1
|
Martin EC, Bowie AG, Wellfare Reid T, Neil Hunter C, Hitchcock A, Swainsbury DJ. Sulfoquinovosyl diacylglycerol is required for dimerisation of the Rhodobacter sphaeroides reaction centre-light harvesting 1 core complex. Biochem J 2024; 481:823-838. [PMID: 38780411 PMCID: PMC11346425 DOI: 10.1042/bcj20240125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The reaction centre-light harvesting 1 (RC-LH1) core complex is indispensable for anoxygenic photosynthesis. In the purple bacterium Rhodobacter (Rba.) sphaeroides RC-LH1 is produced both as a monomer, in which 14 LH1 subunits form a C-shaped antenna around 1 RC, and as a dimer, where 28 LH1 subunits form an S-shaped antenna surrounding 2 RCs. Alongside the five RC and LH1 subunits, an additional polypeptide known as PufX provides an interface for dimerisation and also prevents LH1 ring closure, introducing a channel for quinone exchange that is essential for photoheterotrophic growth. Structures of Rba. sphaeroides RC-LH1 complexes revealed several new components; protein-Y, which helps to form the quinone channel; protein-Z, of unknown function and seemingly unique to dimers; and a tightly bound sulfoquinovosyl diacylglycerol (SQDG) lipid that interacts with two PufX arginine residues. This lipid lies at the dimer interface alongside weak density for a second molecule, previously proposed to be an ornithine lipid. In this work we have generated strains of Rba. sphaeroides lacking protein-Y, protein-Z, SQDG or ornithine lipids to assess the roles of these previously unknown components in the assembly and activity of RC-LH1. We show that whilst the removal of either protein-Y, protein-Z or ornithine lipids has only subtle effects, SQDG is essential for the formation of RC-LH1 dimers but its absence has no functional effect on the monomeric complex.
Collapse
Affiliation(s)
- Elizabeth C. Martin
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - Adam G.M. Bowie
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - Taylor Wellfare Reid
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - C. Neil Hunter
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | | |
Collapse
|
2
|
Kis M, Szabó T, Tandori J, Maróti P. Roadmap of electrons from donor side to the reaction center of photosynthetic purple bacteria with mutated cytochromes. PHOTOSYNTHESIS RESEARCH 2024; 159:261-272. [PMID: 38032488 PMCID: PMC10991045 DOI: 10.1007/s11120-023-01059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023]
Abstract
In photosynthetic bacteria, the absorbed light drives the canonical cyclic electron transfer between the reaction center and the cytochrome bc1 complexes via the pools of mobile electron carriers. If kinetic or structural barriers hinder the participation of the bc1 complex in the cyclic flow of electrons, then the pools of mobile redox agents must supply the electrons for the multiple turnovers of the reaction center. These conditions were achieved by continuous high light excitation of intact cells of bacterial strains Rba. sphaeroides and Rvx. gelatinosus with depleted donor side cytochromes c2 (cycA) and tetraheme cytochrome subunit (pufC), respectively. The gradual oxidation by ferricyanide further reduced the availability of electron donors to pufC. Electron transfer through the reaction center was tracked by absorption change and by induction and relaxation of the fluorescence of the bacteriochlorophyll dimer. The rate constants of the electron transfer (~ 3 × 103 s‒1) from the mobile donors of Rvx. gelatinosus bound either to the RC (pufC) or to the tetraheme subunit (wild type) were similar. The electrons transferred through the reaction center dimer were supplied entirely by the donor pool; their number amounted to about 5 in wild type Rvx. gelatinosus and decreased to 1 in pufC oxidized by ferricyanide. Fluorescence yield was measured as a function of the oxidized fraction of the dimer and its complex shape reveals the contribution of two competing processes: the migration of the excitation energy among the photosynthetic units and the availability of electron donors to the oxidized dimer. The experimental results were simulated and rationalized by a simple kinetic model of the two-electron cycling of the acceptor side combined with aperiodic one-electron redox function of the donor side.
Collapse
Affiliation(s)
- M Kis
- Balaton Limnological Research Institute, Klebelsberg K. Utca 3, Tihany, 8237, Hungary
| | - T Szabó
- Institute of Medical Physics, University of Szeged, Korányi Fasor 9, Szeged, 6720, Hungary
| | - J Tandori
- Institute of Medical Physics, University of Szeged, Korányi Fasor 9, Szeged, 6720, Hungary
| | - P Maróti
- Institute of Medical Physics, University of Szeged, Korányi Fasor 9, Szeged, 6720, Hungary.
| |
Collapse
|
3
|
Huang X, Vasilev C, Swainsbury D, Hunter C. Excitation energy transfer in proteoliposomes reconstituted with LH2 and RC-LH1 complexes from Rhodobacter sphaeroides. Biosci Rep 2024; 44:BSR20231302. [PMID: 38227291 PMCID: PMC10876425 DOI: 10.1042/bsr20231302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/17/2024] Open
Abstract
Light-harvesting 2 (LH2) and reaction-centre light-harvesting 1 (RC-LH1) complexes purified from the photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were reconstituted into proteoliposomes either separately, or together at three different LH2:RC-LH1 ratios, for excitation energy transfer studies. Atomic force microscopy (AFM) was used to investigate the distribution and association of the complexes within the proteoliposome membranes. Absorption and fluorescence emission spectra were similar for LH2 complexes in detergent and liposomes, indicating that reconstitution retains the structural and optical properties of the LH2 complexes. Analysis of fluorescence emission shows that when LH2 forms an extensive series of contacts with other such complexes, fluorescence is quenched by 52.6 ± 1.4%. In mixed proteoliposomes, specific excitation of carotenoids in LH2 donor complexes resulted in emission of fluorescence from acceptor RC-LH1 complexes engineered to assemble with no carotenoids. Extents of energy transfer were measured by fluorescence lifetime microscopy; the 0.72 ± 0.08 ns lifetime in LH2-only membranes decreases to 0.43 ± 0.04 ns with a ratio of 2:1 LH2 to RC-LH1, and to 0.35 ± 0.05 ns for a 1:1 ratio, corresponding to energy transfer efficiencies of 40 ± 14% and 51 ± 18%, respectively. No further improvement is seen with a 0.5:1 LH2 to RC-LH1 ratio. Thus, LH2 and RC-LH1 complexes perform their light harvesting and energy transfer roles when reconstituted into proteoliposomes, providing a way to integrate native, non-native, engineered and de novo designed light-harvesting complexes into functional photosynthetic systems.
Collapse
Affiliation(s)
- Xia Huang
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Jinan Guoke Medical Technology Development Co., Ltd, Jinan, Shandong 250101, China
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Cvetelin Vasilev
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - David J.K. Swainsbury
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, U.K
| | - C. Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
4
|
Capacity and kinetics of light-induced cytochrome oxidation in intact cells of photosynthetic bacteria. Sci Rep 2022; 12:14298. [PMID: 35995915 PMCID: PMC9395421 DOI: 10.1038/s41598-022-18399-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Light-induced oxidation of the reaction center dimer and periplasmic cytochromes was detected by fast kinetic difference absorption changes in intact cells of wild type and cytochrome mutants (cycA, cytC4 and pufC) of Rubrivivax gelatinosus and Rhodobacter sphaeroides. Constant illumination from a laser diode or trains of saturating flashes enabled the kinetic separation of acceptor and donor redox processes, and the electron contribution from the cyt bc1 complex via periplasmic cytochromes. Under continuous excitation, concentrations of oxidized cytochromes increased in three phases where light intensity, electron transfer rate and the number of reduced cytochromes were the rate liming steps, respectively. By choosing suitable flash timing, gradual steps of cytochrome oxidation in whole cells were observed; each successive flash resulted in a smaller, damped oxidation. We attribute this damping to lowered availability of reduced cytochromes resulting from both exchange (unbinding/binding) of the cytochromes and electron transfer at the reaction center interface since a similar effect is observed upon deletion of genes encoding periplasmic cytochromes. In addition, we present a simple model to calculate the damping effect; application of this method may contribute to understanding the function of the diverse range of c-type cytochromes in the electron transport chains of anaerobic phototrophic bacteria.
Collapse
|
5
|
Vasilev C, Swainsbury DJK, Cartron ML, Martin EC, Kumar S, Hobbs JK, Johnson MP, Hitchcock A, Hunter CN. FRET measurement of cytochrome bc 1 and reaction centre complex proximity in live Rhodobacter sphaeroides cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148508. [PMID: 34793767 DOI: 10.1016/j.bbabio.2021.148508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
In the model purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides, solar energy is converted via coupled electron and proton transfer reactions within the intracytoplasmic membranes (ICMs), infoldings of the cytoplasmic membrane that form spherical 'chromatophore' vesicles. These bacterial 'organelles' are ideal model systems for studying how the organisation of the photosynthetic complexes therein shape membrane architecture. In Rba. sphaeroides, light-harvesting 2 (LH2) complexes transfer absorbed excitation energy to dimeric reaction centre (RC)-LH1-PufX complexes. The PufX polypeptide creates a channel that allows the lipid soluble electron carrier quinol, produced by RC photochemistry, to diffuse to the cytochrome bc1 complex, where quinols are oxidised to quinones, with the liberated protons used to generate a transmembrane proton gradient and the electrons returned to the RC via cytochrome c2. Proximity between cytochrome bc1 and RC-LH1-PufX minimises quinone/quinol/cytochrome c2 diffusion distances within this protein-crowded membrane, however this distance has not yet been measured. Here, we tag the RC and cytochrome bc1 with yellow or cyan fluorescent proteins (YFP/CFP) and record the lifetimes of YFP/CFP Förster resonance energy transfer (FRET) pairs in whole cells. FRET analysis shows that that these complexes lie on average within 6 nm of each other. Complementary high-resolution atomic force microscopy (AFM) of intact, purified chromatophores verifies the close association of cytochrome bc1 complexes with RC-LH1-PufX dimers. Our results provide a structural basis for the close kinetic coupling between RC-LH1-PufX and cytochrome bc1 observed by spectroscopy, and explain how quinols/quinones and cytochrome c2 shuttle on a millisecond timescale between these complexes, sustaining efficient photosynthetic electron flow.
