1
|
Flores-Tamez VA, Martín-Aragón Baudel M, Hong J, Taylor JL, Ren L, Le T, Syed AU, Moustafa Y, Singhrao N, Lemus-Martinez WR, Reddy GR, Ramer V, Man KNM, Bartels P, Chen-Izu Y, Chen CY, Simo S, Dickson EJ, Morotti S, Grandi E, Santana LF, Hell JW, Horne MC, Nieves-Cintrón M, Navedo MF. α1 C S1928 Phosphorylation of Ca V1.2 Channel Controls Vascular Reactivity and Blood Pressure. J Am Heart Assoc 2024; 13:e035375. [PMID: 39377203 DOI: 10.1161/jaha.124.035375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Increased vascular CaV1.2 channel function causes enhanced arterial tone during hypertension. This is mediated by elevations in angiotensin II/protein kinase C signaling. Yet, the mechanisms underlying these changes are unclear. We hypothesize that α1C phosphorylation at serine 1928 (S1928) is a key event mediating increased CaV1.2 channel function and vascular reactivity during angiotensin II signaling and hypertension. METHODS AND RESULTS The hypothesis was examined in freshly isolated mesenteric arteries and arterial myocytes from control and angiotensin II-infused mice. Specific techniques include superresolution imaging, proximity ligation assay, patch-clamp electrophysiology, Ca2+ imaging, pressure myography, laser speckle imaging, and blood pressure telemetry. Hierarchical "nested" and appropriate parametric or nonparametric t test and ANOVAs were used to assess statistical differences. We found that angiotensin II redistributed the CaV1.2 pore-forming α1C subunit into larger clusters. This was correlated with elevated CaV1.2 channel activity and cooperativity, global intracellular Ca2+ and contraction of arterial myocytes, enhanced myogenic tone, and altered blood flow in wild-type mice. These angiotensin II-induced changes were prevented/ameliorated in cells/arteries from S1928 mutated to alanine knockin mice, which contain a negative modulation of the α1C S1928 phosphorylation site. In angiotensin II-induced hypertension, increased α1C clustering, CaV1.2 activity and cooperativity, myogenic tone, and blood pressure in wild-type cells/tissue/mice were averted/reduced in S1928 mutated to alanine samples. CONCLUSIONS Results suggest an essential role for α1C S1928 phosphorylation in regulating channel distribution, activity and gating modality, and vascular function during angiotensin II signaling and hypertension. Phosphorylation of this single vascular α1C amino acid could be a risk factor for hypertension that may be targeted for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Junyoung Hong
- Department of Pharmacology University of California Davis Davis CA USA
| | - Jade L Taylor
- Department of Pharmacology University of California Davis Davis CA USA
| | - Lu Ren
- Department of Pharmacology University of California Davis Davis CA USA
| | - Thanhmai Le
- Department of Pharmacology University of California Davis Davis CA USA
| | - Arsalan U Syed
- Department of Pharmacology University of California Davis Davis CA USA
| | - Yumna Moustafa
- Department of Pharmacology University of California Davis Davis CA USA
| | - Navid Singhrao
- Department of Pharmacology University of California Davis Davis CA USA
| | | | - Gopireddy R Reddy
- Department of Pharmacology University of California Davis Davis CA USA
| | - Victoria Ramer
- Department of Pharmacology University of California Davis Davis CA USA
| | - Kwun Nok Mimi Man
- Department of Pharmacology University of California Davis Davis CA USA
| | - Peter Bartels
- Department of Pharmacology University of California Davis Davis CA USA
| | - Ye Chen-Izu
- Department of Pharmacology University of California Davis Davis CA USA
| | - Chao-Yin Chen
- Department of Pharmacology University of California Davis Davis CA USA
| | - Sergi Simo
- Department of Cell Biology & Human Anatomy University of California Davis Davis CA USA
| | - Eamonn J Dickson
- Department of Physiology & Membrane Biology University of California Davis Davis CA USA
| | - Stefano Morotti
- Department of Pharmacology University of California Davis Davis CA USA
| | - Eleonora Grandi
- Department of Pharmacology University of California Davis Davis CA USA
| | - L Fernando Santana
- Department of Physiology & Membrane Biology University of California Davis Davis CA USA
| | - Johannes W Hell
- Department of Pharmacology University of California Davis Davis CA USA
| | - Mary C Horne
- Department of Pharmacology University of California Davis Davis CA USA
| | | | - Manuel F Navedo
- Department of Pharmacology University of California Davis Davis CA USA
| |
Collapse
|
2
|
Zhang X, Wang Y, Li H, Wang DW, Chen C. Insights into the post-translational modifications in heart failure. Ageing Res Rev 2024; 100:102467. [PMID: 39187021 DOI: 10.1016/j.arr.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Heart failure (HF), as the terminal manifestation of multiple cardiovascular diseases, causes a huge socioeconomic burden worldwide. Despite the advances in drugs and medical-assisted devices, the prognosis of HF remains poor. HF is well-accepted as a myriad of subcellular dys-synchrony related to detrimental structural and functional remodelling of cardiac components, including cardiomyocytes, fibroblasts, endothelial cells and macrophages. Through the covalent chemical process, post-translational modifications (PTMs) can coordinate protein functions, such as re-localizing cellular proteins, marking proteins for degradation, inducing interactions with other proteins and tuning enzyme activities, to participate in the progress of HF. Phosphorylation, acetylation, and ubiquitination predominate in the currently reported PTMs. In addition, advanced HF is commonly accompanied by metabolic remodelling including enhanced glycolysis. Thus, glycosylation induced by disturbed energy supply is also important. In this review, firstly, we addressed the main types of HF. Then, considering that PTMs are associated with subcellular locations, we summarized the leading regulation mechanisms in organelles of distinctive cell types of different types of HF, respectively. Subsequently, we outlined the aforementioned four PTMs of key proteins and signaling sites in HF. Finally, we discussed the perspectives of PTMs for potential therapeutic targets in HF.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
3
|
Bertoldi G, Caputo I, Calò L, Rossitto G. Lymphatic vessels and the renin-angiotensin-system. Am J Physiol Heart Circ Physiol 2023; 325:H837-H855. [PMID: 37565265 DOI: 10.1152/ajpheart.00023.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The lymphatic system is an integral part of the circulatory system and plays an important role in the fluid homeostasis of the human body. Accumulating evidence has recently suggested the involvement of lymphatic dysfunction in the pathogenesis of cardio-reno-vascular (CRV) disease. However, how the sophisticated contractile machinery of lymphatic vessels is modulated and, possibly impaired in CRV disease, remains largely unknown. In particular, little attention has been paid to the effect of the renin-angiotensin-system (RAS) on lymphatics, despite the high concentration of RAS mediators that these tissue-draining vessels are exposed to and the established role of the RAS in the development of classic microvascular dysfunction and overt CRV disease. We herein review recent studies linking RAS to lymphatic function and/or plasticity and further highlight RAS-specific signaling pathways, previously shown to drive adverse arterial remodeling and CRV organ damage that have potential for direct modulation of the lymphatic system.
Collapse
Affiliation(s)
- Giovanni Bertoldi
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Ilaria Caputo
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Lorenzo Calò
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
4
|
Ritzer A, Roeschl T, Nay S, Rudakova E, Volk T. Rapid Pacing Decreases L-type Ca 2+ Current and Alters Cacna1c Isogene Expression in Primary Cultured Rat Left Ventricular Myocytes. J Membr Biol 2023; 256:257-269. [PMID: 36995425 DOI: 10.1007/s00232-023-00284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
The L-type calcium current (ICaL) is the first step in cardiac excitation-contraction-coupling and plays an important role in regulating contractility, but also in electrical and mechanical remodeling. Primary culture of cardiomyocytes, a widely used tool in cardiac ion channel research, is associated with substantial morphological, functional and electrical changes some of which may be prevented by electrical pacing. We therefore investigated ICaL directly after cell isolation and after 24 h of primary culture with and without regular pacing at 1 and 3 Hz in rat left ventricular myocytes. Moreover, we analyzed total mRNA expression of the pore forming subunit of the L-type Ca2+ channel (cacna1c) as well as the expression of splice variants of its exon 1 that contribute to specificity of ICaL in different tissue such as cardiac myocytes or smooth muscle. 24 h incubation without pacing decreased ICaL density by ~ 10% only. Consistent with this decrease we observed a decrease in the expression of total cacna1c and of exon 1a, the dominant variant of cardiomyocytes, while expression of exon 1b and 1c increased. Pacing for 24 h at 1 and 3 Hz led to a substantial decrease in ICaL density by 30%, mildly slowed ICaL inactivation and shifted steady-state inactivation to more negative potentials. Total cacna1c mRNA expression was substantially decreased by pacing, as was the expression of exon 1b and 1c. Taken together, electrical silence introduces fewer alterations in ICaL density and cacna1c mRNA expression than pacing for 24 h and should therefore be the preferred approach for primary culture of cardiomyocytes.
Collapse
Affiliation(s)
- Anne Ritzer
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany
| | - Tobias Roeschl
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany
| | - Sandra Nay
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany
| | - Elena Rudakova
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany
| | - Tilmann Volk
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany.
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
5
|
Martín-Aragón Baudel M, Flores-Tamez VA, Hong J, Reddy GR, Maillard P, Burns AE, Man KNM, Sasse KC, Ward SM, Catterall WA, Bers DM, Hell JW, Nieves-Cintrón M, Navedo MF. Spatiotemporal Control of Vascular Ca V1.2 by α1 C S1928 Phosphorylation. Circ Res 2022; 131:1018-1033. [PMID: 36345826 PMCID: PMC9722584 DOI: 10.1161/circresaha.122.321479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND L-type CaV1.2 channels undergo cooperative gating to regulate cell function, although mechanisms are unclear. This study tests the hypothesis that phosphorylation of the CaV1.2 pore-forming subunit α1C at S1928 mediates vascular CaV1.2 cooperativity during diabetic hyperglycemia. METHODS A multiscale approach including patch-clamp electrophysiology, super-resolution nanoscopy, proximity ligation assay, calcium imaging' pressure myography, and Laser Speckle imaging was implemented to examine CaV1.2 cooperativity, α1C clustering, myogenic tone, and blood flow in human and mouse arterial myocytes/vessels. RESULTS CaV1.2 activity and cooperative gating increase in arterial myocytes from patients with type 2 diabetes and type 1 diabetic mice, and in wild-type mouse arterial myocytes after elevating extracellular glucose. These changes were prevented in wild-type cells pre-exposed to a PKA inhibitor or cells from knock-in S1928A but not S1700A mice. In addition, α1C clustering at the surface membrane of wild-type, but not wild-type cells pre-exposed to PKA or P2Y11 inhibitors and S1928A arterial myocytes, was elevated upon hyperglycemia and diabetes. CaV1.2 spatial and gating remodeling correlated with enhanced arterial myocyte Ca2+ influx and contractility and in vivo reduction in arterial diameter and blood flow upon hyperglycemia and diabetes in wild-type but not S1928A cells/mice. CONCLUSIONS These results suggest that PKA-dependent S1928 phosphorylation promotes the spatial reorganization of vascular α1C into "superclusters" upon hyperglycemia and diabetes. This triggers CaV1.2 activity and cooperativity, directly impacting vascular reactivity. The results may lay the foundation for developing therapeutics to correct CaV1.2 and arterial function during diabetic hyperglycemia.
