1
|
Wang Y, Liu W, Xu Y, He X, Yuan Q, Luo P, Fan W, Zhu J, Zhang X, Cheng X, Jiang Y, Xu HE, Zhuang Y. Revealing the signaling of complement receptors C3aR and C5aR1 by anaphylatoxins. Nat Chem Biol 2023; 19:1351-1360. [PMID: 37169960 DOI: 10.1038/s41589-023-01339-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
The complement receptors C3aR and C5aR1, whose signaling is selectively activated by anaphylatoxins C3a and C5a, are important regulators of both innate and adaptive immune responses. Dysregulations of C3aR and C5aR1 signaling lead to multiple inflammatory disorders, including sepsis, asthma and acute respiratory distress syndrome. The mechanism underlying endogenous anaphylatoxin recognition and activation of C3aR and C5aR1 remains elusive. Here we reported the structures of C3a-bound C3aR and C5a-bound C5aR1 as well as an apo-C3aR structure. These structures, combined with mutagenesis analysis, reveal a conserved recognition pattern of anaphylatoxins to the complement receptors that is different from chemokine receptors, unique pocket topologies of C3aR and C5aR1 that mediate ligand selectivity, and a common mechanism of receptor activation. These results provide crucial insights into the molecular understanding of C3aR and C5aR1 signaling and structural templates for rational drug design for treating inflammation disorders.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiyi Liu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Youwei Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingning Yuan
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ping Luo
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenjia Fan
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingpeng Zhu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinyue Zhang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Jiang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Youwen Zhuang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Santos-López J, de la Paz K, Fernández FJ, Vega MC. Structural biology of complement receptors. Front Immunol 2023; 14:1239146. [PMID: 37753090 PMCID: PMC10518620 DOI: 10.3389/fimmu.2023.1239146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The complement system plays crucial roles in a wide breadth of immune and inflammatory processes and is frequently cited as an etiological or aggravating factor in many human diseases, from asthma to cancer. Complement receptors encompass at least eight proteins from four structural classes, orchestrating complement-mediated humoral and cellular effector responses and coordinating the complex cross-talk between innate and adaptive immunity. The progressive increase in understanding of the structural features of the main complement factors, activated proteolytic fragments, and their assemblies have spurred a renewed interest in deciphering their receptor complexes. In this review, we describe what is currently known about the structural biology of the complement receptors and their complexes with natural agonists and pharmacological antagonists. We highlight the fundamental concepts and the gray areas where issues and problems have been identified, including current research gaps. We seek to offer guidance into the structural biology of the complement system as structural information underlies fundamental and therapeutic research endeavors. Finally, we also indicate what we believe are potential developments in the field.
Collapse
Affiliation(s)
- Jorge Santos-López
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Karla de la Paz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Research & Development, Abvance Biotech SL, Madrid, Spain
| | | | - M. Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
3
|
Fernandes DC, Tambourgi DV. Complement System Inhibitory Drugs in a Zebrafish ( Danio rerio) Model: Computational Modeling. Int J Mol Sci 2023; 24:13895. [PMID: 37762197 PMCID: PMC10530807 DOI: 10.3390/ijms241813895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The dysregulation of complement system activation usually results in acute or chronic inflammation and can contribute to the development of various diseases. Although the activation of complement pathways is essential for innate defense, exacerbated activity of this system may be harmful to the host. Thus, drugs with the potential to inhibit the activation of the complement system may be important tools in therapy for diseases associated with complement system activation. The synthetic peptides Cp40 and PMX205 can be highlighted in this regard, given that they selectively inhibit the C3 and block the C5a receptor (C5aR1), respectively. The zebrafish (Danio rerio) is a robust model for studying the complement system. The aim of the present study was to use in silico computational modeling to investigate the hypothesis that these complement system inhibitor peptides interact with their target molecules in zebrafish, for subsequent in vivo validation. For this, we analyzed molecular docking interactions between peptides and target molecules. Our study demonstrated that Cp40 and the cyclic peptide PMX205 have positive interactions with their respective zebrafish targets, thus suggesting that zebrafish can be used as an animal model for therapeutic studies on these inhibitors.
Collapse
Affiliation(s)
| | - Denise V. Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil;
| |
Collapse
|
4
|
Schanzenbacher J, Hendrika Kähler K, Mesler E, Kleingarn M, Marcel Karsten C, Leonard Seiler D. The role of C5a receptors in autoimmunity. Immunobiology 2023; 228:152413. [PMID: 37598588 DOI: 10.1016/j.imbio.2023.152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 08/22/2023]
Abstract
The complement system is an essential component of the innate immune response and plays a vital role in host defense and inflammation. Dysregulation of the complement system, particularly involving the anaphylatoxin C5a and its receptors (C5aR1 and C5aR2), has been linked to several autoimmune diseases, indicating the potential for targeted therapies. C5aR1 and C5aR2 are seven-transmembrane receptors with distinct signaling mechanisms that play both partially overlapping and opposing roles in immunity. Both receptors are expressed on a broad spectrum of immune and non-immune cells and are involved in cellular functions and physiological processes during homeostasis and inflammation. Dysregulated C5a-mediated inflammation contributes to autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, epidermolysis bullosa acquisita, antiphospholipid syndrome, and others. Therefore, targeting C5a or its receptors may yield therapeutic innovations in these autoimmune diseases by reducing the recruitment and activation of immune cells that lead to tissue inflammation and injury, thereby exacerbating the autoimmune response. Clinical trials focused on the inhibition of C5 cleavage or the C5a/C5aR1-axis using small molecules or monoclonal antibodies hold promise for bringing novel treatments for autoimmune diseases into practice. However, given the heterogeneous nature of (systemic) autoimmune diseases, there are still several challenges, such as patient selection, optimal dosing, and treatment duration, that require further investigation and development to realize the full therapeutic potential of C5a receptor inhibition, ideally in the context of a personalized medicine approach. Here, we aim to provide a brief overview of the current knowledge on the function of C5a receptors, the involvement of C5a receptors in autoimmune disorders, the molecular mechanisms underlying C5a receptor-mediated autoimmunity, and the potential for targeted therapies to modulate their activity.
Collapse
Affiliation(s)
- Jovan Schanzenbacher
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Katja Hendrika Kähler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Evelyn Mesler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | | | - Daniel Leonard Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
5
|
Ghosh M, Rana S. The anaphylatoxin C5a: Structure, function, signaling, physiology, disease, and therapeutics. Int Immunopharmacol 2023; 118:110081. [PMID: 36989901 DOI: 10.1016/j.intimp.2023.110081] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The complement system is one of the oldest known tightly regulated host defense systems evolved for efficiently functioning cell-based immune systems and antibodies. Essentially, the complement system acts as a pivot between the innate and adaptive arms of the immune system. The complement system collectively represents a cocktail of ∼50 cell-bound/soluble glycoproteins directly involved in controlling infection and inflammation. Activation of the complement cascade generates complement fragments like C3a, C4a, and C5a as anaphylatoxins. C5a is the most potent proinflammatory anaphylatoxin, which is involved in inflammatory signaling in a myriad of tissues. This review provides a comprehensive overview of human C5a in the context of its structure and signaling under several pathophysiological conditions, including the current and future therapeutic applications targeting C5a.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
6
|
Mechanism of activation and biased signaling in complement receptor C5aR1. Cell Res 2023; 33:312-324. [PMID: 36806352 PMCID: PMC9937529 DOI: 10.1038/s41422-023-00779-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/13/2023] [Indexed: 02/19/2023] Open
Abstract
The complement system plays an important role in the innate immune response to invading pathogens. The complement fragment C5a is one of its important effector components and exerts diverse physiological functions through activation of the C5a receptor 1 (C5aR1) and associated downstream G protein and β-arrestin signaling pathways. Dysfunction of the C5a-C5aR1 axis is linked to numerous inflammatory and immune-mediated diseases, but the structural basis for activation and biased signaling of C5aR1 remains elusive. Here, we present cryo-electron microscopy structures of the activated wild-type C5aR1-Gi protein complex bound to each of the following: C5a, the hexapeptidic agonist C5apep, and the G protein-biased agonist BM213. The structures reveal the landscape of the C5a-C5aR1 interaction as well as a common motif for the recognition of diverse orthosteric ligands. Moreover, combined with mutagenesis studies and cell-based pharmacological assays, we deciphered a framework for biased signaling using different peptide analogs and provided insight into the activation mechanism of C5aR1 by solving the structure of C5aR1I116A mutant-Gi signaling activation complex induced by C089, which exerts antagonism on wild-type C5aR1. In addition, unusual conformational changes in the intracellular end of transmembrane domain 7 and helix 8 upon agonist binding suggest a differential signal transduction process. Collectively, our study provides mechanistic understanding into the ligand recognition, biased signaling modulation, activation, and Gi protein coupling of C5aR1, which may facilitate the future design of therapeutic agents.
