A1, produced by Myxococcus xanthus. Myxovirescin is of special interest in that it appears to undergo two distinct beta-alkylations. Additionally, the myxovirescin biosynthetic gene cluster lacks tandem thiolation domains required in the synthesis of other beta-branched secondary metabolites. To probe the origins of the beta-branches in myxovirescin, we heterologously overexpressed the proteins predicted to be responsible for myxovirescin beta-alkylation and reconstituted their activities in vitro on model substrates. Our results confirm that myxovirescin undergoes two isoprenoid-like beta-alkylations during its biosynthesis, including an unprecedented beta-ethylation. The study of its biosynthesis should shed light on the scope and requirements for isoprenoid-like biosynthetic logic in a polyketide context.
Collapse
|
48
|
Schneider K, Chen XH, Vater J, Franke P, Nicholson G, Borriss R, Süssmuth RD. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. JOURNAL OF NATURAL PRODUCTS 2007; 70:1417-23. [PMID: 17844999 DOI: 10.1021/np070070k] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In the genome of Bacillus amyloliquefaciens FZB42, three operons pks1, pks2, and pks3 were identified which encode the biosynthesis of polyketides. pks1 and pks3 have been attributed to the production of bacillaene and difficidin/oxydifficidin, respectively, while the pks2 product remained hitherto unknown. Mass spectrometric analysis of the culture filtrates of the wild-type B. amyloliquefaciens FZB42 and mutants revealed pks2-specific metabolites. By combination of the mass spectrometric and UV/vis data with a database search, these compounds were attributed to four members of the macrolactin family, macrolactin A and D as well as 7-O-malonyl- and 7-O-succinyl-macrolactin. This conclusion was verified by the isolation and structure elucidation of macrolactin A using mass spectrometric and 2D-NMR studies. Macrolactin biosynthesis was investigated using feeding experiments with (13)C-acetate. (13)C-labelled macrolactin A revealed an alternating labelling of its carbon skeleton with (13)C, indicating that acetate/malonate was used as the sole precursor. The macrolactin structure is compatible with the domain organization of the pks2-operon. Similarly to pks1 and pks3, pks2 is a modular polyketide synthase system of type I which exhibits a trans-acyltransferase architecture using a discrete acyltransferase enzyme iteratively in the assembly of macrolactin. Finally, the potential for macrolactin production on a genetic and metabolic basis was found to be widely distributed among Bacillus amyloliquefaciens strains.
Collapse
|
49
|
Julien B, Tian ZQ, Reid R, Reeves CD. Analysis of the ambruticin and jerangolid gene clusters of Sorangium cellulosum reveals unusual mechanisms of polyketide biosynthesis. ACTA ACUST UNITED AC 2007; 13:1277-86. [PMID: 17185223 DOI: 10.1016/j.chembiol.2006.10.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 10/02/2006] [Accepted: 10/11/2006] [Indexed: 11/20/2022]
Abstract
Ambruticins and jerangolids are structurally related antifungal polyketides produced by Sorangium cellulosum strains. Comparative analysis of the gene clusters and characterization of compounds produced by gene knockout strains suggested hypothetical schemes for biosynthesis of these compounds. Polyketide synthase (PKS) architecture suggests that the pyran ring structure common to ambruticins and jerangolids forms by an intramolecular reaction on a PKS-bound intermediate. Disrupting ambM, encoding a discrete enzyme homologous to PKS C-methyltransferase domains, gave 15-desmethylambruticins. Thus, AmbM is required for C-methylation, but not pyran ring formation. Several steps in the post-PKS modification of ambruticin involve new enzymology. Remarkably, the methylcyclopropane ring and putative carbon atom excision during ambruticin biosynthesis apparently occur on the PKS assembly line. The mechanism probably involves a Favorskii rearrangement, but further work is required to elucidate these complex events.
Collapse
Affiliation(s)
- Bryan Julien
- Kosan Biosciences, Inc., 3832 Bay Center Place, Hayward, California 94545, USA
| | | | | | | |
Collapse
|
50
|
Lai JR, Koglin A, Walsh CT. Carrier protein structure and recognition in polyketide and nonribosomal peptide biosynthesis. Biochemistry 2007; 45:14869-79. [PMID: 17154525 DOI: 10.1021/bi061979p] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carrier proteins, 80-100 residues in length, serve as information-rich platforms to present growing acyl and peptidyl chains as covalently tethered phosphopantetheinyl-thioester intermediates during the biosynthesis of fatty acid, polyketide, and nonribosomal natural products. Carrier proteins are recognized both in cis and in trans by partner catalytic domains that effect chain-elongating condensations, redox adjustments, other tailoring steps, and finally kinetically controlled disconnection and release of the mature natural product. Dissection of regions of carrier proteins that are specifically recognized by upstream and downstream catalytic partner proteins is deciphering the logic for multiprotein assembly line construction of these large classes of natural products.
Collapse
Affiliation(s)
- Jonathan R Lai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|