• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4619872)   Today's Articles (41)   Subscriber (49404)
For: Kumita H, Matsuura K, Hino T, Takahashi S, Hori H, Fukumori Y, Morishima I, Shiro Y. NO Reduction by Nitric-oxide Reductase from Denitrifying Bacterium Pseudomonas aeruginosa. J Biol Chem 2004;279:55247-54. [PMID: 15504726 DOI: 10.1074/jbc.m409996200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
Number Cited by Other Article(s)
1
Kanematsu Y, Kondo HX, Takano Y. Computational Exploration of Minimum Energy Reaction Pathway of N2O Formation from Intermediate I of P450nor Using an Active Center Model. Int J Mol Sci 2023;24:17172. [PMID: 38139001 PMCID: PMC10743073 DOI: 10.3390/ijms242417172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]  Open
2
Baeza Cinco MÁ, Wu G, Hayton TW. Photolytic C-Diazeniumdiolate Disassembly in the β-Diketiminate Complexes [MeLM(O2N2CPh3)] (M = Fe, Co, Cu). Inorg Chem 2023;62:14064-14071. [PMID: 37584511 DOI: 10.1021/acs.inorgchem.3c02188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
3
Takeda H, Shimba K, Horitani M, Kimura T, Nomura T, Kubo M, Shiro Y, Tosha T. Trapping of a Mononitrosyl Nonheme Intermediate of Nitric Oxide Reductase by Cryo-Photolysis of Caged Nitric Oxide. J Phys Chem B 2023;127:846-854. [PMID: 36602896 DOI: 10.1021/acs.jpcb.2c05852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
4
Bhadra M, Albert T, Franke A, Josef V, Ivanović-Burmazović I, Swart M, Moënne-Loccoz P, Karlin KD. Reductive Coupling of Nitric Oxide by Cu(I): Stepwise Formation of Mono- and Dinitrosyl Species En Route to a Cupric Hyponitrite Intermediate. J Am Chem Soc 2023;145:2230-2242. [PMID: 36652374 PMCID: PMC10122266 DOI: 10.1021/jacs.2c09874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
5
Tao W, Carter S, Trevino R, Zhang W, Shafaat HS, Zhang S. Reductive NO Coupling at Dicopper Center via a [Cu2(NO)2]2+ Diamond-Core Intermediate. J Am Chem Soc 2022;144:22633-22640. [PMID: 36469729 DOI: 10.1021/jacs.2c09523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
6
Matsumura H, Faponle AS, Hagedoorn PL, Tosha T, de Visser SP, Moënne-Loccoz P. Mechanism of substrate inhibition in cytochrome-c dependent NO reductases from denitrifying bacteria (cNORs). J Inorg Biochem 2022;231:111781. [DOI: 10.1016/j.jinorgbio.2022.111781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022]
7
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021;121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
8
Lichtenberg M, Line L, Schrameyer V, Jakobsen TH, Rybtke ML, Toyofuku M, Nomura N, Kolpen M, Tolker-Nielsen T, Kühl M, Bjarnsholt T, Jensen PØ. Nitric-oxide-driven oxygen release in anoxic Pseudomonas aeruginosa. iScience 2021;24:103404. [PMID: 34849468 PMCID: PMC8608891 DOI: 10.1016/j.isci.2021.103404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022]  Open
9
Lin S, He C. Development of Nonheme {FeNO}7 Complexes Based on the Pyrococcus furiosus Rubredoxin for Red-Light-Controllable Nitric Oxide Release. Inorg Chem 2021;60:14364-14370. [PMID: 34503329 DOI: 10.1021/acs.inorgchem.1c02089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
10
Blomberg MRA. The importance of exact exchange-A methodological investigation of NO reduction in heme-copper oxidases. J Chem Phys 2021;154:055103. [PMID: 33557557 DOI: 10.1063/5.0035634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]  Open
11
Blomberg MRA. Activation of O2 and NO in heme-copper oxidases - mechanistic insights from computational modelling. Chem Soc Rev 2021;49:7301-7330. [PMID: 33006348 DOI: 10.1039/d0cs00877j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
12
