1
|
Wu B, Liu Y, Li H, Zhu L, Zeng L, Zhang Z, Peng W. Liver as a new target organ in Alzheimer's disease: insight from cholesterol metabolism and its role in amyloid-beta clearance. Neural Regen Res 2025; 20:695-714. [PMID: 38886936 PMCID: PMC11433892 DOI: 10.4103/1673-5374.391305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/07/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease, the primary cause of dementia, is characterized by neuropathologies, such as amyloid plaques, synaptic and neuronal degeneration, and neurofibrillary tangles. Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs, targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment. Metabolic abnormalities are commonly observed in patients with Alzheimer's disease. The liver is the primary peripheral organ involved in amyloid-beta metabolism, playing a crucial role in the pathophysiology of Alzheimer's disease. Notably, impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease. In this review, we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism. Furthermore, we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Lingfeng Zeng
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Zhen Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
- Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd, Qinhuangdao, Hebei Province, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Mental Disorder, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Rahimpour A, Shahbazi B, Mafakher L. Discovery of small molecules from natural compound databases as potent retinoid X alpha receptor agonists to treat Alzheimer's disease. J Biomol Struct Dyn 2024:1-15. [PMID: 38373033 DOI: 10.1080/07391102.2024.2313166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Abstract
Alzheimer's is characterized as a progressive neurodegenerative disease due to beta-amyloid accumulation in the brain. Some previous studies reported that RXR agonists could be effective in the treatment of Alzheimer's disease. There are currently numerous attempts being made to discover a natural RXR agonist that is more potent than 9-cis-retinoic acid (9CR). One of the most efficient resources for finding high-potential compounds is natural databases. In this study, 81215 compounds from the IB screen library as natural databases were docked against the RXR-alpha binding site. The best compounds discovered interact with the RXR-alpha binding site with a lower binding energy (-11 to -13 kcal/mol) than the binding energy of -10.94 kcal/mol for 9-cis, which means that these compounds could interact stronger with RXR-alpha than 9CR. All selected compounds could pass the blood-brain barrier. Physiochemical properties assessment indicated that all compounds passed Lipinski's rule and had the potential to be oral drug candidates. The stability of protein-ligand complexes during a timescale of 100 ns by Molecular Dynamics simulation demonstrated that all compounds could effectively interact with the RXR binding site. The molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) represented that all selected hit compounds had a better binding affinity to the alpha RXR binding site compared to 9CR, which means these hit compounds had potential drug candidates for the treatment of Alzheimer's disease. However, experimental assessment is needed to validate this result.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alireza Rahimpour
- Islamic Azad University of Science and Research Branch Tehran, Tehran, Iran
| | - Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Fu Y, Pickford R, Galper J, Phan K, Wu P, Li H, Kim YB, Dzamko N, Halliday GM, Kim WS. A protective role of ABCA5 in response to elevated sphingomyelin levels in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:20. [PMID: 38212656 PMCID: PMC10784510 DOI: 10.1038/s41531-024-00632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disorder that affects the motor system. Increasing evidence indicates that lysosomal dysfunction is pivotal in the pathogenesis of PD, typically characterized by dysregulation of sphingolipids in lysosomes. ATP-binding cassette subfamily A member 5 (ABCA5) is a lysosomal transporter that mediates the removal of excess sphingomyelin from lysosomes. We therefore investigated whether the expression levels of ABCA5 are associated with sphingomyelin levels and α-synuclein pathology in PD. Firstly, we undertook a comprehensive assessment of the six sphingolipid classes that are part of the lysosomal salvage pathway in the disease-affected amygdala and disease-unaffected visual cortex using liquid chromatography-mass spectrometry. We found that sphingomyelin levels were significantly increased in PD compared to controls and correlated with disease duration only in the amygdala, whereas, the five other sphingolipid classes were slightly altered or unaltered. Concomitantly, the expression of ABCA5 was upregulated in the PD amygdala compared to controls and correlated strongly with sphingomyelin levels. Using neuronal cells, we further verified that the expression of ABCA5 was dependent on cellular levels of sphingomyelin. Interestingly, sphingomyelin levels were strongly associated with α-synuclein in the amygdala and were related to α-synuclein expression. Finally, we revealed that sphingomyelin levels were also increased in PD plasma compared to controls, and that five identical sphingomyelin species were increased in both the brain and the plasma. When put together, these results suggest that in regions accumulating α-synuclein in PD, ABCA5 is upregulated to reduce lysosomal sphingomyelin levels potentially as a protective measure. This process may provide new targets for therapeutic intervention and biomarker development for PD.
Collapse
Affiliation(s)
- YuHong Fu
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Jasmin Galper
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Katherine Phan
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ping Wu
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Hongyun Li
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nicolas Dzamko
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Alnaaim SA, Al-Kuraishy HM, Alexiou A, Papadakis M, Saad HM, Batiha GES. Role of Brain Liver X Receptor in Parkinson's Disease: Hidden Treasure and Emerging Opportunities. Mol Neurobiol 2024; 61:341-357. [PMID: 37606719 PMCID: PMC10791998 DOI: 10.1007/s12035-023-03561-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease due to the degeneration of dopaminergic neurons (DNs) in the substantia nigra (SN). The liver X receptor (LXR) is involved in different neurodegenerative diseases. Therefore, the objective of the present review was to clarify the possible role of LXR in PD neuropathology. LXRs are the most common nuclear receptors of transcription factors that regulate cholesterol metabolism and have pleiotropic effects, including anti-inflammatory effects and reducing intracellular cholesterol accumulation. LXRs are highly expressed in the adult brain and act as endogenous sensors for intracellular cholesterol. LXRs have neuroprotective effects against the development of neuroinflammation in different neurodegenerative diseases by inhibiting the expression of pro-inflammatory cytokines. LXRs play an essential role in mitigating PD neuropathology by reducing the expression of inflammatory signaling pathways, neuroinflammation, oxidative stress, mitochondrial dysfunction, and enhancement of BDNF signaling.In conclusion, LXRs, through regulating brain cholesterol homeostasis, may be effectual in PD. Also, inhibition of node-like receptor pyrin 3 (NLRP3) inflammasome and nuclear factor kappa B (NF-κB) by LXRs could effectively prevent neuroinflammation in PD. Taken together, LXRs play a crucial role in PD neuropathology by inhibiting neuroinflammation and associated degeneration of DNs.
Collapse
Affiliation(s)
- Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, 14132, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| |
Collapse
|
6
|
Martens N, Zhan N, Voortman G, Leijten FPJ, van Rheenen C, van Leerdam S, Geng X, Huybrechts M, Liu H, Jonker JW, Kuipers F, Lütjohann D, Vanmierlo T, Mulder MT. Activation of Liver X Receptors and Peroxisome Proliferator-Activated Receptors by Lipid Extracts of Brown Seaweeds: A Potential Application in Alzheimer's Disease? Nutrients 2023; 15:3004. [PMID: 37447330 DOI: 10.3390/nu15133004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The nuclear liver X receptors (LXRα/β) and peroxisome proliferator-activated receptors (PPARα/γ) are involved in the regulation of multiple biological processes, including lipid metabolism and inflammation. The activation of these receptors has been found to have neuroprotective effects, making them interesting therapeutic targets for neurodegenerative disorders such as Alzheimer's Disease (AD). The Asian brown seaweed Sargassum fusiforme contains both LXR-activating (oxy)phytosterols and PPAR-activating fatty acids. We have previously shown that dietary supplementation with lipid extracts of Sargassum fusiforme prevents disease progression in a mouse model of AD, without inducing adverse effects associated with synthetic pan-LXR agonists. We now determined the LXRα/β- and PPARα/γ-activating capacity of lipid extracts of six European brown seaweed species (Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, Himanthalia elongata, Saccharina latissima, and Sargassum muticum) and the Asian seaweed Sargassum fusiforme using a dual luciferase reporter assay. We analyzed the sterol and fatty acid profiles of the extracts by GC-MS and UPLC MS/MS, respectively, and determined their effects on the expression of LXR and PPAR target genes in several cell lines using quantitative PCR. All extracts were found to activate LXRs, with the Himanthalia elongata extract showing the most pronounced efficacy, comparable to Sargassum fusiforme, for LXR activation and transcriptional regulation of LXR-target genes. Extracts of Alaria esculenta, Fucus vesiculosus, and Saccharina latissima showed the highest capacity to activate PPARα, while extracts of Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, and Sargassum muticum showed the highest capacity to activate PPARγ, comparable to Sargassum fusiforme extract. In CCF-STTG1 astrocytoma cells, all extracts induced expression of cholesterol efflux genes (ABCG1, ABCA1, and APOE) and suppressed expression of cholesterol and fatty acid synthesis genes (DHCR7, DHCR24, HMGCR and SREBF2, and SREBF1, ACACA, SCD1 and FASN, respectively). Our data show that lipophilic fractions of European brown seaweeds activate LXRs and PPARs and thereby modulate lipid metabolism. These results support the potential of brown seaweeds in the prevention and/or treatment of neurodegenerative diseases and possibly cardiometabolic and inflammatory diseases via concurrent activation of LXRs and PPARs.
Collapse
Affiliation(s)
- Nikita Martens
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, B-3590 Hasselt, Belgium
| | - Na Zhan
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Gardi Voortman
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Frank P J Leijten
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Connor van Rheenen
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Suzanne van Leerdam
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Xicheng Geng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Michiel Huybrechts
- Department of Environmental Biology, Center for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Hongbing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Johan W Jonker
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, D-53127 Bonn, Germany
| | - Tim Vanmierlo
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, B-3590 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
7
|
Moore JM, Bell EL, Hughes RO, Garfield AS. ABC transporters: human disease and pharmacotherapeutic potential. Trends Mol Med 2023; 29:152-172. [PMID: 36503994 DOI: 10.1016/j.molmed.2022.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are a 48-member superfamily of membrane proteins that actively transport a variety of biological substrates across lipid membranes. Their functional diversity defines an expansive involvement in myriad aspects of human biology. At least 21 ABC transporters underlie rare monogenic disorders, with even more implicated in the predisposition to and symptomology of common and complex diseases. Such broad (patho)physiological relevance places this class of proteins at the intersection of disease causation and therapeutic potential, underlining them as promising targets for drug discovery, as exemplified by the transformative CFTR (ABCC7) modulator therapies for cystic fibrosis. This review will explore the growing relevance of ABC transporters to human disease and their potential as small-molecule drug targets.