Collapse
Affiliation(s)
- Cvetelin Vasilev
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
| | - David J K Swainsbury
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Michael L Cartron
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Elizabeth C Martin
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Sandip Kumar
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7HR, United Kingdom; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7HR, United Kingdom
| | - Matthew P Johnson
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Andrew Hitchcock
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
6
|
Cryo-EM structure of the dimeric Rhodobacter sphaeroides RC-LH1 core complex at 2.9 Å: the structural basis for dimerisation. Biochem J 2021; 478:3923-3937. [PMID: 34622934 PMCID: PMC8652583 DOI: 10.1042/bcj20210696] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022]
Abstract
The dimeric reaction centre light-harvesting 1 (RC-LH1) core complex of Rhodobacter sphaeroides converts absorbed light energy to a charge separation, and then it reduces a quinone electron and proton acceptor to a quinol. The angle between the two monomers imposes a bent configuration on the dimer complex, which exerts a major influence on the curvature of the membrane vesicles, known as chromatophores, where the light-driven photosynthetic reactions take place. To investigate the dimerisation interface between two RC-LH1 monomers, we determined the cryogenic electron microscopy structure of the dimeric complex at 2.9 Å resolution. The structure shows that each monomer consists of a central RC partly enclosed by a 14-subunit LH1 ring held in an open state by PufX and protein-Y polypeptides, thus enabling quinones to enter and leave the complex. Two monomers are brought together through N-terminal interactions between PufX polypeptides on the cytoplasmic side of the complex, augmented by two novel transmembrane polypeptides, designated protein-Z, that bind to the outer faces of the two central LH1 β polypeptides. The precise fit at the dimer interface, enabled by PufX and protein-Z, by C-terminal interactions between opposing LH1 αβ subunits, and by a series of interactions with a bound sulfoquinovosyl diacylglycerol lipid, bring together each monomer creating an S-shaped array of 28 bacteriochlorophylls. The seamless join between the two sets of LH1 bacteriochlorophylls provides a path for excitation energy absorbed by one half of the complex to migrate across the dimer interface to the other half.
Collapse
|
7
|
Swainsbury DJK, Qian P, Jackson PJ, Faries KM, Niedzwiedzki DM, Martin EC, Farmer DA, Malone LA, Thompson RF, Ranson NA, Canniffe DP, Dickman MJ, Holten D, Kirmaier C, Hitchcock A, Hunter CN. Structures of Rhodopseudomonas palustris RC-LH1 complexes with open or closed quinone channels. SCIENCE ADVANCES 2021; 7:7/3/eabe2631. [PMID: 33523887 PMCID: PMC7806223 DOI: 10.1126/sciadv.abe2631] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/18/2020] [Indexed: 05/23/2023]
Abstract
The reaction-center light-harvesting complex 1 (RC-LH1) is the core photosynthetic component in purple phototrophic bacteria. We present two cryo-electron microscopy structures of RC-LH1 complexes from Rhodopseudomonas palustris A 2.65-Å resolution structure of the RC-LH114-W complex consists of an open 14-subunit LH1 ring surrounding the RC interrupted by protein-W, whereas the complex without protein-W at 2.80-Å resolution comprises an RC completely encircled by a closed, 16-subunit LH1 ring. Comparison of these structures provides insights into quinone dynamics within RC-LH1 complexes, including a previously unidentified conformational change upon quinone binding at the RC QB site, and the locations of accessory quinone binding sites that aid their delivery to the RC. The structurally unique protein-W prevents LH1 ring closure, creating a channel for accelerated quinone/quinol exchange.
Collapse
Affiliation(s)
- David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Kaitlyn M Faries
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - David A Farmer
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Lorna A Malone
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel P Canniffe
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Dewey Holten
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Christine Kirmaier
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
8
|
Maróti P, Kovács IA, Kis M, Smart JL, Iglói F. Correlated clusters of closed reaction centers during induction of intact cells of photosynthetic bacteria. Sci Rep 2020; 10:14012. [PMID: 32814810 PMCID: PMC7438532 DOI: 10.1038/s41598-020-70966-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023] Open
Abstract
Antenna systems serve to absorb light and to transmit excitation energy to the reaction center (RC) in photosynthetic organisms. As the emitted (bacterio)chlorophyll fluorescence competes with the photochemical utilization of the excitation, the measured fluorescence yield is informed by the migration of the excitation in the antenna. In this work, the fluorescence yield concomitant with the oxidized dimer (P+) of the RC were measured during light excitation (induction) and relaxation (in the dark) for whole cells of photosynthetic bacterium Rhodobacter sphaeroides lacking cytochrome c2 as natural electron donor to P+ (mutant cycA). The relationship between the fluorescence yield and P+ (fraction of closed RC) showed deviations from the standard Joliot-Lavergne-Trissl model: (1) the hyperbola is not symmetric and (2) exhibits hysteresis. These phenomena originate from the difference between the delays of fluorescence relative to P+ kinetics during induction and relaxation, and in structural terms from the non-random distribution of the closed RCs during induction. The experimental findings are supported by Monte Carlo simulations and by results from statistical physics based on random walk approximations of the excitation in the antenna. The applied mathematical treatment demonstrates the generalization of the standard theory and sets the stage for a more adequate description of the long-debated kinetics of fluorescence and of the delicate control and balance between efficient light harvest and photoprotection in photosynthetic organisms.
Collapse
Affiliation(s)
- Péter Maróti
- Department of Medical Physics and Informatics, Szeged University, Rerrich Béla tér 1., 6720, Szeged, Hungary.
| | - István A Kovács
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208-3112, USA
- Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, P.O. Box 49, 1525, Budapest, Hungary
- Department of Network and Data Science, Central European University, Budapest, 1051, Hungary
| | - Mariann Kis
- Department of Medical Physics and Informatics, Szeged University, Rerrich Béla tér 1., 6720, Szeged, Hungary
| | - James L Smart
- Department of Biological Sciences, University of Tennessee at Martin, Martin, TN, 38238, USA
| | - Ferenc Iglói
- Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, P.O. Box 49, 1525, Budapest, Hungary
- Institute of Theoretical Physics, Szeged University, 6720, Szeged, Hungary
| |
Collapse
|
9
|
Singharoy A, Maffeo C, Delgado-Magnero KH, Swainsbury DJK, Sener M, Kleinekathöfer U, Vant JW, Nguyen J, Hitchcock A, Isralewitz B, Teo I, Chandler DE, Stone JE, Phillips JC, Pogorelov TV, Mallus MI, Chipot C, Luthey-Schulten Z, Tieleman DP, Hunter CN, Tajkhorshid E, Aksimentiev A, Schulten K. Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism. Cell 2019; 179:1098-1111.e23. [PMID: 31730852 PMCID: PMC7075482 DOI: 10.1016/j.cell.2019.10.021] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/04/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.
Collapse
Affiliation(s)
- Abhishek Singharoy
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ 85282, USA.
| | - Christopher Maffeo
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Karelia H Delgado-Magnero
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Melih Sener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - John W Vant
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ 85282, USA
| | - Jonathan Nguyen
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ 85282, USA
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Barry Isralewitz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ivan Teo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Danielle E Chandler
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John E Stone
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - James C Phillips
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Taras V Pogorelov
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - M Ilaria Mallus
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Christophe Chipot
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Laboratoire International Associé CNRS-UIUC, UMR 7019, Université de Lorraine, 54506 Vandœuvre-lès-Nancy, France
| | - Zaida Luthey-Schulten
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Departments of Biochemistry, Chemistry, Bioengineering, and Pharmacology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Aleksei Aksimentiev
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Klaus Schulten
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Dissecting the cytochrome c 2-reaction centre interaction in bacterial photosynthesis using single molecule force spectroscopy. Biochem J 2019; 476:2173-2190. [PMID: 31320503 PMCID: PMC6688529 DOI: 10.1042/bcj20170519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022]
Abstract
The reversible docking of small, diffusible redox proteins onto a membrane protein complex is a common feature of bacterial, mitochondrial and photosynthetic electron transfer (ET) chains. Spectroscopic studies of ensembles of such redox partners have been used to determine ET rates and dissociation constants. Here, we report a single-molecule analysis of the forces that stabilise transient ET complexes. We examined the interaction of two components of bacterial photosynthesis, cytochrome c 2 and the reaction centre (RC) complex, using dynamic force spectroscopy and PeakForce quantitative nanomechanical imaging. RC-LH1-PufX complexes, attached to silicon nitride AFM probes and maintained in a photo-oxidised state, were lowered onto a silicon oxide substrate bearing dispersed, immobilised and reduced cytochrome c 2 molecules. Microscale patterns of cytochrome c 2 and the cyan fluorescent protein were used to validate the specificity of recognition between tip-attached RCs and surface-tethered cytochrome c 2 Following the transient association of photo-oxidised RC and reduced cytochrome c 2 molecules, retraction of the RC-functionalised probe met with resistance, and forces between 112 and 887 pN were required to disrupt the post-ET RC-c 2 complex, depending on the retraction velocities used. If tip-attached RCs were reduced instead, the probability of interaction with reduced cytochrome c 2 molecules decreased 5-fold. Thus, the redox states of the cytochrome c 2 haem cofactor and RC 'special pair' bacteriochlorophyll dimer are important for establishing a productive ET complex. The millisecond persistence of the post-ET cytochrome c 2[oxidised]-RC[reduced] 'product' state is compatible with rates of cyclic photosynthetic ET, at physiologically relevant light intensities.