Reed CJ, Lam QN, Mirts EN, Lu Y. Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling. Chem Soc Rev 2021;50:2486-2539. [PMID: 33475096 PMCID: PMC7920998 DOI: 10.1039/d0cs01297a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
13
Tosha T, Yamagiwa R, Sawai H, Shiro Y. NO Dynamics in Microbial Denitrification System. CHEM LETT 2021. [DOI: 10.1246/cl.200629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
14
Takeda H, Kimura T, Nomura T, Horitani M, Yokota A, Matsubayashi A, Ishii S, Shiro Y, Kubo M, Tosha T. Timing of NO Binding and Protonation in the Catalytic Reaction of Bacterial Nitric Oxide Reductase as Established by Time-Resolved Spectroscopy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
15
Ferousi C, Majer SH, DiMucci IM, Lancaster KM. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions. Chem Rev 2020;120:5252-5307. [PMID: 32108471 PMCID: PMC7339862 DOI: 10.1021/acs.chemrev.9b00629] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
16
Wu W, Liaw W. Nitric oxide reduction forming hyponitrite triggered by metal‐containing complexes. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
17
Sun C, Zhang Y, Qu Z, Zhou J. Effects of cobalt-histidine absorbent on aerobic denitrification by Paracoccus versutus LYM. AMB Express 2019;9:202. [PMID: 31848761 PMCID: PMC6917670 DOI: 10.1186/s13568-019-0927-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 11/10/2022]  Open
18
Lehnert N, Fujisawa K, Camarena S, Dong HT, White CJ. Activation of Non-Heme Iron-Nitrosyl Complexes: Turning Up the Heat. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
19
Zhou G, Wang YS, Peng H, Shen PF, Xie XB, Shi QS. Functional roles ofnorCBinPseudomonas aeruginosaATCC 9027 under aerobic conditions. J Basic Microbiol 2019;59:1154-1162. [DOI: 10.1002/jobm.201900267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/25/2019] [Accepted: 08/29/2019] [Indexed: 11/07/2022]
20
Kahle M, Blomberg MRA, Jareck S, Ädelroth P. Insights into the mechanism of nitric oxide reductase from a FeB -depleted variant. FEBS Lett 2019;593:1351-1359. [PMID: 31077353 DOI: 10.1002/1873-3468.13436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 11/06/2022]
21
Amanullah S, Singha A, Dey A. Tailor made iron porphyrins for investigating axial ligand and distal environment contributions to electronic structure and reactivity. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
22
Sabuncu S, Reed JH, Lu Y, Moënne-Loccoz P. Nitric Oxide Reductase Activity in Heme-Nonheme Binuclear Engineered Myoglobins through a One-Electron Reduction Cycle. J Am Chem Soc 2018;140:17389-17393. [PMID: 30512937 DOI: 10.1021/jacs.8b11037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
23
Beck D, Klüfers P. HN2 O2 - as a Ligand in Mononuclear Hydrogenhyponitrite-κ2 -N,O Ruthenium Complexes with Bisphosphane Co-Ligands. Chemistry 2018;24:16019-16028. [PMID: 30144196 DOI: 10.1002/chem.201803770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 01/21/2023]
24
Speelman AL, White CJ, Zhang B, Alp EE, Zhao J, Hu M, Krebs C, Penner-Hahn J, Lehnert N. Non-heme High-Spin {FeNO}6-8 Complexes: One Ligand Platform Can Do It All. J Am Chem Soc 2018;140:11341-11359. [PMID: 30107126 DOI: 10.1021/jacs.8b06095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
25
Sakurai N, Kataoka K, Sugaya N, Shimodaira T, Iwamoto M, Shoda M, Horiuchi H, Kiyono M, Ohta Y, Triwiyono B, Seo D, Sakurai T. Heterologous expression of Halomonas halodenitrificans nitric oxide reductase and its N-terminally truncated NorC subunit in Escherichia coli. J Inorg Biochem 2017;169:61-67. [PMID: 28131879 DOI: 10.1016/j.jinorgbio.2017.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/30/2016] [Accepted: 01/20/2017] [Indexed: 11/29/2022]
26