Collapse
|
8
|
Martins GL, Ferreira CN, Palotás A, Rocha NP, Reis HJ. Role of Oxysterols in the Activation of the NLRP3 Inflammasome as a Potential Pharmacological Approach in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:202-212. [PMID: 35339182 PMCID: PMC10190144 DOI: 10.2174/1570159x20666220327215245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/04/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is a complex clinical condition with multifactorial origin posing a major burden to health care systems across the world. Even though the pathophysiological mechanisms underlying the disease are still unclear, both central and peripheral inflammation has been implicated in the process. Piling evidence shows that the nucleotide-binding domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated in AD. As dyslipidemia is a risk factor for dementia, and cholesterol can also activate the inflammasome, a possible link between lipid levels and the NLRP3 inflammasome has been proposed in Alzheimer's. It is also speculated that not only cholesterol but also its metabolites, the oxysterols, may be involved in AD pathology. In this context, mounting data suggest that NLRP3 inflammasome activity can be modulated by different peripheral nuclear receptors, including liver-X receptors, which present oxysterols as endogenous ligands. In light of this, the current review explores whether the activation of NLRP3 by nuclear receptors, mediated by oxysterols, may also be involved in AD and could serve as a potential pharmacological avenue in dementia.
Collapse
Affiliation(s)
- Gabriela L. Martins
- Laboratório Neurofarmacologia, Departamento de Farmacologia, ICB-UFMG, Belo Horizonte MG, 31270 - 901, Brazil
| | | | - András Palotás
- Kazan Federal University, Kazan, Russia
- Asklepios Med, Szeged, Hungary
| | - Natália P. Rocha
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Helton J. Reis
- Laboratório Neurofarmacologia, Departamento de Farmacologia, ICB-UFMG, Belo Horizonte MG, 31270 - 901, Brazil
| |
Collapse
|
9
|
Atlante A, Amadoro G, Latina V, Valenti D. Therapeutic Potential of Targeting Mitochondria for Alzheimer's Disease Treatment. J Clin Med 2022; 11:6742. [PMID: 36431219 PMCID: PMC9697019 DOI: 10.3390/jcm11226742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, is characterized by memory and cognitive impairment and by the accumulation in the brain of abnormal proteins, more precisely beta-amyloid (β-amyloid or Aβ) and Tau proteins. Studies aimed at researching pharmacological treatments against AD have focused precisely on molecules capable, in one way or another, of preventing/eliminating the accumulations of the aforementioned proteins. Unfortunately, more than 100 years after the discovery of the disease, there is still no effective therapy in modifying the biology behind AD and nipping the disease in the bud. This state of affairs has made neuroscientists suspicious, so much so that for several years the idea has gained ground that AD is not a direct neuropathological consequence taking place downstream of the deposition of the two toxic proteins, but rather a multifactorial disease, including mitochondrial dysfunction as an early event in the pathogenesis of AD, occurring even before clinical symptoms. This is the reason why the search for pharmacological agents capable of normalizing the functioning of these subcellular organelles of vital importance for nerve cells is certainly to be considered a promising approach to the design of effective neuroprotective drugs aimed at preserving this organelle to arrest or delay the progression of the disease. Here, our intent is to provide an updated overview of the mitochondrial alterations related to this disorder and of the therapeutic strategies (both natural and synthetic) targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola122/O, 70126 Bari, Italy
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola122/O, 70126 Bari, Italy
| |
Collapse
|
10
|
Romero-Molina C, Garretti F, Andrews SJ, Marcora E, Goate AM. Microglial efferocytosis: Diving into the Alzheimer's disease gene pool. Neuron 2022; 110:3513-3533. [PMID: 36327897 DOI: 10.1016/j.neuron.2022.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Genome-wide association studies and functional genomics studies have linked specific cell types, genes, and pathways to Alzheimer's disease (AD) risk. In particular, AD risk alleles primarily affect the abundance or structure, and thus the activity, of genes expressed in macrophages, strongly implicating microglia (the brain-resident macrophages) in the etiology of AD. These genes converge on pathways (endocytosis/phagocytosis, cholesterol metabolism, and immune response) with critical roles in core macrophage functions such as efferocytosis. Here, we review these pathways, highlighting relevant genes identified in the latest AD genetics and genomics studies, and describe how they may contribute to AD pathogenesis. Investigating the functional impact of AD-associated variants and genes in microglia is essential for elucidating disease risk mechanisms and developing effective therapeutic approaches.
Collapse
Affiliation(s)
- Carmen Romero-Molina
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Garretti
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shea J Andrews
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Cook I, Leyh TS. The N-Terminus of Human Sulfotransferase 2B1b─a Sterol-Sensing Allosteric Site. Biochemistry 2022; 61:843-855. [PMID: 35523209 DOI: 10.1021/acs.biochem.1c00740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Among human cytosolic sulfotransferases, SULT2B1b is highly specific for oxysterols─oxidized cholesterol derivatives, including nuclear-receptor ligands causally linked to skin and neurodegerative diseases, cancer and atherosclerosis. Sulfonation of signaling oxysterols redirects their receptor-binding functions, and controlling these functions is expected to prove valuable in disease prevention and treatment. SULT2B1b is distinct among the human SULT2 isoforms by virtue of its atypically long N-terminus, which extends 15 residues beyond the next longest N-terminus in the family. Here, in silico studies are used to predict that the N-terminal extension forms an allosteric pocket and to identify potential allosteres. One such allostere, quercetin, is used to confirm the existence of the pocket and to demonstrate that allostere binding inhibits turnover. The structure of the pocket is obtained by positioning quercetin on the enzyme, using spin-label-triangulation NMR, followed by NMR distance-constrained molecular dynamics docking. The model is confirmed using a combination of site-directed mutagenesis and initial-rate studies. Stopped-flow ligand-binding studies demonstrate that inhibition is achieved by stabilizing the closed form of the enzyme active-site cap, which encapsulates the nucleotide, slowing its release. Finally, endogenous oxysterols are shown to bind to the site in a highly selective fashion─one of the two immediate biosynthetic precursors of cholesterol (7-dehydrocholesterol) is an inhibitor, while the other (24-dehydrocholesterol) is not. These findings provide insights into the allosteric dialogue in which SULT2B1b participates in in vivo and establishes a template against which to develop isoform-specific inhibitors to control SULT2B1b biology.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461-1926, United States
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461-1926, United States
| |
Collapse
|
12
|
Bossaerts L, Cacace R, Van Broeckhoven C. The role of ATP-binding cassette subfamily A in the etiology of Alzheimer's disease. Mol Neurodegener 2022; 17:31. [PMID: 35477481 PMCID: PMC9044696 DOI: 10.1186/s13024-022-00536-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the leading cause of dementia, clinically characterized by memory deficits and progressive cognitive decline. Despite decades of research effective therapies are lacking, and a large part of the genetic heritability remains unidentified. ABCA7 and ABCA1, members of the ATP-binding cassette subfamily A (ABCA), were identified as AD risk genes in genome-wide association studies. Nevertheless, genetic and/or functional studies propose a link between AD and two other members of the ABCA subclass, i.e., ABCA2 and ABCA5. Main body Changes in expression or dysfunction of these transporters were found to increase amyloid β levels. This might be related to the common role of ABCA transporters in cellular cholesterol homeostasis, for which a prominent role in AD development has been suggested. In this review, we provide a comprehensive overview and discussion on the contribution of the ABCA subfamily to the etiopathogenesis of AD. Conclusions A better understanding of the function and identification of disease-associated genetic variants in ABCA transporters can contribute to the development of novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Liene Bossaerts
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp - CDE, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| |
Collapse
|
13
|
Wu M, Zhai Y, Liang X, Chen W, Lin R, Ma L, Huang Y, Zhao D, Liang Y, Zhao W, Fang J, Fang S, Chen Y, Wang Q, Li W. Connecting the Dots Between Hypercholesterolemia and Alzheimer’s Disease: A Potential Mechanism Based on 27-Hydroxycholesterol. Front Neurosci 2022; 16:842814. [PMID: 35464321 PMCID: PMC9021879 DOI: 10.3389/fnins.2022.842814] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD), the most common cause of dementia, is a complex and multifactorial disease involving genetic and environmental factors, with hypercholesterolemia considered as one of the risk factors. Numerous epidemiological studies have reported a positive association between AD and serum cholesterol levels, and experimental studies also provide evidence that elevated cholesterol levels accelerate AD pathology. However, the underlying mechanism of hypercholesterolemia accelerating AD pathogenesis is not clear. Here, we review the metabolism of cholesterol in the brain and focus on the role of oxysterols, aiming to reveal the link between hypercholesterolemia and AD. 27-hydroxycholesterol (27-OHC) is the major peripheral oxysterol that flows into the brain, and it affects β-amyloid (Aβ) production and elimination as well as influencing other pathogenic mechanisms of AD. Although the potential link between hypercholesterolemia and AD is well established, cholesterol-lowering drugs show mixed results in improving cognitive function. Nevertheless, drugs that target cholesterol exocytosis and conversion show benefits in improving AD pathology. Herbs and natural compounds with cholesterol-lowering properties also have a potential role in ameliorating cognition. Collectively, hypercholesterolemia is a causative risk factor for AD, and 27-OHC is likely a potential mechanism for hypercholesterolemia to promote AD pathology. Drugs that regulate cholesterol metabolism are probably beneficial for AD, but more research is needed to unravel the mechanisms involved in 27-OHC, which may lead to new therapeutic strategies for AD.