Collapse
|
11
|
Lapieza MP, Jungas C, Savirón M, Jarne C, Membrado L, Vela J, Orduna J, Garriga R, Galbán J, Cebolla VL. HPTLC coupled to ESI-Tandem MS for identifying phospholipids associated to membrane proteins in photosynthetic purple bacteria. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2018.1561465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- María P. Lapieza
- Instituto de Carboquímica, ICB-CSIC, C/Miguel Luesma, 4, 50018 Zaragoza, Spain
| | - Colette Jungas
- Cadarache‐DSV‐DEVM Laboratoire de Bioenergetique Cellulaire, CEA, St Paul‐lez‐Durance, France
| | - María Savirón
- Facultad de Ciencias, Instituto de Ciencia de Materiales de Aragón (UZ-CSIC), Zaragoza, Spain
| | - Carmen Jarne
- Instituto de Carboquímica, ICB-CSIC, C/Miguel Luesma, 4, 50018 Zaragoza, Spain
| | - Luis Membrado
- Instituto de Carboquímica, ICB-CSIC, C/Miguel Luesma, 4, 50018 Zaragoza, Spain
| | - Jesús Vela
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Jesús Orduna
- Facultad de Ciencias, Instituto de Ciencia de Materiales de Aragón (UZ-CSIC), Zaragoza, Spain
| | - Rosa Garriga
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Javier Galbán
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Vicente L. Cebolla
- Instituto de Carboquímica, ICB-CSIC, C/Miguel Luesma, 4, 50018 Zaragoza, Spain
| |
Collapse
|
12
|
Photosynthetic apparatus of Rhodobacter sphaeroides exhibits prolonged charge storage. Nat Commun 2019; 10:902. [PMID: 30796237 PMCID: PMC6385238 DOI: 10.1038/s41467-019-08817-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
Photosynthetic proteins have been extensively researched for solar energy harvesting. Though the light-harvesting and charge-separation functions of these proteins have been studied in depth, their potential as charge storage systems has not been investigated to the best of our knowledge. Here, we report prolonged storage of electrical charge in multilayers of photoproteins isolated from Rhodobacter sphaeroides. Direct evidence for charge build-up within protein multilayers upon photoexcitation and external injection is obtained by Kelvin-probe and scanning-capacitance microscopies. Use of these proteins is key to realizing a 'self-charging biophotonic device' that not only harvests light and photo-generates charges but also stores them. In strong correlation with the microscopic evidence, the phenomenon of prolonged charge storage is also observed in primitive power cells constructed from the purple bacterial photoproteins. The proof-of-concept power cells generated a photovoltage as high as 0.45 V, and stored charge effectively for tens of minutes with a capacitance ranging from 0.1 to 0.2 F m-2.
Collapse
|
13
|
Pfündel EE, Latouche G, Meister A, Cerovic ZG. Linking chloroplast relocation to different responses of photosynthesis to blue and red radiation in low and high light-acclimated leaves of Arabidopsis thaliana (L.). PHOTOSYNTHESIS RESEARCH 2018; 137:105-128. [PMID: 29374806 DOI: 10.1007/s11120-018-0482-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/09/2018] [Indexed: 05/16/2023]
Abstract
Low light (LL) and high light (HL)-acclimated plants of A. thaliana were exposed to blue (BB) or red (RR) light or to a mixture of blue and red light (BR) of incrementally increasing intensities. The light response of photosystem II was measured by pulse amplitude-modulated chlorophyll fluorescence and that of photosystem I by near infrared difference spectroscopy. The LL but not HL leaves exhibited blue light-specific responses which were assigned to relocation of chloroplasts from the dark to the light-avoidance arrangement. Blue light (BB and BR) decreased the minimum fluorescence ([Formula: see text]) more than RR light. This extra reduction of the [Formula: see text] was stronger than theoretically predicted for [Formula: see text] quenching by energy dissipation but actual measurement and theory agreed in RR treatments. The extra [Formula: see text] reduction was assigned to decreased light absorption of chloroplasts in the avoidance position. A maximum reduction of 30% was calculated. Increasing intensities of blue light affected the fluorescence parameters NPQ and qP to a lesser degree than red light. After correcting for the optical effects of chloroplast relocation, the NPQ responded similarly to blue and red light. The same correction method diminished the color-specific variations in qP but did not abolish it; thus strongly indicating the presence of another blue light effect which also moderates excitation pressure in PSII but cannot be ascribed to absorption variations. Only after RR exposure, a post-illumination overshoot of [Formula: see text] and fast oxidation of PSI electron acceptors occurred, thus, suggesting an electron flow from stromal reductants to the plastoquinone pool.
Collapse
Affiliation(s)
- Erhard E Pfündel
- Lehrstuhl für Botanik II der Universität Würzburg, Julius-von-Sachs Institut für Biowissenschaften, 97082, Würzburg, Germany.
- Heinz Walz GmbH, Eichenring 6, 91090, Effeltrich, Germany.
| | - Gwendal Latouche
- Université Paris-Saclay, Université Paris-Sud, Laboratoire Écologie Systématique et Évolution, UMR8079, Bât. 362, 91405, Orsay, France
- CNRS, 91405, Orsay, France
- AgroParisTech, 75231, Paris, France
| | - Armin Meister
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, 06466, Gatersleben, Germany
| | - Zoran G Cerovic
- Université Paris-Saclay, Université Paris-Sud, Laboratoire Écologie Systématique et Évolution, UMR8079, Bât. 362, 91405, Orsay, France
- CNRS, 91405, Orsay, France
- AgroParisTech, 75231, Paris, France
| |
Collapse
|
14
|
Swainsbury DJK, Proctor MS, Hitchcock A, Cartron ML, Qian P, Martin EC, Jackson PJ, Madsen J, Armes SP, Hunter CN. Probing the local lipid environment of the Rhodobacter sphaeroides cytochrome bc 1 and Synechocystis sp. PCC 6803 cytochrome b 6f complexes with styrene maleic acid. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:215-225. [PMID: 29291373 PMCID: PMC5805856 DOI: 10.1016/j.bbabio.2017.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 01/21/2023]
Abstract
Intracytoplasmic vesicles (chromatophores) in the photosynthetic bacterium Rhodobacter sphaeroides represent a minimal structural and functional unit for absorbing photons and utilising their energy for the generation of ATP. The cytochrome bc1 complex (cytbc1) is one of the four major components of the chromatophore alongside the reaction centre-light harvesting 1-PufX core complex (RC-LH1-PufX), the light-harvesting 2 complex (LH2), and ATP synthase. Although the membrane organisation of these complexes is known, their local lipid environments have not been investigated. Here we utilise poly(styrene-alt-maleic acid) (SMA) co-polymers as a tool to simultaneously determine the local lipid environments of the RC-LH1-PufX, LH2 and cytbc1 complexes. SMA has previously been reported to effectively solubilise complexes in lipid-rich membrane regions whilst leaving lipid-poor ordered protein arrays intact. Here we show that SMA solubilises cytbc1 complexes with an efficiency of nearly 70%, whereas solubilisation of RC-LH1-PufX and LH2 was only 10% and 22% respectively. This high susceptibility of cytbc1 to SMA solubilisation is consistent with this complex residing in a locally lipid-rich region. SMA solubilised cytbc1 complexes retain their native dimeric structure and co-purify with 56 ± 6 phospholipids from the chromatophore membrane. We extended this approach to the model cyanobacterium Synechocystis sp. PCC 6803, and show that the cytochrome b6f complex (cytb6f) and Photosystem II (PSII) complexes are susceptible to SMA solubilisation, suggesting they also reside in lipid-rich environments. Thus, lipid-rich membrane regions could be a general requirement for cytbc1/cytb6f complexes, providing a favourable local solvent to promote rapid quinol/quinone binding and release at the Q0 and Qi sites. SMA preferentially solubilises cytbc1 from chromatophore membranes. Solubilised cytbc1 SMALPs contain dimeric complexes co-purified with 56 lipids. SMA-resistant fractions contain RC-LH1-PufX and LH2 rich membrane patches. The Rba. sphaeroides cytbc1 complex is likely to reside in a lipid-rich environment. Similar results for Synechocystis suggest cytbc1/b6f may be universally lipid-rich.