Collapse
Affiliation(s)
- Miguel Martín-Aragón Baudel
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Victor A. Flores-Tamez
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Junyoung Hong
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Gopyreddy R. Reddy
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Pauline Maillard
- Department of Neurology, University of California Davis, Davis, CA (P.M.)
| | - Abby E. Burns
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Kwun Nok Mimi Man
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | | | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada Reno, Reno, NV (S.M.W.)
| | | | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Johannes W. Hell
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| |
Collapse
|
6
|
Li Y, Yang H, He T, Zhang L, Liu C. Post-Translational Modification of Cav1.2 and its Role in Neurodegenerative Diseases. Front Pharmacol 2022; 12:775087. [PMID: 35111050 PMCID: PMC8802068 DOI: 10.3389/fphar.2021.775087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
Cav1.2 plays an essential role in learning and memory, drug addiction, and neuronal development. Intracellular calcium homeostasis is disrupted in neurodegenerative diseases because of abnormal Cav1.2 channel activity and modification of downstream Ca2+ signaling pathways. Multiple post-translational modifications of Cav1.2 have been observed and seem to be closely related to the pathogenesis of neurodegenerative diseases. The specific molecular mechanisms by which Cav1.2 channel activity is regulated remain incompletely understood. Dihydropyridines (DHPs), which are commonly used for hypertension and myocardial ischemia, have been repurposed to treat PD and AD and show protective effects. However, further studies are needed to improve delivery strategies and drug selectivity. Better knowledge of channel modulation and more specific methods for altering Cav1.2 channel function may lead to better therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hong Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Tianhan He
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Liang Zhang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Pluteanu F, Boknik P, Heinick A, König C, Müller FU, Weidlich A, Kirchhefer U. Activation of PKC results in improved contractile effects and Ca cycling by inhibition of PP2A-B56α. Am J Physiol Heart Circ Physiol 2022; 322:H427-H441. [PMID: 35119335 DOI: 10.1152/ajpheart.00539.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein phosphatase 2A (PP2A) represents a heterotrimer that is responsible for the dephosphorylation of important regulatory myocardial proteins. The present study was aimed to test whether the phosphorylation of PP2A-B56α at Ser41 by PKC is involved in the regulation of myocyte Ca2+ cycling and contraction. For this purpose, heart preparations of wild-type (WT) and transgenic mice overexpressing the non-phosphorylatable S41A mutant form (TG) were stimulated by administration of the direct PKC activator phorbol 12-myristate 13-acetate (PMA), and functional effects were studied. PKC activation was accompanied by the inhibition of PP2A activity in WT cardiomyocytes, whereas this effect was absent in TG. Consistently, the increase in the sarcomere length shortening and the peak amplitude of Ca2+ transients after PMA administration in WT cardiomyocytes was attenuated in TG. However, the co-stimulation with 1 µM isoprenaline was able to offset these functional deficits. Moreover, TG hearts did not show an increase in the phosphorylation of the myosin-binding protein C after administration of PMA but was detected in corresponding WT. PMA modulated voltage-dependent activation of the L-type Ca2+ channel (LTCC) differently in the two genotypes, shifting V1/2a by +1.5 mV in TG and by 2.4 mV in WT. In the presence of PMA, ICaL inactivation remained unchanged in TG, whereas it was slower in corresponding WT. Our data suggest that PKC-activated enhancement of myocyte contraction and intracellular Ca2+ signaling is mediated by phosphorylation of B56α at Ser41, leading to a decrease in PP2A activity.
Collapse
Affiliation(s)
- Florentina Pluteanu
- Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Peter Boknik
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Alexander Heinick
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Christiane König
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Frank U Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Adam Weidlich
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Uwe Kirchhefer
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Function and regulation of phosphatase 1 in healthy and diseased heart. Cell Signal 2021; 90:110203. [PMID: 34822978 DOI: 10.1016/j.cellsig.2021.110203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Reversible phosphorylation of ion channels and calcium-handling proteins provides precise post-translational regulation of cardiac excitation and contractility. Serine/threonine phosphatases govern dephosphorylation of the majority of cardiac proteins. Accordingly, dysfunction of this regulation contributes to the development and progression of heart failure and atrial fibrillation. On the molecular level, these changes include alterations in the expression level and phosphorylation status of Ca2+ handling and excitation-contraction coupling proteins provoked by dysregulation of phosphatases. The serine/threonine protein phosphatase PP1 is one a major player in the regulation of cardiac excitation-contraction coupling. PP1 essentially impacts on cardiac physiology and pathophysiology via interactions with the cardiac ion channels Cav1.2, NKA, NCX and KCNQ1, sarcoplasmic reticulum-bound Ca2+ handling proteins such as RyR2, SERCA and PLB as well as the contractile proteins MLC2, TnI and MyBP-C. PP1 itself but also PP1-regulatory proteins like inhibitor-1, inhibitor-2 and heat-shock protein 20 are dysregulated in cardiac disease. Therefore, they represent interesting targets to gain more insights in heart pathophysiology and to identify new treatment strategies for patients with heart failure or atrial fibrillation. We describe the genetic and holoenzymatic structure of PP1 and review its role in the heart and cardiac disease. Finally, we highlight the importance of the PP1 regulatory proteins for disease manifestation, provide an overview of genetic models to study the role of PP1 for the development of heart failure and atrial fibrillation and discuss possibilities of pharmacological interventions.
Collapse
|
9
|
Staali L, Colin DA. Bi-component HlgC/HlgB and HlgA/HlgB γ-hemolysins from S. aureus: Modulation of Ca 2+ channels activity through a differential mechanism. Toxicon 2021; 201:74-85. [PMID: 34411591 DOI: 10.1016/j.toxicon.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/21/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Staphylococcal bi-component leukotoxins known as *pore-forming toxins* induce upon a specific binding to membrane receptors, two independent cellular events in human neutrophils. First, they provoke the opening of pre-existing specific ionic channels including Ca2+ channels. Then, they form membrane pores specific to monovalent cations leading to immune cells death. Among these leukotoxins, HlgC/HlgB and HlgA/HlgB γ-hemolysins do act in synergy to induce the opening of different types of Ca2+ channels in the absence as in the presence of extracellular Ca2+. Here, we investigate the mechanism underlying the modulation of Ca2+-independent Ca2+ channels in response to both active leukotoxins in human neutrophils. In the absence of extracellular Ca2+, the Mn2+ has been used as a Ca2+ surrogate to determine the activity of Ca2+-independent Ca2+ channels. Our findings provide new insights about different mechanisms involved in the staphylococcal γ-hemolysins activity to regulate three different types of Ca2+-independent Ca2+ channels. We conclude that (i) HlgC/HlgB stimulates the opening of La3+-sensitive Ca2+ channels, through a cholera toxin-sensitive G protein, (ii) HlgA/HlgB stimulates the opening of Ca2+ channels not sensitive to La3+, through a G protein-independent process, and (iii) unlike HlgA/HlgB, HlgC/HlgB toxins prevent the opening of a new type of Ca2+ channels by phosphorylation/de-phosphorylation-dependent mechanisms.
Collapse
Affiliation(s)
- Leila Staali
- Bacteriology Institute of Medical Faculty, Louis Pasteur University, 3 rue Koeberlé, F-67000, Strasbourg, France.
| | - Didier A Colin
- Bacteriology Institute of Medical Faculty, Louis Pasteur University, 3 rue Koeberlé, F-67000, Strasbourg, France
| |
Collapse
|
10
|
Hariharan A, Weir N, Robertson C, He L, Betsholtz C, Longden TA. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Front Cell Neurosci 2020; 14:601324. [PMID: 33390906 PMCID: PMC7775489 DOI: 10.3389/fncel.2020.601324] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Brain pericytes reside on the abluminal surface of capillaries, and their processes cover ~90% of the length of the capillary bed. These cells were first described almost 150 years ago (Eberth, 1871; Rouget, 1873) and have been the subject of intense experimental scrutiny in recent years, but their physiological roles remain uncertain and little is known of the complement of signaling elements that they employ to carry out their functions. In this review, we synthesize functional data with single-cell RNAseq screens to explore the ion channel and G protein-coupled receptor (GPCR) toolkit of mesh and thin-strand pericytes of the brain, with the aim of providing a framework for deeper explorations of the molecular mechanisms that govern pericyte physiology. We argue that their complement of channels and receptors ideally positions capillary pericytes to play a central role in adapting blood flow to meet the challenge of satisfying neuronal energy requirements from deep within the capillary bed, by enabling dynamic regulation of their membrane potential to influence the electrical output of the cell. In particular, we outline how genetic and functional evidence suggest an important role for Gs-coupled GPCRs and ATP-sensitive potassium (KATP) channels in this context. We put forth a predictive model for long-range hyperpolarizing electrical signaling from pericytes to upstream arterioles, and detail the TRP and Ca2+ channels and Gq, Gi/o, and G12/13 signaling processes that counterbalance this. We underscore critical questions that need to be addressed to further advance our understanding of the signaling topology of capillary pericytes, and how this contributes to their physiological roles and their dysfunction in disease.
Collapse
Affiliation(s)
- Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Colin Robertson
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Liqun He
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicine Huddinge (MedH), Karolinska Institutet & Integrated Cardio Metabolic Centre, Huddinge, Sweden
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
11
|
Regulation of cardiovascular calcium channel activity by post-translational modifications or interacting proteins. Pflugers Arch 2020; 472:653-667. [PMID: 32435990 DOI: 10.1007/s00424-020-02398-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
Voltage-gated calcium channels are the major pathway for Ca2+ influx to initiate the contraction of smooth and cardiac muscles. Alterations of calcium channel function have been implicated in multiple cardiovascular diseases, such as hypertension, atrial fibrillation, and long QT syndrome. Post-translational modifications do expand cardiovascular calcium channel structure and function to affect processes such as channel trafficking or polyubiquitination by two E3 ubiquitin ligases, Ret finger protein 2 (Rfp2) or murine double minute 2 protein (Mdm2). Additionally, biophysical property such as Ca2+-dependent inactivation (CDI) could be altered through binding of calmodulin, or channel activity could be modulated via S-nitrosylation by nitric oxide and phosphorylation by protein kinases or by interacting protein partners, such as galectin-1 and Rem. Understanding how cardiovascular calcium channel function is post-translationally remodeled under distinctive disease conditions will provide better information about calcium channel-related disease mechanisms and improve the development of more selective therapeutic agents for cardiovascular diseases.