Collapse
Affiliation(s)
- Mingan Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingying Zhai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyi Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weichun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiyi Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linlin Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunbo Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Qi Wang,
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- Weirong Li,
| |
Collapse
|
14
|
Lewandowski CT, Laham MS, Thatcher GR. Remembering your A, B, C's: Alzheimer's disease and ABCA1. Acta Pharm Sin B 2022; 12:995-1018. [PMID: 35530134 PMCID: PMC9072248 DOI: 10.1016/j.apsb.2022.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
The function of ATP binding cassette protein A1 (ABCA1) is central to cholesterol mobilization. Reduced ABCA1 expression or activity is implicated in Alzheimer's disease (AD) and other disorders. Therapeutic approaches to boost ABCA1 activity have yet to be translated successfully to the clinic. The risk factors for AD development and progression, including comorbid disorders such as type 2 diabetes and cardiovascular disease, highlight the intersection of cholesterol transport and inflammation. Upregulation of ABCA1 can positively impact APOE lipidation, insulin sensitivity, peripheral vascular and blood–brain barrier integrity, and anti-inflammatory signaling. Various strategies towards ABCA1-boosting compounds have been described, with a bias toward nuclear hormone receptor (NHR) agonists. These agonists display beneficial preclinical effects; however, important side effects have limited development. In particular, ligands that bind liver X receptor (LXR), the primary NHR that controls ABCA1 expression, have shown positive effects in AD mouse models; however, lipogenesis and unwanted increases in triglyceride production are often observed. The longstanding approach, focusing on LXRβ vs. LXRα selectivity, is over-simplistic and has failed. Novel approaches such as phenotypic screening may lead to small molecule NHR modulators that elevate ABCA1 function without inducing lipogenesis and are clinically translatable.
Collapse
|
15
|
Patel K, Srivastava S, Kushwah S, Mani A. Perspectives on the Role of APOE4 as a Therapeutic Target for Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:899-910. [PMID: 35088039 PMCID: PMC8764632 DOI: 10.3233/adr-210027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/21/2021] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is coupled with chronic cognitive dysfunction. AD cases are mostly late onset, and genetic risk factors like the Apolipoprotein E (APOE) play a key role in this process. APOE ɛ2, APOE ɛ3, and APOE ɛ4 are three key alleles in the human APOE gene. For late onset, APOE ɛ4 has the most potent risk factor while APOE ɛ2 plays a defensive role. Several studies suggests that APOE ɛ4 causes AD via different processes like neurofibrillary tangle formation by amyloid-β accumulation, exacerbated neuroinflammation, cerebrovascular disease, and synaptic loss. But the pathway is still unclear that which actions of APOE ɛ4 lead to AD development. Since APOE was found to contribute to many AD pathways, targeting APOE ɛ4 can lead to a hopeful plan of action in development of new drugs to target AD. In this review, we focus on recent studies and perspectives, focusing on APOE ɛ4 as a key molecule in therapeutic strategies.
Collapse
Affiliation(s)
- Kavita Patel
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Siwangi Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shikha Kushwah
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
16
|
Zhu M, Jia L, Jia J. Inhibition of miR-96-5p May Reduce Aβ42/Aβ40 Ratio via Regulating ATP-binding cassette transporter A1. J Alzheimers Dis 2021; 83:367-377. [PMID: 34334400 DOI: 10.3233/jad-210411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Imbalance between amyloid-β (Aβ) production and clearance results in Aβ accumulation. Regulating Aβ levels is still a hot point in the research of Alzheimer's disease (AD). OBJECTIVE To identify the differential expression of ATP-binding cassette transporter A1 (ABCA1) and its upstream microRNA (miRNA) in AD models, and to explore their relationships with Aβ levels. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were performed to determine the expression of ABCA1 in 5xFAD mice, SH-SY5Y cells treated with Aβ oligomers and SH-SY5YAβPP695 cells (AD models). TargetScan was used to predict the upstream miRNAs for ABCA1. Dual-luciferase assay was conducted to identify the regulation of the miRNA on ABCA1. qRT-PCR was used to measure the expression of miRNA in AD models. Finally, enzyme-linked immunosorbent assays were performed to detect Aβ42 and Aβ40 levels. RESULTS The expression of ABCA1 was significantly downregulated in AD models at both mRNA and protein levels. Dual-luciferase assay showed that miR-96-5p could regulate the expression of ABCA1 through binding to the 3 untranslated region of ABCA1. The level of miR-96-5p was significantly elevated in AD models. The expression of ABCA1 was enhanced while Aβ42 levels and Aβ42/Aβ40 ratios were reduced in SH-SY5YAβPP695 cells after treated with miR-96-5p inhibitor. CONCLUSION The current study found that miR-96-5p is the upstream miRNA for ABCA1. Suppression of miR-96-5p in AD models could reduce Aβ42/Aβ40 ratios via upregulating the expression of ABCA1, indicating that miR-96-5p plays an important role in regulating the content of Aβ.
Collapse
Affiliation(s)
- Min Zhu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China
| |
Collapse
|
17
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
18
|
Vinuesa A, Pomilio C, Gregosa A, Bentivegna M, Presa J, Bellotto M, Saravia F, Beauquis J. Inflammation and Insulin Resistance as Risk Factors and Potential Therapeutic Targets for Alzheimer's Disease. Front Neurosci 2021; 15:653651. [PMID: 33967682 PMCID: PMC8102834 DOI: 10.3389/fnins.2021.653651] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Overnutrition and modern diets containing high proportions of saturated fat are among the major factors contributing to a low-grade state of inflammation, hyperglycemia and dyslipidemia. In the last decades, the global rise of type 2 diabetes and obesity prevalence has elicited a great interest in understanding how changes in metabolic function lead to an increased risk for premature brain aging and the development of neurodegenerative disorders such as Alzheimer's disease (AD). Cognitive impairment and decreased neurogenic capacity could be a consequence of metabolic disturbances. In these scenarios, the interplay between inflammation and insulin resistance could represent a potential therapeutic target to prevent or ameliorate neurodegeneration and cognitive impairment. The present review aims to provide an update on the impact of metabolic stress pathways on AD with a focus on inflammation and insulin resistance as risk factors and therapeutic targets.
Collapse
Affiliation(s)
- Angeles Vinuesa
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Pomilio
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amal Gregosa
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Bentivegna
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jessica Presa
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melina Bellotto
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flavia Saravia
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Beauquis
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Vidal V, Puente A, García-Cerro S, García Unzueta MT, Rueda N, Riancho J, Martínez-Cué C. Bexarotene Impairs Cognition and Produces Hypothyroidism in a Mouse Model of Down Syndrome and Alzheimer's Disease. Front Pharmacol 2021; 12:613211. [PMID: 33935706 PMCID: PMC8082148 DOI: 10.3389/fphar.2021.613211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
All individuals with Down syndrome (DS) eventually develop Alzheimer's disease (AD) neuropathology, including neurodegeneration, increases in β-amyloid (Aβ) expression, and aggregation and neurofibrillary tangles, between the third and fourth decade of their lives. There is currently no effective treatment to prevent AD neuropathology and the associated cognitive degeneration in DS patients. Due to evidence that the accumulation of Aβ aggregates in the brain produces the neurodegenerative cascade characteristic of AD, many strategies which promote the clearance of Aβ peptides have been assessed as potential therapeutics for this disease. Bexarotene, a member of a subclass of retinoids that selectively activates retinoid receptors, modulates several pathways essential for cognitive performance and Aβ clearance. Consequently, bexarotene might be a good candidate to treat AD-associated neuropathology. However, the effects of bexarotene treatment in AD remain controversial. In the present study, we aimed to elucidate whether chronic bexarotene treatment administered to the most commonly used murine model of DS, the Ts65Dn (TS) mouse could reduce Aβ expression in their brains and improve their cognitive abilities. Chronic administration of bexarotene to aged TS mice and their CO littermates for 9 weeks diminished the reference, working, and spatial learning and memory of TS mice, and the spatial memory of CO mice in the Morris water maze. This treatment also produced marked hypoactivity in the plus maze, open field, and hole board tests in TS mice, and in the open field and hole board tests in CO mice. Administration of bexarotene reduced the expression of Aβ1-40, but not of Aβ1-42, in the hippocampi of TS mice. Finally, bexarotene increased Thyroid-stimulating hormone levels in TS mice and reduced Thyroid-stimulating hormone levels in CO mice, while animals of both karyotypes displayed reduced thyroxine levels after bexarotene administration. The bexarotene-induced hypothyroidism could be responsible for the hypoactivity of TS and CO mice and their diminished performance in the Morris water maze. Together, these results do not provide support for the use of bexarotene as a potential treatment of AD neuropathology in the DS population.