Collapse
|
7
|
Xiaoli A, Yuzhen N, Qiong Y, Yang L, Yao X, Bing Z. Investigating the Dynamic Binding Behavior of PMX53 Cooperating with Allosteric Antagonist NDT9513727 to C5a Anaphylatoxin Chemotactic Receptor 1 through Gaussian Accelerated Molecular Dynamics and Free-Energy Perturbation Simulations. ACS Chem Neurosci 2022; 13:3502-3511. [PMID: 36428153 DOI: 10.1021/acschemneuro.2c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
C5a anaphylatoxin chemotactic receptor 1 (C5aR1) is an important target in anti-inflammatory therapeutics. The cyclic peptide antagonist PMX53 binds to the orthosteric site located in the extracellular vestibule of C5aR1, and the non-peptide antagonist NDT9513727 binds to the allosteric site formed by the middle region of TM3 (trans-membrane helix), TM4, and TM5. We catch a sight of the variational binding mode of PMX53 during the Gaussian accelerated molecular dynamic (GaMD) simulations. In the binary complex of C5aR1 and PMX53, the PMX53 takes a dynamic binding mechanism during the simulation. Namely, the side chain of Arg6 of PMX53 extends to TM6-TM7 (pose 1) or swings to TM5 (pose 2), forming a salt bridge with Glu199. Meanwhile, in the ternary complex of C5aR1 with PMX53 and NDT9513727, the side chain of Arg6 of PMX53 swings to TM5 (pose 2) from extending to TM6-TM7 (pose 1) at the beginning of the GaMD simulation. In subsequent simulation, PMX53 stabilizes in the pose 2 binding mode by forming a stable salt bridge with Glu199. The free-energy perturbation (FEP) calculations demonstrate that pose 1 (ΔGbinding = -10.94 kcal/mol) is more stable in the binary complex and pose 2 (ΔGbinding = -7.91 kcal/mol) is unstable because of highly dynamic TM5. NDT9513727 interacts directly with TM4 and TM5 and stabilizes the hydrophobic stack between the extracellular sides of the two helices. Therefore, pose 2 (ΔGbinding = -16.27 kcal/mol) is notably stable than pose 1 (ΔGbinding = -9.78 kcal/mol) in the ternary complex. The identification of a novel binding mode of PMX53 and the detailed structural information of PMX53 interacting with a receptor obtained by GaMD simulations will be helpful in designing potent antagonists of C5aR1.
Collapse
Affiliation(s)
- An Xiaoli
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China
| | - Niu Yuzhen
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China.,Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Yang Qiong
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China
| | - Lei Yang
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China
| | - Xiaojun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China.,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| |
Collapse
|
8
|
Gorman DM, Li XX, Lee JD, Fung JN, Cui CS, Lee HS, Rolfe BE, Woodruff TM, Clark RJ. Development of Potent and Selective Agonists for Complement C5a Receptor 1 with In Vivo Activity. J Med Chem 2021; 64:16598-16608. [PMID: 34762432 DOI: 10.1021/acs.jmedchem.1c01174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The anaphylatoxin C5a is a complement peptide associated with immune-related disorders. C5a binds with equal potency to two GPCRs, C5aR1 and C5aR2. Multiple C5a peptide agonists have been developed to interrogate the C5a receptor function but none show selectivity for C5aR1. To address these limitations, we developed potent and stable peptide C5aR1 agonists that display no C5aR2 activity and over 1000-fold selectivity for C5aR1 over C3aR. This includes BM213, which induces C5aR1-mediated calcium mobilization and pERK1/2 signaling but not β-arrestin recruitment, and BM221, which exhibits no signaling bias. Both ligands are functionally similar to C5a in human macrophage cytokine release assays and in a murine in vivo neutrophil mobilization assay. BM213 showed antitumor activity in a mouse model of mammary carcinoma. We anticipate that these C5aR1-selective agonists will be useful research tools to investigate C5aR1 function.
Collapse
Affiliation(s)
- Declan M Gorman
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xaria X Li
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jenny N Fung
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cedric S Cui
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Han Siean Lee
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Barbara E Rolfe
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
9
|
Pandey S, Maharana J, Li XX, Woodruff TM, Shukla AK. Emerging Insights into the Structure and Function of Complement C5a Receptors. Trends Biochem Sci 2020; 45:693-705. [PMID: 32402749 DOI: 10.1016/j.tibs.2020.04.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
Complement factor C5a is an integral constituent of the complement cascade critically involved in the innate immune response, and it exerts its functions via two distinct receptors, C5aR1 and C5aR2. While C5aR1 is a prototypical G-protein-coupled receptor (GPCR), C5aR2 lacks functional coupling to heterotrimeric G proteins, although both receptors efficiently recruit β arrestins (βarrs). Here, we discuss the recent studies providing direct structural details of ligand-receptor interactions, and a framework of functional bias in this system, including the differences in terms of structural motifs and transducer coupling. We also discuss the functional analogy of C5aR2 with the atypical chemokine receptors (ACKRs), and highlight the future directions to elucidate the mechanistic basis of the functional divergence of these receptors activated by a common natural agonist.
Collapse
Affiliation(s)
- Shubhi Pandey
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Xaria X Li
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia
| | - Trent M Woodruff
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
10
|
Abstract
Drug targets for the treatment of obesity and comorbidities represent an ever-renewable source of research opportunities worldwide. One of the earliest is the leptin–leptin receptor system that was discovered in the mid-1990s. Leptin, a satiety hormone, is overproduced in overweight patients but the protein is unable to cross the blood–brain barrier and remains inactive. Circulating high levels of leptin induces a series of conditions that would not be manifested without leptin overproduction, including various forms of cancer and inflammatory and cardiovascular diseases. Current pharmaceutical research focuses on improving the blood–brain barrier penetration of leptin receptor agonists and the development of monofunctional antagonists with broad spectrum therapeutic efficacies but without unwanted side effects. Designer peptides with their expanded chemical space as well as well controllable receptor binding and elimination properties slowly replace full-sized leptin products in the drug development pipeline.
Collapse
|
11
|
Tikhonova IG, Gigoux V, Fourmy D. Understanding Peptide Binding in Class A G Protein-Coupled Receptors. Mol Pharmacol 2019; 96:550-561. [PMID: 31436539 DOI: 10.1124/mol.119.115915] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Many physiologic processes are controlled through the activation of G protein-coupled receptors (GPCRs) by regulatory peptides, making peptide GPCRs particularly useful targets for major human diseases such as diabetes and cancer. Peptide GPCRs are also being evaluated as next-generation targets for the development of novel antiparasite agents and insecticides in veterinary medicine and agriculture. Resolution of crystal structures for several peptide GPCRs has advanced our understanding of peptide-receptor interactions and fueled interest in correlating peptide heterogeneity with receptor-binding properties. In this review, the knowledge of recently crystalized peptide-GPCR complexes, previously accumulated peptide structure-activity relationship studies, receptor mutagenesis, and sequence alignment are integrated to better understand peptide binding to the transmembrane cavity of class A GPCRs. Using SAR data, we show that peptide class A GPCRs can be divided into groups with distinct hydrophilic residues. These characteristic residues help explain the preference of a receptor to bind the C-terminal free carboxyl group, the C-terminal amidated group, or the N-terminal ammonium group of peptides.