Collapse
Affiliation(s)
- David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Matthew S Proctor
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Michaël L Cartron
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom; ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Jeppe Madsen
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Steven P Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom.
| |
Collapse
|
15
|
Jackson PJ, Hitchcock A, Swainsbury DJK, Qian P, Martin EC, Farmer DA, Dickman MJ, Canniffe DP, Hunter CN. Identification of protein W, the elusive sixth subunit of the Rhodopseudomonas palustris reaction center-light harvesting 1 core complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:119-128. [PMID: 29126780 PMCID: PMC5764122 DOI: 10.1016/j.bbabio.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 02/08/2023]
Abstract
The X-ray crystal structure of the Rhodopseudomonas (Rps.) palustris reaction center-light harvesting 1 (RC-LH1) core complex revealed the presence of a sixth protein component, variably referred to in the literature as helix W, subunit W or protein W. The position of this protein prevents closure of the LH1 ring, possibly to allow diffusion of ubiquinone/ubiquinol between the RC and the cytochrome bc1 complex in analogous fashion to the well-studied PufX protein from Rhodobacter sphaeroides. The identity and function of helix W have remained unknown for over 13 years; here we use a combination of biochemistry, mass spectrometry, molecular genetics and electron microscopy to identify this protein as RPA4402 in Rps. palustris CGA009. Protein W shares key conserved sequence features with PufX homologs, and although a deletion mutant was able to grow under photosynthetic conditions with no discernible phenotype, we show that a tagged version of protein W pulls down the RC-LH1 complex. Protein W is not encoded in the photosynthesis gene cluster and our data indicate that only approximately 10% of wild-type Rps. palustris core complexes contain this non-essential subunit; functional and evolutionary consequences of this observation are discussed. The ability to purify uniform RC-LH1 and RC-LH1-protein W preparations will also be beneficial for future structural studies of these bacterial core complexes. Identification of the protein W subunit of the Rps. palustris RC-LH1 core complex. The rpa4402 locus encoding protein W is not in the PGC. Protein W is present in only a sub-population of core complexes. Protein W is dispensable for photosynthetic growth. Pure plus/minus protein W core complex preparations will aid structural studies.
Collapse
Affiliation(s)
- Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK; ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - David A Farmer
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Mark J Dickman
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Daniel P Canniffe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
| |
Collapse
|
16
|
Swainsbury DJK, Martin EC, Vasilev C, Parkes-Loach PS, Loach PA, Neil Hunter C. Engineering of a calcium-ion binding site into the RC-LH1-PufX complex of Rhodobacter sphaeroides to enable ion-dependent spectral red-shifting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:927-938. [PMID: 28826909 PMCID: PMC5604489 DOI: 10.1016/j.bbabio.2017.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/02/2017] [Accepted: 08/17/2017] [Indexed: 01/01/2023]
Abstract
The reaction centre-light harvesting 1 (RC-LH1) complex of Thermochromatium (Tch.) tepidum has a unique calcium-ion binding site that enhances thermal stability and red-shifts the absorption of LH1 from 880nm to 915nm in the presence of calcium-ions. The LH1 antenna of mesophilic species of phototrophic bacteria such as Rhodobacter (Rba.) sphaeroides does not possess such properties. We have engineered calcium-ion binding into the LH1 antenna of Rba. sphaeroides by progressively modifying the native LH1 polypeptides with sequences from Tch. tepidum. We show that acquisition of the C-terminal domains from LH1 α and β of Tch. tepidum is sufficient to activate calcium-ion binding and the extent of red-shifting increases with the proportion of Tch. tepidum sequence incorporated. However, full exchange of the LH1 polypeptides with those of Tch. tepidum results in misassembled core complexes. Isolated α and β polypeptides from our most successful mutant were reconstituted in vitro with BChl a to form an LH1-type complex, which was stabilised 3-fold by calcium-ions. Additionally, carotenoid specificity was changed from spheroidene found in Rba. sphaeroides to spirilloxanthin found in Tch. tepidum, with the latter enhancing in vitro formation of LH1. These data show that the C-terminal LH1 α/β domains of Tch. tepidum behave autonomously, and are able to transmit calcium-ion induced conformational changes to BChls bound to the rest of a foreign antenna complex. Thus, elements of foreign antenna complexes, such as calcium-ion binding and blue/red switching of absorption, can be ported into Rhodobacter sphaeroides using careful design processes.
Collapse
Affiliation(s)
- David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom.
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Cvetelin Vasilev
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Pamela S Parkes-Loach
- Department of Molecular Biosciences, Northwestern University, Hogan 2100, 2205 Tech Drive, Evanston, IL 60208, United States
| | - Paul A Loach
- Department of Molecular Biosciences, Northwestern University, Hogan 2100, 2205 Tech Drive, Evanston, IL 60208, United States
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
17
|
Light harvesting in phototrophic bacteria: structure and function. Biochem J 2017; 474:2107-2131. [DOI: 10.1042/bcj20160753] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022]
Abstract
This review serves as an introduction to the variety of light-harvesting (LH) structures present in phototrophic prokaryotes. It provides an overview of the LH complexes of purple bacteria, green sulfur bacteria (GSB), acidobacteria, filamentous anoxygenic phototrophs (FAP), and cyanobacteria. Bacteria have adapted their LH systems for efficient operation under a multitude of different habitats and light qualities, performing both oxygenic (oxygen-evolving) and anoxygenic (non-oxygen-evolving) photosynthesis. For each LH system, emphasis is placed on the overall architecture of the pigment–protein complex, as well as any relevant information on energy transfer rates and pathways. This review addresses also some of the more recent findings in the field, such as the structure of the CsmA chlorosome baseplate and the whole-cell kinetics of energy transfer in GSB, while also pointing out some areas in need of further investigation.
Collapse
|
18
|
Olsen JD, Martin EC, Hunter CN. The PufX quinone channel enables the light-harvesting 1 antenna to bind more carotenoids for light collection and photoprotection. FEBS Lett 2017; 591:573-580. [PMID: 28130884 PMCID: PMC5347945 DOI: 10.1002/1873-3468.12575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 11/30/2022]
Abstract
Photosynthesis in some phototrophic bacteria requires the PufX component of the reaction centre–light‐harvesting 1–PufX (RC‐LH1‐PufX) complex, which creates a pore for quinone/quinol (Q/QH2) exchange across the LH1 barrier surrounding the RC. However, photosynthetic bacteria such as Thermochromatium (T.) tepidum do not require PufX because there are fewer carotenoid binding sites, which creates multiple pores in the LH1 ring for Q/QH2 exchange. We show that an αTrp‐24→Phe alteration of the Rhodobacter (Rba.) sphaeroides LH1 antenna impairs carotenoid binding and allows photosynthetic growth in the absence of PufX. We propose that acquisition of PufX and confining Q/QH2 traffic to a pore adjacent to the RC QB site is an evolutionary upgrade that allows increased LH1 carotenoid content for enhanced light absorption and photoprotection.
Collapse
Affiliation(s)
- John D Olsen
- Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| |
Collapse
|
19
|
Sener M, Strumpfer J, Singharoy A, Hunter CN, Schulten K. Overall energy conversion efficiency of a photosynthetic vesicle. eLife 2016; 5. [PMID: 27564854 PMCID: PMC5001839 DOI: 10.7554/elife.09541] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/11/2016] [Indexed: 11/25/2022] Open
Abstract
The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12–0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination. DOI:http://dx.doi.org/10.7554/eLife.09541.001 Photosynthesis, or the conversion of light energy into chemical energy, is a process that powers almost all life on Earth. Plants and certain bacteria share similar processes to perform photosynthesis, though the purple bacterium Rhodobacter sphaeroides uses a photosynthetic system that is much less complex than that in plants. Light harvesting inside the bacterium takes place in up to hundreds of compartments called chromatophores. Each chromatophore in turn contains hundreds of cooperating proteins that together absorb the energy of sunlight and convert and store it in molecules of ATP, the universal energy currency of all cells. The chromatophore of primitive purple bacteria provides a model for more complex photosynthetic systems in plants. Though researchers had characterized its individual components over the years, less was known about the overall architecture of the chromatophore and how its many components work together to harvest light energy efficiently and robustly. This knowledge would provide insight into the evolutionary pressures that shaped the chromatophore and its ability to work efficiently at different light intensities. Sener et al. now present a highly detailed structural model of the chromatophore of purple bacteria based on the findings of earlier studies. The model features the position of every atom of the constituent proteins and is used to examine how energy is transferred and converted. Sener et al. describe the sequence of energy conversion steps and calculate the overall energy conversion efficiency, namely how much of the light energy arriving at the microorganism is stored as ATP. These calculations show that the chromatophore is optimized to produce chemical energy at low light levels typical of purple bacterial habitats, and dissipate excess energy to avoid being damaged under brighter light. The chromatophore’s architecture also displays robustness against perturbations of its components. In the future, the approach used by Sener et al. to describe light harvesting in this bacterial compartment can be applied to more complex systems, such as those in plants. DOI:http://dx.doi.org/10.7554/eLife.09541.002
Collapse
Affiliation(s)
- Melih Sener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Johan Strumpfer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Abhishek Singharoy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
20
|
Chenchiliyan M, Timpmann K, Jalviste E, Adams PG, Hunter CN, Freiberg A. Dimerization of core complexes as an efficient strategy for energy trapping in Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:634-42. [DOI: 10.1016/j.bbabio.2016.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 11/24/2022]
|
21
|
Rappaport F. A method aimed at assessing the functional consequences of the supramolecular organization of the respiratory electron transfer chain by time-resolved studies. Methods Mol Biol 2015; 1241:95-109. [PMID: 25308491 DOI: 10.1007/978-1-4939-1875-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
A steadily increasing number of physiological, biochemical, and structural studies have provided a growing support to the notion that the respiratory electron transfer chain may contain supra-molecular edifices made of the assembly of some, if not all, of its individual links. This structure, usually referred to as the solid state model-in comparison to the liquid state model in which the electron transfer reactions between the membrane bound enzymes are diffusion controlled-is seen as conferring specific kinetic properties to the chain and thus as being highly relevant from a functional point of view. Although the assumption that structural changes are mirrored by functional adjustment is undoubtedly legitimate, experimental evidences supporting it remain scarce. Here we review a recent methodological development aimed at tackling the functional relevance of the supramolecular organization of the respiratory electron transfer chain in intact cells.