Collapse
Affiliation(s)
- Verónica Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Alba Puente
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Susana García-Cerro
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain.,CIBERSAM, Madrid, Spain
| | | | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Javier Riancho
- Neurology Service, Hospital Sierrallana-IDIVAL, Torrelavega, Spain.,Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain.,CIBERNED, Madrid, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
20
|
Navas Guimaraes M, Lopez-Blanco R, Correa J, Fernandez-Villamarin M, Bistué MB, Martino-Adami P, Morelli L, Kumar V, Wempe MF, Cuello AC, Fernandez-Megia E, Bruno MA. Liver X Receptor Activation with an Intranasal Polymer Therapeutic Prevents Cognitive Decline without Altering Lipid Levels. ACS NANO 2021; 15:4678-4687. [PMID: 33666411 PMCID: PMC8488954 DOI: 10.1021/acsnano.0c09159] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The progressive accumulation of amyloid-beta (Aβ) in specific areas of the brain is a common prelude to late-onset of Alzheimer's disease (AD). Although activation of liver X receptors (LXR) with agonists decreases Aβ levels and ameliorates contextual memory deficit, concomitant hypercholesterolemia/hypertriglyceridemia limits their clinical application. DMHCA (N,N-dimethyl-3β-hydroxycholenamide) is an LXR partial agonist that, despite inducing the expression of apolipoprotein E (main responsible of Aβ drainage from the brain) without increasing cholesterol/triglyceride levels, shows nil activity in vivo because of a low solubility and inability to cross the blood brain barrier. Herein, we describe a polymer therapeutic for the delivery of DMHCA. The covalent incorporation of DMHCA into a PEG-dendritic scaffold via carboxylate esters produces an amphiphilic copolymer that efficiently self-assembles into nanometric micelles that exert a biological effect in primary cultures of the central nervous system (CNS) and experimental animals using the intranasal route. After CNS biodistribution and effective doses of DMHCA micelles were determined in nontransgenic mice, a transgenic AD-like mouse model of cerebral amyloidosis was treated with the micelles for 21 days. The benefits of the treatment included prevention of memory deterioration and a significant reduction of hippocampal Aβ oligomers without affecting plasma lipid levels. These results represent a proof of principle for further clinical developments of DMHCA delivery systems.
Collapse
Affiliation(s)
- María
Eugenia Navas Guimaraes
- Instituto
de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Av. José Ignacio de la Roza
1516, Rivadavia, 5400, San Juan, Argentina
- National
Council of Scientific and Technical Research (CONICET), Godoy Cruz 2290, C1425FQB Ciudad Autónoma de Buenos Aires Argentina
| | - Roi Lopez-Blanco
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Juan Correa
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Marcos Fernandez-Villamarin
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - María Beatriz Bistué
- Instituto
de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Av. José Ignacio de la Roza
1516, Rivadavia, 5400, San Juan, Argentina
| | - Pamela Martino-Adami
- Laboratory
of Brain Aging and Neurodegeneration, Fundación
Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 C1405BWE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura Morelli
- Laboratory
of Brain Aging and Neurodegeneration, Fundación
Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 C1405BWE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Vijay Kumar
- School
of Pharmacy, Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado 80045 United States
| | - Michael F. Wempe
- School
of Pharmacy, Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado 80045 United States
| | - A. C. Cuello
- Department
of Pharmacology and Therapeutics, McGill
University, McIntyre
Medical Building 3655 Prom. Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Eduardo Fernandez-Megia
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
- Eduardo Fernandez-Megia,
| | - Martin A. Bruno
- Instituto
de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Av. José Ignacio de la Roza
1516, Rivadavia, 5400, San Juan, Argentina
- National
Council of Scientific and Technical Research (CONICET), Godoy Cruz 2290, C1425FQB Ciudad Autónoma de Buenos Aires Argentina
- Martin A. Bruno,
| |
Collapse
|
21
|
Li M, Yang J, Cheng O, Peng Z, Luo Y, Ran D, Yang Y, Xiang P, Huang H, Tan X, Wang H. Effect of TO901317 on GF to promote the differentiation of human bone marrow mesenchymal stem cells into dopamine neurons on Parkinson's disease. Ther Adv Chronic Dis 2021; 12:2040622321998139. [PMID: 33796244 PMCID: PMC7985948 DOI: 10.1177/2040622321998139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Human bone marrow mesenchymal stem cells (hBMSCs) could differentiate into dopamine-producing cells and ameliorate behavioral deficits in Parkinson’s disease (PD) models. Liver X receptors (LXRs) are involved in the maintenance of the normal function of central nervous system myelin. Therefore, the previous work of our team has found the induction of cocktail-induced to dopaminergic (DA) phenotypes from adult rat BMSCs by using sonic hedgehog (SHH), fibroblast growth factor 8 (FGF8), basic fibroblast growth factor (bFGF), and TO901317 (an agonist of LXRs) with 87.42% of efficiency in a 6-day induction period. But we did not verify whether the induced cells had the corresponding neural function. Methods: Expressions of LXRα, LXRβ, and tyrosine hydroxylase (TH) were detected by immunofluorescence and western blot. Adenosine triphosphate-binding cassette transporter A1 (ABCA1) was detected by quantitative real-time PCR. The induced cells were transplanted into PD rats to study whether the induced cells are working. Results: The induced cells can release the dopamine transmitter; the maximum induction efficiency of differentiation of hBMSCs into DA neurons was 91.67% under conditions of combined use with TO901317 and growth factors (GF). When the induced-cells were transplanted into PD rats, the expression of TH in the striatum increased significantly, and the behavior of PD rats induced by apomorphine was significantly improved. Conclusion: The induced cells have the function of DA neurons and have the potential to treat PD. TO901317 promoted differentiation of hBMSCs into DA neurons, which may be related to activation of the LXR-ABCA1 signaling pathway.
Collapse
Affiliation(s)
- Miaomiao Li
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Junqing Yang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Oumei Cheng
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Zhe Peng
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Yin Luo
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Dongzhi Ran
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Yang Yang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Pu Xiang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Haifeng Huang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Xiaodan Tan
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Hong Wang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China
| |
Collapse
|
22
|
Jacobo-Albavera L, Domínguez-Pérez M, Medina-Leyte DJ, González-Garrido A, Villarreal-Molina T. The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease. Int J Mol Sci 2021; 22:ijms22041593. [PMID: 33562440 PMCID: PMC7915494 DOI: 10.3390/ijms22041593] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cholesterol homeostasis is essential in normal physiology of all cells. One of several proteins involved in cholesterol homeostasis is the ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein widely expressed in many tissues. One of its main functions is the efflux of intracellular free cholesterol and phospholipids across the plasma membrane to combine with apolipoproteins, mainly apolipoprotein A-I (Apo A-I), forming nascent high-density lipoprotein-cholesterol (HDL-C) particles, the first step of reverse cholesterol transport (RCT). In addition, ABCA1 regulates cholesterol and phospholipid content in the plasma membrane affecting lipid rafts, microparticle (MP) formation and cell signaling. Thus, it is not surprising that impaired ABCA1 function and altered cholesterol homeostasis may affect many different organs and is involved in the pathophysiology of a broad array of diseases. This review describes evidence obtained from animal models, human studies and genetic variation explaining how ABCA1 is involved in dyslipidemia, coronary heart disease (CHD), type 2 diabetes (T2D), thrombosis, neurological disorders, age-related macular degeneration (AMD), glaucoma, viral infections and in cancer progression.
Collapse
Affiliation(s)
- Leonor Jacobo-Albavera
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Mayra Domínguez-Pérez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Diana Jhoseline Medina-Leyte
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City CP04510, Mexico
| | - Antonia González-Garrido
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Teresa Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Correspondence:
| |
Collapse
|
23
|
Buñay J, Fouache A, Trousson A, de Joussineau C, Bouchareb E, Zhu Z, Kocer A, Morel L, Baron S, Lobaccaro JMA. Screening for liver X receptor modulators: Where are we and for what use? Br J Pharmacol 2020; 178:3277-3293. [PMID: 33080050 DOI: 10.1111/bph.15286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Liver X receptors (LXRs) are members of the nuclear receptor superfamily that are canonically activated by oxidized derivatives of cholesterol. Since the mid-90s, numerous groups have identified LXRs as endocrine receptors that are involved in the regulation of various physiological functions. As a result, when their expression is genetically modified in mice, phenotypic analyses reveal endocrine disorders ranging from infertility to diabetes and obesity, nervous system pathologies such Alzheimer's or Parkinson's disease, immunological disturbances, inflammatory response, and enhancement of tumour development. Based on such findings, it appears that LXRs could constitute good pharmacological targets to prevent and/or to treat these diseases. This review discusses the various aspects of LXR drug discovery, from the tools available for the screening of potential LXR modulators to the current situational analysis of the drugs in development. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Julio Buñay
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Allan Fouache
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Cyrille de Joussineau
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Erwan Bouchareb
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Zhekun Zhu
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Ayhan Kocer
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Laurent Morel
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Silvere Baron
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
24
|
The Interplay of ABC Transporters in Aβ Translocation and Cholesterol Metabolism: Implicating Their Roles in Alzheimer's Disease. Mol Neurobiol 2020; 58:1564-1582. [PMID: 33215389 DOI: 10.1007/s12035-020-02211-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of Alzheimer's disease (AD) worldwide has been progressively accelerating at an alarming rate, without any successful therapeutic strategy for the disease mitigation. The complexity of AD pathogenesis needs to be targeted with an alternative approach, as provided by the superfamily of ATP-binding cassette (ABC) transporters, which constitutes an extensive range of proteins, capable of transporting molecular entities across biological membranes. These protein moieties have been implicated in AD, based upon their potential in lipid transportation, resulting in maintenance of cholesterol homeostasis. These transporters have been reported to target the primary hallmark of AD pathogenesis, namely, beta-amyloid hypothesis, which is associated with accumulation of beta-amyloid (Aβ) plaques in AD patients. The ABC transporters have been observed to be localized to the capillary endothelial cells of the blood-brain barrier and neural parenchymal cells, where they exhibit different roles, consequently influencing the neuronal expression of Aβ peptides. The review highlights different families of ABC transporters, ABCB1 (P-glycoprotein), ABCA (ABCA1, ABCA2, and ABCA7), ABCG2 (BCRP; breast cancer resistance protein), ABCG1 and ABCG4, as well as ABCC1 (MRP; multidrug resistance protein) in the CNS, and their interplay in regulating cholesterol metabolism and Aβ peptide load in the brain, simultaneously exerting protective effects against neurotoxic substrates and xenobiotics. The authors aim to establish the significance of this alternative approach as a novel therapeutic target in AD, to provide the researchers an opportunity to evaluate the potential aspects of ABC transporters in AD treatment.