Collapse
Affiliation(s)
- Irina G Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom, (I.G.T.) and INSERM ERL1226-Receptology and Therapeutic Targeting of Cancers, Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, Toulouse, France (V.G., D.F.)
| | - Veronique Gigoux
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom, (I.G.T.) and INSERM ERL1226-Receptology and Therapeutic Targeting of Cancers, Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, Toulouse, France (V.G., D.F.)
| | - Daniel Fourmy
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom, (I.G.T.) and INSERM ERL1226-Receptology and Therapeutic Targeting of Cancers, Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, Toulouse, France (V.G., D.F.)
| |
Collapse
|
12
|
Aptamers that bind to the human complement component receptor hC5aR1 interfere with hC5aR1 interaction to its hC5a ligand. Mol Biol Rep 2018; 45:851-864. [PMID: 29981048 DOI: 10.1007/s11033-018-4231-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/28/2018] [Indexed: 12/21/2022]
Abstract
The complement system plays an important role in inflammation and immunity. In this system, a potent inflammatory ligand is C5a, which initiates its effects by activating its core receptor C5aR1. Thus, compounds that interfere with the C5a-C5aR1 interaction could alleviate some inflammatory conditions. Consequently, several ligands that bind to either C5a or C5aR1 have previously been isolated and evaluated. In the present study, two RNA aptamers, aptamer 1 and aptamer 9, that specifically bind to hC5aR1 with much higher affinity than antibodies were isolated. These two aptamers were tested for their ability to interfere with the cognate ligand of hC5aR1, C5a, using a chemotaxis assay. Both aptamer 1 and 9 interfered with the C5a interaction, suggesting that the aptamers recognized the extracellular domain of hC5aR1 responsible for hC5a ligand binding. Considering the higher affinity of aptamers to the hC5aR1 and their interference with hC5a ligand binding, further study is warranted to explore not only their applications in the diagnosis of inflammatory diseases but also their usefulness in modulating hC5a and hC5aR1 interactions.
Collapse
|
13
|
Liu H, Kim HR, Deepak RNVK, Wang L, Chung KY, Fan H, Wei Z, Zhang C. Orthosteric and allosteric action of the C5a receptor antagonists. Nat Struct Mol Biol 2018; 25:472-481. [PMID: 29867214 DOI: 10.1038/s41594-018-0067-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/16/2018] [Indexed: 01/09/2023]
Abstract
The C5a receptor (C5aR) is a G-protein-coupled receptor (GPCR) that can induce strong inflammatory response to the anaphylatoxin C5a. Targeting C5aR has emerged as a novel anti-inflammatory therapeutic method. However, developing potent C5aR antagonists as drugs has proven difficult. Here, we report two crystal structures of human C5aR in ternary complexes with the peptide antagonist PMX53 and a non-peptide antagonist, either avacopan or NDT9513727. The structures, together with other biophysical, computational docking and cell-based signaling data, reveal the orthosteric action of PMX53 and its effect of stabilizing the C5aR structure, as well as the allosteric action of chemically diverse non-peptide C5aR antagonists with different binding poses. Structural comparison analysis suggests the presence of similar allosteric sites in other GPCRs. We also discuss critical structural features of C5aR in activation, including a novel conformation of helix 8. On the basis of our results, we suggest novel strategies for developing C5aR-targeting drugs.
Collapse
Affiliation(s)
- Heng Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hee Ryung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - R N V Krishna Deepak
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lei Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Robertson N, Rappas M, Doré AS, Brown J, Bottegoni G, Koglin M, Cansfield J, Jazayeri A, Cooke RM, Marshall FH. Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727. Nature 2018; 553:111-114. [PMID: 29300009 DOI: 10.1038/nature25025] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/07/2017] [Indexed: 11/09/2022]
Abstract
The complement system is a crucial component of the host response to infection and tissue damage. Activation of the complement cascade generates anaphylatoxins including C5a and C3a. C5a exerts a pro-inflammatory effect via the G-protein-coupled receptor C5a anaphylatoxin chemotactic receptor 1 (C5aR1, also known as CD88) that is expressed on cells of myeloid origin. Inhibitors of the complement system have long been of interest as potential drugs for the treatment of diseases such as sepsis, rheumatoid arthritis, Crohn's disease and ischaemia-reperfusion injuries. More recently, a role of C5a in neurodegenerative conditions such as Alzheimer's disease has been identified. Peptide antagonists based on the C5a ligand have progressed to phase 2 trials in psoriasis and rheumatoid arthritis; however, these compounds exhibited problems with off-target activity, production costs, potential immunogenicity and poor oral bioavailability. Several small-molecule competitive antagonists for C5aR1, such as W-54011 and NDT9513727, have been identified by C5a radioligand-binding assays. NDT9513727 is a non-peptide inverse agonist of C5aR1, and is highly selective for the primate and gerbil receptors over those of other species. Here, to study the mechanism of action of C5a antagonists, we determine the structure of a thermostabilized C5aR1 (known as C5aR1 StaR) in complex with NDT9513727. We found that the small molecule bound between transmembrane helices 3, 4 and 5, outside the helical bundle. One key interaction between the small molecule and residue Trp2135.49 seems to determine the species selectivity of the compound. The structure demonstrates that NDT9513727 exerts its inverse-agonist activity through an extra-helical mode of action.
Collapse
Affiliation(s)
- Nathan Robertson
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Mathieu Rappas
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Andrew S Doré
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Jason Brown
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Giovanni Bottegoni
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Markus Koglin
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Julie Cansfield
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Ali Jazayeri
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Robert M Cooke
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Fiona H Marshall
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| |
Collapse
|
15
|
Fella E, Sokratous K, Papacharalambous R, Kyriacou K, Phillips J, Sanderson S, Panayiotou E, Kyriakides T. Pharmacological Stimulation of Phagocytosis Enhances Amyloid Plaque Clearance; Evidence from a Transgenic Mouse Model of ATTR Neuropathy. Front Mol Neurosci 2017; 10:138. [PMID: 28539873 PMCID: PMC5423984 DOI: 10.3389/fnmol.2017.00138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022] Open
Abstract
Hereditary ATTR V30M amyloidosis is a lethal autosomal dominant sensorimotor and autonomic neuropathy caused by deposition of aberrant transthyretin (TTR). Immunohistochemical examination of sural nerve biopsies in patients with amyloidotic neuropathy show co-aggregation of TTR with several proteins; including apolipoprotein E, serum amyloid P and components of the complement cascade. Complement activation and macrophages are increasingly recognized to play a crucial role in amyloidogenesis at the tissue bed level. In the current study we test the effect of two C5a receptor agonists and a C5a receptor antagonist (PMX53) on disease phenotype in ATTR V30M mice. Our results indicate that amyloid deposition was significantly reduced following treatment with the C5a receptor agonists, while treatment with the antagonist resulted in a significant increase of amyloid load. Administration of the C5a receptor agonists triggered increased recruitment of phagocytic cells resulting in clearance of amyloid deposits.
Collapse
Affiliation(s)
- Eleni Fella
- Neurology Clinic A, The Cyprus Institute of Neurology and GeneticsNicosia, Cyprus.,Cyprus School of Molecular MedicineNicosia, Cyprus
| | - Kleitos Sokratous
- Electron Microscopy and Molecular Pathology Department, The Cyprus Institute of Neurology and GeneticsNicosia, Cyprus.,Bioinformatics Group, The Cyprus Institute of Neurology and GeneticsNicosia, Cyprus
| | | | - Kyriacos Kyriacou
- Cyprus School of Molecular MedicineNicosia, Cyprus.,Electron Microscopy and Molecular Pathology Department, The Cyprus Institute of Neurology and GeneticsNicosia, Cyprus
| | - Joy Phillips
- Donald P. Shiley Bioscience Center, San Diego State UniversitySan Diego, CA, USA
| | - Sam Sanderson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical CenterOmaha, NE, USA
| | - Elena Panayiotou
- Neurology Clinic A, The Cyprus Institute of Neurology and GeneticsNicosia, Cyprus
| | - Theodoros Kyriakides
- Neurology Clinic A, The Cyprus Institute of Neurology and GeneticsNicosia, Cyprus.,Cyprus School of Molecular MedicineNicosia, Cyprus
| |
Collapse
|
16
|
Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists. Sci Rep 2016; 6:24575. [PMID: 27094554 PMCID: PMC4837355 DOI: 10.1038/srep24575] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/31/2016] [Indexed: 12/13/2022] Open
Abstract
Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3 nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1 -3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents.