Collapse
Affiliation(s)
- Fabrice Rappaport
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P et M Curie, 75005, Paris, France,
| |
Collapse
|
22
|
Kimura Y, Kawakami T, Yu LJ, Yoshimura M, Kobayashi M, Wang-Otomo ZY. Characterization of the quinones in purple sulfur bacteriumThermochromatium tepidum. FEBS Lett 2015; 589:1761-5. [DOI: 10.1016/j.febslet.2015.05.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 11/27/2022]
|
23
|
Asztalos E, Sipka G, Maróti P. Fluorescence relaxation in intact cells of photosynthetic bacteria: donor and acceptor side limitations of reopening of the reaction center. PHOTOSYNTHESIS RESEARCH 2015; 124:31-44. [PMID: 25527461 DOI: 10.1007/s11120-014-0070-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
The dark relaxation of the yield of variable BChl fluorescence in the 10(-5)-10 s time range is measured after laser diode (808 nm) excitation of variable duration in intact cells of photosynthetic bacteria Rba. sphaeroides, Rsp. rubrum, and Rvx. gelatinosus under various treatments of redox agents, inhibitors, and temperature. The kinetics of the relaxation is complex and much wider extended than a monoexponential function. The longer is the excitation, the slower is the relaxation which is determined by the redox states, sizes, and accessibility of the pools of cytochrome [Formula: see text] and quinone for donor and acceptor side-limited bacterial strains, respectively. The kinetics of fluorescence decay reflects the opening kinetics of the closed RC. The relaxation is controlled preferentially by the rate of re-reduction of the oxidized dimer by mobile cytochrome [Formula: see text] in Rba. sphaeroides and Rsp. rubrum and by the rate constant of the [Formula: see text] interquinone electron transfer, (350 μs)(-1) and/or the quinol/quinone exchange at the acceptor side in Rvx. gelatinosus. The commonly used acceptor side inhibitors (e.g., terbutryn) demonstrate kinetically limited block of re-oxidation of the primary quinone. The observations are interpreted in frame of a minimum kinetic and energetic model of electron transfer reactions in bacterial RC of intact cells.
Collapse
Affiliation(s)
- Emese Asztalos
- Department of Medical Physics, University of Szeged, Szeged, Rerrich Béla tér 1, 6720, Hungary
| | | | | |
Collapse
|
24
|
Kis M, Asztalos E, Sipka G, Maróti P. Assembly of photosynthetic apparatus in Rhodobacter sphaeroides as revealed by functional assessments at different growth phases and in synchronized and greening cells. PHOTOSYNTHESIS RESEARCH 2014; 122:261-273. [PMID: 25022916 DOI: 10.1007/s11120-014-0026-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
The development of photosynthetic membranes of intact cells of Rhodobacter sphaeroides was tracked by light-induced absorption spectroscopy and induction and relaxation of the bacteriochlorophyll fluorescence. Changes in membrane structure were induced by three methods: synchronization of cell growth, adjustment of different growth phases and transfer from aerobic to anaerobic conditions (greening) of the bacteria. While the production of the bacteriochlorophyll and carotenoid pigments and the activation of light harvesting and reaction center complexes showed cell-cycle independent and continuous increase with characteristic lag phases, the accumulation of phospholipids and membrane potential (electrochromism) exhibited stepwise increase controlled by cell division. Cells in the stationary phase of growth demonstrated closer packing and tighter energetic coupling of the photosynthetic units (PSU) than in their early logarithmic stage. The greening resulted in rapid (within 0-4 h) induction of BChl synthesis accompanied with a dominating role for the peripheral light harvesting system (up to LH2/LH1 ~2.5), significantly increased rate (~7·10(4) s(-1)) and yield (F v/F max ~0.7) of photochemistry and modest (~2.5-fold) decrease of the rate of electron transfer (~1.5·10(4) s(-1)). The results are discussed in frame of a model of sequential assembly of the PSU with emphasis on crowding the LH2 complexes resulting in an increase of the connectivity and yield of light capture on the one hand and increase of hindrance to diffusion of mobile redox agents on the other hand.
Collapse
Affiliation(s)
- M Kis
- Department of Medical Physics, University of Szeged, Rerrich Béla tér 1, Szeged, 6720, Hungary
| | | | | | | |
Collapse
|
25
|
Kamran M, Delgado JD, Friebe V, Aartsma TJ, Frese RN. Photosynthetic Protein Complexes as Bio-photovoltaic Building Blocks Retaining a High Internal Quantum Efficiency. Biomacromolecules 2014; 15:2833-8. [DOI: 10.1021/bm500585s] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Muhammad Kamran
- Leiden
Institute of Physics, Leiden University, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | - Juan D. Delgado
- VU University, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
| | - Vincent Friebe
- VU University, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
| | - Thijs J. Aartsma
- Leiden
Institute of Physics, Leiden University, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | - Raoul N. Frese
- VU University, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
26
|
Vasilev C, Brindley AA, Olsen JD, Saer RG, Beatty JT, Hunter CN. Nano-mechanical mapping of the interactions between surface-bound RC-LH1-PufX core complexes and cytochrome c 2 attached to an AFM probe. PHOTOSYNTHESIS RESEARCH 2014; 120:169-180. [PMID: 23539360 PMCID: PMC4104003 DOI: 10.1007/s11120-013-9812-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/11/2013] [Indexed: 05/29/2023]
Abstract
Electron transfer pathways in photosynthesis involve interactions between membrane-bound complexes such as reaction centres with an extrinsic partner. In this study, the biological specificity of electron transfer between the reaction centre-light-harvesting 1-PufX complex and its extrinsic electron donor, cytochrome c 2, formed the basis for mapping the location of surface-attached RC-LH1-PufX complexes using atomic force microscopy (AFM). This nano-mechanical mapping method used an AFM probe functionalised with cyt c 2 molecules to quantify the interaction forces involved, at the single-molecule level under native conditions. With surface-bound RC-His12-LH1-PufX complexes in the photo-oxidised state, the mean interaction force with cyt c 2 is approximately 480 pN with an interaction frequency of around 66 %. The latter value lowered 5.5-fold when chemically reduced RC-His12-LH1-PufX complexes are imaged in the dark to abolish electron transfer from cyt c 2 to the RC. The correspondence between topographic and adhesion images recorded over the same area of the sample shows that affinity-based AFM methods are a useful tool when topology alone is insufficient for spatially locating proteins at the surface of photosynthetic membranes.
Collapse
Affiliation(s)
- Cvetelin Vasilev
- />Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| | - Amanda A. Brindley
- />Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| | - John D. Olsen
- />Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| | - Rafael G. Saer
- />Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - J. T. Beatty
- />Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - C. N. Hunter
- />Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| |
Collapse
|
27
|
Verméglio A, Joliot P. Modulation of the redox state of quinones by light in Rhodobacter sphaeroides under anaerobic conditions. PHOTOSYNTHESIS RESEARCH 2014; 120:237-246. [PMID: 24379133 DOI: 10.1007/s11120-013-9961-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Illumination of intact cells of Rhodobacter sphaeroides under anaerobic conditions has a dual effect on the redox state of the quinone pool. A large oxidation of the quinone pool is observed during the first seconds following the illumination. This oxidation is suppressed by the addition of an uncoupler in agreement with a light-induced reverse electron transfer at the level of the complex I, present both in the non-invaginated part of the membrane and in the chromatophores. At longer dark times, this illumination increases the reducing power of the cells leading to a significant reduction of the others reaction centers (RCs). From the observation that a significant proportion of RCs could be reduced by the preillumination without affecting the numbers of charge separation for the RCs, we conclude that there is no rapid thermodynamic equilibrium between the quinones present in the non-invaginated part of the membrane and those localized in the chromatophores. Under anaerobic conditions where the chromatophores quinone pool is fully reduced, we deduce, on the basis of flash-induced fluorescence kinetics, that the reduced RCs are exclusively reoxidized by the quinone generated at the Q o site of the cyt bc 1 complex. The supramolecular association between a dimeric RC-LHI complex and one cyt bc 1 complex allows the confinement of a quinone between the RC-LHI directly associated to the cyt bc1 complex.