Blomberg MRA. Can Reduction of NO to N2O in Cytochrome c Dependent Nitric Oxide Reductase Proceed through a Trans-Mechanism? Biochemistry 2016;56:120-131. [DOI: 10.1021/acs.biochem.6b00788] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
27
Yi J, Campbell ALO, Richter-Addo GB. Nitric oxide coupling to generate N2O promoted by a single-heme system as examined by density functional theory. Nitric Oxide 2016;60:69-75. [PMID: 27646954 DOI: 10.1016/j.niox.2016.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/11/2016] [Accepted: 09/14/2016] [Indexed: 11/25/2022]
28
Matsumura H, Chakraborty S, Reed J, Lu Y, Moënne-Loccoz P. Effect of Outer-Sphere Side Chain Substitutions on the Fate of the trans Iron-Nitrosyl Dimer in Heme/Nonheme Engineered Myoglobins (Fe(B)Mbs): Insights into the Mechanism of Denitrifying NO Reductases. Biochemistry 2016;55:2091-9. [PMID: 27003474 DOI: 10.1021/acs.biochem.5b01109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
29
Ghosh C, Seal M, Mukherjee S, Ghosh Dey S. Alzheimer's Disease: A Heme-Aβ Perspective. Acc Chem Res 2015;48:2556-64. [PMID: 26252621 DOI: 10.1021/acs.accounts.5b00102] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
30
Attia AAA, Silaghi-Dumitrescu R. Bacterial nitric oxide reductase: a mechanism revisited by an ONIOM (DFT:MM) study. J Mol Model 2015;21:130. [PMID: 25920393 DOI: 10.1007/s00894-015-2679-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
31
Harrop TC. New Insights on {FeNO}n (n=7, 8) Systems as Enzyme Models and HNO Donors. ADVANCES IN INORGANIC CHEMISTRY 2015. [DOI: 10.1016/bs.adioch.2014.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
32
Yang H, Gandhi H, Ostrom NE, Hegg EL. Isotopic fractionation by a fungal P450 nitric oxide reductase during the production of N2O. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014;48:10707-10715. [PMID: 25121461 DOI: 10.1021/es501912d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
33
Duarte AG, Cordas CM, Moura JJ, Moura I. Steady-state kinetics with nitric oxide reductase (NOR): New considerations on substrate inhibition profile and catalytic mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014;1837:375-84. [DOI: 10.1016/j.bbabio.2014.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 12/28/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
34
Terasaka E, Okada N, Sato N, Sako Y, Shiro Y, Tosha T. Characterization of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus: enzymatic activity and active site structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014;1837:1019-26. [PMID: 24569054 DOI: 10.1016/j.bbabio.2014.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/10/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
35
Chakraborty S, Reed J, Ross M, Nilges MJ, Petrik ID, Ghosh S, Hammes-Schiffer S, Sage JT, Zhang Y, Schulz CE, Lu Y. Spectroscopic and Computational Study of a Nonheme Iron Nitrosyl Center in a Biosynthetic Model of Nitric Oxide Reductase. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
36
Chakraborty S, Reed J, Ross M, Nilges MJ, Petrik ID, Ghosh S, Hammes-Schiffer S, Sage JT, Zhang Y, Schulz CE, Lu Y. Spectroscopic and computational study of a nonheme iron nitrosyl center in a biosynthetic model of nitric oxide reductase. Angew Chem Int Ed Engl 2014;53:2417-21. [PMID: 24481708 DOI: 10.1002/anie.201308431] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/27/2013] [Indexed: 11/07/2022]
37
Sato N, Ishii S, Sugimoto H, Hino T, Fukumori Y, Sako Y, Shiro Y, Tosha T. Structures of reduced and ligand-bound nitric oxide reductase provide insights into functional differences in respiratory enzymes. Proteins 2014;82:1258-71. [PMID: 24338896 DOI: 10.1002/prot.24492] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/27/2013] [Accepted: 12/09/2013] [Indexed: 11/07/2022]
38