Collapse
|
12
|
Advanced glycation end products facilitate the proliferation and reduce early apoptosis of cardiac microvascular endothelial cells via PKCβ signaling pathway: Insight from diabetic cardiomyopathy. Anatol J Cardiol 2020; 23:141-150. [PMID: 32120359 PMCID: PMC7222633 DOI: 10.14744/anatoljcardiol.2019.21504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective: To investigate the effects of advanced glycation end products (AGEs) on the proliferation and apoptosis of cardiac microvascular endothelial cells (CMECs) in rats and their underlying signaling pathway. Methods: CMECs were isolated from Sprague–Dawley rats. We first examined the effects of AGEs on the proliferation and apoptosis of CMECs and then tested whether protein kinase C (PKC) β blockers could counteract the effects of AGEs. The PKC agonists phorbol 12-myristate 13-acetate (PMA) and PKCβ blockers were also used to verify whether PKC could act independently on CMECs. The receptor for AGEs (RAGE)–small interfering RNA (siRNA) transfection was used to verify the effect of AGEs on PKC. Following the above steps, we explained whether AGEs regulated the CMEC proliferation and early apoptosis through the PKCβ signaling pathway. Proliferation of CMECs was detected using the Cell Counting Kit-8 (CCK-8) assay, and early apoptosis was determined using the Annexin V- Fluorescein Isothiocyanate (FITC)/propidium iodide (PI) double staining. Expression of proliferation and apoptosis-related proteins and PKC phosphorylation were determined by western blotting analysis. Cell cycle distributions were assayed using a BD FACSCalibur cell-sorting system. Results: AGEs facilitated the proliferation of CMECs, upregulated phosphorylated extracellular signal regulated kinase (p-ERK), and accelerated the entry of cells from G1 phase to the S+G2/M phase, which was consistent with the upregulated cyclin D1 by AGEs. AGEs inhibited early apoptosis of CMECs by increasing the expression of survivin and decreasing the expression of cleaved-caspase3. All these effects can be reversed by PKCβ1/2inhibitors. In addition, AGE upregulated the RAGE expression and phosphorylation of PKCβ1/2 in CMECs, while the inhibition of RAGE reversed the phosphorylation, as well as the effects of AGEs on proliferation and apoptosis in CMECs. Conclusion: The study indicated that AGEs facilitated the proliferation and reduced early apoptosis of CMECs via the PKCβ signaling pathway.
Collapse
|
13
|
Milanick WJ, Polo-Parada L, Dantzler HA, Kline DD. Activation of alpha-1 adrenergic receptors increases cytosolic calcium in neurones of the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 2019; 31:e12791. [PMID: 31494990 PMCID: PMC7003713 DOI: 10.1111/jne.12791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
Norepinephrine (NE) activates adrenergic receptors (ARs) in the hypothalamic paraventricular nucleus (PVN) to increase excitatory currents, depolarise neurones and, ultimately, augment neuro-sympathetic and endocrine output. Such cellular events are known to potentiate intracellular calcium ([Ca2+ ]i ); however, the role of NE with respect to modulating [Ca2+ ]i in PVN neurones and the mechanisms by which this may occur remain unclear. We evaluated the effects of NE on [Ca2+ ]i of acutely isolated PVN neurones using Fura-2 imaging. NE induced a slow increase in [Ca2+ ]i compared to artificial cerebrospinal fluid vehicle. NE-induced Ca2+ elevations were mimicked by the α1 -AR agonist phenylephrine (PE) but not by α2 -AR agonist clonidine (CLON). NE and PE but not CLON also increased the overall number of neurones that increase [Ca2+ ]i (ie, responders). Elimination of extracellular Ca2+ or intracellular endoplasmic reticulum Ca2+ stores abolished the increase in [Ca2+ ]i and reduced responders. Blockade of voltage-dependent Ca2+ channels abolished the α1 -AR induced increase in [Ca2+ ]i and number of responders, as did inhibition of phospholipase C inhibitor, protein kinase C and inositol triphosphate receptors. Spontaneous phasic Ca2+ events, however, were not altered by NE, PE or CLON. Repeated K+ -induced membrane depolarisation produced repetitive [Ca2+ ]i elevations. NE and PE increased baseline Ca2+ , whereas NE decreased the peak amplitude. CLON also decreased peak amplitude but did not affect baseline [Ca2+ ]i . Taken together, these data suggest receptor-specific influence of α1 and α2 receptors on the various modes of calcium entry in PVN neurones. They further suggest Ca2+ increase via α1 -ARs is co-dependent on extracellular Ca2+ influx and intracellular Ca2+ release, possibly via a phospholipase C inhibitor-mediated signalling cascade.
Collapse
Affiliation(s)
- William J. Milanick
- Department of Biomedical Sciences, University of Missouri, Columbia MO 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia MO 65211
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia MO 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia MO 65211
| | - Heather A. Dantzler
- Department of Biomedical Sciences, University of Missouri, Columbia MO 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia MO 65211
| | - David D. Kline
- Department of Biomedical Sciences, University of Missouri, Columbia MO 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia MO 65211
| |
Collapse
|
14
|
He Y, Wang ZJ. Spinal and afferent PKC signaling mechanisms that mediate chronic pain in sickle cell disease. Neurosci Lett 2019; 706:56-60. [PMID: 31051220 DOI: 10.1016/j.neulet.2019.04.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
Pain is the most characteristic feature of sickle cell disease (SCD). Patients with SCD live with unpredictable, recurrent episodes of acute painful crisis, as well as chronic unremitting pain throughout their lifetime. While most of the research and medical efforts have focused on treating vaso-occlusion crisis and acute pain, chronic pain remains a significant challenge faced by patients and physicians. Emerging evidence from human and animal studies has suggested the presence of a neuropathic component in SCD pain. New knowledge on the neurobiology of chronic pain in SCD has significant implications in unraveling the underlying mechanisms. This review focuses on the recent advances on the role of protein kinase C or PKC in promoting and maintaining chronic pain conditions. With a highlight of a specific PKC isoform, PKCδ, we aim to propose PKC as an essential regulator of chronic pain in SCD, which may ultimately lead to innovative therapeutic strategies for treating this devastating life-long problem in patients with SCD.
Collapse
Affiliation(s)
- Ying He
- Department of Biopharmaceutical Sciences and Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60612, United States.
| | - Zaijie Jim Wang
- Department of Biopharmaceutical Sciences and Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60612, United States.
| |
Collapse
|
15
|
Liu W, Hashimoto T, Yamashita T, Hirano K. Coagulation factor XI induces Ca 2+ response and accelerates cell migration in vascular smooth muscle cells via proteinase-activated receptor 1. Am J Physiol Cell Physiol 2019; 316:C377-C392. [PMID: 30566391 DOI: 10.1152/ajpcell.00426.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activated coagulation factor XI (FXIa) is a serine proteinase that plays a key role in the intrinsic coagulation pathway. The analysis of FXI-knockout mice has indicated the contribution of FXI to the pathogenesis of atherosclerosis. However, the underlying mechanism remains unknown. We hypothesized that FXIa exerts vascular smooth muscle effects via proteinase-activated receptor 1 (PAR1). Fura-2 fluorometry revealed that FXIa elicited intracellular Ca2+ signal in rat embryo aorta smooth muscle A7r5 cells. The influx of extracellular Ca2+ played a greater role in generating Ca2+ signal than the Ca2+ release from intracellular stores. The FXIa-induced Ca2+ signal was abolished by the pretreatment with atopaxar, an antagonist of PAR1, or 4-amidinophenylmethanesulfonyl fluoride (p-APMSF), an inhibitor of proteinase, while it was also lost in embryonic fibroblasts derived from PAR1-/- mice. FXIa cleaved the recombinant protein containing the extracellular region of PAR1 at the same site (R45/S46) as that of thrombin, a canonical PAR1 agonist. The FXIa-induced Ca2+ influx was inhibited by diltiazem, an L-type Ca2+ channel blocker, and by siRNA targeted to CaV1.2. The FXIa-induced Ca2+ influx was also inhibited by GF109203X and rottlerin, inhibitors of protein kinase C. In a wound healing assay, FXIa increased the rate of cell migration by 2.46-fold of control, which was partly inhibited by atopaxar or diltiazem. In conclusion, FXIa mainly elicits the Ca2+ signal via the PAR1/CaV1.2-mediated Ca2+ influx and accelerates the migration in vascular smooth muscle cells. The present study provides the first evidence that FXIa exerts a direct cellular effect on vascular smooth muscle.
Collapse
Affiliation(s)
- Wenhua Liu
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University , Kagawa , Japan
| | - Takeshi Hashimoto
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University , Kagawa , Japan
| | - Tetsuo Yamashita
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University , Kagawa , Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University , Kagawa , Japan
| |
Collapse
|
16
|
Marrocco V, Bogomolovas J, Ehler E, Dos Remedios CG, Yu J, Gao C, Lange S. PKC and PKN in heart disease. J Mol Cell Cardiol 2019; 128:212-226. [PMID: 30742812 PMCID: PMC6408329 DOI: 10.1016/j.yjmcc.2019.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
The protein kinase C (PKC) and closely related protein kinase N (PKN) families of serine/threonine protein kinases play crucial cellular roles. Both kinases belong to the AGC subfamily of protein kinases that also include the cAMP dependent protein kinase (PKA), protein kinase B (PKB/AKT), protein kinase G (PKG) and the ribosomal protein S6 kinase (S6K). Involvement of PKC family members in heart disease has been well documented over the years, as their activity and levels are mis-regulated in several pathological heart conditions, such as ischemia, diabetic cardiomyopathy, as well as hypertrophic or dilated cardiomyopathy. This review focuses on the regulation of PKCs and PKNs in different pathological heart conditions and on the influences that PKC/PKN activation has on several physiological processes. In addition, we discuss mechanisms by which PKCs and the closely related PKNs are activated and turned-off in hearts, how they regulate cardiac specific downstream targets and pathways, and how their inhibition by small molecules is explored as new therapeutic target to treat cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA
| | - Julius Bogomolovas
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | - Jiayu Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Gao
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, USA.