Collapse
Affiliation(s)
- André Verméglio
- CEA-Cadarache, DSV-SBVME, Laboratoire de Bioénergétique Cellulaire, UMR 7265, CNRS-CEA-Aix-Marseille II, 13108, Saint Paul lez Durance Cedex, France,
| | | |
Collapse
|
28
|
Cartron ML, Olsen JD, Sener M, Jackson PJ, Brindley AA, Qian P, Dickman MJ, Leggett GJ, Schulten K, Neil Hunter C. Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1769-80. [PMID: 24530865 DOI: 10.1016/j.bbabio.2014.02.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 02/04/2023]
Abstract
Photosynthesis converts absorbed solar energy to a protonmotive force, which drives ATP synthesis. The membrane network of chlorophyll-protein complexes responsible for light absorption, photochemistry and quinol (QH2) production has been mapped in the purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides using atomic force microscopy (AFM), but the membrane location of the cytochrome bc1 (cytbc1) complexes that oxidise QH2 to quinone (Q) to generate a protonmotive force is unknown. We labelled cytbc1 complexes with gold nanobeads, each attached by a Histidine10 (His10)-tag to the C-terminus of cytc1. Electron microscopy (EM) of negatively stained chromatophore vesicles showed that the majority of the cytbc1 complexes occur as dimers in the membrane. The cytbc1 complexes appeared to be adjacent to reaction centre light-harvesting 1-PufX (RC-LH1-PufX) complexes, consistent with AFM topographs of a gold-labelled membrane. His-tagged cytbc1 complexes were retrieved from chromatophores partially solubilised by detergent; RC-LH1-PufX complexes tended to co-purify with cytbc1 whereas LH2 complexes became detached, consistent with clusters of cytbc1 complexes close to RC-LH1-PufX arrays, but not with a fixed, stoichiometric cytbc1-RC-LH1-PufX supercomplex. This information was combined with a quantitative mass spectrometry (MS) analysis of the RC, cytbc1, ATP synthase, cytaa3 and cytcbb3 membrane protein complexes, to construct an atomic-level model of a chromatophore vesicle comprising 67 LH2 complexes, 11 LH1-RC-PufX dimers & 2 RC-LH1-PufX monomers, 4 cytbc1 dimers and 2 ATP synthases. Simulation of the interconnected energy, electron and proton transfer processes showed a half-maximal ATP turnover rate for a light intensity equivalent to only 1% of bright sunlight. Thus, the photosystem architecture of the chromatophore is optimised for growth at low light intensities.
Collapse
Affiliation(s)
- Michaël L Cartron
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - John D Olsen
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Melih Sener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK; ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Amanda A Brindley
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Mark J Dickman
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Graham J Leggett
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
29
|
Qian P, Papiz MZ, Jackson PJ, Brindley AA, Ng IW, Olsen JD, Dickman MJ, Bullough PA, Hunter CN. Three-Dimensional Structure of the Rhodobacter sphaeroides RC-LH1-PufX Complex: Dimerization and Quinone Channels Promoted by PufX. Biochemistry 2013; 52:7575-85. [DOI: 10.1021/bi4011946] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pu Qian
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Firth Court, Sheffield S10 2TN, United Kingdom
| | - Miroslav Z. Papiz
- Institute
of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Philip J. Jackson
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Firth Court, Sheffield S10 2TN, United Kingdom
- ChELSI
Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Amanda A. Brindley
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Firth Court, Sheffield S10 2TN, United Kingdom
| | - Irene W. Ng
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Firth Court, Sheffield S10 2TN, United Kingdom
| | - John D. Olsen
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Firth Court, Sheffield S10 2TN, United Kingdom
| | - Mark J. Dickman
- ChELSI
Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Per A. Bullough
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Firth Court, Sheffield S10 2TN, United Kingdom
| | - C. Neil Hunter
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Firth Court, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
30
|
Stirbet A. Excitonic connectivity between photosystem II units: what is it, and how to measure it? PHOTOSYNTHESIS RESEARCH 2013; 116:189-214. [PMID: 23794168 DOI: 10.1007/s11120-013-9863-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/26/2013] [Indexed: 05/22/2023]
Abstract
In photosynthetic organisms, light energy is absorbed by a complex network of chromophores embedded in light-harvesting antenna complexes. In photosystem II (PSII), the excitation energy from the antenna is transferred very efficiently to an active reaction center (RC) (i.e., with oxidized primary quinone acceptor Q(A)), where the photochemistry begins, leading to O2 evolution, and reduction of plastoquinones. A very small part of the excitation energy is dissipated as fluorescence and heat. Measurements on chlorophyll (Chl) fluorescence and oxygen have shown that a nonlinear (hyperbolic) relationship exists between the fluorescence yield (Φ(F)) (or the oxygen emission yield, (Φ(O2)) and the fraction of closed PSII RCs (i.e., with reduced Q(A)). This nonlinearity is assumed to be related to the transfer of the excitation energy from a closed PSII RC to an open (active) PSII RC, a process called PSII excitonic connectivity by Joliot and Joliot (CR Acad Sci Paris 258: 4622-4625, 1964). Different theoretical approaches of the PSII excitonic connectivity, and experimental methods used to measure it, are discussed in this review. In addition, we present alternative explanations of the observed sigmoidicity of the fluorescence induction and oxygen evolution curves.
Collapse
|
31
|
Barret LA, Barrot-Ivolot C, Raynal S, Jungas C, Polidori A, Bonneté F. Influence of Hydrophobic Micelle Structure on Crystallization of the Photosynthetic RC-LH1-PufX Complex from Rhodobacter blasticus. J Phys Chem B 2013; 117:8770-81. [DOI: 10.1021/jp403483q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laurie-Anne Barret
- Institut des Biomolécules
Max Mousseron (IBMM) UMR 5247 CNRS-Universités Montpellier
1 et 2, Chimie Bioorganique et Systèmes Amphiphiles, Université d’Avignon et des Pays de Vaucluse, 33 rue Louis Pasteur, F-84000 Avignon, France
- CEA DSV IBEB Lab Bioenerget Cellulaire, CNRS UMR Biol Veget & Microbiol Environ, Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Cherone Barrot-Ivolot
- Institut des Biomolécules
Max Mousseron (IBMM) UMR 5247 CNRS-Universités Montpellier
1 et 2, Chimie Bioorganique et Systèmes Amphiphiles, Université d’Avignon et des Pays de Vaucluse, 33 rue Louis Pasteur, F-84000 Avignon, France
| | - Simon Raynal
- Institut des Biomolécules
Max Mousseron (IBMM) UMR 5247 CNRS-Universités Montpellier
1 et 2, Chimie Bioorganique et Systèmes Amphiphiles, Université d’Avignon et des Pays de Vaucluse, 33 rue Louis Pasteur, F-84000 Avignon, France
| | - Colette Jungas
- CEA DSV IBEB Lab Bioenerget Cellulaire, CNRS UMR Biol Veget & Microbiol Environ, Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Ange Polidori
- Institut des Biomolécules
Max Mousseron (IBMM) UMR 5247 CNRS-Universités Montpellier
1 et 2, Chimie Bioorganique et Systèmes Amphiphiles, Université d’Avignon et des Pays de Vaucluse, 33 rue Louis Pasteur, F-84000 Avignon, France
| | - Françoise Bonneté
- Institut des Biomolécules
Max Mousseron (IBMM) UMR 5247 CNRS-Universités Montpellier
1 et 2, Chimie Bioorganique et Systèmes Amphiphiles, Université d’Avignon et des Pays de Vaucluse, 33 rue Louis Pasteur, F-84000 Avignon, France
| |
Collapse
|
32
|
Saer RG, Hardjasa A, Rosell FI, Mauk AG, Murphy MEP, Beatty JT. Role of Rhodobacter sphaeroides Photosynthetic Reaction Center Residue M214 in the Composition, Absorbance Properties, and Conformations of HA and BA Cofactors. Biochemistry 2013; 52:2206-17. [DOI: 10.1021/bi400207m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Rafael G. Saer
- Department
of Microbiology and Immunology and ‡Department of Biochemistry and Molecular Biology
and Centre for Blood Research, The University of British Columbia, 2350 Health Sciences Mall, Vancouver,
BC, Canada V6T 1Z3
| | - Amelia Hardjasa
- Department
of Microbiology and Immunology and ‡Department of Biochemistry and Molecular Biology
and Centre for Blood Research, The University of British Columbia, 2350 Health Sciences Mall, Vancouver,
BC, Canada V6T 1Z3
| | - Federico I. Rosell
- Department
of Microbiology and Immunology and ‡Department of Biochemistry and Molecular Biology
and Centre for Blood Research, The University of British Columbia, 2350 Health Sciences Mall, Vancouver,
BC, Canada V6T 1Z3
| | - A. Grant Mauk
- Department
of Microbiology and Immunology and ‡Department of Biochemistry and Molecular Biology
and Centre for Blood Research, The University of British Columbia, 2350 Health Sciences Mall, Vancouver,
BC, Canada V6T 1Z3
| | - Michael E. P. Murphy
- Department
of Microbiology and Immunology and ‡Department of Biochemistry and Molecular Biology
and Centre for Blood Research, The University of British Columbia, 2350 Health Sciences Mall, Vancouver,
BC, Canada V6T 1Z3
| | - J. Thomas Beatty
- Department
of Microbiology and Immunology and ‡Department of Biochemistry and Molecular Biology
and Centre for Blood Research, The University of British Columbia, 2350 Health Sciences Mall, Vancouver,
BC, Canada V6T 1Z3
| |
Collapse
|
33
|
Barret LA, Polidori A, Bonneté F, Bernard-Savary P, Jungas C. A new high-performance thin layer chromatography-based assay of detergents and surfactants commonly used in membrane protein studies. J Chromatogr A 2013; 1281:135-41. [PMID: 23398993 DOI: 10.1016/j.chroma.2013.01.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
The hydrophobic nature of membrane proteins (MPs) necessitates the use of detergents for their extraction, solubilization and purification. Because the concentration of amphiphiles is crucial in the crystallization process, detergent quantification is essential to routine analysis. Here we describe a quantitative high-performance thin-layer chromatography (HPTLC) method we developed for the detection of small quantities of detergent bound to solubilized MPs. After optimization of aqueous deposit conditions, we show that most detergents widely used in membrane protein crystallography display distinctive mobilities in a mixture of dichloromethane, methanol and acetic acid 32:7.6:0.4 (v/v/v). Migration and derivatization conditions were optimized with n-dodecyl-β-D-maltoside (DDM), the most popular detergent for membrane protein crystallization. A linear calibration curve very well fits our data from 0.1 to 1.6 μg of DDM in water with a limit of detection of 0.05 μg. This limit of detection is the best achieved to date for a routine detergent assay, being not modified by the addition of NaCl, commonly used in protein buffers. With these chromatographic conditions, no prior treatment is required to assess the quantities of detergent bound to purified MPs, thus enabling the quantification of close structure detergents via a single procedure. This HPTLC method, which is fast and requires low sample volume, is fully suitable for routine measurements.