Collapse
|
25
|
Pedrini S, Chatterjee P, Hone E, Martins RN. High‐density lipoprotein‐related cholesterol metabolism in Alzheimer’s disease. J Neurochem 2020; 159:343-377. [DOI: 10.1111/jnc.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Steve Pedrini
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Pratishtha Chatterjee
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
| | - Eugene Hone
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Ralph N. Martins
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Nedlands WA Australia
| |
Collapse
|
26
|
ApoE Lipidation as a Therapeutic Target in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21176336. [PMID: 32882843 PMCID: PMC7503657 DOI: 10.3390/ijms21176336] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein E (APOE) is the major cholesterol carrier in the brain, affecting various normal cellular processes including neuronal growth, repair and remodeling of membranes, synaptogenesis, clearance and degradation of amyloid β (Aβ) and neuroinflammation. In humans, the APOE gene has three common allelic variants, termed E2, E3, and E4. APOE4 is considered the strongest genetic risk factor for Alzheimer’s disease (AD), whereas APOE2 is neuroprotective. To perform its normal functions, apoE must be secreted and properly lipidated, a process influenced by the structural differences associated with apoE isoforms. Here we highlight the importance of lipidated apoE as well as the APOE-lipidation targeted therapeutic approaches that have the potential to correct or prevent neurodegeneration. Many of these approaches have been validated using diverse cellular and animal models. Overall, there is great potential to improve the lipidated state of apoE with the goal of ameliorating APOE-associated central nervous system impairments.
Collapse
|
27
|
Neuner SM, Tcw J, Goate AM. Genetic architecture of Alzheimer's disease. Neurobiol Dis 2020; 143:104976. [PMID: 32565066 PMCID: PMC7409822 DOI: 10.1016/j.nbd.2020.104976] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Advances in genetic and genomic technologies over the last thirty years have greatly enhanced our knowledge concerning the genetic architecture of Alzheimer's disease (AD). Several genes including APP, PSEN1, PSEN2, and APOE have been shown to exhibit large effects on disease susceptibility, with the remaining risk loci having much smaller effects on AD risk. Notably, common genetic variants impacting AD are not randomly distributed across the genome. Instead, these variants are enriched within regulatory elements active in human myeloid cells, and to a lesser extent liver cells, implicating these cell and tissue types as critical to disease etiology. Integrative approaches are emerging as highly effective for identifying the specific target genes through which AD risk variants act and will likely yield important insights related to potential therapeutic targets in the coming years. In the future, additional consideration of sex- and ethnicity-specific contributions to risk as well as the contribution of complex gene-gene and gene-environment interactions will likely be necessary to further improve our understanding of AD genetic architecture.
Collapse
Affiliation(s)
- Sarah M Neuner
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Julia Tcw
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alison M Goate
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
28
|
Plascencia-Villa G, Perry G. Status and future directions of clinical trials in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:3-50. [PMID: 32739008 DOI: 10.1016/bs.irn.2020.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amyloid-β (Aβ) senile plaques and neurofibrillary tangles of tau are generally recognized as the culprits of Alzheimer's disease (AD) and related dementia. About 25 years ago, the amyloid cascade hypotheses postulated a direct correlation of plaques with the development of AD, and it has been the dominant theory since then. In this period, more than 200 clinical trials focused mainly on targeting components of the Aβ cascade have dramatically failed, some of them in Phase III. With a greater than 99.6% failure rate at a cost of several billion from governments, industry, and private funders, therapeutic strategies targeting amyloid and tau are now under scrutiny. Therefore, it is time to reevaluate alternatives to targeting Aβ and tau as effective therapeutic strategies for AD. The diagnosis of AD is currently based on medical examination of symptoms including tests to assess memory impairment, attention, language, and other thinking skills. This is complemented with brain scans, such as computed tomography, magnetic resonance imaging, or positron emission tomography with the help of imaging probes targeting Aβ or tau deposits. This approach has contributed to the tunnel vision focus on Aβ and tau as the main culprits of AD. However, events upstream of these proteopathies (age-related impaired neuronal bioenergetics, lysosome function, neurotrophic signaling, and neuroinflammation, among others) are almost surely where the development of alternative therapeutic interventions should be targeted. Here, we present the current status of therapeutic candidates targeting diverse mechanisms and strategies including Aβ and tau, proteins involved in Aβ production and trafficking (ApoE, α/β/γ-secretases), neuroinflammation, neurotransmitters, neuroprotective agents antimicrobials, and gene and stem cell therapy. There are currently around 33 compounds in Phase III, 78 in Phase II, and 32 more in Phase I trials. With the current world health crisis of increased dementia in a rapidly aging population, effective AD therapies are desperately needed.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), 1 UTSA Circle, San Antonio, TX, United States
| | - George Perry
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), 1 UTSA Circle, San Antonio, TX, United States.
| |
Collapse
|
29
|
Mamun AA, Uddin MS, Bin Bashar MF, Zaman S, Begum Y, Bulbul IJ, Islam MS, Sarwar MS, Mathew B, Amran MS, Md Ashraf G, Bin-Jumah MN, Mousa SA, Abdel-Daim MM. Molecular Insight into the Therapeutic Promise of Targeting APOE4 for Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5086250. [PMID: 32509144 PMCID: PMC7245681 DOI: 10.1155/2020/5086250] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that causes chronic cognitive dysfunction. Most of the AD cases are late onset, and the apolipoprotein E (APOE) isoform is a key genetic risk factor. The APOE gene has 3 key alleles in humans including APOE2, APOE3, and APOE4. Among them, APOE4 is the most potent genetic risk factor for late-onset AD (LOAD), while APOE2 has a defensive effect. Research data suggest that APOE4 leads to the pathogenesis of AD through various processes such as accelerated beta-amyloid aggregations that raised neurofibrillary tangle formation, cerebrovascular diseases, aggravated neuroinflammation, and synaptic loss. However, the precise mode of actions regarding in what way APOE4 leads to AD pathology remains unclear. Since APOE contributes to several pathological pathways of AD, targeting APOE4 might serve as a promising strategy for the development of novel drugs to combat AD. In this review, we focus on the recent studies about APOE4-targeted therapeutic strategies that have been advanced in animal models and are being prepared for use in humans for the management of AD.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md. Fahim Bin Bashar
- Department of Pharmacy, University of Development Alternative, Dhaka, Bangladesh
| | - Sonia Zaman
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Yesmin Begum
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | | | - Md. Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY 12144, USA
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
30
|
Abrahamson EE, Ikonomovic MD. Brain injury-induced dysfunction of the blood brain barrier as a risk for dementia. Exp Neurol 2020; 328:113257. [PMID: 32092298 DOI: 10.1016/j.expneurol.2020.113257] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) is a complex and dynamic physiological interface between brain parenchyma and cerebral vasculature. It is composed of closely interacting cells and signaling molecules that regulate movement of solutes, ions, nutrients, macromolecules, and immune cells into the brain and removal of products of normal and abnormal brain cell metabolism. Dysfunction of multiple components of the BBB occurs in aging, inflammatory diseases, traumatic brain injury (TBI, severe or mild repetitive), and in chronic degenerative dementing disorders for which aging, inflammation, and TBI are considered risk factors. BBB permeability changes after TBI result in leakage of serum proteins, influx of immune cells, perivascular inflammation, as well as impairment of efflux transporter systems and accumulation of aggregation-prone molecules involved in hallmark pathologies of neurodegenerative diseases with dementia. In addition, cerebral vascular dysfunction with persistent alterations in cerebral blood flow and neurovascular coupling contribute to brain ischemia, neuronal degeneration, and synaptic dysfunction. While the idea of TBI as a risk factor for dementia is supported by many shared pathological features, it remains a hypothesis that needs further testing in experimental models and in human studies. The current review focusses on pathological mechanisms shared between TBI and neurodegenerative disorders characterized by accumulation of pathological protein aggregates, such as Alzheimer's disease and chronic traumatic encephalopathy. We discuss critical knowledge gaps in the field that need to be explored to clarify the relationship between TBI and risk for dementia and emphasize the need for longitudinal in vivo studies using imaging and biomarkers of BBB dysfunction in people with single or multiple TBI.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
31
|
Lewandowski CT, Maldonado Weng J, LaDu MJ. Alzheimer's disease pathology in APOE transgenic mouse models: The Who, What, When, Where, Why, and How. Neurobiol Dis 2020; 139:104811. [PMID: 32087290 DOI: 10.1016/j.nbd.2020.104811] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
The focus on amyloid plaques and neurofibrillary tangles has yielded no Alzheimer's disease (AD) modifying treatments in the past several decades, despite successful studies in preclinical mouse models. This inconsistency has caused a renewed focus on improving the fidelity and reliability of AD mouse models, with disparate views on how this improvement can be accomplished. However, the interactive effects of the universal biological variables of AD, which include age, APOE genotype, and sex, are often overlooked. Age is the greatest risk factor for AD, while the ε4 allele of the human APOE gene, encoding apolipoprotein E, is the greatest genetic risk factor. Sex is the final universal biological variable of AD, as females develop AD at almost twice the rate of males and, importantly, female sex exacerbates the effects of APOE4 on AD risk and rate of cognitive decline. Therefore, this review evaluates the importance of context for understanding the role of APOE in preclinical mouse models. Specifically, we detail how human AD pathology is mirrored in current transgenic mouse models ("What") and describe the critical need for introducing human APOE into these mouse models ("Who"). We next outline different methods for introducing human APOE into mice ("How") and highlight efforts to develop temporally defined and location-specific human apoE expression models ("When" and "Where"). We conclude with the importance of choosing the human APOE mouse model relevant to the question being addressed, using the selection of transgenic models for testing apoE-targeted therapeutics as an example ("Why").
Collapse
Affiliation(s)
- Cutler T Lewandowski
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA.
| | - Juan Maldonado Weng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., Chicago, IL 60612, USA.
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., Chicago, IL 60612, USA.
| |
Collapse
|
32
|
Román G, Jackson R, Reis J, Román A, Toledo J, Toledo E. Extra-virgin olive oil for potential prevention of Alzheimer disease. Rev Neurol (Paris) 2019; 175:705-723. [DOI: 10.1016/j.neurol.2019.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
|
33
|
Fitz NF, Nam KN, Koldamova R, Lefterov I. Therapeutic targeting of nuclear receptors, liver X and retinoid X receptors, for Alzheimer's disease. Br J Pharmacol 2019; 176:3599-3610. [PMID: 30924124 PMCID: PMC6715597 DOI: 10.1111/bph.14668] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/15/2019] [Accepted: 02/24/2019] [Indexed: 12/18/2022] Open
Abstract
After 15 years of research into Alzheimer's disease (AD) therapeutics, including billions of US dollars provided by federal agencies, pharmaceutical companies, and private foundations, there are still no meaningful therapies that can delay the onset or slow the progression of AD. An understanding of the proteolytic processing of amyloid precursor protein (APP) and the hypothesis that pathogenic mechanisms in familial and sporadic forms of AD are very similar led to the assumption that pharmacological inhibition of secretases or immunological approaches to clear amyloid depositions in the brain would have been the core to drug discovery strategies and successful therapies. However, there are other understudied approaches including targeting genes, gene networks, and metabolic pathways outside the proteolytic processing of APP. The advancement of newly developed sequencing technologies and mass spectrometry, as well as the availability of animal models expressing human apolipoprotein E isoforms, has been critical in rationalizing additional AD therapeutics. The purpose of this review is to present one of those approaches, based on the role of ligand-activated nuclear liver X and retinoid X receptors in the brain. This therapeutic approach was initially proposed utilizing in vitro models 15 years ago and has since been examined in numerous studies using AD-like mouse models. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Nicholas F Fitz
- Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyong Nyon Nam
- Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Radosveta Koldamova
- Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Iliya Lefterov
- Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Mouzat K, Chudinova A, Polge A, Kantar J, Camu W, Raoul C, Lumbroso S. Regulation of Brain Cholesterol: What Role Do Liver X Receptors Play in Neurodegenerative Diseases? Int J Mol Sci 2019; 20:E3858. [PMID: 31398791 PMCID: PMC6720493 DOI: 10.3390/ijms20163858] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Liver X Receptors (LXR) alpha and beta are two members of nuclear receptor superfamily documented as endogenous cholesterol sensors. Following conversion of cholesterol in oxysterol, both LXR isoforms detect intracellular concentrations and act as transcription factors to promote expression of target genes. Among their numerous physiological roles, they act as central cholesterol-lowering factors. In the central nervous system (CNS), cholesterol has been shown to be an essential determinant of brain function, particularly as a major constituent of myelin and membranes. In the brain, LXRs act as cholesterol central regulators, and, beyond this metabolic function, LXRs have additional roles such as providing neuroprotective effects and lowering neuroinflammation. In many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and multiple sclerosis (MS), dysregulations of cholesterol and oxysterol have been reported. In this paper, we propose to focus on recent advances in the knowledge of the LXRs roles on brain cholesterol and oxysterol homeostasis, neuroinflammation, neuroprotection, and their putative involvement in neurodegenerative disorders. We will discuss their potential use as candidates for both molecular diagnosis and as promising pharmacological targets in the treatment of ALS, AD, or MS patients.
Collapse
Affiliation(s)
- Kevin Mouzat
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France.
| | - Aleksandra Chudinova
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| | - Anne Polge
- Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Jovana Kantar
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| | - William Camu
- ALS Reference Center, Montpellier University Hospital and University of Montpellier, Inserm UMR1051, 34000 Montpellier, France
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, Inserm UMR1051, University of Montpellier, 34091 Montpellier, France
| | - Serge Lumbroso
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| |
Collapse
|
35
|
Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol 2019; 15:501-518. [PMID: 31367008 DOI: 10.1038/s41582-019-0228-7] [Citation(s) in RCA: 697] [Impact Index Per Article: 139.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
Polymorphism in the apolipoprotein E (APOE) gene is a major genetic risk determinant of late-onset Alzheimer disease (AD), with the APOE*ε4 allele conferring an increased risk and the APOE*ε2 allele conferring a decreased risk relative to the common APOE*ε3 allele. Strong evidence from clinical and basic research suggests that a major pathway by which APOE4 increases the risk of AD is by driving earlier and more abundant amyloid pathology in the brains of APOE*ε4 carriers. The number of amyloid-β (Aβ)-dependent and Aβ-independent pathways that are known to be differentially modulated by APOE isoforms is increasing. For example, evidence is accumulating that APOE influences tau pathology, tau-mediated neurodegeneration and microglial responses to AD-related pathologies. In addition, APOE4 is either pathogenic or shows reduced efficiency in multiple brain homeostatic pathways, including lipid transport, synaptic integrity and plasticity, glucose metabolism and cerebrovascular function. Here, we review the recent progress in clinical and basic research into the role of APOE in AD pathogenesis. We also discuss how APOE can be targeted for AD therapy using a precision medicine approach.
Collapse
|
36
|
Saint-Pol J, Gosselet F. Oxysterols and the NeuroVascular Unit (NVU): A far true love with bright and dark sides. J Steroid Biochem Mol Biol 2019; 191:105368. [PMID: 31026511 DOI: 10.1016/j.jsbmb.2019.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
The brain is isolated from the whole body by the blood-brain barrier (BBB) which is located in brain microvessel endothelial cells (ECs). Through physical and metabolic properties induced by brain pericytes, astrocytes and neurons (these cells and the ECs referred to as the neurovascular unit (NVU)), the BBB hardly restricts exchanges of molecules between the brain and the bloodstream. Among them, cholesterol exchanges between these two compartments are very limited and occur through the transport of LDLs across the BBB. Oxysterols (mainly 24S and 27-hydroxycholesterol) daily cross the BBB and regulate molecule/cholesterol exchanges via Liver X nuclear Receptors (LXRs). In addition, these oxysterols have been linked to pathological processes in neurodegenerative diseases such as Alzheimer's disease. Here we propose an overview of the actual knowledge concerning oxysterols and the NVU cells in physiological and in Alzheimer's disease.
Collapse
Affiliation(s)
- Julien Saint-Pol
- University of Artois, Blood-Brain Barrier Laboratory (BBB Lab), EA2465, F-62300 Lens, France.
| | - Fabien Gosselet
- University of Artois, Blood-Brain Barrier Laboratory (BBB Lab), EA2465, F-62300 Lens, France
| |
Collapse
|
37
|
The Role of APOE and TREM2 in Alzheimer's Disease-Current Understanding and Perspectives. Int J Mol Sci 2018; 20:ijms20010081. [PMID: 30587772 PMCID: PMC6337314 DOI: 10.3390/ijms20010081] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. The extracellular deposits of Amyloid beta (Aβ) in the brain-called amyloid plaques, and neurofibrillary tangles-intracellular tau aggregates, are morphological hallmarks of the disease. The risk for AD is a complicated interplay between aging, genetic risk factors, and environmental influences. One of the Apolipoprotein E (APOE) alleles-APOEε4, is the major genetic risk factor for late-onset AD (LOAD). APOE is the primary cholesterol carrier in the brain, and plays an essential role in lipid trafficking, cholesterol homeostasis, and synaptic stability. Recent genome-wide association studies (GWAS) have identified other candidate LOAD risk loci, as well. One of those is the triggering receptor expressed on myeloid cells 2 (TREM2), which, in the brain, is expressed primarily by microglia. While the function of TREM2 is not fully understood, it promotes microglia survival, proliferation, and phagocytosis, making it important for cell viability and normal immune functions in the brain. Emerging evidence from protein binding assays suggests that APOE binds to TREM2 and APOE-containing lipoproteins in the brain as well as periphery, and are putative ligands for TREM2, thus raising the possibility of an APOE-TREM2 interaction modulating different aspects of AD pathology, potentially in an isoform-specific manner. This review is focusing on the interplay between APOE isoforms and TREM2 in association with AD pathology.
Collapse
|
38
|
Cao J, Hou J, Ping J, Cai D. Advances in developing novel therapeutic strategies for Alzheimer's disease. Mol Neurodegener 2018; 13:64. [PMID: 30541602 PMCID: PMC6291983 DOI: 10.1186/s13024-018-0299-8] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's Disease (AD), the most prevalent neurodegenerative disease of aging, affects one in eight older Americans. Nearly all drug treatments tested for AD today have failed to show any efficacy. There is a great need for therapies to prevent and/or slow the progression of AD. The major challenge in AD drug development is lack of clarity about the mechanisms underlying AD pathogenesis and pathophysiology. Several studies support the notion that AD is a multifactorial disease. While there is abundant evidence that amyloid plays a role in AD pathogenesis, other mechanisms have been implicated in AD such as tangle formation and spread, dysregulated protein degradation pathways, neuroinflammation, and loss of support by neurotrophic factors. Therefore, current paradigms of AD drug design have been shifted from single target approach (primarily amyloid-centric) to developing drugs targeted at multiple disease aspects, and from treating AD at later stages of disease progression to focusing on preventive strategies at early stages of disease development. Here, we summarize current strategies and new trends of AD drug development, including pre-clinical and clinical trials that target different aspects of disease (mechanism-based versus non-mechanism based, e.g. symptomatic treatments, lifestyle modifications and risk factor management).
Collapse
Affiliation(s)
- Jiqing Cao
- James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
- Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China
| | - Jianwei Hou
- James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
- Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Jing Ping
- The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China
| | - Dongming Cai
- James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
- Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Lamartinière Y, Boucau MC, Dehouck L, Krohn M, Pahnke J, Candela P, Gosselet F, Fenart L. ABCA7 Downregulation Modifies Cellular Cholesterol Homeostasis and Decreases Amyloid-β Peptide Efflux in an in vitro Model of the Blood-Brain Barrier. J Alzheimers Dis 2018; 64:1195-1211. [DOI: 10.3233/jad-170883] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yordenca Lamartinière
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| | - Marie-Christine Boucau
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| | - Lucie Dehouck
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| | - Markus Krohn
- Department of Neuro-/Pathology, University of Oslo (UiO) & Oslo University Hospital (OUS), Oslo, Norway
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo (UiO) & Oslo University Hospital (OUS), Oslo, Norway
- University of Lübeck (UzL), LIED, Lübeck, Germany
- Leibniz Institute of Plant Biochemistry (IPB), Halle, Germany
| | - Pietra Candela
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| | - Fabien Gosselet
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| | - Laurence Fenart
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| |
Collapse
|
40
|
APOE and Alzheimer's Disease: Evidence Mounts that Targeting APOE4 may Combat Alzheimer's Pathogenesis. Mol Neurobiol 2018; 56:2450-2465. [PMID: 30032423 DOI: 10.1007/s12035-018-1237-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
Abstract
Alzheimer's disease (AD) is an immutable neurodegenerative disease featured by the two hallmark brain pathologies that are the extracellular amyloid ß (Aß) and intraneuronal tau protein. People carrying the APOE4 allele are at high risk of AD concerning the ones carrying the ε3 allele, while the ε2 allele abates risk. ApoE isoforms exert a central role in controlling the transport of brain lipid, neuronal signaling, mitochondrial function, glucose metabolism, and neuroinflammation. Regardless of widespread indispensable studies, the appropriate function of APOE in AD etiology stays ambiguous. Existing proof recommends that the disparate outcomes of ApoE isoforms on Aβ accretion and clearance have a distinct function in AD pathogenesis. ApoE-lipoproteins combine diverse cell-surface receptors to transport lipids and moreover to lipophilic Aβ peptide, that is believed to begin deadly events that generate neurodegeneration in the AD. ApoE has great influence in tau pathogenesis, tau-mediated neurodegeneration, and neuroinflammation, as well as α-synucleinopathy, lipid metabolism, and synaptic plasticity despite the presence of Aβ pathology. ApoE4 shows the deleterious effect for AD while the lack of ApoE4 is defensive. Therapeutic strategies primarily depend on APOE suggest to lessen the noxious effects of ApoE4 and reestablish the protective aptitudes of ApoE. This appraisal represents the critical interactions of APOE and AD pathology, existing facts on ApoE levels in the central nervous system (CNS), and the credible active stratagems for AD therapy by aiming ApoE. This review also highlighted utmost ApoE targeting therapeutic tactics that are crucial for controlling Alzheimer's pathogenesis.
Collapse
|
41
|
Liver X Receptor Agonist GW3965 Regulates Synaptic Function upon Amyloid Beta Exposure in Hippocampal Neurons. Neurotox Res 2018; 33:569-579. [PMID: 29297151 DOI: 10.1007/s12640-017-9845-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by beta-amyloid (Aβ) accumulation and neurofibrillary tangles formation in the brain which are associated to synaptic deficits and dementia. Liver X receptor (LXR) agonists have been demonstrated to revert of pathologic and cognitive defects in murine models of AD through the regulation of Apolipoprotein E, ATP-Binding Cassette A1 (ABCA1), by dampening neuroinflammation and also by reducing the levels of amyloid-β (Aβ) accumulation in the brain. However, the role of LXR with regard to the regulation of synaptic function remains relatively understudied. In the present paper, we analyzed the in-vitro effect of the LXR agonist GW3965 on synaptic function upon exposure of primary hippocampal cultures to oligomeric amyloid-β (oAβ(1-42)). We showed that oAβ(1-42) exposure significantly decreased the density of mature (mushroom shaped) dendritic spines density and synaptic contacts number. oAβ(1-42) also modulates the expression of pre- (VGlut1, SYT1, SV2A) and post-synaptic (SHANK2, NMDA) proteins, it decreases the expression of PINK1, and increases ROCKII, and activates of caspase-3; these changes were prevented by the pre-treating neuronal cultures with GW3965. These results show further support the role of the LXR agonist GW3965 in synaptic physiology and highlight its potential as an alternative pharmacological strategy for AD.
Collapse
|
42
|
de Wit NM, Vanmol J, Kamermans A, Hendriks JJA, de Vries HE. Inflammation at the blood-brain barrier: The role of liver X receptors. Neurobiol Dis 2017; 107:57-65. [DOI: 10.1016/j.nbd.2016.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/11/2016] [Accepted: 09/17/2016] [Indexed: 02/05/2023] Open
|
43
|
Di Battista AM, Heinsinger NM, Rebeck GW. Alzheimer's Disease Genetic Risk Factor APOE-ε4 Also Affects Normal Brain Function. Curr Alzheimer Res 2017; 13:1200-1207. [PMID: 27033053 DOI: 10.2174/1567205013666160401115127] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/15/2016] [Accepted: 03/28/2016] [Indexed: 12/24/2022]
Abstract
APOE-ε4 is the strongest genetic risk factor for Alzheimer's disease (AD), and is associated with an increase in the levels of amyloid deposition and an early age of onset. Recent data demonstrate that AD pathological changes occur decades before clinical symptoms, raising questions about the precise onset of the disease. Now a convergence of approaches in mice and humans has demonstrated that APOE-ε4 affects normal brain function even very early in life in the absence of gross AD pathological changes. Normal mice expressing APOE4 have task-specific spatial learning deficits, as well as reduced NMDAR-dependent signaling and structural changes to presynaptic and postsynaptic compartments in neurons, particularly in hippocampal regions. Young humans possessing APOE-ε4 are more adept than APOE-ε4 negative individuals at some behavioral tasks, and functional magnetic resonance imaging has shown that inheritance of APOE-ε4 has specific effects on medial temporal brain activities. These findings suggest that inheritance of APOE-ε4 causes life long changes to the brain that may be related to the late risk of AD. Several possible mechanisms of how APOE-ε4 could affect brain neurochemistry, structure, and function are reviewed.
Collapse
Affiliation(s)
| | | | - G William Rebeck
- New Research Building, WP- 13, 3970 Reservoir Rd, NW, Washington, DC 20007; USA
| |
Collapse
|
44
|
Yu J, Ahn S, Kim HJ, Lee M, Ahn S, Kim J, Jin SH, Lee E, Kim G, Cheong JH, Jacobson KA, Jeong LS, Noh M. Polypharmacology of N 6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) and Related A 3 Adenosine Receptor Ligands: Peroxisome Proliferator Activated Receptor (PPAR) γ Partial Agonist and PPARδ Antagonist Activity Suggests Their Antidiabetic Potential. J Med Chem 2017; 60:7459-7475. [PMID: 28799755 PMCID: PMC5956890 DOI: 10.1021/acs.jmedchem.7b00805] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A3 adenosine receptor (AR) ligands including A3 AR agonist, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (1a, IB-MECA) were examined for adiponectin production in human bone marrow mesenchymal stem cells (hBM-MSCs). In this model, 1a significantly increased adiponectin production, which is associated with improved insulin sensitivity. However, A3 AR antagonists also promoted adiponectin production in hBM-MSCs, indicating that the A3 AR pathway may not be directly involved in the adiponectin promoting activity. In a target deconvolution study, their adiponectin-promoting activity was significantly correlated to their binding activity to both peroxisome proliferator activated receptor (PPAR) γ and PPARδ. They functioned as both PPARγ partial agonists and PPARδ antagonists. In the diabetic mouse model, 1a and its structural analogues A3 AR antagonists significantly decreased the serum levels of glucose and triglyceride, supporting their antidiabetic potential. These findings indicate that the polypharmacophore of these compounds may provide therapeutic insight into their multipotent efficacy against various human diseases.
Collapse
Affiliation(s)
- Jinha Yu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seyeon Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Moonyoung Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sungjin Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jungmin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sun Hee Jin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Eunyoung Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Minsoo Noh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
45
|
Lai C, Cheng H, Lin C, Huang S, Chen T, Chung C, Chang C, Wang H, Chuu C. Activation of liver X receptor suppresses angiogenesis
via
induction of ApoD. FASEB J 2017; 31:5568-5576. [DOI: 10.1096/fj.201700374r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/07/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Chih‐Jen Lai
- Institute of Cellular and System MedicineNational Health Research Institutes Miaoli Taiwan
- Institute of BiotechnologyNational Tsing Hua University Hsinchu Taiwan
| | - Hsu‐Chen Cheng
- Department of Life SciencesNational Chung Hsing University Taichung Taiwan
| | - Ching‐Yu Lin
- Institute of Cellular and System MedicineNational Health Research Institutes Miaoli Taiwan
| | - Shih‐Han Huang
- Institute of Cellular and System MedicineNational Health Research Institutes Miaoli Taiwan
- Department of Life SciencesNational Central University Taoyuan Taiwan
| | - Ting‐Huan Chen
- Institute of Cellular and System MedicineNational Health Research Institutes Miaoli Taiwan
- Institute of BiotechnologyNational Tsing Hua University Hsinchu Taiwan
| | - Chi‐Jung Chung
- Department of Health Risk ManagementChina Medical University Taichung Taiwan
| | - Chung‐Ho Chang
- Institute of Cellular and System MedicineNational Health Research Institutes Miaoli Taiwan
- Department of Internal MedicineChanghua Christian Hospital Changhua Taiwan
| | - Horng‐Dar Wang
- Institute of BiotechnologyNational Tsing Hua University Hsinchu Taiwan
| | - Chih‐Pin Chuu
- Institute of Cellular and System MedicineNational Health Research Institutes Miaoli Taiwan
- Biotechnology CenterNational Chung Hsing University Taichung Taiwan
- Graduate Institute of Basic Medical ScienceChina Medical University Taichung Taiwan
- Graduate Program for AgingChina Medical University Taichung Taiwan
| |
Collapse
|
46
|
Thai NQ, Nguyen HL, Linh HQ, Li MS. Protocol for fast screening of multi-target drug candidates: Application to Alzheimer's disease. J Mol Graph Model 2017; 77:121-129. [PMID: 28850894 DOI: 10.1016/j.jmgm.2017.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023]
Abstract
The treatment of many diseases may require drugs that are capable to attack multiple targets simultaneously. Obviously, the virtual screening of multi-target drug candidates is much more time consuming compared to the single-target case. This, in particular, concerns the last step of virtual screening where the binding free energy is computed by conventional molecular dynamics simulation. To overcome this difficulty we propose a simple protocol which is relied on the fast steered molecular dynamics simulation and on available experimental data on binding affinity of reference ligand to a given target. Namely, first we compute non-equilibrium works generated during pulling ligands from the binding site using the steered molecular dynamics method. Then as top leads we choose only those compounds that have the non-equilibrium work larger than that of a reference compound for which the binding free energy has been already known from experiment. Despite many efforts no cures for AD (Alzheimer's disease) have been found. One of possible reasons for this failure is that drug candidates were developed for a single target, while there are exist many possible pathways to AD. Applying our new protocol to five targets including amyloid beta fibril, peroxisome proliferator-activated receptor γ, retinoic X receptor α, β- and γ-secretases, we have found two potential drugs (CID 16040294 and CID 9998128) for AD from the large PubChem database. We have also shown that these two ligands can interfere with the activity of popular Acetylcholinesterase target through strong binding towards it.
Collapse
Affiliation(s)
- Nguyen Quoc Thai
- Institute for Computational Sciences and Technology,SBI building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Viet Nam; Dong Thap University,783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Viet Nam; Biomedical Engineering Department, University of Technology -VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Viet Nam
| | - Hoang Linh Nguyen
- Institute for Computational Sciences and Technology,SBI building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Viet Nam
| | - Huynh Quang Linh
- Biomedical Engineering Department, University of Technology -VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Viet Nam
| | - Mai Suan Li
- Institute for Computational Sciences and Technology,SBI building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Viet Nam; Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
47
|
Wongwan T, Kittayaruksakul S, Asavapanumas N, Chatsudthipong V, Soodvilai S. Activation of liver X receptor inhibits OCT2-mediated organic cation transport in renal proximal tubular cells. Pflugers Arch 2017; 469:1471-1481. [PMID: 28741179 DOI: 10.1007/s00424-017-2033-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 01/05/2023]
Abstract
Liver X receptor (LXR) is transcriptional factor that plays an important role in the regulation of energy metabolism such as cholesterol, lipid, and glucose metabolism as well as membrane transporters and channels. Using both in vitro and in vivo models, LXR regulation of the expression and function of renal organic cation transporter 2 (OCT2) was observed. Synthetic LXR agonist (GW3965) and endogenous LXR agonist (22R-hydroxycholesterol) significantly reduced the uptake of 3H-MPP+, a prototypic substrate of OCT2, in both OCT2- Chinese hamster ovary K1 and human renal proximal tubular cells (RPTEC/TERT1). GW3965 decreased transport activity of OCT2 via a reduction of the maximal transport rate of MPP+ without affecting transporter affinity. The inhibitory effect of GW3965 was attenuated by co-treatment with LXR antagonist (fenofibrate) indicating the inhibition was LXR-dependent mechanism. In addition, co-treatment with a retinoic X receptor (RXR) ligand, 9-cis retinoic acid enhanced the inhibitory effect of GW3965, indicating negative regulation of OCT2 transport activity by the LXR/RXR complex. Treatment RPTEC/TERT1 cells with GW3965 significantly reduced OCT2 protein expression without changing mRNA expression. In parallel, the effect of LXR activation on OCT2 function was investigated in intact mouse kidney. Treating mice with 50 mg/kg BW T0901317 for 14 days significantly decreased 3H-MPP+ uptake into renal cortical slices, correlating with decreased OCT2 protein expression in renal cortex without changes in mRNA expression levels. Taken together, LXR/RXR activation downregulates the protein expression and function of OCT2 in renal proximal tubule, suggesting LXR might affect the total profile of renal excretion of cationic compounds.
Collapse
Affiliation(s)
- Teerasak Wongwan
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok, 10400, Thailand.,Research Center of Transport Proteins for Medical Innovation, Faculty of Science, Mahidol University, Rajathevi, Bangkok, 10400, Thailand
| | - Suticha Kittayaruksakul
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok, 10400, Thailand
| | - Nithi Asavapanumas
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok, 10400, Thailand
| | - Varanuj Chatsudthipong
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok, 10400, Thailand
| | - Sunhapas Soodvilai
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok, 10400, Thailand. .,Research Center of Transport Proteins for Medical Innovation, Faculty of Science, Mahidol University, Rajathevi, Bangkok, 10400, Thailand. .,Excellent Center for Drug Discovery, Mahidol University, Rama VI Road, Rajathevi, Bangkok, 10400, Thailand.
| |
Collapse
|
48
|
Ducheix S, Montagner A, Polizzi A, Lasserre F, Régnier M, Marmugi A, Benhamed F, Bertrand-Michel J, Mselli-Lakhal L, Loiseau N, Martin PG, Lobaccaro JM, Ferrier L, Postic C, Guillou H. Dietary oleic acid regulates hepatic lipogenesis through a liver X receptor-dependent signaling. PLoS One 2017; 12:e0181393. [PMID: 28732092 PMCID: PMC5521785 DOI: 10.1371/journal.pone.0181393] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022] Open
Abstract
Olive oil consumption is beneficial for health as it is associated with a decreased prevalence of cancer and cardiovascular diseases. Oleic acid is, by far, the most abundant component of olive oil. Since it can be made through de novo synthesis in animals, it is not an essential fatty acid. While it has become clear that dietary oleic acid regulates many biological processes, the signaling pathway involved in these regulations remains poorly defined. In this work we tested the impact of an oleic acid-rich diet on hepatic gene expression. We were particularly interested in addressing the contribution of Liver X Receptors (LXR) in the control of genes involved in hepatic lipogenesis, an essential process in whole body energy homeostasis. We used wild-type mice and transgenic mice deficient for both α and β Liver X Receptor isoforms (LXR-/-) fed a control or an oleate enriched diet. We observed that hepatic-lipid accumulation was enhanced as well as the expression of lipogenic genes in the liver of wild-type mice fed the oleate enriched diet. In contrast, none of these changes occurred in the liver of LXR-/- mice. Strikingly, oleate-rich diet reduced cholesterolemia in wild-type mice and induced signs of liver inflammation and damage in LXR-/- mice but not in wild-type mice. This work suggests that dietary oleic acid reduces cholesterolemia while promoting LXR-dependent hepatic lipogenesis without detrimental effects to the liver.
Collapse
Affiliation(s)
- Simon Ducheix
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Alexandra Montagner
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Arnaud Polizzi
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Frédéric Lasserre
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Marion Régnier
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Alice Marmugi
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Fadila Benhamed
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France
| | | | - Laila Mselli-Lakhal
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Nicolas Loiseau
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Pascal G Martin
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Jean-Marc Lobaccaro
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, Clermont-Ferrand, France.,CNRS, UMR 6293, GReD, Aubière, France.,INSERM, U1103, GReD, Aubière, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Laurent Ferrier
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Catherine Postic
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hervé Guillou
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| |
Collapse
|
49
|
Boyce G, Button E, Soo S, Wellington C. The pleiotropic vasoprotective functions of high density lipoproteins (HDL). J Biomed Res 2017; 32:164. [PMID: 28550271 PMCID: PMC6265396 DOI: 10.7555/jbr.31.20160103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
The pleiotropic functions of circulating high density lipoprotein (HDL) on peripheral vascular health are well established. HDL plays a pivotal role in reverse cholesterol transport and is also known to suppress inflammation, endothelial activation and apoptosis in peripheral vessels. Although not expressed in the central nervous system, HDL has nevertheless emerged as a potential resilience factor for dementia in multiple epidemiological studies. Animal model data specifically support a role for HDL in attenuating the accumulation of β-amyloid within cerebral vessels concomitant with reduced neuroinflammation and improved cognitive performance. As the vascular contributions to dementia are increasingly appreciated, this review seeks to summarize recent literature focused on the vasoprotective properties of HDL that may extend to cerebral vessels, discuss potential roles of HDL in dementia relative to brain-derived lipoproteins, identify gaps in current knowledge, and highlight new opportunities for research and discovery.
Collapse
Affiliation(s)
- Guilaine Boyce
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Emily Button
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sonja Soo
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
50
|
Liver X receptors activation, through TO901317 binding, reduces neuroinflammation in Parkinson's disease. PLoS One 2017; 12:e0174470. [PMID: 28369131 PMCID: PMC5378346 DOI: 10.1371/journal.pone.0174470] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/09/2017] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease in which degeneration of nigrostriatal neurons and inflammation are key players. The aim of our study was to analyze the function of LXRs in neurodegenerative diseases as PD using in vivo, ex vivo and in vitro models of PD; for this purpose, we observed the effects of the LXR agonist, TO901317, in neuroinflammatory pathway related to PD. We performed an in vivo model of PD using the neurotoxin 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP) and our results clearly showed that TO901317 administration reduces all of the inflammatory markers involved in PD such as iNOS and COX2, IκB-α and NF-κB. Moreover, to confirm the neuroprotective properties of TO901317, that we obtained with the in vivo model, we performed also an ex vivo and in vitro models of PD. All the results taken, confirmed that TO901317 is able to modulate the neuroinflammatory pathway involved in PD increasing the locomotors function. Therefore, TO901317, LXR synthetic agonist, could be studied as a new target in a neurodegenerative disorder like PD.
Collapse
|