Collapse
|
17
|
Rana S, Sahoo AR, Majhi BK. Allosterism in human complement component 5a ((h)C5a): a damper of C5a receptor (C5aR) signaling. J Biomol Struct Dyn 2015. [PMID: 26212097 DOI: 10.1080/07391102.2015.1073634] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The phenomena of allosterism continues to advance the field of drug discovery, by illuminating gainful insights for many key processes, related to the structure-function relationships in proteins and enzymes, including the transmembrane G-protein coupled receptors (GPCRs), both in normal as well as in the disease states. However, allosterism is completely unexplored in the native protein ligands, especially when a small covalent change significantly modulates the pharmacology of the protein ligands toward the signaling axes of the GPCRs. One such example is the human C5a ((h)C5a), the potent cationic anaphylatoxin that engages C5aR and C5L2 to elicit numerous immunological and non-immunological responses in humans. From the recently available structure-function data, it is clear that unlike the mouse C5a ((m)C5a), the (h)C5a displays conformational heterogeneity. However, the molecular basis of such conformational heterogeneity, otherwise allosterism in (h)C5a and its precise contribution toward the overall C5aR signaling is not known. This study attempts to decipher the functional role of allosterism in (h)C5a, by exploring the inherent conformational dynamics in (m)C5a, (h)C5a and in its point mutants, including the proteolytic mutant des-Arg(74)-(h)C5a. Prima facie, the comparative molecular dynamics study, over total 500 ns, identifies Arg(74)-Tyr(23) and Arg(37)-Phe(51) "cation-π" pairs as the molecular "allosteric switches" on (h)C5a that potentially functions as a damper of C5aR signaling.
Collapse
Affiliation(s)
- Soumendra Rana
- a Chemical Biology Laboratory, School of Basic Sciences , Indian Institute of Technology Bhubaneswar , Bhubaneswar , Odisha 751007 , India
| | - Amita Rani Sahoo
- a Chemical Biology Laboratory, School of Basic Sciences , Indian Institute of Technology Bhubaneswar , Bhubaneswar , Odisha 751007 , India
| | - Bharat Kumar Majhi
- a Chemical Biology Laboratory, School of Basic Sciences , Indian Institute of Technology Bhubaneswar , Bhubaneswar , Odisha 751007 , India
| |
Collapse
|
18
|
Rana S, Sahoo AR. Model structures of inactive and peptide agonist bound C5aR: Insights into agonist binding, selectivity and activation. Biochem Biophys Rep 2015; 1:85-96. [PMID: 29124137 PMCID: PMC5668562 DOI: 10.1016/j.bbrep.2015.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 11/30/2022] Open
Abstract
C5a receptor (C5aR) is one of the major chemoattractant receptors of the druggable proteome that binds C5a, the proinflammatory polypeptide of complement cascade, triggering inflammation and SEPSIS. Here, we report the model structures of C5aR in both inactive and peptide agonist (YSFKPMPLaR; a=D-Ala) bound meta-active state. Assembled in CYANA and evolved over molecular dynamics (MD) in POPC bilayer, the inactive C5aR demonstrates a topologically unique compact heptahelical bundle topology harboring a β-hairpin in extracellular loop 2 (ECL2), derived from the atomistic folding simulations. The peptide agonist bound meta-active C5aR deciphers the “site2” at an atomistic resolution in the extracellular surface (ECS), in contrast to the previously hypothesized inter-helical crevice. With estimated Ki≈2.75 μM, the meta-active C5aR excellently rationalizes the IC50 (0.1–13 μM) and EC50 (0.01–6 μM) values, displayed by the peptide agonist in several signaling studies. Moreover, with Ki≈5.3×105 μM, the “site2” also illustrates selectivity, by discriminating the stereochemical mutant peptide (YSFkPMPLaR; k=D-Lys), known to be inert toward C5aR, up to 1 mM concentration. Topologically juxtaposed between the structures of rhodopsin and CXCR1, the C5aR models also display excellent structural correlations with the other G-protein coupled receptors (GPCRs). The models elaborated in the current study unravel many important structural insights previously not known for regulating the agonist binding and activation mechanism of C5aR. Topologically unique inactive and meta-active atomistic models of C5aR. Model demonstrates excellent structural correlation with the other reported GPCRs. Model deciphers the “site2” in the ECS and also demonstrates agonist selectivity. Agonist binding and activation requires “cation–π” interaction with F275 of C5aR. Inactive to meta-active transition involves TM3–TM6 movements (ΔΘ≈+11.1°) in C5aR.
Collapse
Affiliation(s)
- Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 751007, India
| | - Amita Rani Sahoo
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 751007, India
| |
Collapse
|
19
|
Darling VR, Hauke RJ, Tarantolo S, Agrawal DK. Immunological effects and therapeutic role of C5a in cancer. Expert Rev Clin Immunol 2014; 11:255-63. [PMID: 25387724 DOI: 10.1586/1744666x.2015.983081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The specific role of C5a in cancer, especially in melanoma, has yet to be determined. Differential effects of C5a could be cancer specific. In the host defense system, C5a functions to protect the body from harmful entities via a plethora of mechanisms. Yet, C5a may also serve to potentiate cancerous process. C5a facilitates cellular proliferation and regeneration by attracting myeloid-derived suppressor cells and supporting tumor promotion. In this article, we critically reviewed the properties, mechanisms of action and functions of C5a, with particular emphasis on cancer inhibition and promotion, and clinical application of such knowledge in better management of patients with cancer. Outstanding questions and future directions in regard to the function of C5a in melanoma and other cancers are discussed.
Collapse
Affiliation(s)
- Victoria R Darling
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | | | | | | |
Collapse
|
20
|
Tamamis P, Kieslich CA, Nikiforovich GV, Woodruff TM, Morikis D, Archontis G. Insights into the mechanism of C5aR inhibition by PMX53 via implicit solvent molecular dynamics simulations and docking. BMC BIOPHYSICS 2014; 7:5. [PMID: 25170421 PMCID: PMC4141665 DOI: 10.1186/2046-1682-7-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/30/2014] [Indexed: 01/31/2023]
Abstract
Background The complement protein C5a acts by primarily binding and activating the G-protein coupled C5a receptor C5aR (CD88), and is implicated in many inflammatory diseases. The cyclic hexapeptide PMX53 (sequence Ace-Phe-[Orn-Pro-dCha-Trp-Arg]) is a full C5aR antagonist of nanomolar potency, and is widely used to study C5aR function in disease. Results We construct for the first time molecular models for the C5aR:PMX53 complex without the a priori use of experimental constraints, via a computational framework of molecular dynamics (MD) simulations, docking, conformational clustering and free energy filtering. The models agree with experimental data, and are used to propose important intermolecular interactions contributing to binding, and to develop a hypothesis for the mechanism of PMX53 antagonism. Conclusion This work forms the basis for the design of improved C5aR antagonists, as well as for atomic-detail mechanistic studies of complement activation and function. Our computational framework can be widely used to develop GPCR-ligand structural models in membrane environments, peptidomimetics and other chemical compounds with potential clinical use.
Collapse
Affiliation(s)
- Phanourios Tamamis
- Department of Physics, University of Cyprus, PO 20537, CY1678 Nicosia, Cyprus
| | - Chris A Kieslich
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | - Trent M Woodruff
- School of Biomedical Sciences, the University of Queensland, St Lucia 4072, Australia
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Georgios Archontis
- Department of Physics, University of Cyprus, PO 20537, CY1678 Nicosia, Cyprus
| |
Collapse
|
21
|
Abstract
Complement is an important component of the innate immune system that is crucial for defense from microbial infections and for clearance of immune complexes and injured cells. In normal conditions complement is tightly controlled by a number of fluid-phase and cell surface proteins to avoid injury to autologous tissues. When complement is hyperactivated, as occurs in autoimmune diseases or in subjects with dysfunctional regulatory proteins, it drives a severe inflammatory response in numerous organs. The kidney appears to be particularly vulnerable to complement-mediated inflammatory injury. Injury may derive from deposition of circulating active complement fragments in glomeruli, but complement locally produced and activated in the kidney also may have a role. Many kidney disorders have been linked to abnormal complement activation, including immune-complex–mediated glomerulonephritis and rare genetic kidney diseases, but also tubulointerstitial injury associated with progressive proteinuric diseases or ischemia-reperfusion.