Collapse
Affiliation(s)
- Laurie-Anne Barret
- CEA, IBEB, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, F-13108, France
| | | | | | | | | |
Collapse
|
34
|
Kato Y, Shibamoto T, Yamamoto S, Watanabe T, Ishida N, Sugiura M, Rappaport F, Boussac A. Influence of the PsbA1/PsbA3, Ca2+/Sr2+ and Cl−/Br− exchanges on the redox potential of the primary quinone QA in Photosystem II from Thermosynechococcus elongatus as revealed by spectroelectrochemistry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1998-2004. [PMID: 22721916 DOI: 10.1016/j.bbabio.2012.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/09/2012] [Accepted: 06/11/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Yuki Kato
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Stahl AD, Crouch LI, Jones MR, van Stokkum I, van Grondelle R, Groot ML. Role of PufX in Photochemical Charge Separation in the RC-LH1 Complex from Rhodobacter sphaeroides: An Ultrafast Mid-IR Pump–Probe Investigation. J Phys Chem B 2011; 116:434-44. [DOI: 10.1021/jp206697k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Andreas D. Stahl
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Lucy I. Crouch
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Michael R. Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Ivo van Stokkum
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marie Louise Groot
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Woronowicz K, Sha D, Frese RN, Sturgis JN, Nanda V, Niederman RA. The effects of protein crowding in bacterial photosynthetic membranes on the flow of quinone redox species between the photochemical reaction center and the ubiquinol-cytochrome c2 oxidoreductase. Metallomics 2011; 3:765-74. [PMID: 21691621 DOI: 10.1039/c1mt00034a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Atomic force microscopy (AFM) of the native architecture of the intracytoplasmic membrane (ICM) of a variety of species of purple photosynthetic bacteria, obtained at submolecular resolution, shows a tightly packed arrangement of light harvesting (LH) and reaction center (RC) complexes. Since there are no unattributed structures or gaps with space sufficient for the cytochrome bc(1) or ATPase complexes, they are localized in membrane domains distinct from the flat regions imaged by AFM. This has generated a renewed interest in possible long-range pathways for lateral diffusion of UQ redox species that functionally link the RC and the bc(1) complexes. Recent proposals to account for UQ flow in the membrane bilayer are reviewed, along with new experimental evidence provided from an analysis of intrinsic near-IR fluorescence emission that has served to test these hypotheses. The results suggest that different mechanism of UQ flow exist between species such as Rhodobacter sphaeroides, with a highly organized arrangement of LH and RC complexes and fast RC electron transfer turnover, and Phaeospirillum molischianum with a more random organization and slower RC turnover. It is concluded that packing density of the peripheral LH2 antenna in the Rba. sphaeroides ICM imposes constraints that significantly slow the diffusion of UQ redox species between the RC and cytochrome bc(1) complex, while in Phs. molischianum, the crowding of the ICM with LH3 has little effect upon UQ diffusion. This supports the proposal that in this type of ICM, a network of RC-LH1 core complexes observed in AFM provides a pathway for long-range quinone diffusion that is unaffected by differences in LH complex composition or organization.
Collapse
Affiliation(s)
- Kamil Woronowicz
- Department of Molecular Biology and Biochemistry, Rutgers University, Busch Campus, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ratcliffe EC, Tunnicliffe RB, Ng IW, Adams PG, Qian P, Holden-Dye K, Jones MR, Williamson MP, Hunter CN. Experimental evidence that the membrane-spanning helix of PufX adopts a bent conformation that facilitates dimerisation of the Rhodobacter sphaeroides RC-LH1 complex through N-terminal interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:95-107. [PMID: 20937243 DOI: 10.1016/j.bbabio.2010.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/27/2010] [Accepted: 10/04/2010] [Indexed: 10/19/2022]
Abstract
The PufX polypeptide is an integral component of some photosynthetic bacterial reaction center-light harvesting 1 (RC-LH1) core complexes. Many aspects of the structure of PufX are unresolved, including the conformation of its long membrane-spanning helix and whether C-terminal processing occurs. In the present report, NMR data recorded on the Rhodobacter sphaeroides PufX in a detergent micelle confirmed previous conclusions derived from equivalent data obtained in organic solvent, that the α-helix of PufX adopts a bent conformation that would allow the entire helix to reside in the membrane interior or at its surface. In support of this, it was found through the use of site-directed mutagenesis that increasing the size of a conserved glycine on the inside of the bend in the helix was not tolerated. Possible consequences of this bent helical structure were explored using a series of N-terminal deletions. The N-terminal sequence ADKTIFNDHLN on the cytoplasmic face of the membrane was found to be critical for the formation of dimers of the RC-LH1 complex. It was further shown that the C-terminus of PufX is processed at an early stage in the development of the photosynthetic membrane. A model in which two bent PufX polypeptides stabilise a dimeric RC-LH1 complex is presented, and it is proposed that the N-terminus of PufX from one half of the dimer engages in electrostatic interactions with charged residues on the cytoplasmic surface of the LH1α and β polypeptides on the other half of the dimer.
Collapse
Affiliation(s)
- Emma C Ratcliffe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
de Rivoyre M, Ginet N, Bouyer P, Lavergne J. Excitation transfer connectivity in different purple bacteria: a theoretical and experimental study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1780-94. [PMID: 20655292 DOI: 10.1016/j.bbabio.2010.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/13/2010] [Accepted: 07/15/2010] [Indexed: 11/30/2022]
Abstract
Photosynthetic membranes accommodate densely packed light-harvesting complexes which absorb light and convey excitation to the reaction center (RC). The relationship between the fluorescence yield (phi) and the fraction (x) of closed RCs is informative about the probability for an excitation reaching a closed RC to be redirected to another RC. In this work, we have examined in this respect membranes from various bacteria and searched for a correlation with the arrangement of the light-harvesting complexes as known from atomic force or electron microscopies. A first part of the paper is devoted to a theoretical study analyzing the phi(x) relationship in various models: monomeric or dimeric RC-LH1 core complexes, with or without the peripheral LH2 complexes. We show that the simple "homogeneous" kinetic treatment used here agrees well with more detailed master equation calculations. We also discuss the agreement between information derived from the present technique and from singlet annihilation experiments. The experimental results show that the enhancement of the cross section of open RCs due to excitation transfer from closed units varies from 1.5 to 3 depending on species. The ratio of the core to core transfer rate (including the indirect pathway via LH2) to the rate of trapping in open units is in the range of 0.5 to 4. It is about 1 in Rhodobacter sphaeroides and does not increase significantly in mutants lacking LH2-despite the more numerous contacts between the dimeric core complexes expected in this case. The connectivity in this bacterium is due in good part to the fast transfer between the two partners of the dimeric (RC-LH1-PufX)(2) complex. The connectivity is however increased in the carotenoidless and LH2-less strain R26, which we ascribe to an anomalous LH1. A relatively high connectivity was found in Rhodospirillum photometricum, although not as high as predicted in the calculations of Fassioli et al. (2010). This illustrates a more general discrepancy between the measured efficiency of core to core excitation transfer and theoretical estimates. We argue that the limited core to core connectivity found in purple bacteria may reflect a trade-off between light-harvesting efficiency and the hindrance to quinone diffusion that would result from too tightly packed LH complexes.
Collapse
Affiliation(s)
- Matthieu de Rivoyre
- Laboratoire de Bioénergétique Cellulaire (CEA/DSV/IBEB; UMR 6191 CNRS/CEA) Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | | | | | | |
Collapse
|
39
|
Shibamoto T, Kato Y, Nagao R, Yamazaki T, Tomo T, Watanabe T. Species-dependence of the redox potential of the primary quinone electron acceptor QA
in photosystem II verified by spectroelectrochemistry. FEBS Lett 2010; 584:1526-30. [PMID: 20211622 DOI: 10.1016/j.febslet.2010.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 03/01/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
|
40
|
Energy transfer in light-adapted photosynthetic membranes: from active to saturated photosynthesis. Biophys J 2010; 97:2464-73. [PMID: 19883589 DOI: 10.1016/j.bpj.2009.08.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/29/2009] [Accepted: 08/03/2009] [Indexed: 11/21/2022] Open
Abstract
In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane architectures of Rhodospirillum photometricum. A model is presented to describe excitation migration across the full range of light intensities that cover states from active photosynthesis, where all RCs are available for charge separation, to saturated photosynthesis where all RCs are unavailable. Our study outlines three key findings. First, there is a critical light-energy density, below which the low-light adapted membrane is more efficient at absorbing photons and generating a charge separation at RCs, than the high-light-adapted membrane. Second, connectivity of core complexes is similar in both membranes, suggesting that, despite different growth conditions, a preferred transfer pathway is through core-core contacts. Third, there may be minimal subareas on the membrane which, containing the same LH2:LH1 ratio, behave as minimal functional units as far as excitation transfer efficiency is concerned.