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.
| |
Collapse
|
17
|
Tarasova EO, Gaydukov AE, Balezina OP. Calcineurin and Its Role in Synaptic Transmission. BIOCHEMISTRY (MOSCOW) 2018; 83:674-689. [PMID: 30195324 DOI: 10.1134/s0006297918060056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Calcineurin (CaN) is a serine/threonine phosphatase widely expressed in different cell types and structures including neurons and synapses. The most studied role of CaN is its involvement in the functioning of postsynaptic structures of central synapses. The role of CaN in the presynaptic structures of central and peripheral synapses is less understood, although it has generated a considerable interest and is a subject of a growing number of studies. The regulatory role of CaN in synaptic vesicle endocytosis in the synapse terminals is actively studied. In recent years, new targets of CaN have been identified and its role in the regulation of enzymes and neurotransmitter secretion in peripheral neuromuscular junctions has been revealed. CaN is the only phosphatase that requires calcium and calmodulin for activation. In this review, we present details of CaN molecular structure and give a detailed description of possible mechanisms of CaN activation involving calcium, enzymes, and endogenous and exogenous inhibitors. Known and newly discovered CaN targets at pre- and postsynaptic levels are described. CaN activity in synaptic structures is discussed in terms of functional involvement of this phosphatase in synaptic transmission and neurotransmitter release.
Collapse
Affiliation(s)
- E O Tarasova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - A E Gaydukov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia. .,Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - O P Balezina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| |
Collapse
|
18
|
Guo A, Chen R, Wang Y, Huang CK, Chen B, Kutschke W, Hong J, Song LS. Transient activation of PKC results in long-lasting detrimental effects on systolic [Ca 2+] i in cardiomyocytes by altering actin cytoskeletal dynamics and T-tubule integrity. J Mol Cell Cardiol 2018; 115:104-114. [PMID: 29307535 DOI: 10.1016/j.yjmcc.2018.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/18/2017] [Accepted: 01/03/2018] [Indexed: 11/25/2022]
Abstract
AIMS Protein kinase C (PKC) isozymes contribute to the development of heart failure through dysregulation of Ca2+ handling properties and disruption of contractile function in cardiomyocytes. However, the mechanisms by which PKC activation leads to Ca2+ dysfunction are incompletely understood. METHODS AND RESULTS Shortly upon ventricular pressure overload in mice, we detected transient PKC activation that was associated with pulsed actin cytoskeletal rearrangement. In cultured cardiomyocytes, transient activation of PKC promoted long-term deleterious effects on the integrity of the transverse (T)- tubule system, resulting in a significant decrease in the amplitude and increase in the rising kinetics of Ca2+ transients. Treatment with a PKCα/β inhibitor restored the synchronization of Ca2+ transients and maintained T-tubule integrity in cultured cardiomyocytes. Supporting these data, PKCα/β inhibition protected against T-tubule remodeling and cardiac dysfunction in a mouse model of pressure overload-induced heart failure. Mechanistically, transient activation of PKC resulted in biphasic actin cytoskeletal rearrangement, consistent with in vivo observations in the pressure overloaded mouse model. Transient inhibition of actin polymerization or depolymerization resulted in severe T-tubule damage, recapitulating the T-tubule damage induced by PKC activation. Moreover, inhibition of stretch activated channels (SAC) protected against T-tubule remodeling and E-C coupling dysfunction induced by transient PKC activation and actin cytoskeletal rearrangement. CONCLUSIONS These data identify a key mechanistic link between transient PKC activation and long-term Ca2+ handling defects through PKC-induced actin cytoskeletal rearrangement and resultant T-tubule damage.
Collapse
Affiliation(s)
- Ang Guo
- Division of Cardiovascular Medicine, Department of Internal Medicine & Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Rong Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine & Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Yihui Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine & Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Chun-Kai Huang
- Division of Cardiovascular Medicine, Department of Internal Medicine & Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine & Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - William Kutschke
- Division of Cardiovascular Medicine, Department of Internal Medicine & Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jiang Hong
- Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine & Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA.
| |
Collapse
|
19
|
Affiliation(s)
- Franz Hofmann
- Institut für Pharmakologie und Toxikologie, Technische
Universität München, München,
Germany
| |
Collapse
|
20
|
Raifman TK, Kumar P, Haase H, Klussmann E, Dascal N, Weiss S. Protein kinase C enhances plasma membrane expression of cardiac L-type calcium channel, Ca V1.2. Channels (Austin) 2017; 11:604-615. [PMID: 28901828 DOI: 10.1080/19336950.2017.1369636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
L-type-voltage-dependent Ca2+ channels (L-VDCCs; CaV1.2, α1C), crucial in cardiovascular physiology and pathology, are modulated via activation of G-protein-coupled receptors and subsequently protein kinase C (PKC). Despite extensive study, key aspects of the mechanisms leading to PKC-induced Ca2+ current increase are unresolved. A notable residue, Ser1928, located in the distal C-terminus (dCT) of α1C was shown to be phosphorylated by PKC. CaV1.2 undergoes posttranslational modifications yielding full-length and proteolytically cleaved CT-truncated forms. We have previously shown that, in Xenopus oocytes, activation of PKC enhances α1C macroscopic currents. This increase depended on the isoform of α1C expressed. Only isoforms containing the cardiac, long N-terminus (L-NT), were upregulated by PKC. Ser1928 was also crucial for the full effect of PKC. Here we report that, in Xenopus oocytes, following PKC activation the amount of α1C protein expressed in the plasma membrane (PM) increases within minutes. The increase in PM content is greater with full-length α1C than in dCT-truncated α1C, and requires Ser1928. The same was observed in HL-1 cells, a mouse atrium cell line natively expressing cardiac α1C, which undergoes the proteolytic cleavage of the dCT, thus providing a native setting for exploring the effects of PKC in cardiomyocytes. Interestingly, activation of PKC preferentially increased the PM levels of full-length, L-NT α1C. Our findings suggest that part of PKC regulation of CaV1.2 in the heart involves changes in channel's cellular fate. The mechanism of this PKC regulation appears to involve the C-terminus of α1C, possibly corroborating the previously proposed role of NT-CT interactions within α1C.
Collapse
Affiliation(s)
- Tal Keren Raifman
- a Department of Physiology and Pharmacology , Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel.,b Department of Physiotherapy , Zfat Academic College , Zfat , Israel
| | - Prabodh Kumar
- a Department of Physiology and Pharmacology , Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Hannelore Haase
- c Max Delbruck Center for Molecular Medicine (MDC) , Berlin , Germany
| | - Enno Klussmann
- c Max Delbruck Center for Molecular Medicine (MDC) , Berlin , Germany
| | - Nathan Dascal
- a Department of Physiology and Pharmacology , Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Sharon Weiss
- a Department of Physiology and Pharmacology , Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
21
|
Xu Q, Huff LP, Fujii M, Griendling KK. Redox regulation of the actin cytoskeleton and its role in the vascular system. Free Radic Biol Med 2017; 109:84-107. [PMID: 28285002 PMCID: PMC5497502 DOI: 10.1016/j.freeradbiomed.2017.03.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/17/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
The actin cytoskeleton is critical for form and function of vascular cells, serving mechanical, organizational and signaling roles. Because many cytoskeletal proteins are sensitive to reactive oxygen species, redox regulation has emerged as a pivotal modulator of the actin cytoskeleton and its associated proteins. Here, we summarize work implicating oxidants in altering actin cytoskeletal proteins and focus on how these alterations affect cell migration, proliferation and contraction of vascular cells. Finally, we discuss the role of oxidative modification of the actin cytoskeleton in vivo and highlight its importance for vascular diseases.
Collapse
Affiliation(s)
- Qian Xu
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lauren P Huff
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States
| | - Masakazu Fujii
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States.
| |
Collapse
|
22
|
Protein kinase C mechanisms that contribute to cardiac remodelling. Clin Sci (Lond) 2017; 130:1499-510. [PMID: 27433023 DOI: 10.1042/cs20160036] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/18/2016] [Indexed: 12/12/2022]
Abstract
Protein phosphorylation is a highly-regulated and reversible process that is precisely controlled by the actions of protein kinases and protein phosphatases. Factors that tip the balance of protein phosphorylation lead to changes in a wide range of cellular responses, including cell proliferation, differentiation and survival. The protein kinase C (PKC) family of serine/threonine kinases sits at nodal points in many signal transduction pathways; PKC enzymes have been the focus of considerable attention since they contribute to both normal physiological responses as well as maladaptive pathological responses that drive a wide range of clinical disorders. This review provides a background on the mechanisms that regulate individual PKC isoenzymes followed by a discussion of recent insights into their role in the pathogenesis of diseases such as cancer. We then provide an overview on the role of individual PKC isoenzymes in the regulation of cardiac contractility and pathophysiological growth responses, with a focus on the PKC-dependent mechanisms that regulate pump function and/or contribute to the pathogenesis of heart failure.
Collapse
|
23
|
Oxidative Stress-Induced Afterdepolarizations and Protein Kinase C Signaling. Int J Mol Sci 2017; 18:ijms18040688. [PMID: 28358314 PMCID: PMC5412274 DOI: 10.3390/ijms18040688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Hydrogen peroxide (H2O2)-induced oxidative stress has been demonstrated to induce afterdepolarizations and triggered activities in isolated myocytes, but the underlying mechanisms remain not fully understood. We aimed to explore whether protein kinase C (PKC) activation plays an important role in oxidative stress-induced afterdepolarizations. Methods: Action potentials and ion currents of isolated rabbit cardiomyocytes were recorded using the patch clamp technique. H2O2 (1 mM) was perfused to induce oxidative stress and the specific classical PKC inhibitor, Gö 6983 (1 μM), was applied to test the involvement of PKC. Results: H2O2 perfusion prolonged the action potential duration and induced afterdepolarizations. Pretreatment with Gö 6983 prevented the emergence of H2O2-induced afterdepolarizations. Additional application of Gö 6983 with H2O2 effectively suppressed H2O2-induced afterdepolarizations. H2O2 increased the late sodium current (INa,L) (n = 7, p < 0.01) and the L-type calcium current (ICa,L) (n = 5, p < 0.01), which were significantly reversed by Gö 6983 (p < 0.01). H2O2 also increased the transient outward potassium current (Ito) (n = 6, p < 0.05). However, Gö 6983 showed little effect on H2O2-induced enhancement of Ito. Conclusions: H2O2 induced afterdepolarizations via the activation of PKC and the enhancement of ICa,L and INa,L. These results provide evidence of a link between oxidative stress, PKC activation and afterdepolarizations.