Collapse
|
22
|
Schatz-Jakobsen JA, Yatime L, Larsen C, Petersen SV, Klos A, Andersen GR. Structural and functional characterization of human and murine C5a anaphylatoxins. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1704-17. [PMID: 24914981 PMCID: PMC4051506 DOI: 10.1107/s139900471400844x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/14/2014] [Indexed: 12/15/2022]
Abstract
Complement is an ancient part of the innate immune system that plays a pivotal role in protection against invading pathogens and helps to clear apoptotic and necrotic cells. Upon complement activation, a cascade of proteolytic events generates the complement effectors, including the anaphylatoxins C3a and C5a. Signalling through their cognate G-protein coupled receptors, C3aR and C5aR, leads to a wide range of biological events promoting inflammation at the site of complement activation. The function of anaphylatoxins is regulated by circulating carboxypeptidases that remove their C-terminal arginine residue, yielding C3a-desArg and C5a-desArg. Whereas human C3a and C3a-desArg adopt a canonical four-helix bundle fold, the conformation of human C5a-desArg has recently been described as a three-helix bundle. Here, the crystal structures of an antagonist version of human C5a, A8(Δ71-73), and of murine C5a and C5a-desArg are reported. Whereas A8(Δ71-73) adopts a three-helix bundle conformation similar to human C5a-desArg, the two murine proteins form a four-helix bundle. A cell-based functional assay reveals that murine C5a-desArg, in contrast to its human counterpart, exerts the same level of activition as murine C5a on its cognate receptor. The role of the different C5a conformations is discussed in relation to the differential activation of C5a receptors across species.
Collapse
Affiliation(s)
| | - Laure Yatime
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | - Casper Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | - Steen Vang Petersen
- Department of Biomedicine, Aarhus University, Bartholin Building, Wilhelm Meyers Allé 4, DK-8000 Aarhus, Denmark
| | - Andreas Klos
- Institute for Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| |
Collapse
|
23
|
van den Berg CW, Tambourgi DV, Clark HW, Hoong SJ, Spiller OB, McGreal EP. Mechanism of neutrophil dysfunction: neutrophil serine proteases cleave and inactivate the C5a receptor. THE JOURNAL OF IMMUNOLOGY 2014; 192:1787-95. [PMID: 24446515 DOI: 10.4049/jimmunol.1301920] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neutrophil dysfunction, resulting in inefficient bacterial clearance, is a feature of several serious medical conditions, including cystic fibrosis (CF) and sepsis. Poorly controlled neutrophil serine protease (NSP) activity and complement activation have been implicated in this phenomenon. The capacity for excess NSP secretion and complement activation to influence the expression and function of the important neutrophil-activating receptor C5aR was investigated. Purified NSPs cathepsin G (CG), neutrophil elastase (NE), and proteinase 3 cleaved C5aR to a 26- to 27-kDa membrane-bound fragment, thereby inactivating its C5a-induced signaling ability. In a supernatant transfer assay, NSPs released from neutrophils in response to C5a induced the cleavage of the C5aR on unstimulated cells. Stimulation of myeolomonocytic U937 cells and purified neutrophils with C5a resulted in downregulation of the C5aR on these cells, which, in the case of U937 cells, was largely caused by NSP-mediated cleavage of C5aR, but in the case of neutrophils, intracellular degradation was likely the main mediator in addition to a small role for NSPs. CG and NE in bronchoalveolar lavage fluid from CF patients both contributed to C5aR cleavage. We propose two converging models for C5a- and NSP-mediated neutrophil dysfunction whereby C5aR cleavage is induced by NSPs, secreted in response to: 1) excess C5a generation or other stimuli; or 2) necrosis. The consequent impairment of C5aR activity contributes to suboptimal local neutrophil priming and bacterial clearance. NSP inhibitors with specificity for both CG and NE may aid the treatment of pathologies associated with neutrophil dysfunction including sepsis and CF.
Collapse
Affiliation(s)
- Carmen W van den Berg
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Klos A, Wende E, Wareham KJ, Monk PN. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev 2013; 65:500-43. [PMID: 23383423 DOI: 10.1124/pr.111.005223] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The activation of the complement cascade, a cornerstone of the innate immune response, produces a number of small (74-77 amino acid) fragments, originally termed anaphylatoxins, that are potent chemoattractants and secretagogues that act on a wide variety of cell types. These fragments, C5a, C4a, and C3a, participate at all levels of the immune response and are also involved in other processes such as neural development and organ regeneration. Their primary function, however, is in inflammation, so they are important targets for the development of antiinflammatory therapies. Only three receptors for complement peptides have been found, but there are no satisfactory antagonists as yet, despite intensive investigation. In humans, there is a single receptor for C3a (C3a receptor), no known receptor for C4a, and two receptors for C5a (C5a₁ receptor and C5a₂ receptor). The most recently characterized receptor, the C5a₂ receptor (previously known as C5L2 or GPR77), has been regarded as a passive binding protein, but signaling activities are now ascribed to it, so we propose that it be formally identified as a receptor and be given a name to reflect this. Here, we describe the complex biology of the complement peptides, introduce a new suggested nomenclature, and review our current knowledge of receptor pharmacology.
Collapse
Affiliation(s)
- Andreas Klos
- Department for Medical Microbiology, Medical School Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
25
|
Qing XY, Zhang CH, Li LL, Ji P, Ma S, Wan HL, Wang ZR, Zou J, Yang SY. Retrieving novel C5aR antagonists using a hybrid ligand-based virtual screening protocol based on SVM classification and pharmacophore models. J Biomol Struct Dyn 2013; 31:215-23. [DOI: 10.1080/07391102.2012.698245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Abstract
Receptor-ligand interactions represent one of the most basic processes in biological systems. Receptor activation and deactivation induce or prevent a series of downstream signaling events that ultimately result in normal or abnormal cellular functions. Contemporary biology is in continuous search for the identification of novel receptors and their ligands. The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including leptin and adiponectin. A recent discovery and design process for leptin and adiponectin receptor response modifier peptides can be generalized to a series of transmembrane receptor ligands. A family of 11-13 amino acid residue-long leptin receptor (ObR) agonists has been identified by analyzing the effect of peptides corresponding to the three presumed active sites of leptin on the growth of leptin-responsive cancer cells. In the case of adiponectin, overlapping peptides were walked across the entire globular domain of the protein to identify the active site and derive adiponectin receptor (AdipoR) agonist peptides. In both sets, native residues were replaced by nonnatural analogs to improve the pharmacological properties including stability, efficacy and targeting. Later the ObR analogs were converted into true ObR antagonists that show antagonist-agonist selectivity of 1,000 in cellular assays. The design process of ObR antagonists included shortening of the peptide length and incorporating additional nonnatural residues. Here I take a look into this receptor agonist and antagonist discovery process from a practical point of view.
Collapse
Affiliation(s)
- Laszlo Otvos
- College of Science and Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
27
|
Lu X, Xia M, Endresz V, Faludi I, Mundkur L, Gonczol E, Chen D, Kakkar VV. Immunization With a Combination of 2 Peptides Derived From the C5a Receptor Significantly Reduces Early Atherosclerotic Lesion in
Ldlr
tm1Her
Apob
tm2Sgy
J Mice. Arterioscler Thromb Vasc Biol 2012; 32:2358-71. [DOI: 10.1161/atvbaha.112.253179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objective—
The goal of this study was to assess whether immunization of
Ldlr
tm1Her
Apob
tm2Sgy
J mice with 2 peptides located at the N-terminus of the C5a receptor (C5aR), either alone or in combination, is effective in reducing atherosclerotic lesions.
Methods and Results—
Five- to 6-week-old female
Ldlr
tm1Her
Apob
tm2Sgy
J mice were immunized using a repetitive immunization multiple sites strategy with keyhole limpet hemocyanin-conjugated peptides derived from the C5aR, either alone (designated as C5aR-P1 [aa 1–21] and C5aR-P2 [aa 19–31]) or in combination (designated as C5aR-P1+C5aR-P2). Mice were fed a high-fat diet for 10 weeks. Lesions were evaluated histologically; local and systemic immune responses were analyzed by immunohistochemistry of aorta samples and cytokine measurements in plasma samples and splenocyte supernatants. Immunization of
Ldlr
tm1Her
Apob
tm2Sgy
J mice with these peptides elicited high concentrations of antibodies against each peptide. Immunization with the single peptide inhibited plaque development. Combined inoculation with C5aR-P1+C5aR-P2 had an additive effect on reducing the lesion in the aorta sinus and descending aortas when compared with controls. This effect correlated with cellular infiltration and cytokine/chemokine secretion in the serum or in stimulated spleen cells as well as specific cellular immune responses when compared with controls.
Conclusion—
Immunization of mice with C5aR-P1 and C5aR-P2, either alone or in combination, was effective in reducing early atherosclerotic lesion development. The combined peptide is more potential than either epitope alone to reduce atherosclerotic lesion formation through the induction of a specific Treg cell response as well as blockage of monocyte differentiation into macrophages.
Collapse
Affiliation(s)
- Xinjie Lu
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Min Xia
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Valeria Endresz
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Ildiko Faludi
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Lakshmi Mundkur
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Eva Gonczol
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Daxin Chen
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Vijay V. Kakkar
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| |
Collapse
|
28
|
Inhibiting the C5-C5a receptor axis. Mol Immunol 2011; 48:1631-42. [PMID: 21549429 DOI: 10.1016/j.molimm.2011.04.014] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 12/19/2022]
Abstract
Activation of the complement system is a major pathogenic event that drives various inflammatory responses in numerous diseases. All pathways of complement activation lead to cleavage of the C5 molecule generating the anaphylatoxin C5a and, C5b that subsequently forms the terminal complement complex (C5b-9). C5a exerts a predominant pro-inflammatory activity through interactions with the classical G-protein coupled receptor C5aR (CD88) as well as with the non-G protein coupled receptor C5L2 (GPR77), expressed on various immune and non-immune cells. C5b-9 causes cytolysis through the formation of the membrane attack complex (MAC), and sub-lytic MAC and soluble C5b-9 also possess a multitude of non-cytolytic immune functions. These two complement effectors, C5a and C5b-9, generated from C5 cleavage, are key components of the complement system responsible for propagating and/or initiating pathology in different diseases, including paroxysmal nocturnal hemoglobinuria, rheumatoid arthritis, ischemia-reperfusion injuries and neurodegenerative diseases. Thus, the C5-C5a receptor axis represents an attractive target for drug development. This review provides a comprehensive analysis of different methods of inhibiting the generation of C5a and C5b-9 as well as the signalling cascade of C5a via its receptors. These include the inhibition of C5 cleavage through targeting of C5 convertases or via the C5 molecule itself, as well as blocking the activity of C5a by neutralizing antibodies and pharmacological inhibitors, or by targeting C5a receptors per se. Examples of drugs and naturally occurring compounds used are discussed in relation to disease models and clinical trials. To date, only one such compound has thus far made it to clinical medicine: the anti-C5 antibody eculizumab, for treating paroxysmal nocturnal hemoglobinuria. However, a number of drug candidates are rapidly emerging that are currently in early-phase clinical trials. The C5-C5a axis as a target for drug development is highly promising for the treatment of currently intractable major human diseases.
Collapse
|
29
|
Strey CW, Siegmund B, Rosenblum S, Marquez-Pinilla RM, Oppermann E, Huber-Lang M, Lambris JD, Bechstein WO. Complement and neutrophil function changes after liver resection in humans. World J Surg 2010; 33:2635-43. [PMID: 19789912 DOI: 10.1007/s00268-009-0209-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Complement activation contributes to the regulation of liver regeneration after liver resection (LR) in mice. METHODS We hypothesized that complement activation and changes in C5a-receptors (C5aR, C5L2) on polymorphonuclear cells (PMN) and monocytes are important in clinical LR. Anaphylatoxin and C5b9 plasma levels were measured (bead-array, ELISA) (25 patients) and receptor expression was assessed after LR (19 patients) (FACS). In vitro PMN C5a-dependent chemotactic response (7 patients) as well as L-selectin shedding and Mac-1 expression (3 patients) was determined. RESULTS C3a increased after LR (31.1 +/- 4 before LR vs. 41.6 +/- 5 ng/ml, 30 min after LR, P < 0.01), as did C5b9 (12.7 +/- 1 before LR vs. 26.9 +/- 3 ng/ml, 60 min after LR, P < 0.001). C4a and C5a decreased after LR, by 25% 24 h after LR and 30% 2 h after LR, respectively (P < 0.01). C5L2 expression decreased at 4 h, rising at 24 h after LR (PMN: 6.3 +/- 1 before LR, 3.1 +/- 1, 4 h, 8.3 +/- 2, 24 h; P < 0.01). The receptor-related changes accompanied a diminished C5a-dependent chemotactic response by PMN (42.1 +/- 17 before LR vs. 2.1 +/- 3 4 h after LR; P < 0.01) and a reduction of activation upon C5a-R stimulation as measured by L-selectin shedding and Mac-1 expression on PMN. Changes in C5L2 expression on monocytes paralleled postoperative impairment of liver function. CONCLUSIONS These results indicate that complement components are released after clinical LR and subsequently PMN display altered C5a-dependent functional responses.
Collapse
Affiliation(s)
- Christoph Werner Strey
- Department of General and Vascular Surgery, Medical School, Johann Wolfgang Goethe-University Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Rana S, Baranski TJ. Third extracellular loop (EC3)-N terminus interaction is important for seven-transmembrane domain receptor function: implications for an activation microswitch region. J Biol Chem 2010; 285:31472-83. [PMID: 20663868 DOI: 10.1074/jbc.m110.129213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The canonical heptahelical bundle architecture of seven-transmembrane domain (7TM) receptors is intertwined by three intra- and three extracellular loops, whose local conformations are important in receptor signaling. Many 7TM receptors contain a cysteine residue in the third extracellular loop (EC3) and a complementary cysteine residue on the N terminus. The functional role of such EC3-N terminus conserved cysteine pairs remains unclear. This study explores the role of the EC3-N terminus cysteine pairs on receptor conformation and G protein activation by disrupting them in the chemokine receptor CXCR4, while engineering a novel EC3-N terminus cysteine pair into the complement factor 5a receptor (C5aR), a chemo attractant receptor that lacks it. Mutated CXCR4 and C5aRs were expressed in engineered yeast. Mutation of the cysteine pair with the serine pair (C28S/C274S) in constitutively active mutant CXCR4 abrogated the receptor activation, whereas mutation with the aromatic pair (C28F-C274F) or the salt bridge pair (C28R/C274E), respectively, rescued or retained the receptor activation in response to CXCL12. In this context, the cysteine pair (Cys(30) and Cys(272)) engineered into the EC3-N terminus (Ser(30) and Ser(272)) of a novel constitutively active mutant of C5aR restrained the constitutive signaling without affecting the C5a-induced activation. Further mutational studies demonstrated a previously unappreciated role for Ser(272) on EC3 of C5aR and its interaction with the N terminus, thus defining a new microswitch region within the C5aR. Similar results were obtained with mutated CXCR4 and C5aRs expressed in COS-7 cells. These studies demonstrate a novel role of the EC3-N terminus cysteine pairs in G protein-coupled receptor activation and signaling.
Collapse
Affiliation(s)
- Soumendra Rana
- Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | |
Collapse
|
31
|
Complement component 5a (C5a). Int J Biochem Cell Biol 2009; 41:2114-7. [PMID: 19464229 DOI: 10.1016/j.biocel.2009.04.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/04/2009] [Accepted: 04/06/2009] [Indexed: 02/02/2023]
Abstract
The 74 amino acid glycoprotein, complement component 5a (C5a), is a potent pro-inflammatory mediator cleaved enzymatically from its precursor, C5, upon activation of the complement cascade. C5a is quickly metabolised by carboxypeptidases, forming the less potent C5adesArg. Acting via a classical G protein-coupled receptor, CD88, C5a and C5adesArg exert a number of effects essential to the innate immune response, while their actions at the more recently discovered non-G protein-coupled receptor, C5L2 (or GPR77), remain unclear. The widespread expression of C5a receptors throughout the body allows C5a to elicit a broad range of effects. Thus, C5a has been found to be a significant pathogenic driver in a number of immuno-inflammatory diseases, making C5a inhibition an attractive therapeutic strategy.
Collapse
|
32
|
Zhang L, Mallik B, Morikis D. Structural study of Ac-Phe-[Orn-Pro-dCha-Trp-Arg], a potent C5a receptor antagonist, by NMR. Biopolymers 2008; 90:803-15. [DOI: 10.1002/bip.21099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Design and optimization of aniline-substituted tetrahydroquinoline C5a receptor antagonists. Bioorg Med Chem Lett 2008; 18:3852-5. [DOI: 10.1016/j.bmcl.2008.06.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/13/2008] [Accepted: 06/17/2008] [Indexed: 11/17/2022]
|
34
|
Barbay JK, Gong Y, Buntinx M, Li J, Claes C, Hornby PJ, Van Lommen G, Van Wauwe J, He W. Synthesis and characterization of 5,6,7,8-tetrahydroquinoline C5a receptor antagonists. Bioorg Med Chem Lett 2008; 18:2544-8. [PMID: 18378452 DOI: 10.1016/j.bmcl.2008.03.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/14/2008] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
|
35
|
Hagemann IS, Miller DL, Klco JM, Nikiforovich GV, Baranski TJ. Structure of the Complement Factor 5a Receptor-Ligand Complex Studied by Disulfide Trapping and Molecular Modeling. J Biol Chem 2008; 283:7763-75. [DOI: 10.1074/jbc.m709467200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
36
|
Nikiforovich GV, Marshall GR, Baranski TJ. Modeling molecular mechanisms of binding of the anaphylatoxin C5a to the C5a receptor. Biochemistry 2008; 47:3117-30. [PMID: 18275159 DOI: 10.1021/bi702321a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study presents the 3D model of the complex between the anaphylatoxin C5a and its specific receptor, C5aR. This is the first 3D model of a G-protein-coupled receptor (GPCR) complex with a peptide ligand deduced by a molecular modeling procedure analyzing various conformational possibilities of the extracellular loops and the N-terminal segment of the GPCR. The modeling results indicated two very different ways of interacting between C5a and C5aR at the two interaction sites suggested earlier based on the data of site-directed mutagenesis. Specifically, C5a and C5aR can be involved in "mutual-induced fit", where the interface between the molecules is determined by both the receptor and the ligand. The rigid core of the C5a ligand selects the proper conformations of the highly flexible N-terminal segment of C5aR (the first interaction site). At the same time, the binding conformation of the flexible C-terminal fragment of C5a is selected by well-defined interactions with the TM region of the C5aR receptor (the second interaction site). The proposed 3D model of C5a/C5aR complex was built without direct use of structural constraints derived from site-directed mutagenesis reserving those data for validation of the model. The available data of site-directed mutagenesis of C5a and C5aR were successfully rationalized with the help of the model. Also, the modeling results predicted that the full-length C5a and C5a-des74 metabolite would have different binding modes with C5aR. Modeling approaches employed in this study are readily applicable for studies of molecular mechanisms of binding of other polypeptide ligands to their specific GPCRs.
Collapse
Affiliation(s)
- Gregory V Nikiforovich
- Center for Computational Biology, Department of Biochemistry and Molecular Biophysics, Washington University Medical School, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
37
|
Monk PN, Scola AM, Madala P, Fairlie DP. Function, structure and therapeutic potential of complement C5a receptors. Br J Pharmacol 2007; 152:429-48. [PMID: 17603557 PMCID: PMC2050825 DOI: 10.1038/sj.bjp.0707332] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Complement fragment (C)5a is a 74 residue pro-inflammatory polypeptide produced during activation of the complement cascade of serum proteins in response to foreign surfaces such as microorganisms and tissue damaged by physical or chemical injury. C5a binds to at least two seven-transmembrane domain receptors, C5aR (C5R1, CD88) and C5L2 (gpr77), expressed ubiquitously on a wide variety of cells but particularly on the surface of immune cells like macrophages, neutrophils and T cells. C5aR is a classical G protein-coupled receptor that signals through G alpha i and G alpha 16, whereas C5L2 does not appear to couple to G proteins and has no known signalling activity. Although C5a was first described as an anaphylatoxin and later as a leukocyte chemoattractant, the widespread expression of C5aR suggested more general functionality. Our understanding of the physiology of C5a has improved significantly in recent years through exploitation of receptor knockout and knocking mice, C5 and C5a antibodies, soluble recombinant C5a and C5a analogues and newly developed receptor antagonists. C5a is now also implicated in non-immunological functions associated with developmental biology, CNS development and neurodegeneration, tissue regeneration, and haematopoiesis. Combined receptor mutagenesis, molecular modelling, structure-activity relationship studies and species dependence for ligand potency on C5aR have been helpful for identifying ligand binding sites on the receptor and for defining mechanisms of receptor activation and inactivation. This review will highlight major developments in C5a receptor research that support C5aR as an important therapeutic target. The intriguing possibilities raised by the existence of a non-signalling C5a receptor are also discussed.
Collapse
Affiliation(s)
- P N Monk
- Academic Neurology Unit, School of Medicine and Biomedical Science, University of Sheffield, Sheffield, UK.
| | | | | | | |
Collapse
|
38
|
Wright AJ, Higginbottom A, Philippe D, Upadhyay A, Bagby S, Read RC, Monk PN, Partridge LJ. Characterisation of receptor binding by the chemotaxis inhibitory protein of Staphylococcus aureus and the effects of the host immune response. Mol Immunol 2007; 44:2507-17. [PMID: 17258808 PMCID: PMC2646901 DOI: 10.1016/j.molimm.2006.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 12/17/2006] [Indexed: 11/26/2022]
Abstract
The chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) is reported to bind to the receptors for C5a and formylated peptides and has been proposed as a promising lead for the development of new anti-inflammatory compounds. Here we have examined the receptor specificity and mode of action of recombinant CHIPS28–149 and also the immune response to CHIPS28–149 in patients with S. aureus infections and in uninfected controls. Recombinant CHIPS28–149 bound with high affinity to the human C5a receptor (C5aR), but had low affinity for the second C5a receptor, C5L2, and the formyl peptide receptor, FPR. Although ligand binding to C5aR was potently inhibited, CHIPS28–149 had much weaker effects on ligand binding to C5L2 and FPR. Similarly, CHIPS28–149 potently inhibited the ligand-induced activation of C5aR but was less potent at inhibition via FPR. NMR studies showed that CHIPS28–149 bound directly to the N-terminus of C5aR but not C5L2, and CHIPS28–149 residues involved in the interaction were identified by chemical shift analysis. All human sera examined contained high titres of IgG and IgA reactivity against CHIPS28–149, and no correlation was observed between infection status at the time of serum collection and antibody titre. Individual serum samples promoted or inhibited the binding of CHIPS28–149 to C5aR, or had no effect. IgG depletion of serum samples abrogated the effects on CHIPS binding, demonstrating that these were antibody mediated. Sera from infected individuals were more likely to inhibit CHIPS28–149 binding than sera from healthy controls. However, high antibody titres correlated well with both inhibition and enhancement of CHIPS28–149 binding to C5aR; this suggests that the inhibitory effect relates to epitope specificity rather than greater antibody binding. We conclude that CHIPS is likely to be too immunogenic to be used as an anti-inflammatory treatment but that some antibodies against CHIPS may be useful in the treatment of S. aureus infections.
Collapse
Affiliation(s)
- Andrew J. Wright
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Adrian Higginbottom
- School of Medicine and Biomedical Science, University of Sheffield, Sheffield S10 2RX, UK
| | - Didier Philippe
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Abhishek Upadhyay
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Stefan Bagby
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Robert C. Read
- School of Medicine and Biomedical Science, University of Sheffield, Sheffield S10 2RX, UK
| | - Peter N. Monk
- School of Medicine and Biomedical Science, University of Sheffield, Sheffield S10 2RX, UK
- Corresponding author. Tel.: +44 114 226 1312; fax: +44 114 226 1201.
| | - Lynda J. Partridge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
39
|
Scola AM, Higginbottom A, Partridge LJ, Reid RC, Woodruff T, Taylor SM, Fairlie DP, Monk PN. The role of the N-terminal domain of the complement fragment receptor C5L2 in ligand binding. J Biol Chem 2006; 282:3664-71. [PMID: 17158873 PMCID: PMC2873560 DOI: 10.1074/jbc.m609178200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C5L2 is a new cellular receptor found to interact with the human anaphylatoxins complement factor C5a and its C-terminal cleavage product C5a des Arg. The classical human C5a receptor (C5aR) preferentially binds C5a, with a 10-100-fold lower affinity for C5a des Arg. In contrast, C5L2 binds both ligands with nearly equal affinity. C5aR presents acidic and tyrosine residues in its N terminus that interact with the core of C5a while a hydrophobic pocket formed by the transmembrane helices interacts with residues in the C terminus of C5a. Here, we have investigated the molecular basis for the increased affinity of C5L2 for C5a des Arg. Rat and mouse C5L2 preferentially bound C5a des Arg, whereas rodent C5aR showed much higher affinity for intact C5a. Effective peptidic and non-peptidic ligands for the transmembrane hydrophobic pocket of C5aR were poor inhibitors of ligand binding to C5L2. An antibody raised against the N terminus of human C5L2 did not affect the binding of C5a to C5L2 but did inhibit C5a des Arg binding. A chimeric C5L2, containing the N terminus of C5aR, had little effect on the affinity for C5a des Arg. Mutation of acidic and tyrosine residues in the N terminus of human C5L2 revealed that 3 residues were critical for C5a des Arg binding but had little involvement in C5a binding. C5L2 thus appears to bind C5a and C5a des Arg by different mechanisms, and, unlike C5aR, C5L2 uses critical residues in its N-terminal domain for binding only to C5a des Arg.
Collapse
Affiliation(s)
- Anne-Marie Scola
- Academic Neurology Unit and Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Girardi G, Yarilin D, Thurman JM, Holers VM, Salmon JE. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. ACTA ACUST UNITED AC 2006; 203:2165-75. [PMID: 16923853 PMCID: PMC2118387 DOI: 10.1084/jem.20061022] [Citation(s) in RCA: 388] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Immune mechanisms have been implicated in placental dysfunction in patients with recurrent miscarriages and intrauterine growth restriction (IUGR), but the mediators are undefined. Here we show that complement activation, particularly C5a, is a required intermediary event in the pathogenesis of placental and fetal injury in an antibody-independent mouse model of spontaneous miscarriage and IUGR, and that complement activation causes dysregulation of the angiogenic factors required for normal placental development. Pregnancies complicated by miscarriage or growth restriction were characterized by inflammatory infiltrates in placentas, functional deficiency of free vascular endothelial growth factor (VEGF), elevated levels of soluble VEGF receptor 1 (sVEGFR-1, also known as sFlt-1; a potent anti-angiogenic molecule), and defective placental development. Inhibition of complement activation in vivo blocked the increase in sVEGFR-1 and rescued pregnancies. In vitro stimulation of monocytes with products of the complement cascade directly triggered release of sVEGFR-1, which sequesters VEGF. These studies provide the first evidence linking the complement system to angiogenic factor imbalance associated with placental dysfunction, and identify a new effector of immune-triggered pregnancy complications.
Collapse
Affiliation(s)
- Guillermina Girardi
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, Weill Medical College, Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
41
|
Schnatbaum K, Locardi E, Scharn D, Richter U, Hawlisch H, Knolle J, Polakowski T. Peptidomimetic C5a receptor antagonists with hydrophobic substitutions at the C-terminus: increased receptor specificity and in vivo activity. Bioorg Med Chem Lett 2006; 16:5088-92. [PMID: 16876401 DOI: 10.1016/j.bmcl.2006.07.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/11/2006] [Accepted: 07/12/2006] [Indexed: 11/28/2022]
Abstract
A new class of peptidomimetic C5a receptor antagonists characterized by C-terminal amino acids with hydrophobic side chains is presented. Systematic optimization of the first hits led to JPE1375 (36), which was intensively characterized in vitro and in vivo. Compound 36 exhibits high microsomal stability and receptor specificity and is highly active in an immune complex mediated peritonitis model (reverse passive Arthus reaction) in mice.
Collapse
|
42
|
Zhang Y, DeVries ME, Skolnick J. Structure modeling of all identified G protein-coupled receptors in the human genome. PLoS Comput Biol 2006; 2:e13. [PMID: 16485037 PMCID: PMC1364505 DOI: 10.1371/journal.pcbi.0020013] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 01/11/2005] [Indexed: 12/22/2022] Open
Abstract
G protein–coupled receptors (GPCRs), encoded by about 5% of human genes, comprise the largest family of integral membrane proteins and act as cell surface receptors responsible for the transduction of endogenous signal into a cellular response. Although tertiary structural information is crucial for function annotation and drug design, there are few experimentally determined GPCR structures. To address this issue, we employ the recently developed threading assembly refinement (TASSER) method to generate structure predictions for all 907 putative GPCRs in the human genome. Unlike traditional homology modeling approaches, TASSER modeling does not require solved homologous template structures; moreover, it often refines the structures closer to native. These features are essential for the comprehensive modeling of all human GPCRs when close homologous templates are absent. Based on a benchmarked confidence score, approximately 820 predicted models should have the correct folds. The majority of GPCR models share the characteristic seven-transmembrane helix topology, but 45 ORFs are predicted to have different structures. This is due to GPCR fragments that are predominantly from extracellular or intracellular domains as well as database annotation errors. Our preliminary validation includes the automated modeling of bovine rhodopsin, the only solved GPCR in the Protein Data Bank. With homologous templates excluded, the final model built by TASSER has a global Cα root-mean-squared deviation from native of 4.6 Å, with a root-mean-squared deviation in the transmembrane helix region of 2.1 Å. Models of several representative GPCRs are compared with mutagenesis and affinity labeling data, and consistent agreement is demonstrated. Structure clustering of the predicted models shows that GPCRs with similar structures tend to belong to a similar functional class even when their sequences are diverse. These results demonstrate the usefulness and robustness of the in silico models for GPCR functional analysis. All predicted GPCR models are freely available for noncommercial users on our Web site (http://www.bioinformatics.buffalo.edu/GPCR). G protein–coupled receptors (GPCRs) are a large superfamily of integral membrane proteins that transduce signals across the cell membrane. Because of the breadth and importance of the physiological roles undertaken by the GPCR family, many of its members are important pharmacological targets. Although the knowledge of a protein's native structure can provide important insight into understanding its function and for the design of new drugs, the experimental determination of the three-dimensional structure of GPCR membrane proteins has proved to be very difficult. This is demonstrated by the fact that there is only one solved GPCR structure (from bovine rhodopsin) deposited in the Protein Data Bank library. In contrast, there are no human GPCR structures in the Protein Data Bank. To address the need for the tertiary structures of human GPCRs, using just sequence information, the authors use a newly developed threading-assembly-refinement method to generate models for all 907 registered GPCRs in the human genome. About 820 GPCRs are anticipated to have correct topology and transmembrane helix arrangement. A subset of the resulting models is validated by comparison with mutagenesis experimental data, and consistent agreement is demonstrated.
Collapse
Affiliation(s)
- Yang Zhang
- Center of Excellence in Bioinformatics, University at Buffalo, Buffalo, New York, United States of America
| | - Mark E DeVries
- Center of Excellence in Bioinformatics, University at Buffalo, Buffalo, New York, United States of America
| | - Jeffrey Skolnick
- Center of Excellence in Bioinformatics, University at Buffalo, Buffalo, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Waters SM, Brodbeck RM, Steflik J, Yu J, Baltazar C, Peck AE, Severance D, Zhang LY, Currie K, Chenard BL, Hutchison AJ, Maynard G, Krause JE. Molecular characterization of the gerbil C5a receptor and identification of a transmembrane domain V amino acid that is crucial for small molecule antagonist interaction. J Biol Chem 2005; 280:40617-23. [PMID: 16230349 DOI: 10.1074/jbc.m509245200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anaphylatoxin C5a is a potent inflammatory mediator associated with pathogenesis and progression of several inflammation-associated disorders. Small molecule C5a receptor (C5aR) antagonist development is hampered by species-specific receptor biology and the associated inability to use standard rat and mouse in vivo models. Gerbil is one rodent species reportedly responsive to small molecule C5aR antagonists with human C5aR affinity. We report the identification of the gerbil C5aR cDNA using a degenerate primer PCR cloning strategy. The nucleotide sequence revealed an open reading frame encoding a 347-amino acid protein. The cloned receptor (expressed in Sf9 cells) bound recombinant human C5a with nanomolar affinity. Alignment of the gerbil C5aR sequence with those from other species showed that a Trp residue in transmembrane domain V is the only transmembrane domain amino acid unique to small molecule C5aR antagonist-responsive species (i.e. gerbil, human, and non-human primate). Site-directed mutagenesis was used to generate human and mouse C5aRs with a residue exchange of this Trp residue. Mutation of Trp to Leu in human C5aR completely eliminated small molecule antagonist-receptor interaction. In contrast, mutation of Leu to Trp in mouse C5aR enabled small molecule antagonist-receptor interaction. This crucial Trp residue is located deeper within transmembrane domain V than residues reportedly involved in C5a- and cyclic peptide C5a antagonist-receptor interaction, suggesting a novel interaction site(s) for small molecule antagonists. These data provide insight into the basis for small molecule antagonist species selectivity and further define sites critical for C5aR activation and function.
Collapse
Affiliation(s)
- Stephen M Waters
- Department of Biochemistry and Molecular Biology, Neurogen Corporation, Branford, Connecticut 06405, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|