Collapse
|
41
|
Export or recombination of charges in reaction centers in intact cells of photosynthetic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1444-50. [DOI: 10.1016/j.bbabio.2009.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 11/24/2022]
|
42
|
Scheuring S, Sturgis JN. Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaborate machinery. PHOTOSYNTHESIS RESEARCH 2009; 102:197-211. [PMID: 19266309 DOI: 10.1007/s11120-009-9413-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 02/10/2009] [Indexed: 05/27/2023]
Abstract
Photosynthesis both in the past and present provides the vast majority of the energy used on the planet. The purple photosynthetic bacteria are a group of organisms that are able to perform photosynthesis using a particularly simple system that has been much studied. The main molecular constituents required for photosynthesis in these organisms are a small number of transmembrane pigment-protein complexes. These are able to function together with a high quantum efficiency (about 95%) to convert light energy into chemical potential energy. While the structure of the various proteins have been solved for several years, direct studies of the supramolecular assembly of these complexes in native membranes needed maturity of the atomic force microscope (AFM). Here, we review the novel findings and the direct conclusions that could be drawn from high-resolution AFM analysis of photosynthetic membranes. These conclusions rely on the possibility that the AFM brings of obtaining molecular resolution images of large membrane areas and thereby bridging the resolution gap between atomic structures and cellular ultrastructure.
Collapse
Affiliation(s)
- Simon Scheuring
- Institut Curie, UMR168-CNRS, 26 Rue d’Ulm, 75248 Paris, France.
| | | |
Collapse
|
43
|
Blanchet L, Ruckebusch C, Mezzetti A, Huvenne JP, de Juan A. Monitoring and Interpretation of Photoinduced Biochemical Processes by Rapid-Scan FTIR Difference Spectroscopy and Hybrid Hard and Soft Modeling. J Phys Chem B 2009; 113:6031-40. [DOI: 10.1021/jp8056042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lionel Blanchet
- Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), UMR CNRS 8516, Université des Sciences et Technologies de Lille (USTL), bât. C5, 59655 Villeneuve d’Ascq, France; Chemometrics Group, Department of Analytical Chemistry, Universitat de Barcelona, Diagonal, 647, 08028 Barcelona, Spain; and Service de Bioénenergétique Biologie Structurale et Mécanismes (SB2SM), iBiTecS, CEA, URA CNRS 2096, F-91191 Gif-sur-Yvette, France
| | - Cyril Ruckebusch
- Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), UMR CNRS 8516, Université des Sciences et Technologies de Lille (USTL), bât. C5, 59655 Villeneuve d’Ascq, France; Chemometrics Group, Department of Analytical Chemistry, Universitat de Barcelona, Diagonal, 647, 08028 Barcelona, Spain; and Service de Bioénenergétique Biologie Structurale et Mécanismes (SB2SM), iBiTecS, CEA, URA CNRS 2096, F-91191 Gif-sur-Yvette, France
| | - Alberto Mezzetti
- Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), UMR CNRS 8516, Université des Sciences et Technologies de Lille (USTL), bât. C5, 59655 Villeneuve d’Ascq, France; Chemometrics Group, Department of Analytical Chemistry, Universitat de Barcelona, Diagonal, 647, 08028 Barcelona, Spain; and Service de Bioénenergétique Biologie Structurale et Mécanismes (SB2SM), iBiTecS, CEA, URA CNRS 2096, F-91191 Gif-sur-Yvette, France
| | - Jean Pierre Huvenne
- Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), UMR CNRS 8516, Université des Sciences et Technologies de Lille (USTL), bât. C5, 59655 Villeneuve d’Ascq, France; Chemometrics Group, Department of Analytical Chemistry, Universitat de Barcelona, Diagonal, 647, 08028 Barcelona, Spain; and Service de Bioénenergétique Biologie Structurale et Mécanismes (SB2SM), iBiTecS, CEA, URA CNRS 2096, F-91191 Gif-sur-Yvette, France
| | - Anna de Juan
- Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), UMR CNRS 8516, Université des Sciences et Technologies de Lille (USTL), bât. C5, 59655 Villeneuve d’Ascq, France; Chemometrics Group, Department of Analytical Chemistry, Universitat de Barcelona, Diagonal, 647, 08028 Barcelona, Spain; and Service de Bioénenergétique Biologie Structurale et Mécanismes (SB2SM), iBiTecS, CEA, URA CNRS 2096, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
44
|
Bina D, Litvin R, Vacha F. Kinetics of in vivo bacteriochlorophyll fluorescence yield and the state of photosynthetic apparatus of purple bacteria. PHOTOSYNTHESIS RESEARCH 2009; 99:115-125. [PMID: 19199074 DOI: 10.1007/s11120-009-9408-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 01/14/2009] [Indexed: 05/27/2023]
Abstract
The light-induced electron transport in purple bacterium Rhodobacter sphaeroides was studied in vivo by means of kinetic difference absorption spectroscopy and kinetics of bacteriochlorophyll fluorescence yield. Measurements of redox state of the oxidised primary donor and cytochrome c and the membrane potential revealed a complex pattern of changes of the electron flow. Effects of the membrane potential on the fluorescence yield were also analysed, and a model for the fluorescence induction curve is presented. The data indicate substantial positive effect of the membrane potential on the fluorescence emission in vivo. Moreover, light-induced changes in light scattering were observed, which suggests occurrence of structural changes on the level of the photosynthetic membrane.
Collapse
Affiliation(s)
- David Bina
- Biology Centre of AVCR, v.v.i, Institute of Plant Molecular Biology, Ceske Budejovice, Czech Republic
| | | | | |
Collapse
|
45
|
Organization and Assembly of Light-Harvesting Complexes in the Purple Bacterial Membrane. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4020-8815-5_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
46
|
Lavergne J, Verméglio A, Joliot P. Functional Coupling Between Reaction Centers and Cytochrome bc 1 Complexes. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
|
48
|
Mascle-Allemand C, Lavergne J, Bernadac A, Sturgis JN. Organisation and function of the Phaeospirillum molischianum photosynthetic apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1552-9. [PMID: 18948077 DOI: 10.1016/j.bbabio.2008.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/01/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
We have investigated the organisation of the photosynthetic apparatus in Phaeospirillum molischianum, using biochemical fractionation and functional kinetic measurements. We show that only a fraction of the ATP-synthase is present in the membrane regions which contain most of the photosynthetic apparatus and that, despite its complicated stacked structure, the intracytoplasmic membrane delimits a single connected space. We find that the diffusion time required for a quinol released by the reaction centre to reach a cytochrome bc1 complex is about 260 ms. On the other hand, the reduction of the cytochrome c chain by the cytochrome bc1 complex in the presence of a reduced quinone pool occurs with a time constant of about 5 ms. The overall turnover time of the cyclic electron transfer is about 25 ms in vivo under steady-state illumination. The sluggishness of the quinone shuttle appears to be compensated, at least in part, by the size of the quinone pool. Together, our results show that P. molischianum contains a photosynthetic system, with a very different organisation from that found in Rhodobacter sphaeroides, in which quinone/quinol diffusion between the RC and the cytochrome bc1 is likely to be the rate-limiting factor for cyclic electron transfer.
Collapse
Affiliation(s)
- Camille Mascle-Allemand
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR 9027, Institut de Biologie Structurale et Microbiologie, CNRS, 31 Chemin Joseph Aiguier, Marseille, 13402, France
| | | | | | | |
Collapse
|
49
|
Qian P, Bullough PA, Hunter CN. Three-dimensional reconstruction of a membrane-bending complex: the RC-LH1-PufX core dimer of Rhodobacter sphaeroides. J Biol Chem 2008; 283:14002-11. [PMID: 18326046 DOI: 10.1074/jbc.m800625200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A three-dimensional model of the dimeric reaction center-light harvesting I-PufX (RC-LH1-PufX) complex from Rhodobacter sphaeroides, calculated from electron microscope single particle analysis of negatively stained complexes, shows that the two halves of the dimer molecule incline toward each other on the periplasmic side, creating a remarkable V-shaped structure. The distribution of negative stain is consistent with loose packing of the LH1 ring near the 14th LH1 alpha/beta pair, which could facilitate the migration of quinone and quinol molecules across the LH1 boundary. The three-dimensional model encloses a space near the reaction center Q(B) site and the 14th LH1 alpha/beta pair, which is approximately 20 angstroms in diameter, sufficient to sequester a quinone pool. Helical arrays of dimers were used to construct a three-dimensional membrane model, which matches the packing lattice deduced from electron microscope analysis of the tubular dimer-only membranes found in mutants of Rba. sphaeroides lacking the LH2 complex. The intrinsic curvature of the dimer explains the shape and approximately 70-nm diameter of these membrane tubules, and at least partially accounts for the spherical membrane invaginations found in wild-type Rba. sphaeroides. A model of dimer aggregation and membrane curvature in these spherical membrane invaginations is presented.
Collapse
Affiliation(s)
- Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | |
Collapse
|
50
|
Busselez J, Cottevieille M, Cuniasse P, Gubellini F, Boisset N, Lévy D. Structural Basis for the PufX-Mediated Dimerization of Bacterial Photosynthetic Core Complexes. Structure 2007; 15:1674-83. [DOI: 10.1016/j.str.2007.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 09/19/2007] [Accepted: 09/20/2007] [Indexed: 11/26/2022]
|