Collapse
|
24
|
Nystoriak MA, Nieves-Cintrón M, Patriarchi T, Buonarati OR, Prada MP, Morotti S, Grandi E, Fernandes JDS, Forbush K, Hofmann F, Sasse KC, Scott JD, Ward SM, Hell JW, Navedo MF. Ser1928 phosphorylation by PKA stimulates the L-type Ca2+ channel CaV1.2 and vasoconstriction during acute hyperglycemia and diabetes. Sci Signal 2017; 10:10/463/eaaf9647. [PMID: 28119464 DOI: 10.1126/scisignal.aaf9647] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypercontractility of arterial myocytes and enhanced vascular tone during diabetes are, in part, attributed to the effects of increased glucose (hyperglycemia) on L-type CaV1.2 channels. In murine arterial myocytes, kinase-dependent mechanisms mediate the increase in CaV1.2 activity in response to increased extracellular glucose. We identified a subpopulation of the CaV1.2 channel pore-forming subunit (α1C) within nanometer proximity of protein kinase A (PKA) at the sarcolemma of murine and human arterial myocytes. This arrangement depended upon scaffolding of PKA by an A-kinase anchoring protein 150 (AKAP150) in mice. Glucose-mediated increases in CaV1.2 channel activity were associated with PKA activity, leading to α1C phosphorylation at Ser1928 Compared to arteries from low-fat diet (LFD)-fed mice and nondiabetic patients, arteries from high-fat diet (HFD)-fed mice and from diabetic patients had increased Ser1928 phosphorylation and CaV1.2 activity. Arterial myocytes and arteries from mice lacking AKAP150 or expressing mutant AKAP150 unable to bind PKA did not exhibit increased Ser1928 phosphorylation and CaV1.2 current density in response to increased glucose or to HFD. Consistent with a functional role for Ser1928 phosphorylation, arterial myocytes and arteries from knockin mice expressing a CaV1.2 with Ser1928 mutated to alanine (S1928A) lacked glucose-mediated increases in CaV1.2 activity and vasoconstriction. Furthermore, the HFD-induced increases in CaV1.2 current density and myogenic tone were prevented in S1928A knockin mice. These findings reveal an essential role for α1C phosphorylation at Ser1928 in stimulating CaV1.2 channel activity and vasoconstriction by AKAP-targeted PKA upon exposure to increased glucose and in diabetes.
Collapse
Affiliation(s)
- Matthew A Nystoriak
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | | | - Tommaso Patriarchi
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Olivia R Buonarati
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Maria Paz Prada
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | | | - Katherine Forbush
- Howard Hughes Medical Institute and Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Franz Hofmann
- Department of Pharmacology and Toxicology, Technical University of Munich, Munich D80802, Germany
| | | | - John D Scott
- Howard Hughes Medical Institute and Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV 89557, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
25
|
Enhancement of contraction and L-type Ca2+ current by murrayafoline-A via protein kinase C in rat ventricular myocytes. Eur J Pharmacol 2016; 784:33-41. [DOI: 10.1016/j.ejphar.2016.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 04/30/2016] [Accepted: 05/04/2016] [Indexed: 11/17/2022]
|
26
|
K(ATP) channel gain-of-function leads to increased myocardial L-type Ca(2+) current and contractility in Cantu syndrome. Proc Natl Acad Sci U S A 2016; 113:6773-8. [PMID: 27247394 DOI: 10.1073/pnas.1606465113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cantu syndrome (CS) is caused by gain-of-function (GOF) mutations in genes encoding pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) KATP channel subunits. We show that patients with CS, as well as mice with constitutive (cGOF) or tamoxifen-induced (icGOF) cardiac-specific Kir6.1 GOF subunit expression, have enlarged hearts, with increased ejection fraction and increased contractility. Whole-cell voltage-clamp recordings from cGOF or icGOF ventricular myocytes (VM) show increased basal L-type Ca(2+) current (LTCC), comparable to that seen in WT VM treated with isoproterenol. Mice with vascular-specific expression (vGOF) show left ventricular dilation as well as less-markedly increased LTCC. Increased LTCC in KATP GOF models is paralleled by changes in phosphorylation of the pore-forming α1 subunit of the cardiac voltage-gated calcium channel Cav1.2 at Ser1928, suggesting enhanced protein kinase activity as a potential link between increased KATP current and CS cardiac pathophysiology.
Collapse
|
27
|
Wang Y, Viscarra J, Kim SJ, Sul HS. Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol 2016; 16:678-89. [PMID: 26490400 DOI: 10.1038/nrm4074] [Citation(s) in RCA: 480] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fatty acid and fat synthesis in the liver is a highly regulated metabolic pathway that is important for very low-density lipoprotein (VLDL) production and thus energy distribution to other tissues. Having common features at their promoter regions, lipogenic genes are coordinately regulated at the transcriptional level. Transcription factors, such as upstream stimulatory factors (USFs), sterol regulatory element-binding protein 1C (SREBP1C), liver X receptors (LXRs) and carbohydrate-responsive element-binding protein (ChREBP) have crucial roles in this process. Recently, insights have been gained into the signalling pathways that regulate these transcription factors. After feeding, high blood glucose and insulin levels activate lipogenic genes through several pathways, including the DNA-dependent protein kinase (DNA-PK), atypical protein kinase C (aPKC) and AKT-mTOR pathways. These pathways control the post-translational modifications of transcription factors and co-regulators, such as phosphorylation, acetylation or ubiquitylation, that affect their function, stability and/or localization. Dysregulation of lipogenesis can contribute to hepatosteatosis, which is associated with obesity and insulin resistance.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | - Jose Viscarra
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | - Sun-Joong Kim
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
28
|
Modulation of CaV1.2 calcium channel by neuropeptide W regulates vascular myogenic tone via G protein-coupled receptor 7. J Hypertens 2015; 33:2431-42. [DOI: 10.1097/hjh.0000000000000723] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Weber S, Meyer-Roxlau S, Wagner M, Dobrev D, El-Armouche A. Counteracting Protein Kinase Activity in the Heart: The Multiple Roles of Protein Phosphatases. Front Pharmacol 2015; 6:270. [PMID: 26617522 PMCID: PMC4643138 DOI: 10.3389/fphar.2015.00270] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Decades of cardiovascular research have shown that variable and flexible levels of protein phosphorylation are necessary to maintain cardiac function. A delicate balance between phosphorylated and dephosphorylated states of proteins is guaranteed by a complex interplay of protein kinases (PKs) and phosphatases. Serine/threonine phosphatases, in particular members of the protein phosphatase (PP) family govern dephosphorylation of the majority of these cardiac proteins. Recent findings have however shown that PPs do not only dephosphorylate previously phosphorylated proteins as a passive control mechanism but are capable to actively control PK activity via different direct and indirect signaling pathways. These control mechanisms can take place on (epi-)genetic, (post-)transcriptional, and (post-)translational levels. In addition PPs themselves are targets of a plethora of proteinaceous interaction partner regulating their endogenous activity, thus adding another level of complexity and feedback control toward this system. Finally, novel approaches are underway to achieve spatiotemporal pharmacologic control of PPs which in turn can be used to fine-tune misleaded PK activity in heart disease. Taken together, this review comprehensively summarizes the major aspects of PP-mediated PK regulation and discusses the subsequent consequences of deregulated PP activity for cardiovascular diseases in depth.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Stefanie Meyer-Roxlau
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, West German Heart and Vascular Center , Essen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| |
Collapse
|
30
|
Liu F, Weng SJ, Yang XL, Zhong YM. Orexin-A potentiates L-type calcium/barium currents in rat retinal ganglion cells. Neuroscience 2015; 305:225-37. [PMID: 26259903 DOI: 10.1016/j.neuroscience.2015.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 01/07/2023]
Abstract
Two neuropeptides, orexin-A and orexin-B (also called hypocretin-1 and -2), have been implicated in sleep/wake regulation, feeding behaviors via the activation of two subtypes of G-protein-coupled receptors: orexin 1 and orexin 2 receptors (OX1R and OX2R). While the expression of orexins and orexin receptors is immunohistochemically revealed in retinal neurons, the function of these peptides in the retina is largely unknown. Using whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that orexin-A increased L-type-like barium currents (IBa,L) in ganglion cells (GCs), and the effect was blocked by the selective OX1R antagonist SB334867, but not by the OX2R antagonist TCS OX2 29. The orexin-A effect was abolished by intracellular dialysis of GDP-β-S/GPAnt-2A, a Gq protein inhibitor, suggesting the mediation of Gq. Additionally, during internal dialysis of the phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor U73122, orexin-A did not change the IBa,L of GCs, whereas the orexin-A effect persisted in the presence of the phosphatidylcholine (PC)-PLC inhibitor D609. The orexin-A-induced potentiation was not seen with internal infusion of Ca(2+)-free solution or when inositol 1,4,5-trisphosphate (IP3)-sensitive Ca(2+) release from intracellular stores was blocked by heparin/xestospongins-C. Moreover, the orexin-A effect was mimicked by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, but was eliminated when PKC was inhibited by bisindolylmaleimide IV (Bis-IV)/Gö6976. Neither adenosine 3',5'-cyclic monophosphate (cAMP)-protein kinase A (PKA) nor guanosine 3',5'-cyclic monophosphate (cGMP)-protein kinase G (PKG) signaling pathway was likely involved, as orexin-A persisted to potentiate the IBa,L of GCs no matter these two pathways were activated or inhibited. These results suggest that, by activating OX1R, orexin-A potentiates the IBa,L of rat GCs through a distinct Gq/PI-PLC/IP3/Ca(2+)/PKC signaling pathway.
Collapse
Affiliation(s)
- F Liu
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - S-J Weng
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - X-L Yang
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Y-M Zhong
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
31
|
Garcia-Alvarez G, Shetty MS, Lu B, Yap KAF, Oh-Hora M, Sajikumar S, Bichler Z, Fivaz M. Impaired spatial memory and enhanced long-term potentiation in mice with forebrain-specific ablation of the Stim genes. Front Behav Neurosci 2015; 9:180. [PMID: 26236206 PMCID: PMC4500926 DOI: 10.3389/fnbeh.2015.00180] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/29/2015] [Indexed: 12/15/2022] Open
Abstract
Recent findings point to a central role of the endoplasmic reticulum-resident STIM (Stromal Interaction Molecule) proteins in shaping the structure and function of excitatory synapses in the mammalian brain. The impact of the Stim genes on cognitive functions remains, however, poorly understood. To explore the function of the Stim genes in learning and memory, we generated three mouse strains with conditional deletion (cKO) of Stim1 and/or Stim2 in the forebrain. Stim1, Stim2, and double Stim1/Stim2 cKO mice show no obvious brain structural defects or locomotor impairment. Analysis of spatial reference memory in the Morris water maze revealed a mild learning delay in Stim1 cKO mice, while learning and memory in Stim2 cKO mice was indistinguishable from their control littermates. Deletion of both Stim genes in the forebrain resulted, however, in a pronounced impairment in spatial learning and memory reflecting a synergistic effect of the Stim genes on the underlying neural circuits. Notably, long-term potentiation (LTP) at CA3-CA1 hippocampal synapses was markedly enhanced in Stim1/Stim2 cKO mice and was associated with increased phosphorylation of the AMPA receptor subunit GluA1, the transcriptional regulator CREB and the L-type Voltage-dependent Ca(2+) channel Cav1.2 on protein kinase A (PKA) sites. We conclude that STIM1 and STIM2 are key regulators of PKA signaling and synaptic plasticity in neural circuits encoding spatial memory. Our findings also reveal an inverse correlation between LTP and spatial learning/memory and suggest that abnormal enhancement of cAMP/PKA signaling and synaptic efficacy disrupts the formation of new memories.
Collapse
Affiliation(s)
- Gisela Garcia-Alvarez
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Mahesh S Shetty
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Bo Lu
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Kenrick An Fu Yap
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Masatsugu Oh-Hora
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University Higashi-ku, Japan
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Zoë Bichler
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore ; Behavioral Neuroscience Laboratory, National Neuroscience Institute Singapore, Singapore
| | - Marc Fivaz
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore ; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| |
Collapse
|
32
|
Nitric Oxide Protects L-Type Calcium Channel of Cardiomyocyte during Long-Term Isoproterenol Stimulation in Tail-Suspended Rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:780814. [PMID: 26167497 PMCID: PMC4488016 DOI: 10.1155/2015/780814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/30/2015] [Indexed: 12/14/2022]
Abstract
The aim of this study was to investigate the effects of nitric oxide (NO) and reactive oxygen species (ROS) on L-type calcium channel (LTCC) gating properties of cardiomyocytes during long-term isoproterenol (ISO) stimulation. Expression and activity of nNOS as well as S-nitrosylation of LTCC α1C subunit significantly decreased in the myocardium of SUS rats. Long-term ISO stimulation increased ROS in cardiomyocytes of SUS rats. ISO-enhanced calcium current (ICa,L) in the SUS group was less than that in the CON group. The maximal ICa,L decreased to about 80% or 60% of initial value at the 50th minute of ISO treatment in CON or SUS group, respectively. Specific inhibitor NAAN of nNOS reduced maximal ICa,L to 50% of initial value in the CON group; in contrast, NO donor SNAP maintained maximal ICa,L in SUS group to similar extent of CON group after 50 min of ISO treatment. Long-term ISO stimulation also changed steady-state activation (P < 0.01), inactivation (P < 0.01), and recovery (P < 0.05) characteristics of LTCC in SUS group. In conclusion, NO-induced S-nitrosylation of LTCC α1C subunit may competitively prevent oxidation from ROS at the same sites. Furthermore, LTCC can be protected by NO during long-term ISO stimulation.
Collapse
|
33
|
Brown DI, Griendling KK. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 2015; 116:531-49. [PMID: 25634975 DOI: 10.1161/circresaha.116.303584] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species (ROS) in normal physiological signaling has been elucidated. Signaling pathways modulated by ROS are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here, we review the current literature on ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases, including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy, and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis, and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress.
Collapse
Affiliation(s)
- David I Brown
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA
| | - Kathy K Griendling
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA.
| |
Collapse
|
34
|
PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion. ACTA ACUST UNITED AC 2015; 35:1-9. [PMID: 25673185 DOI: 10.1007/s11596-015-1380-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/04/2014] [Indexed: 02/07/2023]
Abstract
The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.
Collapse
|
35
|
Zhang Y, Ying J, Jiang D, Chang Z, Li H, Zhang G, Gong S, Jiang X, Tao J. Urotensin-II receptor stimulation of cardiac L-type Ca2+ channels requires the βγ subunits of Gi/o-protein and phosphatidylinositol 3-kinase-dependent protein kinase C β1 isoform. J Biol Chem 2015; 290:8644-55. [PMID: 25678708 DOI: 10.1074/jbc.m114.615021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent studies have demonstrated that urotensin-II (U-II) plays important roles in cardiovascular actions including cardiac positive inotropic effects and increasing cardiac output. However, the mechanisms underlying these effects of U-II in cardiomyocytes still remain unknown. We show by electrophysiological studies that U-II dose-dependently potentiates L-type Ca(2+) currents (ICa,L) in adult rat ventricular myocytes. This effect was U-II receptor (U-IIR)-dependent and was associated with a depolarizing shift in the voltage dependence of inactivation. Intracellular application of guanosine-5'-O-(2-thiodiphosphate) and pertussis toxin pretreatment both abolished the stimulatory effects of U-II. Dialysis of cells with the QEHA peptide, but not scrambled peptide SKEE, blocked the U-II-induced response. The phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin as well as the class I PI3K antagonist CH132799 blocked the U-II-induced ICa,L response. Protein kinase C antagonists calphostin C and chelerythrine chloride as well as dialysis of cells with 1,2bis(2aminophenoxy)ethaneN,N,N',N'-tetraacetic acid abolished the U-II-induced responses, whereas PKCα inhibition or PKA blockade had no effect. Exposure of ventricular myocytes to U-II markedly increased membrane PKCβ1 expression, whereas inhibition of PKCβ1 pharmacologically or by shRNA targeting abolished the U-II-induced ICa,L response. Functionally, we observed a significant increase in the amplitude of sarcomere shortening induced by U-II; blockade of U-IIR as well as PKCβ inhibition abolished this effect, whereas Bay K8644 mimicked the U-II response. Taken together, our results indicate that U-II potentiates ICa,L through the βγ subunits of Gi/o-protein and downstream activation of the class I PI3K-dependent PKCβ1 isoform. This occurred via the activation of U-IIR and contributes to the positive inotropic effect on cardiomyocytes.
Collapse
Affiliation(s)
- Yuan Zhang
- From the Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China, Department of Geriatrics and Institute of Neuroscience, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jiaoqian Ying
- From the Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China, Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Dongsheng Jiang
- From the Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China, Department of Dermatology and Allergic Diseases, University of Ulm, Ulm 89081, Germany, and
| | - Zhigang Chang
- From the Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China
| | - Hua Li
- From the Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China, National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai 201203, China
| | - Guoqiang Zhang
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shan Gong
- From the Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China
| | - Xinghong Jiang
- From the Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China
| | - Jin Tao
- From the Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China,
| |
Collapse
|
36
|
Yang L, Katchman A, Weinberg RL, Abrams J, Samad T, Wan E, Pitt GS, Marx SO. The PDZ motif of the α1C subunit is not required for surface trafficking and adrenergic modulation of CaV1.2 channel in the heart. J Biol Chem 2014; 290:2166-74. [PMID: 25505241 DOI: 10.1074/jbc.m114.602508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Voltage-gated Ca(2+) channels play a key role in initiating muscle excitation-contraction coupling, neurotransmitter release, gene expression, and hormone secretion. The association of CaV1.2 with a supramolecular complex impacts trafficking, localization, turnover, and, most importantly, multifaceted regulation of its function in the heart. Several studies hint at an important role for the C terminus of the α1C subunit as a hub for multidimensional regulation of CaV1.2 channel trafficking and function. Recent studies have demonstrated an important role for the four-residue PDZ binding motif at the C terminus of α1C in interacting with scaffold proteins containing PDZ domains, in the subcellular localization of CaV1.2 in neurons, and in the efficient signaling to cAMP-response element-binding protein in neurons. However, the role of the α1C PDZ ligand domain in the heart is not known. To determine whether the α1C PDZ motif is critical for CaV1.2 trafficking and function in cardiomyocytes, we generated transgenic mice with inducible expression of an N-terminal FLAG epitope-tagged dihydropyridine-resistant α1C with the PDZ motif deleted (ΔPDZ). These mice were crossed with α-myosin heavy chain reverse transcriptional transactivator transgenic mice, and the double-transgenic mice were fed doxycycline. The ΔPDZ channels expressed, trafficked to the membrane, and supported robust excitation-contraction coupling in the presence of nisoldipine, a dihydropyridine Ca(2+) channel blocker, providing functional evidence that they appropriately target to dyads. The ΔPDZ Ca(2+) channels were appropriately regulated by isoproterenol and forskolin. These data indicate that the α1C PDZ motif is not required for surface trafficking, localization to the dyad, or adrenergic stimulation of CaV1.2 in adult cardiomyocytes.
Collapse
Affiliation(s)
- Lin Yang
- From the Division of Cardiology, Departments of Medicine and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| | - Alexander Katchman
- From the Division of Cardiology, Departments of Medicine and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| | - Richard L Weinberg
- From the Division of Cardiology, Departments of Medicine and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| | - Jeffrey Abrams
- From the Division of Cardiology, Departments of Medicine and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| | - Tahmina Samad
- From the Division of Cardiology, Departments of Medicine and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| | - Elaine Wan
- From the Division of Cardiology, Departments of Medicine and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| | - Geoffrey S Pitt
- the Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Steven O Marx
- From the Division of Cardiology, Departments of Medicine and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032 and
| |
Collapse
|
37
|
Perveen S, Yang JS, Ha TJ, Yoon SH. Cyanidin-3-glucoside Inhibits ATP-induced Intracellular Free Ca(2+) Concentration, ROS Formation and Mitochondrial Depolarization in PC12 Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:297-305. [PMID: 25177161 PMCID: PMC4146631 DOI: 10.4196/kjpp.2014.18.4.297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 07/05/2014] [Accepted: 07/09/2014] [Indexed: 12/22/2022]
Abstract
Flavonoids have an ability to suppress various ion channels. We determined whether one of flavonoids, cyanidin-3-glucoside, affects adenosine 5'-triphosphate (ATP)-induced calcium signaling using digital imaging methods for intracellular free Ca(2+) concentration ([Ca(2+)]i), reactive oxygen species (ROS) and mitochondrial membrane potential in PC12 cells. Treatment with ATP (100µM) for 90 sec induced [Ca(2+)]i increases in PC12 cells. Pretreatment with cyanidin-3-glucoside (1µ g/ml to 100µg/ml) for 30 min inhibited the ATP-induced [Ca(2+)]i increases in a concentration-dependent manner (IC50=15.3µg/ml). Pretreatment with cyanidin-3-glucoside (15µg/ml) for 30 min significantly inhibited the ATP-induced [Ca(2+)]i responses following removal of extracellular Ca(2+) or depletion of intracellular [Ca(2+)]i stores. Cyanidin-3-glucoside also significantly inhibited the relatively specific P2X2 receptor agonist 2-MeSATP-induced [Ca(2+)]i responses. Cyanidin-3-glucoside significantly inhibited the thapsigargin or ATP-induced store-operated calcium entry. Cyanidin-3-glucoside significantly inhibited the ATP-induced [Ca(2+)]i responses in the presence of nimodipine and ω-conotoxin. Cyanidin-3-glucoside also significantly inhibited KCl (50 mM)-induced [Ca(2+)]i increases. Cyanidin-3-glucoside significantly inhibited ATP-induced mitochondrial depolarization. The intracellular Ca(2+) chelator BAPTA-AM or the mitochondrial Ca(2+) uniporter inhibitor RU360 blocked the ATP-induced mitochondrial depolarization in the presence of cyanidin-3-glucoside. Cyanidin-3-glucoside blocked ATP-induced formation of ROS. BAPTA-AM further decreased the formation of ROS in the presence of cyanidin-3-glucoside. All these results suggest that cyanidin-3-glucoside inhibits ATP-induced calcium signaling in PC12 cells by inhibiting multiple pathways which are the influx of extracellular Ca(2+) through the nimodipine and ω-conotoxin-sensitive and -insensitive pathways and the release of Ca(2+) from intracellular stores. In addition, cyanidin-3-glucoside inhibits ATP-induced formation of ROS by inhibiting Ca(2+)-induced mitochondrial depolarization.
Collapse
Affiliation(s)
- Shazia Perveen
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Ji Seon Yang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Tae Joung Ha
- Department of Functional Crop, National Institute of Crop Science, Rural Development Administration, Miryang 627-803, Korea
| | - Shin Hee Yoon
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
- Catholic Agro-Medical Center, The Catholic University of Korea, Seoul 137-701, Korea
| |
Collapse
|
38
|
AKAP-anchored PKA maintains neuronal L-type calcium channel activity and NFAT transcriptional signaling. Cell Rep 2014; 7:1577-1588. [PMID: 24835999 DOI: 10.1016/j.celrep.2014.04.027] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 03/18/2014] [Accepted: 04/15/2014] [Indexed: 11/23/2022] Open
Abstract
L-type voltage-gated Ca2+ channels (LTCC) couple neuronal excitation to gene transcription. LTCC activity is elevated by the cyclic AMP (cAMP)-dependent protein kinase (PKA) and depressed by the Ca2+-dependent phosphatase calcineurin (CaN), and both enzymes are localized to the channel by A-kinase anchoring protein 79/150 (AKAP79/150). AKAP79/150 anchoring of CaN also promotes LTCC activation of transcription through dephosphorylation of the nuclear factor of activated T cells (NFAT). We report here that the basal activity of AKAP79/150-anchored PKA maintains neuronal LTCC coupling to CaN-NFAT signaling by preserving LTCC phosphorylation in opposition to anchored CaN. Genetic disruption of AKAP-PKA anchoring promoted redistribution of the kinase out of postsynaptic dendritic spines, profound decreases in LTCC phosphorylation and Ca2+ influx, and impaired NFAT movement to the nucleus and activation of transcription. Thus, LTCC-NFAT transcriptional signaling in neurons requires precise organization and balancing of PKA and CaN activities in the channel nanoenvironment, which is only made possible by AKAP79/150 scaffolding.
Collapse
|
39
|
Reactive oxygen species and excitation-contraction coupling in the context of cardiac pathology. J Mol Cell Cardiol 2014; 73:92-102. [PMID: 24631768 DOI: 10.1016/j.yjmcc.2014.03.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/05/2014] [Accepted: 03/01/2014] [Indexed: 01/12/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen-derived chemical compounds that are by-products of aerobic cellular metabolism as well as crucial second messengers in numerous signaling pathways. In excitation-contraction-coupling (ECC), which links electrical signaling and coordinated cardiac contraction, ROS have a severe impact on several key ion handling proteins such as ion channels and transporters, but also on regulating proteins such as protein kinases (e.g. CaMKII, PKA or PKC), thereby pivotally influencing the delicate balance of this finely tuned system. While essential as second messengers, ROS may be deleterious when excessively produced due to a disturbed balance in Na(+) and Ca(2+) handling, resulting in Na(+) and Ca(2+) overload, SR Ca(2+) loss and contractile dysfunction. This may, in the end, result in systolic and diastolic dysfunction and arrhythmias. This review aims to provide an overview of the single targets of ROS in ECC and to outline the role of ROS in major cardiac pathologies, such as heart failure and arrhythmogenesis. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System"
Collapse
|
40
|
Weiss S, Oz S, Benmocha A, Dascal N. Regulation of cardiac L-type Ca²⁺ channel CaV1.2 via the β-adrenergic-cAMP-protein kinase A pathway: old dogmas, advances, and new uncertainties. Circ Res 2013; 113:617-31. [PMID: 23948586 DOI: 10.1161/circresaha.113.301781] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the heart, adrenergic stimulation activates the β-adrenergic receptors coupled to the heterotrimeric stimulatory Gs protein, followed by subsequent activation of adenylyl cyclase, elevation of cyclic AMP levels, and protein kinase A (PKA) activation. One of the main targets for PKA modulation is the cardiac L-type Ca²⁺ channel (CaV1.2) located in the plasma membrane and along the T-tubules, which mediates Ca²⁺ entry into cardiomyocytes. β-Adrenergic receptor activation increases the Ca²⁺ current via CaV1.2 channels and is responsible for the positive ionotropic effect of adrenergic stimulation. Despite decades of research, the molecular mechanism underlying this modulation has not been fully resolved. On the contrary, initial reports of identification of key components in this modulation were later refuted using advanced model systems, especially transgenic animals. Some of the cardinal debated issues include details of specific subunits and residues in CaV1.2 phosphorylated by PKA, the nature, extent, and role of post-translational processing of CaV1.2, and the role of auxiliary proteins (such as A kinase anchoring proteins) involved in PKA regulation. In addition, the previously proposed crucial role of PKA in modulation of unstimulated Ca²⁺ current in the absence of β-adrenergic receptor stimulation and in voltage-dependent facilitation of CaV1.2 remains uncertain. Full reconstitution of the β-adrenergic receptor signaling pathway in heterologous expression systems remains an unmet challenge. This review summarizes the past and new findings, the mechanisms proposed and later proven, rejected or disputed, and emphasizes the essential issues that remain unresolved.
Collapse
Affiliation(s)
- Sharon Weiss
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel.
| | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Mark E Anderson
- From the University of Iowa Department of Internal Medicine, Division of Cardiovascular Medicine, Cardiovascular Research Center and the Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
42
|
Abstract
Ca²⁺ plays a crucial role in connecting membrane excitability with contraction in myocardium. The hallmark features of heart failure are mechanical dysfunction and arrhythmias; defective intracellular Ca²⁺ homeostasis is a central cause of contractile dysfunction and arrhythmias in failing myocardium. Defective Ca²⁺ homeostasis in heart failure can result from pathological alteration in the expression and activity of an increasingly understood collection of Ca²⁺ homeostatic and structural proteins, ion channels, and enzymes. This review focuses on the molecular mechanisms of defective Ca²⁺ cycling in heart failure and considers how fundamental understanding of these pathways may translate into novel and innovative therapies.
Collapse
Affiliation(s)
- Min Luo
- Division of Cardiovascular Medicine, Department of Internal Medicine, Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
43
|
Sag CM, Wagner S, Maier LS. Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes. Free Radic Biol Med 2013; 63:338-49. [PMID: 23732518 DOI: 10.1016/j.freeradbiomed.2013.05.035] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 12/19/2022]
Abstract
In this review article we give an overview of current knowledge with respect to redox-sensitive alterations in Na(+) and Ca(2+) handling in the heart. In particular, we focus on redox-activated protein kinases including cAMP-dependent protein kinase A (PKA), protein kinase C (PKC), and Ca/calmodulin-dependent protein kinase II (CaMKII), as well as on redox-regulated downstream targets such as Na(+) and Ca(2+) transporters and channels. We highlight the pathological and physiological relevance of reactive oxygen species and some of its sources (such as NADPH oxidases, NOXes) for excitation-contraction coupling (ECC). A short outlook with respect to the clinical relevance of redox-dependent Na(+) and Ca(2+) imbalance will be given.
Collapse
Affiliation(s)
- Can M Sag
- Cardiovascular Division, The James Black Centre, King's College London, UK
| | | | | |
Collapse
|
44
|
Mukherjee S, Trice J, Shinde P, Willis RE, Pressley TA, Perez-Zoghbi JF. Ca2+ oscillations, Ca2+ sensitization, and contraction activated by protein kinase C in small airway smooth muscle. ACTA ACUST UNITED AC 2013; 141:165-78. [PMID: 23359281 PMCID: PMC3557311 DOI: 10.1085/jgp.201210876] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Protein kinase C (PKC) has been implicated in the regulation of smooth muscle cell (SMC) contraction and may contribute to airway hyperresponsiveness. Here, we combined optical and biochemical analyses of mouse lung slices to determine the effects of PKC activation on Ca2+ signaling, Ca2+ sensitivity, protein phosphorylation, and contraction in SMCs of small intrapulmonary airways. We found that 10 µM phorbol-12-myristate-13-acetate or 1 µM phorbol 12,13-dibutyrate induced repetitive, unsynchronized, and transient contractions of the SMCs lining the airway lumen. These contractions were associated with low frequency Ca2+ oscillations in airway SMCs that resulted from Ca2+ influx through L-type voltage-gated Ca2+ channels and the subsequent release of Ca2+ from intracellular stores through ryanodine receptors. Phorbol ester stimulation of lung slices in which SMC intracellular Ca2+ concentration ([Ca2+]i) was “clamped” at a high concentration induced strong airway contraction, indicating that PKC mediated sensitization of the contractile response to [Ca2+]i. This Ca2+ sensitization was accompanied by phosphorylation of both the PKC-potentiated PP1 inhibitory protein of 17 kD (CPI-17) and the regulatory myosin light chain. Thrombin, like the phorbol esters, induced a strong Ca2+ sensitization that was inhibited by the PKC inhibitor GF-109203X and also potentiated airway contraction to membrane depolarization with KCl. In conclusion, we suggest that PKC activation in small airways leads to both the generation of Ca2+ oscillations and strong Ca2+ sensitization; agents associated with airway inflammation, such as thrombin, may activate this pathway to sensitize airway smooth muscle to agonists that cause membrane depolarization and Ca2+ entry and induce airway hyperresponsiveness.
Collapse
Affiliation(s)
- Seema Mukherjee
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | |
Collapse
|
45
|
Gulia J, Navedo MF, Gui P, Chao JT, Mercado JL, Santana LF, Davis MJ. Regulation of L-type calcium channel sparklet activity by c-Src and PKC-α. Am J Physiol Cell Physiol 2013; 305:C568-77. [PMID: 23804206 DOI: 10.1152/ajpcell.00381.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activity of persistent Ca²⁺ sparklets, which are characterized by longer and more frequent channel open events than low-activity sparklets, contributes substantially to steady-state Ca²⁺ entry under physiological conditions. Here, we addressed two questions related to the regulation of Ca²⁺ sparklets by PKC-α and c-Src, both of which increase whole cell Cav1.2 current: 1) Does c-Src activation enhance persistent Ca²⁺ sparklet activity? 2) Does PKC-α activate c-Src to produce persistent Ca²⁺ sparklets? With the use of total internal reflection fluorescence microscopy, Ca²⁺ sparklets were recorded from voltage-clamped tsA-201 cells coexpressing wild-type (WT) or mutant Cav1.2c (the neuronal isoform of Cav1.2) constructs ± active or inactive PKC-α/c-Src. Cells expressing Cav1.2c exhibited both low-activity and persistent Ca²⁺ sparklets. Persistent Ca²⁺ sparklet activity was significantly reduced by acute application of the c-Src inhibitor PP2 or coexpression of kinase-dead c-Src. Cav1.2c constructs mutated at one of two COOH-terminal residues (Y²¹²²F and Y²¹³⁹F) were used to test the effect of blocking putative phosphorylation sites for c-Src. Expression of Y²¹²²F but not Y²¹³⁹F Cav1.2c abrogated the potentiating effect of c-Src on Ca²⁺ sparklet activity. We could not detect a significant change in persistent Ca²⁺ sparklet activity or density in cells coexpressing Cav1.2c + PKC-α, regardless of whether WT or Y²¹²²F Cav1.2c was used, or after PP2 application, suggesting that PKC-α does not act upstream of c-Src to produce persistent Ca²⁺ sparklets. However, our results indicate that persistent Ca²⁺ sparklet activity is promoted by the action of c-Src on residue Y²¹²² of the Cav1.2c COOH terminus.
Collapse
Affiliation(s)
- Jyoti Gulia
- Department of Biological Engineering University of Missouri, Columbia, Missouri, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Yu L, Li M, She T, Shi C, Meng W, Wang B, Cheng M. Endothelin-1 stimulates the expression of L-type Ca2+ channels in neonatal rat cardiomyocytes via the extracellular signal-regulated kinase 1/2 pathway. J Membr Biol 2013; 246:343-53. [PMID: 23546014 DOI: 10.1007/s00232-013-9538-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 03/16/2013] [Indexed: 01/07/2023]
Abstract
The cardiac L-type Ca(2+) channel current (I(Ca,L)) plays an important role in controlling both cardiac excitability and excitation-contraction coupling and is involved in the electrical remodeling during postnatal heart development and cardiac hypertrophy. However, the possible role of endothelin-1 (ET-1) in the electrical remodeling of postnatal and diseased hearts remains unclear. Therefore, the present study was designed to investigate the transcriptional regulation of I(Ca,L) mediated by ET-1 in neonatal rat ventricular myocytes using the whole-cell patch-clamp technique, quantitative RT-PCR and Western blotting. Furthermore, we determined whether the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway is involved. ET-1 increased I(Ca,L) density without altering its voltage dependence of activation and inactivation. In line with the absence of functional changes, ET-1 increased L-type Ca(2+) channel pore-forming α1C-subunit mRNA and protein levels without affecting the mRNA expression of auxiliary β- and α2/δ-subunits. Furthermore, an actinomycin D chase experiment revealed that ET-1 did not alter α1C-subunit mRNA stability. These effects of ET-1 were inhibited by the ETA receptor antagonist BQ-123 but not the ETB receptor antagonist BQ-788. Moreover, the effects of ET-1 on I(Ca,L) and α1C-subunit expression were abolished by the ERK1/2 inhibitor (PD98059) but not by the p38 MAPK inhibitor (SB203580) or the c-Jun N-terminal kinase inhibitor (SP600125). These findings indicate that ET-1 increased the transcription of L-type Ca(2+) channel in cardiomyocytes via activation of ERK1/2 through the ETA receptor, which may contribute to the electrical remodeling of heart during postnatal development and cardiac hypertrophy.
Collapse
Affiliation(s)
- Liangzhu Yu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Peoples Republic of China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
SIGNIFICANCE In heart failure (HF), contractile dysfunction and arrhythmias result from disturbed intracellular Ca handling. Activated stress kinases like cAMP-dependent protein kinase A (PKA), protein kinase C (PKC), and Ca/calmodulin-dependent protein kinase II (CaMKII), which are known to influence many Ca-regulatory proteins, are mechanistically involved. RECENT ADVANCES Beside classical activation pathways, it is becoming increasingly evident that reactive oxygen species (ROS) can directly oxidize these kinases, leading to alternative activation. Since HF is associated with increased ROS generation, ROS-activated serine/threonine kinases may play a crucial role in the disturbance of cellular Ca homeostasis. Many of the previously described ROS effects on ion channels and transporters are possibly mediated by these stress kinases. For instance, ROS have been shown to oxidize and activate CaMKII, thereby increasing Na influx through voltage-gated Na channels, which can lead to intracellular Na accumulation and action potential prolongation. Consequently, Ca entry via activated NCX is favored, which together with ROS-induced dysfunction of the sarcoplasmic reticulum can lead to dramatic intracellular Ca accumulation, diminished contractility, and arrhythmias. CRITICAL ISSUES While low amounts of ROS may regulate kinase activity, excessive uncontrolled ROS production may lead to direct redox modification of Ca handling proteins. Therefore, depending on the source and amount of ROS generated, ROS could have very different effects on Ca-handling proteins. FUTURE DIRECTIONS The discrimination between fine-tuned ROS signaling and unspecific ROS damage may be crucial for the understanding of heart failure development and important for the investigation of targeted treatment strategies.
Collapse
Affiliation(s)
- Stefan Wagner
- Abt. Kardiologie und Pneumologie/Herzzentrum, Deutsches Zentrum für Herzkreislaufforschung, Georg-August-Universität, Göttingen, Germany
| | | | | | | |
Collapse
|
48
|
Harvey RD, Hell JW. CaV1.2 signaling complexes in the heart. J Mol Cell Cardiol 2012; 58:143-52. [PMID: 23266596 DOI: 10.1016/j.yjmcc.2012.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 01/08/2023]
Abstract
L-type Ca(2+) channels (LTCCs) are essential for generation of the electrical and mechanical properties of cardiac muscle. Furthermore, regulation of LTCC activity plays a central role in mediating the effects of sympathetic stimulation on the heart. The primary mechanism responsible for this regulation involves β-adrenergic receptor (βAR) stimulation of cAMP production and subsequent activation of protein kinase A (PKA). Although it is well established that PKA-dependent phosphorylation regulates LTCC function, there is still much we do not understand. However, it has recently become clear that the interaction of the various signaling proteins involved is not left to completely stochastic events due to random diffusion. The primary LTCC expressed in cardiac muscle, CaV1.2, forms a supramolecular signaling complex that includes the β2AR, G proteins, adenylyl cyclases, phosphodiesterases, PKA, and protein phosphatases. In some cases, the protein interactions with CaV1.2 appear to be direct, in other cases they involve scaffolding proteins such as A kinase anchoring proteins and caveolin-3. Functional evidence also suggests that the targeting of these signaling proteins to specific membrane domains plays a critical role in maintaining the fidelity of receptor mediated LTCC regulation. This information helps explain the phenomenon of compartmentation, whereby different receptors, all linked to the production of a common diffusible second messenger, can vary in their ability to regulate LTCC activity. The purpose of this review is to examine our current understanding of the signaling complexes involved in cardiac LTCC regulation.
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
49
|
Vandael DHF, Mahapatra S, Calorio C, Marcantoni A, Carbone E. Cav1.3 and Cav1.2 channels of adrenal chromaffin cells: emerging views on cAMP/cGMP-mediated phosphorylation and role in pacemaking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1608-18. [PMID: 23159773 DOI: 10.1016/j.bbamem.2012.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 12/21/2022]
Abstract
Voltage-gated Ca²⁺ channels (VGCCs) are voltage sensors that convert membrane depolarizations into Ca²⁺ signals. In the chromaffin cells of the adrenal medulla, the Ca²⁺ signals driven by VGCCs regulate catecholamine secretion, vesicle retrievals, action potential shape and firing frequency. Among the VGCC-types expressed in these cells (N-, L-, P/Q-, R- and T-types), the two L-type isoforms, Ca(v)1.2 and Ca(v)1.3, control key activities due to their particular activation-inactivation gating and high-density of expression in rodents and humans. The two isoforms are also effectively modulated by G protein-coupled receptor pathways delimited in membrane micro-domains and by the cAMP/PKA and NO/cGMP/PKG phosphorylation pathways which induce prominent Ca²⁺ current changes if opposingly regulated. The two L-type isoforms shape the action potential and directly participate to vesicle exocytosis and endocytosis. The low-threshold of activation and slow rate of inactivation of Ca(v)1.3 confer to this channel the unique property of carrying sufficient inward current at subthreshold potentials able to activate BK and SK channels which set the resting potential, the action potential shape, the cell firing mode and the degree of spike frequency adaptation during spontaneous firing or sustained depolarizations. These properties help chromaffin cells to optimally adapt when switching from normal to stress-mimicking conditions. Here, we will review past and recent findings on cAMP- and cGMP-mediated modulations of Ca(v)1.2 and Ca(v)1.3 and the role that these channels play in the control of chromaffin cell firing. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- D H F Vandael
- Department of Drug Science, Laboratory of Cellular & Molecular Neuroscience, NIS Center, CNISM, University of Torino, Italy
| | | | | | | | | |
Collapse
|
50
|
Kang JH, Toita R, Kim CW, Katayama Y. Protein kinase C (PKC) isozyme-specific substrates and their design. Biotechnol Adv 2012; 30:1662-72. [PMID: 22841933 DOI: 10.1016/j.biotechadv.2012.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 11/30/2022]
|