Pirota V, Gennarini F, Dondi D, Monzani E, Casella L, Dell'Acqua S. Dinuclear heme and non-heme metal complexes as bioinspired catalysts for oxidation reactions. NEW J CHEM 2014. [DOI: 10.1039/c3nj01279d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
39
Shoji M, Hanaoka K, Kondo D, Sato A, Umeda H, Katsumasa Kamiya, Shiraishi K. A QM/MM study of nitric oxide reductase-catalysed N2O formation. Mol Phys 2013. [DOI: 10.1080/00268976.2013.830200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
40
Characterization of the nitric oxide reductase from Thermus thermophilus. Proc Natl Acad Sci U S A 2013;110:12613-8. [PMID: 23858452 DOI: 10.1073/pnas.1301731110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
41
Tosha T, Shiro Y. Crystal structures of nitric oxide reductases provide key insights into functional conversion of respiratory enzymes. IUBMB Life 2013;65:217-26. [DOI: 10.1002/iub.1135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 12/25/2012] [Indexed: 11/08/2022]
42
Berto TC, Speelman AL, Zheng S, Lehnert N. Mono- and dinuclear non-heme iron–nitrosyl complexes: Models for key intermediates in bacterial nitric oxide reductases. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.05.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
43
Ghosh C, Pramanik D, Mukherjee S, Dey A, Dey SG. Interaction of NO with Cu and heme-bound Aβ peptides associated with Alzheimer's disease. Inorg Chem 2012;52:362-8. [PMID: 23214455 DOI: 10.1021/ic302131n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
44
Electrochemical behaviour of bacterial nitric oxide reductase-evidence of low redox potential non-heme Fe(B) gives new perspectives on the catalytic mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012;1827:233-8. [PMID: 23142527 DOI: 10.1016/j.bbabio.2012.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/26/2012] [Accepted: 10/31/2012] [Indexed: 11/20/2022]
45
Shiro Y, Sugimoto H, Tosha T, Nagano S, Hino T. Structural basis for nitrous oxide generation by bacterial nitric oxide reductases. Philos Trans R Soc Lond B Biol Sci 2012;367:1195-203. [PMID: 22451105 DOI: 10.1098/rstb.2011.0310] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]  Open
46
Blomberg MRA, Siegbahn PEM. Mechanism for N2O Generation in Bacterial Nitric Oxide Reductase: A Quantum Chemical Study. Biochemistry 2012;51:5173-86. [DOI: 10.1021/bi300496e] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
47
Salomonsson L, Reimann J, Tosha T, Krause N, Gonska N, Shiro Y, Adelroth P. Proton transfer in the quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus during reduction of oxygen. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012;1817:1914-20. [PMID: 22538294 DOI: 10.1016/j.bbabio.2012.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/04/2012] [Accepted: 04/10/2012] [Indexed: 12/17/2022]
48
Shiro Y. Structure and function of bacterial nitric oxide reductases: nitric oxide reductase, anaerobic enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012;1817:1907-13. [PMID: 22425814 DOI: 10.1016/j.bbabio.2012.03.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/01/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
49
Arikawa Y, Onishi M. Reductive N–N coupling of NO molecules on transition metal complexes leading to N2O. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.10.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
50
Matsumoto Y, Tosha T, Pisliakov AV, Hino T, Sugimoto H, Nagano S, Sugita Y, Shiro Y. Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus. Nat Struct Mol Biol 2012;19:238-45. [PMID: 22266822 DOI: 10.1038/nsmb.2213] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 11/22/2011] [Indexed: 11/09/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA