1
|
Königshausen E, Zierhut UM, Ruetze M, Rump LC, Sellin L. A molecular mechanism for angiotensin II receptor blocker-mediated slit membrane protection: Angiotensin II increases nephrin endocytosis via AT1-receptor-dependent ERK 1/2 activation. FASEB J 2024; 38:e70018. [PMID: 39212304 DOI: 10.1096/fj.202400369r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Albuminuria is characterized by a disruption of the glomerular filtration barrier, which is composed of the fenestrated endothelium, the glomerular basement membrane, and the slit diaphragm. Nephrin is a major component of the slit diaphragm. Apart from hemodynamic effects, Ang II enhances albuminuria by β-Arrestin2-mediated nephrin endocytosis. Blocking the AT1 receptor with candesartan and irbesartan reduces the Ang II-mediated nephrin-β-Arrestin2 interaction. The inhibition of MAPK ERK 1/2 blocks Ang II-enhanced nephrin-β-Arrestin2 binding. ERK 1/2 signaling, which follows AT1 receptor activation, is mediated by G-protein signaling, EGFR transactivation, and β-Arrestin2 recruitment. A mutant AT1 receptor defective in EGFR transactivation and β-Arrestin2 recruitment reduces the Ang II-mediated increase in nephrin β-Arrestin2 binding. The mutation of β-Arrestin2K11,K12, critical for AT1 receptor binding, completely abrogates the interaction with nephrin, independent of Ang II stimulation. β-Arrestin2K11R,K12R does not influence nephrin cell surface expression. The data presented here deepen our molecular understanding of a blood-pressure-independent molecular mechanism of AT-1 receptor blockers (ARBs) in reducing albuminuria.
Collapse
Affiliation(s)
- Eva Königshausen
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Ulf M Zierhut
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Martin Ruetze
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Lars C Rump
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Lorenz Sellin
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
2
|
Kundu D, Min X, Zhang X, Tian X, Wang S, Kim KM. The Ubiquitination of Arrestin3 within the Nucleus Triggers the Nuclear Export of Mdm2, Which, in Turn, Mediates the Ubiquitination of GRK2 in the Cytosol. Int J Mol Sci 2024; 25:9644. [PMID: 39273591 PMCID: PMC11395016 DOI: 10.3390/ijms25179644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
GRK2 and arrestin3, key players in the functional regulation of G protein-coupled receptors (GPCRs), are ubiquitinated by Mdm2, a nuclear protein. The agonist-induced increase in arrestin3 ubiquitination occurs in the nucleus, underscoring the crucial role of its nuclear translocation in this process. The ubiquitination of arrestin3 occurs in the nucleus, highlighting the pivotal role of its nuclear translocation in this process. In contrast, GRK2 cannot translocate into the nucleus; thus, facilitation of the cytosolic translocation of nuclear Mdm2 is required to ubiquitinate GRK2 in the cytosol. Among the explored cellular components and processes, arrestin, Gβγ, clathrin, and receptor phosphorylation were found to be required for the nuclear import of arrestin3, the ubiquitination of arrestin3 in the nucleus, nuclear export of Mdm2, and the ubiquitination of GRK2 in the cytosol. In conclusion, our findings demonstrate that agonist-induced ubiquitination of arrestin3 in the nucleus is interconnected with cytosolic GRK2 ubiquitination.
Collapse
Affiliation(s)
| | | | | | | | | | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| |
Collapse
|
3
|
Flores-Espinoza E, Thomsen ARB. Beneath the surface: endosomal GPCR signaling. Trends Biochem Sci 2024; 49:520-531. [PMID: 38643023 PMCID: PMC11162320 DOI: 10.1016/j.tibs.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 04/22/2024]
Abstract
G protein-coupled receptors (GPCRs) located at the cell surface bind extracellular ligands and convey intracellular signals via activation of heterotrimeric G proteins. Traditionally, G protein signaling was viewed to occur exclusively at this subcellular region followed by rapid desensitization facilitated by β-arrestin (βarr)-mediated G protein uncoupling and receptor internalization. However, emerging evidence over the past 15 years suggests that these βarr-mediated events do not necessarily terminate receptor signaling and that some GPCRs continue to activate G proteins after having been internalized into endosomes. Here, we review the recently elucidated mechanistic basis underlying endosomal GPCR signaling and discuss physiological implications and pharmacological targeting of this newly appreciated signaling mode.
Collapse
Affiliation(s)
- Emmanuel Flores-Espinoza
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; NYU Pain Research Center, New York University College of Dentistry, New York, NY 10010, USA
| | - Alex R B Thomsen
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; NYU Pain Research Center, New York University College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
4
|
Abboud D, Abboud C, Inoue A, Twizere JC, Hanson J. Basal interaction of the orphan receptor GPR101 with arrestins leads to constitutive internalization. Biochem Pharmacol 2024; 220:116013. [PMID: 38151077 DOI: 10.1016/j.bcp.2023.116013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
GPR101 is an orphan G protein-coupled receptor that promotes growth hormone secretion in the pituitary. The microduplication of the GPR101 gene has been linked with the X-linked acrogigantism, or X-LAG, syndrome. This disease is characterized by excessive growth hormone secretion and abnormal rapid growth beginning early in life. Mechanistically, GPR101 induces growth hormone secretion through constitutive activation of multiple heterotrimeric G proteins. However, the full scope of GPR101 signaling remains largely elusive. Herein, we investigated the association of GPR101 to multiple transducers and uncovered an important basal interaction with Arrestin 2 (β-arrestin 1) and Arrestin 3 (β-arrestin 2). By using a GPR101 mutant lacking the C-terminus and cell lines with an Arrestin 2/3 null background, we show that the arrestin association leads to constitutive clathrin- and dynamin-mediated GPR101 internalization. To further highlight GPR101 intracellular fate, we assessed the colocalization of GPR101 with Rab protein markers. Internalized GPR101 was mainly colocalized with the early endosome markers, Rab5 and EEA-1, and to a lesser degree with the late endosome marker Rab7. However, GPR101 was not colocalized with the recycling endosome marker Rab11. These findings show that the basal arrestin recruitment by GPR101 C-terminal tail drives the receptor constitutive clathrin-mediated internalization. Intracellularly, GPR101 concentrates in the endosomal compartment and is degraded through the lysosomal pathway. In conclusion, we uncovered a constitutive intracellular trafficking of GPR101 that potentially represents an important layer of regulation of its signaling and function.
Collapse
Affiliation(s)
- Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Clauda Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium; Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Liege, Belgium.
| |
Collapse
|
5
|
Rodriguez FD, Covenas R. Association of Neurokinin-1 Receptor Signaling Pathways with Cancer. Curr Med Chem 2024; 31:6460-6486. [PMID: 37594106 DOI: 10.2174/0929867331666230818110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Numerous biochemical reactions leading to altered cell proliferation cause tumorigenesis and cancer treatment resistance. The mechanisms implicated include genetic and epigenetic changes, modified intracellular signaling, and failure of control mechanisms caused by intrinsic and extrinsic factors alone or combined. No unique biochemical events are responsible; entangled molecular reactions conduct the resident cells in a tissue to display uncontrolled growth and abnormal migration. Copious experimental research supports the etiological responsibility of NK-1R (neurokinin-1 receptor) activation, alone or cooperating with other mechanisms, in cancer appearance in different tissues. Consequently, a profound study of this receptor system in the context of malignant processes is essential to design new treatments targeting NK-1R-deviated activity. METHODS This study reviews and discusses recent literature that analyzes the main signaling pathways influenced by the activation of neurokinin 1 full and truncated receptor variants. Also, the involvement of NK-1R in cancer development is discussed. CONCLUSION NK-1R can signal through numerous pathways and cross-talk with other receptor systems. The participation of override or malfunctioning NK-1R in malignant processes needs a more precise definition in different types of cancers to apply satisfactory and effective treatments. A long way has already been traveled: the current disposal of selective and effective NK-1R antagonists and the capacity to develop new drugs with biased agonistic properties based on the receptor's structural states with functional significance opens immediate research action and clinical application.
Collapse
Affiliation(s)
- Francisco David Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| | - Rafael Covenas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
6
|
Cheng N, Trejo J. An siRNA library screen identifies CYLD and USP34 as deubiquitinases that regulate GPCR-p38 MAPK signaling and distinct inflammatory responses. J Biol Chem 2023; 299:105370. [PMID: 37865315 PMCID: PMC10694601 DOI: 10.1016/j.jbc.2023.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are highly druggable and implicated in numerous diseases, including vascular inflammation. GPCR signals are transduced from the plasma membrane as well as from endosomes and controlled by posttranslational modifications. The thrombin-activated GPCR protease-activated receptor-1 is modified by ubiquitin. Ubiquitination of protease-activated receptor-1 drives recruitment of transforming growth factor-β-activated kinase-1-binding protein 2 (TAB2) and coassociation of TAB1 on endosomes, which triggers p38 mitogen-activated protein kinase-dependent inflammatory responses in endothelial cells. Other endothelial GPCRs also induce p38 activation via a noncanonical TAB1-TAB2-dependent pathway. However, the regulatory processes that control GPCR ubiquitin-driven p38 inflammatory signaling remains poorly understood. We discovered mechanisms that turn on GPCR ubiquitin-dependent p38 signaling, however, the mechanisms that turn off the pathway are not known. We hypothesize that deubiquitination is an important step in regulating ubiquitin-driven p38 signaling. To identify specific deubiquitinating enzymes (DUBs) that control GPCR-p38 mitogen-activated protein kinase signaling, we conducted a siRNA library screen targeting 96 DUBs in endothelial cells and HeLa cells. We identified nine DUBs and validated the function two DUBs including cylindromatosis and ubiquitin-specific protease-34 that specifically regulate thrombin-induced p38 phosphorylation. Depletion of cylindromatosis expression by siRNA enhanced thrombin-stimulated p38 signaling, endothelial barrier permeability, and increased interleukin-6 cytokine expression. Conversely, siRNA knockdown of ubiquitin-specific protease-34 expression decreased thrombin-promoted interleukin-6 expression and had no effect on thrombin-induced endothelial barrier permeability. These studies suggest that specific DUBs distinctly regulate GPCR-induced p38-mediated inflammatory responses.
Collapse
Affiliation(s)
- Norton Cheng
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA; Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
7
|
Kaur S, Sokrat B, Capozzi ME, El K, Bai Y, Jazic A, Han B, Krishnakumar K, D'Alessio DA, Campbell JE, Bouvier M, Shenoy SK. The Ubiquitination Status of the Glucagon Receptor determines Signal Bias. J Biol Chem 2023; 299:104690. [PMID: 37037304 DOI: 10.1016/j.jbc.2023.104690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023] Open
Abstract
The pancreatic hormone glucagon activates the glucagon receptor (GCGR), a class B seven-transmembrane G protein-coupled receptor (GPCR) that couples to the stimulatory heterotrimeric Gs protein and provokes protein kinase A-dependent signaling cascades vital to hepatic glucose metabolism and islet insulin secretion. Glucagon-stimulation also initiates recruitment of the endocytic adaptors, β-arrestin1 and β-arrestin2, which regulate desensitization and internalization of the GCGR. Unlike many other GPCRs, the GCGR expressed at the plasma membrane is constitutively ubiquitinated and upon agonist-activation, internalized GCGRs are deubiquitinated at early endosomes and recycled via Rab4-containing vesicles. Herein we report a novel link between the ubiquitination status and signal transduction mechanism of the GCGR. In the deubiquitinated state, coupling of the GCGR to Gs is diminished, while binding to β-arrestin is enhanced with signaling biased to a β-arrestin1-dependent p38 mitogen activated protein kinase (MAPK) pathway. This ubiquitin-dependent signaling bias arises through the modification of lysine333 (K333) on the cytoplasmic face of transmembrane helix V. Compared with the GCGR-WT, the mutant GCGR-K333R has impaired ubiquitination, diminished G protein coupling and protein kinase A signaling, but unimpaired potentiation of glucose-stimulated-insulin secretion in response to agonist-stimulation, which involves p38 MAPK signaling. Both WT and GCGR-K333R promote the formation of glucagon-induced β-arrestin1-dependent p38 signaling scaffold that requires canonical upstream MAPK-Kinase3, but is independent of Gs, Gi and β-arrestin2. Thus ubiquitination/deubiquitination at K333 in the GCGR defines the activation of distinct transducers with the potential to influence various facets of glucagon signaling in health and disease.
Collapse
Affiliation(s)
- Suneet Kaur
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Badr Sokrat
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4 Canada; Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, H3T 1J4 Canada
| | - Megan E Capozzi
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Kimberley El
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Yushi Bai
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Aeva Jazic
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Bridgette Han
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Kaavya Krishnakumar
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford CA 94305
| | - David A D'Alessio
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Jonathan E Campbell
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4 Canada; Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, H3T 1J4 Canada
| | - Sudha K Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Min X, Sun N, Wang S, Zhang X, Kim KM. Sequestration of Gβγ by deubiquitinated arrestins into the nucleus as a novel desensitization mechanism of G protein-coupled receptors. Cell Commun Signal 2023; 21:11. [PMID: 36658650 PMCID: PMC9854190 DOI: 10.1186/s12964-022-01013-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/10/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Desensitization of G protein-coupled receptors (GPCRs) refers to a rapid attenuation of responsiveness that occurs with repeated or continuous exposure to agonists. GRK-mediated phosphorylation and subsequent binding with arrestins in the activated receptor cytoplasmic cavity in competition with G proteins has been suggested as the conventional mechanism of desensitization. Along with widely accepted conventional mechanism of desensitization, studies of various GPCRs including dopamine D2-like receptors (D2R, D3R, D4R) have suggested the existence of another desensitization mechanism. In this study, loss-of-function approaches and D2-like receptor mutants that display different desensitization properties were used to elucidate the molecular mechanisms responsible for desensitization. RESULTS Desensitization development entailed the signaling cascade composed of Src, PDK1, and Akt, the latter of which in turn interacted with USP33, an arrestin deubiquitinase, to promote arrestin deubiquitination. The deubiquitinated arrestin subsequently formed a complex with Gβγ and translocated to the nucleus via an importin complex, wherein it sequestered Gβγ from the receptor and Gα, thereby attenuating receptor signaling. As in D2-like receptors, both USP33 and importin β1 were involved in the desensitization of the β2 adrenoceptor. CONCLUSIONS In addition to the conventional mechanism of desensitization, which occurs on the plasma membrane and in the cytosol, this study provides a new insight that another desensitization pathway in which nuclear trafficking plays a critical role is operating. It is plausible that multiple, complementary desensitization measures are in place to properly induce desensitization depending on receptor characteristics or the surrounding environment. Video Abstract.
Collapse
Affiliation(s)
- Xiao Min
- grid.14005.300000 0001 0356 9399Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Ningning Sun
- grid.14005.300000 0001 0356 9399Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Shujie Wang
- grid.14005.300000 0001 0356 9399Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Xiaohan Zhang
- grid.14005.300000 0001 0356 9399Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju, 61186 Republic of Korea ,grid.443382.a0000 0004 1804 268XCollege of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025 Guizhou China
| | - Kyeong-Man Kim
- grid.14005.300000 0001 0356 9399Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
9
|
Szénási T, Turu G, Hunyady L. Interactions between β-arrestin proteins and the cytoskeletal system, and their relevance to neurodegenerative disorders. Front Endocrinol (Lausanne) 2023; 14:957981. [PMID: 36843600 PMCID: PMC9947276 DOI: 10.3389/fendo.2023.957981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
β-arrestins, which have multiple cellular functions, were initially described as proteins that desensitize rhodopsin and other G protein-coupled receptors. The cytoskeletal system plays a role in various cellular processes, including intracellular transport, cell division, organization of organelles, and cell cycle. The interactome of β-arrestins includes the major proteins of the three main cytoskeletal systems: tubulins for microtubules, actins for the actin filaments, and vimentin for intermediate filaments. β-arrestins bind to microtubules and regulate their activity by recruiting signaling proteins and interacting with assembly proteins that regulate the actin cytoskeleton and the intermediate filaments. Altered regulation of the cytoskeletal system plays an essential role in the development of Alzheimer's, Parkinson's and other neurodegenerative diseases. Thus, β-arrestins, which interact with the cytoskeleton, were implicated in the pathogenesis progression of these diseases and are potential targets for the treatment of neurodegenerative disorders in the future.
Collapse
Affiliation(s)
- Tibor Szénási
- Institute of Enzymology, Research Center for Natural Sciences, Centre of Excellence of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Turu
- Institute of Enzymology, Research Center for Natural Sciences, Centre of Excellence of the Hungarian Academy of Sciences, Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Institute of Enzymology, Research Center for Natural Sciences, Centre of Excellence of the Hungarian Academy of Sciences, Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- *Correspondence: László Hunyady,
| |
Collapse
|
10
|
Roy S, Alkanfari I, Chaki S, Ali H. Role of MrgprB2 in Rosacea-Like Inflammation in Mice: Modulation by β-Arrestin 2. J Invest Dermatol 2022; 142:2988-2997.e3. [PMID: 35644498 PMCID: PMC9634617 DOI: 10.1016/j.jid.2022.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023]
Abstract
Cathelicidin LL-37‒mediated activation of mast cells (MCs) has been implicated in the pathogenesis of rosacea, but the receptor involved and the mechanism of its activation and regulation remain unknown. We found that skin biopsies from patients with rosacea display higher frequencies of MCs expressing MRGPRX2 (mouse counterpart MrgprB2) than normal skin. Intradermal injection of LL-37 in wild-type mice resulted in MC recruitment, expression of inflammatory mediators, and development of rosacea-like inflammation. These responses were substantially reduced in MrgprB2‒/‒ mice and abolished in MC deficient Wsh/Wsh mice. β-arrestin 2 is an adaptor protein that regulates G protein-coupled receptor function by receptor desensitization and also by activation of downstream signaling. We found that LL-37‒induced rosacea-like inflammation was significantly reduced in mice with MC-specific deletion of β-arrestin 2 compared with that in control mice. Interestingly, the absence of β-arrestin 2 resulted in enhanced cofilin phosphorylation and substantial inhibition of LL-37‒induced chemotaxis of mouse peritoneal MCs. Furthermore, LL-37‒induced extracellular signal‒regulated kinase 1/2 phosphorylation, NF-κB activation, and proinflammatory cytokine/chemokine production were reduced in β-arrestin 2‒/‒ peritoneal MCs compared with those in wild-type cells. These findings suggest that MRGPRX2/B2 participates in rosacea and that β-arrestin 2 contributes to its pathogenesis by promoting cofilin dephosphorylation, extracellular signal‒regulated kinase 1/2 and NF-κB phosphorylation, MC chemotaxis, and chemokine/cytokine generation.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ibrahim Alkanfari
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaswati Chaki
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hydar Ali
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
A fluorescent sensor for real-time measurement of extracellular oxytocin dynamics in the brain. Nat Methods 2022; 19:1286-1294. [PMID: 36138174 PMCID: PMC9550624 DOI: 10.1038/s41592-022-01597-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/01/2022] [Indexed: 12/21/2022]
Abstract
Oxytocin (OT), a hypothalamic neuropeptide that acts as a neuromodulator in the brain, orchestrates a variety of animal behaviors. However, the relationship between brain OT dynamics and complex animal behaviors remains largely elusive, partly because of the lack of a suitable technique for its real-time recording in vivo. Here, we describe MTRIAOT, a G-protein-coupled receptor-based green fluorescent OT sensor that has a large dynamic range, suitable affinity, ligand specificity for OT orthologs, minimal effects on downstream signaling and long-term fluorescence stability. By combining viral gene delivery and fiber photometry-mediated fluorescence measurements, we demonstrate the utility of MTRIAOT for real-time detection of brain OT dynamics in living mice. MTRIAOT-mediated measurements indicate variability of OT dynamics depending on the behavioral context and physical condition of an animal. MTRIAOT will likely enable the analysis of OT dynamics in a variety of physiological and pathological processes.
Collapse
|
12
|
Mani A. PDE4DIP in health and diseases. Cell Signal 2022; 94:110322. [PMID: 35346821 PMCID: PMC9618167 DOI: 10.1016/j.cellsig.2022.110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022]
Abstract
Cyclic-AMP (cAMP), the first second messenger to be identified, is synthesized, and is universally utilized as a second messenger, and plays important roles in integrity, and function of organs, including heart. Through its coupling with other intracellular messengers, cAMP facilitates excitation-contraction coupling, increases heart rate and conduction velocity. It is degraded by a class of enzymes called cAMP-dependent phosphodiesterase (PDE), with PDE3 and PDE4 being the predominant isoforms in the heart. This highly diverse class of enzymes degrade cAMP and through anchoring proteins generates dynamic microdomains to target specific proteins and control specific cell functions in response to various stimuli. The impaired function of the anchoring protein either by inherited genetic mutations or acquired injuries results in altered intracellular targeting, and blunted responsiveness to stimulating pathways and contributes to pathological cardiac remodeling, cardiac arrhythmias and reduced cell survival. Recent genetic studies provide compelling evidence for an association between the variants in the anchoring protein PDE4DIP and atrial fibrillation, stroke, and heart failure.
Collapse
Affiliation(s)
- Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Jean-Charles PY, Rajiv V, Sarker S, Han S, Bai Y, Masoudi A, Shenoy SK. A single phenylalanine residue in β-arrestin2 critically regulates its binding to G protein-coupled receptors. J Biol Chem 2022; 298:101837. [PMID: 35307348 PMCID: PMC9052155 DOI: 10.1016/j.jbc.2022.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/05/2022] Open
Abstract
Arrestins and their yeast homologs, arrestin-related trafficking adaptors (ARTs), share a stretch of 29 amino acids called the ART motif. However, the functionality of that motif is unknown. We now report that deleting this motif prevents agonist-induced ubiquitination of β-arrestin2 (β-arr2) and blocks its association with activated G protein–coupled receptors (GPCRs). Within the ART motif, we have identified a conserved phenylalanine residue, Phe116, that is critical for the formation of β-arr2–GPCR complexes. β-arr2 Phe116Ala mutant has negligible effect on blunting β2-adrenergic receptor–induced cAMP generation unlike β-arr2, which promotes rapid desensitization. Furthermore, available structures for inactive and inositol hexakisphosphate 6–activated forms of bovine β-arr2 revealed that Phe116 is ensconced in a hydrophobic pocket, whereas the adjacent Phe117 and Phe118 residues are not. Mutagenesis of Phe117 and Phe118, but not Phe116, preserves GPCR interaction of β-arr2. Surprisingly, Phe116 is dispensable for the association of β-arr2 with its non-GPCR partners. β-arr2 Phe116Ala mutant presents a significantly reduced protein half-life compared with β-arr2 and undergoes constitutive Lys-48-linked polyubiquitination, which tags proteins for proteasomal degradation. We also found that Phe116 is critical for agonist-dependent β-arr2 ubiquitination with Lys-63-polyubiquitin linkages that are known mediators of protein scaffolding and signal transduction. Finally, we have shown that β-arr2 Phe116Ala interaction with activated β2-adrenergic receptor can be rescued with an in-frame fusion of ubiquitin. Taken together, we conclude that Phe116 preserves structural stability of β-arr2, regulates the formation of β-arr2–GPCR complexes that inhibit G protein signaling, and promotes subsequent ubiquitin-dependent β-arr2 localization and trafficking.
Collapse
Affiliation(s)
- Pierre-Yves Jean-Charles
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Vishwaesh Rajiv
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Subhodeep Sarker
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Sangoh Han
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Yushi Bai
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Ali Masoudi
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Sudha K Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
14
|
Wedegaertner H, Pan WA, Gonzalez CC, Gonzalez DJ, Trejo J. The α-Arrestin ARRDC3 Is an Emerging Multifunctional Adaptor Protein in Cancer. Antioxid Redox Signal 2022; 36:1066-1079. [PMID: 34465145 PMCID: PMC9127825 DOI: 10.1089/ars.2021.0193] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 01/04/2023]
Abstract
Significance: Adaptor proteins control the spatiotemporal dynamics of cellular signaling. Dysregulation of adaptor protein function can cause aberrant cell signaling and promote cancer. The arrestin family of adaptor proteins are known to regulate signaling by the superfamily of G protein-coupled receptors (GPCRs). The GPCRs are highly druggable and implicated in cancer progression. However, the molecular mechanisms responsible for arrestin dysregulation and the impact on GPCR function in cancer have yet to be fully elucidated. Recent Advances: A new family of mammalian arrestins, termed the α-arrestins, was recently discovered. The α-arrestin, arrestin domain-containing protein 3 (ARRDC3), in particular, has been identified as a tumor suppressor and is reported to control cellular signaling of GPCRs in cancer. Critical Issues: Compared with the extensively studied mammalian β-arrestins, there is limited information regarding the regulatory mechanisms that control α-arrestin activation and function. Here, we discuss the molecular mechanisms that regulate ARRDC3, which include post-translational modifications such as phosphorylation and ubiquitination. We also provide evidence that ARRDC3 can interact with a wide array of proteins that control diverse biological functions. Future Directions: ARRDC3 interacts with numerous proteins and is likely to display diverse functions in cancer, metabolic disease, and other syndromes. Thus, understanding the regulatory mechanisms of ARRDC3 activity in various cellular contexts is critically important. Recent studies suggest that α-arrestins may be regulated through post-translational modification, which is known to impact adaptor protein function. However, additional studies are needed to determine how these regulatory mechanisms affect ARRDC3 tumor suppressor function. Antioxid. Redox Signal. 36, 1066-1079.
Collapse
Affiliation(s)
- Helen Wedegaertner
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Wen-An Pan
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Carlos C. Gonzalez
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - David J. Gonzalez
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Mechanistic diversity involved in the desensitization of G protein-coupled receptors. Arch Pharm Res 2021; 44:342-353. [PMID: 33761113 DOI: 10.1007/s12272-021-01320-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/14/2021] [Indexed: 01/14/2023]
Abstract
The desensitization of G protein-coupled receptors (GPCRs), which involves rapid loss of responsiveness due to repeated or chronic exposure to agonists, can occur through various mechanisms at different levels of signaling pathways. In this review, the mechanisms of GPCR desensitization are classified according to their occurrence at the receptor level and downstream to the receptor. The desensitization at the receptor level occurs in a phosphorylation-dependent manner, wherein the activated receptors are phosphorylated by GPCR kinases (GRKs), thereby increasing their affinities for arrestins. Arrestins bind to receptors through the cavity on the cytoplasmic region of heptahelical domains and interfere with the binding and activation of G-protein. Diverse mechanisms are involved in the desensitization that occurs downstream of the receptor. Some of these include the sequestration of G proteins, such as Gq and Gi/o by GRK2/3 and deubiquitinated arrestins, respectively. Mechanistically, GRK2/3 attenuates GPCR signaling by sequestering the Gα subunits of the Gq family and Gβγ via regulators of G protein signaling and pleckstrin homology domains, respectively. Moreover, studies on Gi/o-coupled D2-like receptors have reported that arrestins are deubiquitinated under desensitization condition and form a stable complex with Gβγ, thereby preventing them from coupling with Gα and the receptor, eventually leading to receptor signaling inhibition. Notably, the desensitization mechanism that involves arrestin deubiquitination is interesting; however, this is a new mechanism and needs to be explored further.
Collapse
|
16
|
Dissecting the structural features of β-arrestins as multifunctional proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140603. [PMID: 33421644 DOI: 10.1016/j.bbapap.2021.140603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023]
Abstract
β-arrestins bind active G protein-coupled receptors (GPCRs) and play a crucial role in receptor desensitization and internalization. The classical paradigm of arrestin function has been expanded with the identification of many non-receptor-binding partners, which indicated the multifunctional role of β-arrestins in cellular functions. To elucidate the molecular mechanism of β-arrestin-mediated signaling, the structural features of β-arrestins were investigated using X-ray crystallography and cryogenic electron microscopy (cryo-EM). However, the intrinsic conformational flexibility of β-arrestins hampers the elucidation of structural interactions between β-arrestins and their binding partners using conventional structure determination tools. Therefore, structural information obtained using complementary structure analysis techniques would be necessary in combination with X-ray crystallography and cryo-EM data. In this review, we describe how β-arrestins interact with their binding partners from a structural point of view, as elucidated by both traditional methods (X-ray crystallography and cryo-EM) and complementary structure analysis techniques.
Collapse
|
17
|
Lee C, Viswanathan G, Choi I, Jassal C, Kohlmann T, Rajagopal S. Beta-Arrestins and Receptor Signaling in the Vascular Endothelium. Biomolecules 2020; 11:biom11010009. [PMID: 33374806 PMCID: PMC7824595 DOI: 10.3390/biom11010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 12/17/2022] Open
Abstract
The vascular endothelium is the innermost layer of blood vessels and is a key regulator of vascular tone. Endothelial function is controlled by receptor signaling through G protein-coupled receptors, receptor tyrosine kinases and receptor serine-threonine kinases. The β-arrestins, multifunctional adapter proteins, have the potential to regulate all of these receptor families, although it is unclear as to whether they serve to integrate signaling across all of these different axes. Notably, the β-arrestins have been shown to regulate signaling by a number of receptors important in endothelial function, such as chemokine receptors and receptors for vasoactive substances such as angiotensin II, endothelin-1 and prostaglandins. β-arrestin-mediated signaling pathways have been shown to play central roles in pathways that control vasodilation, cell proliferation, migration, and immune function. At this time, the physiological impact of this signaling has not been studied in detail, but a deeper understanding of it could lead to the development of novel therapies for the treatment of vascular disease.
Collapse
Affiliation(s)
- Claudia Lee
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA;
| | - Gayathri Viswanathan
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
| | - Issac Choi
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
| | - Chanpreet Jassal
- College of Arts and Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Taylor Kohlmann
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA;
| | - Sudarshan Rajagopal
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA;
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
- Correspondence:
| |
Collapse
|
18
|
Xing G, Yi C, Dou P, Zhi Z, Lin B, Cheng M. Recent progress in the development of β2 adrenergic receptor agonists: a patent review (2015-2020). Expert Opin Ther Pat 2020; 31:239-246. [PMID: 33320034 DOI: 10.1080/13543776.2021.1865312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The β2 adrenergic receptor (β2AR) is a member of G protein-coupled receptors (GPCRs) that mediate the majority of cellular responses to external stimuli. The agonists can cause smooth muscle relaxation; therefore, many β2AR agonists have been developed especially for the treatment of pulmonary disorders such as asthma and chronic obstructive pulmonary disease (COPD). Many new natural and synthetic compounds have been discovered and developed as novel β2AR agonists over the past 5 years. AREAS COVERED This review offers an update for the development of β2AR agonists in the patents published from 2015 to 2020, including new natural and synthetic compounds for the treatment of asthma and COPD. In particular, the latest patents about compounds possessing both muscarinic receptor antagonist and β2 adrenergic receptor agonist activity are reviewed. EXPERT OPINION β2AR agonists have been developed extensively for the treatment of asthma and COPD. In the past 5 years, novel agonists from both natural sources and synthetic methods were intensively developed. Compounds possessing both muscarinic receptor antagonist and β2AR agonist activity represent a new trend in this area because they are possibly able to act together in a synergistic fashion, therefore, relieve the symptoms of patients through two distinct mechanisms.
Collapse
Affiliation(s)
- Gang Xing
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang China
| | - Ce Yi
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang China
| | - Peiyuan Dou
- School of Chemistry, Cardiff University, Cardiff, UK
| | - Zhengxing Zhi
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang China
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang China
| | - Maosheng Cheng
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang China
| |
Collapse
|
19
|
Crudden C, Shibano T, Song D, Dragomir MP, Cismas S, Serly J, Nedelcu D, Fuentes-Mattei E, Tica A, Calin GA, Girnita A, Girnita L. Inhibition of G Protein-Coupled Receptor Kinase 2 Promotes Unbiased Downregulation of IGF1 Receptor and Restrains Malignant Cell Growth. Cancer Res 2020; 81:501-514. [PMID: 33158816 DOI: 10.1158/0008-5472.can-20-1662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/03/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022]
Abstract
The ability of a receptor to preferentially activate only a subset of available downstream signal cascades is termed biased signaling. Although comprehensively recognized for the G protein-coupled receptors (GPCR), this process is scarcely explored downstream of receptor tyrosine kinases (RTK), including the cancer-relevant insulin-like growth factor-1 receptor (IGF1R). Successful IGF1R targeting requires receptor downregulation, yet therapy-mediated removal from the cell surface activates cancer-protective β-arrestin-biased signaling (β-arr-BS). As these overlapping processes are initiated by the β-arr/IGF1R interaction and controlled by GPCR-kinases (GRK), we explored GRKs as potential anticancer therapeutic targets to disconnect IGF1R downregulation and β-arr-BS. Transgenic modulation demonstrated that GRK2 inhibition or GRK6 overexpression enhanced degradation of IGF1R, but both scenarios sustained IGF1-induced β-arr-BS. Pharmacologic inhibition of GRK2 by the clinically approved antidepressant, serotonin reuptake inhibitor paroxetine (PX), recapitulated the effects of GRK2 silencing with dose- and time-dependent IGF1R downregulation without associated β-arr-BS. In vivo, PX treatment caused substantial downregulation of IGF1R, suppressing the growth of Ewing's sarcoma xenografts. Functional studies reveal that PX exploits the antagonism between β-arrestin isoforms; in low ligand conditions, PX favored β-arrestin1/Mdm2-mediated ubiquitination/degradation of IGF1R, a scenario usually exclusive to ligand abundancy, making PX more effective than antibody-mediated IGF1R downregulation. This study provides the rationale, molecular mechanism, and validation of a clinically feasible concept for "system bias" targeting of the IGF1R to uncouple downregulation from signaling. Demonstrating system bias as an effective anticancer approach, our study reveals a novel strategy for the rational design or repurposing of therapeutics to selectively cross-target the IGF1R or other RTK. SIGNIFICANCE: This work provides insight into the molecular and biological roles of biased signaling downstream RTK and provides a novel "system bias" strategy to increase the efficacy of anti-IGF1R-targeted therapy in cancer.
Collapse
Affiliation(s)
- Caitrin Crudden
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Takashi Shibano
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Dawei Song
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mihnea P Dragomir
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Sonia Cismas
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Julianna Serly
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Daniela Nedelcu
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Enrique Fuentes-Mattei
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Andrei Tica
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Ada Girnita
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Dermatology Department, Karolinska University Hospital, Stockholm, Sweden
| | - Leonard Girnita
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
20
|
Nagi K, Kaur S, Bai Y, Shenoy SK. In-frame fusion of SUMO1 enhances βarrestin2's association with activated GPCRs as well as with nuclear pore complexes. Cell Signal 2020; 75:109759. [PMID: 32860951 DOI: 10.1016/j.cellsig.2020.109759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 01/11/2023]
Abstract
Small ubiquitin like modifier (SUMO) conjugation or SUMOylation of βarrestin2 promotes its association with the clathrin adaptor protein AP2 and facilitates rapid β2 adrenergic receptor (β2AR) internalization. However, disruption of the consensus SUMOylation site in βarrestin2, did not prevent βarrestin2's association with activated β2ARs, dopamine D2 receptors (D2Rs), angiotensin type 1a receptors (AT1aRs) and V2 vasopressin receptors (V2Rs). To address the role of SUMOylation in the trafficking of βarrestin and GPCR complexes, we generated and characterized a yellow fluorescent protein (YFP) tagged βarrestin2-SUMO1 chimeric protein, which is resistant to de-SUMOylation. In HEK-293 cells, YFP-SUMO1 predominantly localized in the nucleus, whereas YFP-βarrestin2 is cytoplasmic. YFP-βarrestin2-SUMO1 in addition to being cytoplasmic, is localized at the nuclear membrane. Nonetheless, βarrestin2-SUMO1 associated robustly with agonist-activated β2ARs as evaluated by co-immunoprecipitation, confocal microscopy and bioluminescence resonance energy transfer (BRET). βarrestin2-SUMO1 associated strongly with the D2R, which forms transient complexes with βarrestin2. But, βarrestin2-SUMO1 and βarrestin2 showed equivalent binding with the V2R, which forms stable complexes with βarrestin2. βarrestin2 expression level directly correlated with the steady state levels of the unmodified form of RanGAP1, which upon SUMOylation associates with nuclear membrane. On the other hand, βarrestin2-SUMO1 not only localized at the nuclear membrane, but also formed a macromolecular complex with RanGAP1. Taken together, our data suggest that SUMOylation of βarrestin2 promotes its protein interactions at both cell and nuclear membranes. Furthermore, βarrestin2-SUMO1 presents as a useful tool to characterize βarrestin2 recruitment to GPCRs, which form transient and unstable complex with βarrestin2.
Collapse
Affiliation(s)
- Karim Nagi
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27710, USA; College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Suneet Kaur
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yushi Bai
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudha K Shenoy
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
21
|
Zhang X, Min X, Wang S, Sun N, Kim KM. Mdm2-mediated ubiquitination of β-arrestin2 in the nucleus occurs in a Gβγ- and clathrin-dependent manner. Biochem Pharmacol 2020; 178:114049. [PMID: 32450252 DOI: 10.1016/j.bcp.2020.114049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023]
Abstract
The fate and activity of β-arrestin2, a key player in the regulation of desensitization and endocytosis of G protein-coupled receptors (GPCRs), are regulated by mouse double minute 2 homolog (Mdm2)-mediated ubiquitination. However, details of the molecular mechanisms of β-arrestin2 ubiquitination remain unclear. Studies on β-arrestin2 and Mdm2 mutants with modified nucleocytoplasmic shuttling properties have revealed that β-arrestin2 ubiquitination occurs in the nucleus in a Gβγ- and clathrin-dependent manner. The nuclear entry of both β-arrestin2 and Mdm2 commonly relies on the presence of importin complex but can occur independently of each other. Gβγ and clathrin regulated the nuclear entry of β-arrestin2 by mediating the interaction between β-arrestin2 and importin β1. In contrast, Akt-mediated phosphorylation of two serine residues of Mdm2 partly regulated the nuclear entry of Mdm2. Ubiquitinated β-arrestin2 along with Mdm2 translocated to the cytoplasm where they play various functional roles including receptor endocytosis and ubiquitination of other cytoplasmic proteins. The nuclear export of Mdm2 required nuclear entry and interaction of β-arrestin2 with Mdm2. Ubiquitination was required for the translocation of β-arrestin2 toward activated receptors on the plasma membrane and for its endocytic activity. The current study revealed the cellular components and processes involved in the ubiquitination of β-arrestin2, and these findings could be quintessential for providing directions and detailed strategies for the manipulation of GPCR functions and development of GPCR-related therapeutics.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| | - Xiao Min
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| | - Shujie Wang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| | - Ningning Sun
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea.
| |
Collapse
|
22
|
Woo JAA, Liu T, Fang CC, Castaño MA, Kee T, Yrigoin K, Yan Y, Cazzaro S, Matlack J, Wang X, Zhao X, Kang DE, Liggett SB. β-Arrestin2 oligomers impair the clearance of pathological tau and increase tau aggregates. Proc Natl Acad Sci U S A 2020; 117:5006-5015. [PMID: 32071246 PMCID: PMC7060747 DOI: 10.1073/pnas.1917194117] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple G protein-coupled receptors (GPCRs) are targets in the treatment of dementia, and the arrestins are common to their signaling. β-Arrestin2 was significantly increased in brains of patients with frontotemporal lobar degeneration (FTLD-tau), a disease second to Alzheimer's as a cause of dementia. Genetic loss and overexpression experiments using genetically encoded reporters and defined mutant constructs in vitro, and in cell lines, primary neurons, and tau P301S mice crossed with β-arrestin2-/- mice, show that β-arrestin2 stabilizes pathogenic tau and promotes tau aggregation. Cell and mouse models of FTLD showed this to be maladaptive, fueling a positive feedback cycle of enhanced neuronal tau via non-GPCR mechanisms. Genetic ablation of β-arrestin2 markedly ablates tau pathology and rescues synaptic plasticity defects in tau P301S transgenic mice. Atomic force microscopy and cellular studies revealed that oligomerized, but not monomeric, β-arrestin2 increases tau by inhibiting self-interaction of the autophagy cargo receptor p62/SQSTM1, impeding p62 autophagy flux. Hence, reduction of oligomerized β-arrestin2 with virus encoding β-arrestin2 mutants acting as dominant-negatives markedly reduces tau-laden neurofibrillary tangles in FTLD mice in vivo. Reducing β-arrestin2 oligomeric status represents a new strategy to alleviate tau pathology in FTLD and related tauopathies.
Collapse
Affiliation(s)
- Jung-A A Woo
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613;
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Tian Liu
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Cenxiao C Fang
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Maria A Castaño
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Teresa Kee
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Ksenia Yrigoin
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Yan Yan
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Sara Cazzaro
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Jenet Matlack
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Xinming Wang
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Xingyu Zhao
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - David E Kang
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613;
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Research Division, James A. Haley Veteran's Administration Hospital, Tampa, FL 33612
| | - Stephen B Liggett
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613;
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Medical Engineering, University of South Florida, Tampa, FL 33613
| |
Collapse
|
23
|
Jiang X, Chen S, Zhang Q, Yi C, He J, Ye X, Liu M, Lu W. Celastrol is a novel selective agonist of cannabinoid receptor 2 with anti-inflammatory and anti-fibrotic activity in a mouse model of systemic sclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153160. [PMID: 31901889 DOI: 10.1016/j.phymed.2019.153160] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Increasing evidence indicated that the cannabinoid receptors were involved in the pathogenesis of organ fibrogenesis. PURPOSE The purpose of this study was to discover novel cannabinoid receptor 2 (CB2) agonist and assess the potential of CB2 activation in treating systemic sclerosis. METHODS A gaussia princeps luciferase-based split luciferase complementation assay (SLCA) was developed for detection of the interaction between CB2 and β-arrestin2. A library of 366 natural products was then screened as potential CB2 agonist using SLCA approach. Several GPCR functional assays, including HTRF-based cAMP assay and calcium mobilization were also utilized to evaluated CB2 activation. Bleomycin-induced experimental systemic sclerosis was used to assess the in vivo anti-fibrotic effects. Dermal thickness and collagen content were evaluated via H&E and sirius red staining. RESULTS Celastrol was identified as a new agonist of CB2 by using SLCA. Furthermore, celastrol triggers several CB2-mediated downstream signaling pathways, including calcium mobilization, inhibition of cAMP accumulation, and receptor desensitization in a dose-dependent manner, and it has a moderate selectivity on CB1. In addition, celastrol exhibited the anti-inflammatory properties on lipopolysaccharide (LPS) treated murine Raw 264.7 macrophages and primary macrophages. Finally, we found that celastrol exerts anti-fibrotic effects in the bleomycin-induced systemic sclerosis mouse model accompanied by reduced inflammatory conditions. CONCLUSION Taken together, celastrol is identified a novel selective CB2 agonist using a new developed arrestin-based SLCA, and CB2 activation by celastrol reduces the inflammatory response, and prevents the development of dermal fibrosis in bleomycin-induced systemic sclerosis mouse model.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Arrestin/metabolism
- Bleomycin/toxicity
- Calcium/metabolism
- Disease Models, Animal
- Drug Evaluation, Preclinical/methods
- Fibrosis
- Lipopolysaccharides/pharmacology
- Macrophages/drug effects
- Mice
- Mice, Inbred C57BL
- Pentacyclic Triterpenes
- RAW 264.7 Cells
- Receptor, Cannabinoid, CB2/agonists
- Scleroderma, Systemic/chemically induced
- Scleroderma, Systemic/drug therapy
- Scleroderma, Systemic/metabolism
- Scleroderma, Systemic/pathology
- Triterpenes/chemistry
- Triterpenes/pharmacology
Collapse
Affiliation(s)
- Xingwu Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China; Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Si Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chunyang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiacheng He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiyun Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
24
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
25
|
Luessen DJ, Sun H, McGinnis MM, Hagstrom M, Marrs G, McCool BA, Chen R. Acute ethanol exposure reduces serotonin receptor 1A internalization by increasing ubiquitination and degradation of β-arrestin2. J Biol Chem 2019; 294:14068-14080. [PMID: 31366729 DOI: 10.1074/jbc.ra118.006583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 07/23/2019] [Indexed: 11/06/2022] Open
Abstract
Acute alcohol exposure alters the trafficking and function of many G-protein-coupled receptors (GPCRs) that are associated with aberrant behavioral responses to alcohol. However, the molecular mechanisms underlying alcohol-induced changes in GPCR function remain unclear. β-Arrestin is a key player involved in the regulation of GPCR internalization and thus controls the magnitude and duration of GPCR signaling. Although β-arrestin levels are influenced by various drugs of abuse, the effect of alcohol exposure on β-arrestin expression and β-arrestin-mediated GPCR trafficking is poorly understood. Here, we found that acute ethanol exposure increases β-arrestin2 degradation via its increased ubiquitination in neuroblastoma-2a (N2A) cells and rat prefrontal cortex (PFC). β-Arrestin2 ubiquitination was likely mediated by the E3 ligase MDM2 homolog (MDM2), indicated by an increased coupling between β-arrestin2 and MDM2 in response to acute ethanol exposure in both N2A cells and rat PFC homogenates. Importantly, ethanol-induced β-arrestin2 reduction was reversed by siRNA-mediated MDM2 knockdown or proteasome inhibition in N2A cells, suggesting β-arrestin2 degradation is mediated by MDM2 through the proteasomal pathway. Using serotonin 5-HT1A receptors (5-HT1ARs) as a model receptor system, we found that ethanol dose-dependently inhibits 5-HT1AR internalization and that MDM2 knockdown reverses this effect. Moreover, ethanol both reduced β-arrestin2 levels and delayed agonist-induced β-arrestin2 recruitment to the membrane. We conclude that β-arrestin2 dysregulation by ethanol impairs 5-HT1AR trafficking. Our findings reveal a critical molecular mechanism underlying ethanol-induced alterations in GPCR internalization and implicate β-arrestin as a potential player mediating behavioral responses to acute alcohol exposure.
Collapse
Affiliation(s)
- Deborah J Luessen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| | - Haiguo Sun
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| | - Molly M McGinnis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| | - Michael Hagstrom
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| | - Glen Marrs
- Center for Molecular Signaling, Department of Biology, Wake Forest University, Winston Salem, North Carolina 27106
| | - Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| | - Rong Chen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157 .,Center for Molecular Signaling, Department of Biology, Wake Forest University, Winston Salem, North Carolina 27106.,Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| |
Collapse
|
26
|
Sato M, Aoki-Saito H, Fukuda H, Ikeda H, Koga Y, Yatomi M, Tsurumaki H, Maeno T, Saito T, Nakakura T, Mori T, Yanagawa M, Abe M, Sako Y, Dobashi K, Ishizuka T, Yamada M, Shuto S, Hisada T. Resolvin E3 attenuates allergic airway inflammation via the interleukin-23-interleukin-17A pathway. FASEB J 2019; 33:12750-12759. [PMID: 31469599 DOI: 10.1096/fj.201900283r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We investigated the effects of resolvin E (RvE) 1, RvE2, and RvE3 on IL-4- and IL-33-stimulated bone marrow-derived dendritic cells (BMDCs) from house dust mite (HDM)-sensitized mice. We also investigated the role of RvE3 in a murine model of HDM-induced airway inflammation. In vitro, BMDCs from HDM-sensitized mice were stimulated with IL-4 and IL-33 and then treated with RvE1, RvE2, RvE3, or vehicle. RvE1, RvE2, and RvE3 suppressed IL-23 release from BMDCs. In vivo, RvE3 administrated to HDM-sensitized and challenged mice in the resolution phase promoted a decline in total numbers of inflammatory cells and eosinophils, reduced levels of IL-23 and IL-17 in lavage fluid, and suppressed IL-23 and IL-17A mRNA expression in lung and peribronchial lymph nodes. RvE3 also reduced resistance in the lungs of HDM-sensitized mice. A NanoBiT β-arrestin recruitment assay using human embryonic kidney 293 cells revealed that pretreatment with RvE3 suppressed the leukotriene B4 (LTB4)-induced β-arrestin 2 binding to LTB4 receptor 1 (BLT1R), indicating that RvE3 antagonistically interacts with BLT1R. Collectively, these findings indicate that RvE3 facilitates the resolution of allergic airway inflammation, partly by regulating BLT1R activity and selective cytokine release by dendritic cells. Our results accordingly identify RvE3 as a potential therapeutic target for the management of asthma.-Sato, M., Aoki-Saito, H., Fukuda, H., Ikeda, H., Koga, Y., Yatomi, M., Tsurumaki, H., Maeno, T., Saito, T., Nakakura, T., Mori, T., Yanagawa, M., Abe, M., Sako, Y., Dobashi, K., Ishizuka, T., Yamada, M., Shuto, S., Hisada, T. Resolvin E3 attenuates allergic airway inflammation via the interleukin-23-interleukin-17A pathway.
Collapse
Affiliation(s)
- Makiko Sato
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan.,Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Haruka Aoki-Saito
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hayato Fukuda
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroyuki Ikeda
- Faculty of Pharmaceutical Sciences and Center for Research and Education on Drug Discovery, Hokkaido University, Hokkaido, Japan
| | - Yasuhiko Koga
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Masakiyo Yatomi
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hiroaki Tsurumaki
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Toshitaka Maeno
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tsugumichi Saito
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | - Tetsuya Mori
- Laboratory of Allergy and Immunology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Gunma, Japan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, Riken Cluster for Pioneering Research, Saitama, Japan
| | - Mitsuhiro Abe
- Cellular Informatics Laboratory, Riken Cluster for Pioneering Research, Saitama, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, Riken Cluster for Pioneering Research, Saitama, Japan
| | - Kunio Dobashi
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tamotsu Ishizuka
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences and Center for Research and Education on Drug Discovery, Hokkaido University, Hokkaido, Japan
| | - Takeshi Hisada
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan.,Gunma University Graduate School of Health Sciences, Gunma, Japan
| |
Collapse
|
27
|
Turu G, Balla A, Hunyady L. The Role of β-Arrestin Proteins in Organization of Signaling and Regulation of the AT1 Angiotensin Receptor. Front Endocrinol (Lausanne) 2019; 10:519. [PMID: 31447777 PMCID: PMC6691095 DOI: 10.3389/fendo.2019.00519] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022] Open
Abstract
AT1 angiotensin receptor plays important physiological and pathophysiological roles in the cardiovascular system. Renin-angiotensin system represents a target system for drugs acting at different levels. The main effects of ATR1 stimulation involve activation of Gq proteins and subsequent IP3, DAG, and calcium signaling. It has become evident in recent years that besides the well-known G protein pathways, AT1R also activates a parallel signaling pathway through β-arrestins. β-arrestins were originally described as proteins that desensitize G protein-coupled receptors, but they can also mediate receptor internalization and G protein-independent signaling. AT1R is one of the most studied receptors, which was used to unravel the newly recognized β-arrestin-mediated pathways. β-arrestin-mediated signaling has become one of the most studied topics in recent years in molecular pharmacology and the modulation of these pathways of the AT1R might offer new therapeutic opportunities in the near future. In this paper, we review the recent advances in the field of β-arrestin signaling of the AT1R, emphasizing its role in cardiovascular regulation and heart failure.
Collapse
Affiliation(s)
- Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
- *Correspondence: László Hunyady
| |
Collapse
|
28
|
Laporte SA, Scott MGH. β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling. Methods Mol Biol 2019; 1957:9-55. [PMID: 30919345 DOI: 10.1007/978-1-4939-9158-7_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The β-arrestins (β-arrs) were initially appreciated for the roles they play in the desensitization and endocytosis of G protein-coupled receptors (GPCRs). They are now also known to act as multifunctional adaptor proteins binding many non-receptor protein partners to control multiple signalling pathways. β-arrs therefore act as key regulatory hubs at the crossroads of external cell inputs and functional outputs in cellular processes ranging from gene transcription to cell growth, survival, cytoskeletal regulation, polarity, and migration. An increasing number of studies have also highlighted the scaffolding roles β-arrs play in vivo in both physiological and pathological conditions, which opens up therapeutic avenues to explore. In this introductory review chapter, we discuss the functional roles that β-arrs exert to control GPCR function, their dynamic scaffolding roles and how this impacts signal transduction events, compartmentalization of β-arrs, how β-arrs are regulated themselves, and how the combination of these events culminates in cellular regulation.
Collapse
Affiliation(s)
- Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montreal, QC, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada. .,RI-MUHC/Glen Site, Montréal, QC, Canada.
| | - Mark G H Scott
- Institut Cochin, INSERM U1016, Paris, France. .,CNRS, UMR 8104, Paris, France. .,Univ. Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
29
|
Abstract
β-arrestin1 (or arrestin2) and β-arrestin2 (or arrestin3) are ubiquitously expressed cytosolic adaptor proteins that were originally discovered for their inhibitory role in G protein-coupled receptor (GPCR) signaling through heterotrimeric G proteins. However, further biochemical characterization revealed that β-arrestins do not just "block" the activated GPCRs, but trigger endocytosis and kinase activation leading to specific signaling pathways that can be localized on endosomes. The signaling pathways initiated by β-arrestins were also found to be independent of G protein activation by GPCRs. The discovery of ligands that blocked G protein activation but promoted β-arrestin binding, or vice-versa, suggested the exciting possibility of selectively activating intracellular signaling pathways. In addition, it is becoming increasingly evident that β-arrestin-dependent signaling is extremely diverse and provokes distinct cellular responses through different GPCRs even when the same effector kinase is involved. In this review, we summarize various signaling pathways mediated by β-arrestins and highlight the physiologic effects of β-arrestin-dependent signaling.
Collapse
|
30
|
Liu H, Zhang Q, Li K, Gong Z, Liu Z, Xu Y, Swaney MH, Xiao K, Chen Y. Prognostic significance of USP33 in advanced colorectal cancer patients: new insights into β-arrestin-dependent ERK signaling. Oncotarget 2018; 7:81223-81240. [PMID: 27835898 PMCID: PMC5348388 DOI: 10.18632/oncotarget.13219] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/14/2016] [Indexed: 01/05/2023] Open
Abstract
Patients with liver metastases of colorectal cancer (CRCLM) have a poorer prognosis compared to colorectal cancer (CRC) patients in local stage. Evaluating the recurrence and overall survival of advanced patients is critical in improving disease treatment and clinical outcome. Here we investigated the expression pattern of USP33, a deubiquitinating enzyme, in both primary CRC tissues and liver metastases tissues. Univariate and multivariate analyses identified that low expression of USP33 in CRCLM tissues indicated high recurrence risk and poor overall prognosis. Overexpression of USP33 can significantly inhibit cell proliferation, migration, and invasion. On the other hand, USP33 knock-down promoted cell proliferation and invasion under SDF-1 stimulation; whereas dynasore (an internalization inhibitor) pretreatment in USP33 silencing cells showed a distinct antipromoting effect, revealing the participation of CXCR4 internalization in regulating tumor progress. Further results verified that USP33 can deubiquitinate β-arrestin2, subsequently block the internalization of SDF-1-stimulated CXCR4, and disrupt β-arrestin-dependent ERK activation. The existence and functions of β-arrestin-dependent signaling have been previously determined in several Gs-coupled receptors, such as β2-adrenergic receptor and angiotensin receptor subtype 1a; however, little is known about this in Gi-coupled receptors. Our study not only established USP33 as a novel prognosis biomarker in advanced CRCLM patients, but also highlighted the significance of β-arrestin-dependent ERK signaling in cancer development.
Collapse
Affiliation(s)
- Hongda Liu
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China.,Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China.,Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Qun Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Kangshuai Li
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China
| | - Zheng Gong
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhaochen Liu
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China
| | - Mary Hannah Swaney
- Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Kunhong Xiao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Yuxin Chen
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
31
|
β-Arrestin2 directly or through GRK2 inhibits PKCβII activation in a ubiquitination-dependent manner. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:142-157. [DOI: 10.1016/j.bbamcr.2017.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 11/23/2022]
|
32
|
Human melanocortin 1 receptor-mediated ubiquitination of nonvisual arrestins. Role of Mahogunin Ring Finger 1 E3 ligase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:76-94. [DOI: 10.1016/j.bbamcr.2017.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 11/23/2022]
|
33
|
Peterson YK, Luttrell LM. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol Rev 2017. [PMID: 28626043 DOI: 10.1124/pr.116.013367] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The visual/β-arrestins, a small family of proteins originally described for their role in the desensitization and intracellular trafficking of G protein-coupled receptors (GPCRs), have emerged as key regulators of multiple signaling pathways. Evolutionarily related to a larger group of regulatory scaffolds that share a common arrestin fold, the visual/β-arrestins acquired the capacity to detect and bind activated GPCRs on the plasma membrane, which enables them to control GPCR desensitization, internalization, and intracellular trafficking. By acting as scaffolds that bind key pathway intermediates, visual/β-arrestins both influence the tonic level of pathway activity in cells and, in some cases, serve as ligand-regulated scaffolds for GPCR-mediated signaling. Growing evidence supports the physiologic and pathophysiologic roles of arrestins and underscores their potential as therapeutic targets. Circumventing arrestin-dependent GPCR desensitization may alleviate the problem of tachyphylaxis to drugs that target GPCRs, and find application in the management of chronic pain, asthma, and psychiatric illness. As signaling scaffolds, arrestins are also central regulators of pathways controlling cell growth, migration, and survival, suggesting that manipulating their scaffolding functions may be beneficial in inflammatory diseases, fibrosis, and cancer. In this review we examine the structure-function relationships that enable arrestins to perform their diverse roles, addressing arrestin structure at the molecular level, the relationship between arrestin conformation and function, and sites of interaction between arrestins, GPCRs, and nonreceptor-binding partners. We conclude with a discussion of arrestins as therapeutic targets and the settings in which manipulating arrestin function might be of clinical benefit.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| | - Louis M Luttrell
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| |
Collapse
|
34
|
Tóth AD, Prokop S, Gyombolai P, Várnai P, Balla A, Gurevich VV, Hunyady L, Turu G. Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins. J Biol Chem 2017; 293:876-892. [PMID: 29146594 DOI: 10.1074/jbc.m117.813139] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/08/2017] [Indexed: 12/24/2022] Open
Abstract
β-Arrestins are key regulators and signal transducers of G protein-coupled receptors (GPCRs). The interaction between receptors and β-arrestins is generally believed to require both receptor activity and phosphorylation by GPCR kinases. In this study, we investigated whether β-arrestins are able to bind second messenger kinase-phosphorylated, but inactive receptors as well. Because heterologous phosphorylation is a common phenomenon among GPCRs, this mode of β-arrestin activation may represent a novel mechanism of signal transduction and receptor cross-talk. Here we demonstrate that activation of protein kinase C (PKC) by phorbol myristate acetate, Gq/11-coupled GPCR, or epidermal growth factor receptor stimulation promotes β-arrestin2 recruitment to unliganded AT1 angiotensin receptor (AT1R). We found that this interaction depends on the stability lock, a structure responsible for the sustained binding between GPCRs and β-arrestins, formed by phosphorylated serine-threonine clusters in the receptor's C terminus and two conserved phosphate-binding lysines in the β-arrestin2 N-domain. Using improved FlAsH-based serine-threonine clusters β-arrestin2 conformational biosensors, we also show that the stability lock not only stabilizes the receptor-β-arrestin interaction, but also governs the structural rearrangements within β-arrestins. Furthermore, we found that β-arrestin2 binds to PKC-phosphorylated AT1R in a distinct active conformation, which triggers MAPK recruitment and receptor internalization. Our results provide new insights into the activation of β-arrestins and reveal their novel role in receptor cross-talk.
Collapse
Affiliation(s)
- András D Tóth
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary
| | - Susanne Prokop
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary
| | - Pál Gyombolai
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary.,the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| | - Péter Várnai
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary.,the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| | - András Balla
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary.,the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| | - Vsevolod V Gurevich
- the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - László Hunyady
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary, .,the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| | - Gábor Turu
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary.,the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| |
Collapse
|
35
|
Min C, Zhang X, Zheng M, Sun N, Acharya S, Zhang X, Kim KM. Molecular Signature That Determines the Acute Tolerance of G Protein-Coupled Receptors. Biomol Ther (Seoul) 2017; 25:239-248. [PMID: 27956717 PMCID: PMC5424633 DOI: 10.4062/biomolther.2016.193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/08/2016] [Accepted: 11/15/2016] [Indexed: 11/05/2022] Open
Abstract
Desensitization and acute tolerance are terms used to describe the attenuation of receptor responsiveness by prolonged or intermittent exposure to an agonist. Unlike desensitization of G protein-coupled receptors (GPCRs), which is commonly explained by steric hindrance caused by the β-arrestins that are translocated to the activated receptors, molecular mechanisms involved in the acute tolerance of GPCRs remain unclear. Our studies with several GPCRs and related mutants showed that the acute tolerance of GPCRs could occur independently of agonist-induced β-arrestin translocation. A series of co-immunoprecipitation experiments revealed a correlation between receptor tolerance and interactions among receptors, β-arrestin2, and Gβγ. Gβγ displayed a stable interaction with receptors and β-arrestin2 in cells expressing GPCRs that were prone to undergo tolerance compared to the GPCRs that were resistant to acute tolerance. Strengthening the interaction between Gβγ and β-arrestin rendered the GPCRs to acquire the tendency of acute tolerance. Overall, stable interaction between the receptor and Gβγ complex is required for the formation of a complex with β-arrestin, and determines the potential of a particular GPCR to undergo acute tolerance. Rather than turning off the signal, β-arrestins seem to contribute on continuous signaling when they are in the context of complex with receptor and Gβγ.
Collapse
Affiliation(s)
- Chengchun Min
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Xiaohan Zhang
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mei Zheng
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ningning Sun
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Srijan Acharya
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Xiaowei Zhang
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
36
|
Regulation of G Protein-Coupled Receptors by Ubiquitination. Int J Mol Sci 2017; 18:ijms18050923. [PMID: 28448471 PMCID: PMC5454836 DOI: 10.3390/ijms18050923] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of membrane receptors that control many cellular processes and consequently often serve as drug targets. These receptors undergo a strict regulation by mechanisms such as internalization and desensitization, which are strongly influenced by posttranslational modifications. Ubiquitination is a posttranslational modification with a broad range of functions that is currently gaining increased appreciation as a regulator of GPCR activity. The role of ubiquitination in directing GPCRs for lysosomal degradation has already been well-established. Furthermore, this modification can also play a role in targeting membrane and endoplasmic reticulum-associated receptors to the proteasome. Most recently, ubiquitination was also shown to be involved in GPCR signaling. In this review, we present current knowledge on the molecular basis of GPCR regulation by ubiquitination, and highlight the importance of E3 ubiquitin ligases, deubiquitinating enzymes and β-arrestins. Finally, we discuss classical and newly-discovered functions of ubiquitination in controlling GPCR activity.
Collapse
|
37
|
Dupuis N, Laschet C, Franssen D, Szpakowska M, Gilissen J, Geubelle P, Soni A, Parent AS, Pirotte B, Chevigné A, Twizere JC, Hanson J. Activation of the Orphan G Protein-Coupled Receptor GPR27 by Surrogate Ligands Promotes β-Arrestin 2 Recruitment. Mol Pharmacol 2017; 91:595-608. [PMID: 28314853 DOI: 10.1124/mol.116.107714] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/16/2017] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors are the most important drug targets for human diseases. An important number of them remain devoid of confirmed ligands. GPR27 is one of these orphan receptors, characterized by a high level of conservation among vertebrates and a predominant expression in the central nervous system. In addition, it has recently been linked to insulin secretion. However, the absence of endogenous or surrogate ligands for GPR27 complicates the examination of its biologic function. Our aim was to validate GPR27 signaling pathways, and therefore we sought to screen a diversity-oriented synthesis library to identify GPR27-specific surrogate agonists. To select an optimal screening assay, we investigated GPR27 ligand-independent activity. Both in G protein-mediated pathways and in β-arrestin 2 recruitment, no ligand-independent activity could be measured. However, we observed a recruitment of β-arrestin 2 to a GPR27V2 chimera in the presence of membrane-anchored G protein-coupled receptor kinase-2. Therefore, we optimized a firefly luciferase complementation assay to screen against this chimeric receptor. We identified two compounds [N-[4-(anilinocarbonyl)phenyl]-2,4-dichlorobenzamide (ChemBridge, San Diego, CA; ID5128535) and 2,4-dichloro-N-{4-[(1,3-thiazol-2-ylamino)sulfonyl]phenyl}benzamide (ChemBridge ID5217941)] sharing a N-phenyl-2,4-dichlorobenzamide scaffold, which were selective for GPR27 over its closely related family members GPR85 and GPR173. The specificity of the activity was confirmed with a NanoLuc Binary Technology β-arrestin 2 assay, imaging of green fluorescent protein-tagged β-arrestin 2, and PathHunter β-arrestin 2 assay. Interestingly, no G protein activation was detected upon activation of GPR27 by these compounds. Our study provides the first selective surrogate agonists for the orphan GPR27.
Collapse
Affiliation(s)
- Nadine Dupuis
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases (N.D., C.L., J.G., P.G., A.S., J.H.), Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (N.D., B.P., J.H.), Neuroendocrinology Unit, GIGA-Neurosciences (D.F., A.-S.P.), Laboratory of Protein Signaling and Interactions, GIGA-Molecular Biology of Diseases (J.-C.T.), University of Liège, Liège, Belgium; and Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg (M.S., A.C.)
| | - Céline Laschet
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases (N.D., C.L., J.G., P.G., A.S., J.H.), Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (N.D., B.P., J.H.), Neuroendocrinology Unit, GIGA-Neurosciences (D.F., A.-S.P.), Laboratory of Protein Signaling and Interactions, GIGA-Molecular Biology of Diseases (J.-C.T.), University of Liège, Liège, Belgium; and Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg (M.S., A.C.)
| | - Delphine Franssen
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases (N.D., C.L., J.G., P.G., A.S., J.H.), Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (N.D., B.P., J.H.), Neuroendocrinology Unit, GIGA-Neurosciences (D.F., A.-S.P.), Laboratory of Protein Signaling and Interactions, GIGA-Molecular Biology of Diseases (J.-C.T.), University of Liège, Liège, Belgium; and Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg (M.S., A.C.)
| | - Martyna Szpakowska
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases (N.D., C.L., J.G., P.G., A.S., J.H.), Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (N.D., B.P., J.H.), Neuroendocrinology Unit, GIGA-Neurosciences (D.F., A.-S.P.), Laboratory of Protein Signaling and Interactions, GIGA-Molecular Biology of Diseases (J.-C.T.), University of Liège, Liège, Belgium; and Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg (M.S., A.C.)
| | - Julie Gilissen
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases (N.D., C.L., J.G., P.G., A.S., J.H.), Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (N.D., B.P., J.H.), Neuroendocrinology Unit, GIGA-Neurosciences (D.F., A.-S.P.), Laboratory of Protein Signaling and Interactions, GIGA-Molecular Biology of Diseases (J.-C.T.), University of Liège, Liège, Belgium; and Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg (M.S., A.C.)
| | - Pierre Geubelle
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases (N.D., C.L., J.G., P.G., A.S., J.H.), Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (N.D., B.P., J.H.), Neuroendocrinology Unit, GIGA-Neurosciences (D.F., A.-S.P.), Laboratory of Protein Signaling and Interactions, GIGA-Molecular Biology of Diseases (J.-C.T.), University of Liège, Liège, Belgium; and Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg (M.S., A.C.)
| | - Arvind Soni
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases (N.D., C.L., J.G., P.G., A.S., J.H.), Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (N.D., B.P., J.H.), Neuroendocrinology Unit, GIGA-Neurosciences (D.F., A.-S.P.), Laboratory of Protein Signaling and Interactions, GIGA-Molecular Biology of Diseases (J.-C.T.), University of Liège, Liège, Belgium; and Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg (M.S., A.C.)
| | - Anne-Simone Parent
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases (N.D., C.L., J.G., P.G., A.S., J.H.), Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (N.D., B.P., J.H.), Neuroendocrinology Unit, GIGA-Neurosciences (D.F., A.-S.P.), Laboratory of Protein Signaling and Interactions, GIGA-Molecular Biology of Diseases (J.-C.T.), University of Liège, Liège, Belgium; and Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg (M.S., A.C.)
| | - Bernard Pirotte
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases (N.D., C.L., J.G., P.G., A.S., J.H.), Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (N.D., B.P., J.H.), Neuroendocrinology Unit, GIGA-Neurosciences (D.F., A.-S.P.), Laboratory of Protein Signaling and Interactions, GIGA-Molecular Biology of Diseases (J.-C.T.), University of Liège, Liège, Belgium; and Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg (M.S., A.C.)
| | - Andy Chevigné
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases (N.D., C.L., J.G., P.G., A.S., J.H.), Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (N.D., B.P., J.H.), Neuroendocrinology Unit, GIGA-Neurosciences (D.F., A.-S.P.), Laboratory of Protein Signaling and Interactions, GIGA-Molecular Biology of Diseases (J.-C.T.), University of Liège, Liège, Belgium; and Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg (M.S., A.C.)
| | - Jean-Claude Twizere
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases (N.D., C.L., J.G., P.G., A.S., J.H.), Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (N.D., B.P., J.H.), Neuroendocrinology Unit, GIGA-Neurosciences (D.F., A.-S.P.), Laboratory of Protein Signaling and Interactions, GIGA-Molecular Biology of Diseases (J.-C.T.), University of Liège, Liège, Belgium; and Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg (M.S., A.C.)
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases (N.D., C.L., J.G., P.G., A.S., J.H.), Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (N.D., B.P., J.H.), Neuroendocrinology Unit, GIGA-Neurosciences (D.F., A.-S.P.), Laboratory of Protein Signaling and Interactions, GIGA-Molecular Biology of Diseases (J.-C.T.), University of Liège, Liège, Belgium; and Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg (M.S., A.C.)
| |
Collapse
|
38
|
Rajagopal S, Shenoy SK. GPCR desensitization: Acute and prolonged phases. Cell Signal 2017; 41:9-16. [PMID: 28137506 DOI: 10.1016/j.cellsig.2017.01.024] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/25/2017] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) transduce a wide array of extracellular signals and regulate virtually every aspect of physiology. While GPCR signaling is essential, overstimulation can be deleterious, resulting in cellular toxicity or uncontrolled cellular growth. Accordingly, nature has developed a number of mechanisms for limiting GPCR signaling, which are broadly referred to as desensitization, and refer to a decrease in response to repeated or continuous stimulation. Short-term desensitization occurs over minutes, and is primarily associated with β-arrestins preventing G protein interaction with a GPCR. Longer-term desensitization, referred to as downregulation, occurs over hours to days, and involves receptor internalization into vesicles, degradation in lysosomes and decreased receptor mRNA levels through unclear mechanisms. Phosphorylation of the receptor by GPCR kinases (GRKs) and the recruitment of β-arrestins is critical to both these short- and long-term desensitization mechanisms. In addition to phosphorylation, both the GPCR and β-arrestins are modified post-translationally in several ways, including by ubiquitination. For many GPCRs, receptor ubiquitination promotes degradation of agonist-activated receptors in the lysosomes. Other proteins also play important roles in desensitization, including phosphodiesterases, RGS family proteins and A-kinase-anchoring proteins. Together, this intricate network of kinases, ubiquitin ligases, and adaptor proteins orchestrate the acute and prolonged desensitization of GPCRs.
Collapse
Affiliation(s)
| | - Sudha K Shenoy
- Department of Medicine (Cardiology), Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
39
|
Rate of Homologous Desensitization and Internalization of the GLP-1 Receptor. Molecules 2016; 22:molecules22010022. [PMID: 28035964 PMCID: PMC6155907 DOI: 10.3390/molecules22010022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is an important target in the treatment of type 2 diabetes mellitus. The aim of this study was to compare the rate of agonist stimulated desensitization and internalization of GLP-1R. To this end, an N-terminally myc-tagged GLP-1R was stably expressed in HEK-293 cells. Homologous desensitization was assessed by measuring the cAMP response to agonist stimulation following pre-incubation with agonist for up to 120 min. Receptor internalization was monitored using an indirect ELISA-based method and confocal microscopy. Pre-incubation with GLP-1 resulted in a time-dependent loss of response to a second stimulation. Washing cells following pre-incubation failed to bring cAMP levels back to basal. Taking this into account, two desensitization rates were calculated: “apparent” (t1/2 = 19.27 min) and “net” (t1/2 = 2.99 min). Incubation of cells with GLP-1 also resulted in a time-dependent loss of receptor cell surface expression (t1/2 = 2.05 min). Rapid agonist-stimulated internalization of GLP-1R was confirmed using confocal microscopy. Stimulation of GLP-1R with GLP-1 results in rapid desensitization and internalization of the receptor. Interestingly, the rate of “net” desensitization closely matches the rate of internalization. Our results suggest that agonist-bound GLP-1R continues to generate cAMP after it has been internalized.
Collapse
|
40
|
Cao H, Dong W, Qu X, Shen H, Xu J, Zhu L, Liu Q, Du J. Metformin Enhances the Therapy Effects of Anti-IGF-1R mAb Figitumumab to NSCLC. Sci Rep 2016; 6:31072. [PMID: 27488947 PMCID: PMC4973270 DOI: 10.1038/srep31072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022] Open
Abstract
The insulin-like growth factor (IGF) signaling system plays a critical role in tumorigenesis, highlighting the potential of targeting IGF-1R as an anti-cancer therapy. Although multiple anti-IGF-1R monoclonal antibody (mAb) drugs have been developed, challenges remain in the validation of the therapeutic effects and understanding the molecular mechanism of these mAbs. Herein, we conducted a study to validate the effect of Figitumumab (CP), an anti-IGF-1R mAb, in a panel of non-small cell lung cancer (NSCLC) cell lines. We found all tested cell lines were sensitive to CP, and CP could block IGF-1R and the downstream PI3K/AKT pathway activation. Unexpectedly, we found CP could activate ERK signaling pathway in IGF-1R kinase independent manner, which we further verified was mainly mediated by β-arrestin2. We also investigated the anti-tumor effect of metformin alone as well as its combination with CP to target NSCLC. Metformin could target IGF-1R signaling pathway by attenuating PI3K/AKT and MEK/ERK signaling pathways and down-regulating IGF-1R. Finally, we found that combining metformin with CP could further induce IGF-1R down-regulation and was more effective to target NSCLC cells. Our data suggests the combining of metformin with CP has additive therapeutic value against NSCLC.
Collapse
Affiliation(s)
- Hongxin Cao
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China.,Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Shandong University, Jinan, P.R. China
| | - Wei Dong
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Xiao Qu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Hongchang Shen
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Jun Xu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Linhai Zhu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Qi Liu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China
| |
Collapse
|
41
|
Penela P. Chapter Three - Ubiquitination and Protein Turnover of G-Protein-Coupled Receptor Kinases in GPCR Signaling and Cellular Regulation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:85-140. [PMID: 27378756 DOI: 10.1016/bs.pmbts.2016.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
G-protein-coupled receptors (GPCRs) are responsible for regulating a wide variety of physiological processes, and distinct mechanisms for GPCR inactivation exist to guarantee correct receptor functionality. One of the widely used mechanisms is receptor phosphorylation by specific G-protein-coupled receptor kinases (GRKs), leading to uncoupling from G proteins (desensitization) and receptor internalization. GRKs and β-arrestins also participate in the assembly of receptor-associated multimolecular complexes, thus initiating alternative G-protein-independent signaling events. In addition, the abundant GRK2 kinase has diverse "effector" functions in cellular migration, proliferation, and metabolism homeostasis by means of the phosphorylation or interaction with non-GPCR partners. Altered expression of GRKs (particularly of GRK2 and GRK5) occurs during pathological conditions characterized by impaired GPCR signaling including inflammatory syndromes, cardiovascular disease, and tumor contexts. It is increasingly appreciated that different pathways governing GRK protein stability play a role in the modulation of kinase levels in normal and pathological conditions. Thus, enhanced GRK2 degradation by the proteasome pathway occurs upon GPCR stimulation, what allows cellular adaptation to chronic stimulation in a physiological setting. β-arrestins participate in this process by facilitating GRK2 phosphorylation by different kinases and by recruiting diverse E3 ubiquitin ligase to the receptor complex. Different proteolytic systems (ubiquitin-proteasome, calpains), chaperone activities and signaling pathways influence the stability of GRKs in different ways, thus endowing specificity to GPCR regulation as protein turnover of GRKs can be differentially affected. Therefore, modulation of protein stability of GRKs emerges as a versatile mechanism for feedback regulation of GPCR signaling and basic cellular processes.
Collapse
Affiliation(s)
- P Penela
- Department of Molecular Biology and Centre of Molecular Biology "Severo Ochoa" (CSIC-UAM), Madrid, Autonomous University of Madrid, Madrid, Spain; Spain Health Research Institute The Princesa, Madrid, Spain.
| |
Collapse
|
42
|
Jean-Charles PY, Freedman NJ, Shenoy SK. Chapter Nine - Cellular Roles of Beta-Arrestins as Substrates and Adaptors of Ubiquitination and Deubiquitination. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:339-69. [PMID: 27378762 DOI: 10.1016/bs.pmbts.2016.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
β-Arrestin1 and β-arrestin2 are homologous adaptor proteins that are ubiquitously expressed in mammalian cells. They belong to a four-member family of arrestins that regulate the vast family of seven-transmembrane receptors that couple to heterotrimeric G proteins (7TMRs or GPCRs), and that modulate 7TMR signal transduction. β-Arrestins were originally identified in the context of signal inhibition via the 7TMRs because they competed with and thereby blocked G protein coupling to 7TMRs. Currently, in addition to their role as desensitizers of signaling, β-arrestins are appreciated as multifunctional adaptors that mediate trafficking and signal transduction of not only 7TMRs, but a growing list of additional receptors, ion channels, and nonreceptor proteins. β-Arrestins' interactions with their multifarious partners are based on their dynamic conformational states rather than particular domain-domain interactions. β-Arrestins adopt activated conformations upon 7TMR association. In addition, β-arrestins undergo various posttranslational modifications that are choreographed by activated 7TMRs, including phosphorylation, ubiquitination, acetylation, nitrosylation, and SUMOylation. Ubiquitination of β-arrestins is critical for their high-affinity interaction with 7TMRs as well as with endocytic adaptor proteins and signaling kinases. β-Arrestins also function as critical adaptors for ubiquitination and deubiquitination of various cellular proteins, and thereby affect the longevity of signal transducers and the intensity of signal transmission.
Collapse
Affiliation(s)
- P-Y Jean-Charles
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States
| | - N J Freedman
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States
| | - S K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States.
| |
Collapse
|
43
|
Bamidele AO, Kremer KN, Hirsova P, Clift IC, Gores GJ, Billadeau DD, Hedin KE. IQGAP1 promotes CXCR4 chemokine receptor function and trafficking via EEA-1+ endosomes. J Cell Biol 2016. [PMID: 26195666 PMCID: PMC4508899 DOI: 10.1083/jcb.201411045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
IQGAP1 mediates CXCR4 cell surface expression and signaling by regulating EEA-1+ endosome interactions with microtubules during CXCR4 trafficking and recycling. IQ motif–containing GTPase-activating protein 1 (IQGAP1) is a cytoskeleton-interacting scaffold protein. CXCR4 is a chemokine receptor that binds stromal cell–derived factor-1 (SDF-1; also known as CXCL12). Both IQGAP1 and CXCR4 are overexpressed in cancer cell types, yet it was unclear whether these molecules functionally interact. Here, we show that depleting IQGAP1 in Jurkat T leukemic cells reduced CXCR4 expression, disrupted trafficking of endocytosed CXCR4 via EEA-1+ endosomes, and decreased efficiency of CXCR4 recycling. SDF-1–induced cell migration and activation of extracellular signal-regulated kinases 1 and 2 (ERK) MAPK were strongly inhibited, even when forced overexpression restored CXCR4 levels. Similar results were seen in KMBC and HEK293 cells. Exploring the mechanism, we found that SDF-1 treatment induced IQGAP1 binding to α-tubulin and localization to CXCR4-containing endosomes and that CXCR4-containing EEA-1+ endosomes were abnormally located distal from the microtubule (MT)-organizing center (MTOC) in IQGAP1-deficient cells. Thus, IQGAP1 critically mediates CXCR4 cell surface expression and signaling, evidently by regulating EEA-1+ endosome interactions with MTs during CXCR4 trafficking and recycling. IQGAP1 may similarly promote CXCR4 functions in other cancer cell types.
Collapse
Affiliation(s)
- Adebowale O Bamidele
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Ian C Clift
- Department of Immunology, Mayo Clinic, Rochester, MN 55905 Neurobiology of Disease Research Program, Mayo Clinic, Rochester, MN 55905
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Daniel D Billadeau
- Department of Immunology, Mayo Clinic, Rochester, MN 55905 Division of Oncology Research, Mayo Clinic, Rochester, MN 55905
| | - Karen E Hedin
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
44
|
Martinez NA, Ayala AM, Martinez M, Martinez-Rivera FJ, Miranda JD, Silva WI. Caveolin-1 Regulates the P2Y2 Receptor Signaling in Human 1321N1 Astrocytoma Cells. J Biol Chem 2016; 291:12208-22. [PMID: 27129210 DOI: 10.1074/jbc.m116.730226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 11/06/2022] Open
Abstract
Damage to the CNS can cause a differential spatio-temporal release of multiple factors, such as nucleotides, ATP and UTP. The latter interact with neuronal and glial nucleotide receptors. The P2Y2 nucleotide receptor (P2Y2R) has gained prominence as a modulator of gliotic responses after CNS injury. Still, the molecular mechanisms underlying these responses in glia are not fully understood. Membrane-raft microdomains, such as caveolae, and their constituent caveolins, modulate receptor signaling in astrocytes; yet, their role in P2Y2R signaling has not been adequately explored. Hence, this study evaluated the role of caveolin-1 (Cav-1) in modulating P2Y2R subcellular distribution and signaling in human 1321N1 astrocytoma cells. Recombinant hP2Y2R expressed in 1321N1 cells and Cav-1 were found to co-fractionate in light-density membrane-raft fractions, co-localize via confocal microscopy, and co-immunoprecipitate. Raft localization was dependent on ATP stimulation and Cav-1 expression. This hP2Y2R/Cav-1 distribution and interaction was confirmed with various cell model systems differing in the expression of both P2Y2R and Cav-1, and shRNA knockdown of Cav-1 expression. Furthermore, shRNA knockdown of Cav-1 expression decreased nucleotide-induced increases in the intracellular Ca(2+) concentration in 1321N1 and C6 glioma cells without altering TRAP-6 and carbachol Ca(2+) responses. In addition, Cav-1 shRNA knockdown also decreased AKT phosphorylation and altered the kinetics of ERK1/2 activation in 1321N1 cells. Our findings strongly suggest that P2Y2R interaction with Cav-1 in membrane-raft caveolae of 1321N1 cells modulates receptor coupling to its downstream signaling machinery. Thus, P2Y2R/Cav-1 interactions represent a novel target for controlling P2Y2R function after CNS injury.
Collapse
Affiliation(s)
| | | | | | - Freddyson J Martinez-Rivera
- Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936
| | | | | |
Collapse
|
45
|
Smith JS, Rajagopal S. The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors. J Biol Chem 2016; 291:8969-77. [PMID: 26984408 DOI: 10.1074/jbc.r115.713313] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling.
Collapse
Affiliation(s)
| | - Sudarshan Rajagopal
- From the Departments of Biochemistry and Medicine, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
46
|
Jean-Charles PY, Rajiv V, Shenoy SK. Ubiquitin-Related Roles of β-Arrestins in Endocytic Trafficking and Signal Transduction. J Cell Physiol 2016; 231:2071-80. [PMID: 26790995 DOI: 10.1002/jcp.25317] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 12/25/2022]
Abstract
The non-visual arrestins, β-arrestin1, and β-arrestin2 were originally identified as proteins that bind to seven-transmembrane receptors (7TMRs, also called G protein-coupled receptors, GPCRs) and block heterotrimeric G protein activation, thus leading to desensitization of transmembrane signaling. However, as subsequent discoveries have continually demonstrated, their functionality is not constrained to desensitization. They are now recognized for their critical roles in mediating intracellular trafficking of 7TMRs, growth factor receptors, ion transporters, ion channels, nuclear receptors, and non-receptor proteins. Additionally, they function as crucial mediators of ubiquitination of 7TMRs as well as other receptors and non-receptor proteins. Recently, emerging studies suggest that a class of proteins with predicted structural features of β-arrestins regulate substrate ubiquitination in yeast and higher mammals, lending support to the idea that the adaptor role of β-arrestins in protein ubiquitination is evolutionarily conserved. β-arrestins also function as scaffolds for kinases and transduce signals from 7TMRs through pathways that do not require G protein activation. Remarkably, the endocytic and scaffolding functions of β-arrestin are intertwined with its ubiquitination status; the dynamic and site specific ubiquitination on β-arrestin plays a critical role in stabilizing β-arrestin-7TMR association and the formation of signalosomes. This review summarizes the current findings on ubiquitin-dependent regulation of 7TMRs as well as β-arrestins and the potential role of reversible ubiquitination as a "biological switch" in signal transduction. J. Cell. Physiol. 231: 2071-2080, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Vishwaesh Rajiv
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina
| | - Sudha K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
47
|
Zheng M, Zhang X, Guo S, Zhang X, Choi HJ, Lee MY, Kim KM. PKCβII inhibits the ubiquitination of β-arrestin2 in an autophosphorylation-dependent manner. FEBS Lett 2015; 589:3929-37. [DOI: 10.1016/j.febslet.2015.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/07/2015] [Accepted: 10/23/2015] [Indexed: 01/19/2023]
|
48
|
Zhu Z, Stricker R, yu Li R, Zündorf G, Reiser G. The intracellular carboxyl tail of the PAR-2 receptor controls intracellular signaling and cell death. Cell Tissue Res 2014; 359:817-27. [DOI: 10.1007/s00441-014-2056-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 11/06/2014] [Indexed: 12/30/2022]
|
49
|
Sarker S, Xiao K, Shenoy SK. A Tale of Two Sites – How ubiquitination of a G protein-coupled receptor is coupled to its lysosomal trafficking from distinct receptor domains. Commun Integr Biol 2014. [DOI: 10.4161/cib.16458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
50
|
Khoury E, Nikolajev L, Simaan M, Namkung Y, Laporte SA. Differential regulation of endosomal GPCR/β-arrestin complexes and trafficking by MAPK. J Biol Chem 2014; 289:23302-17. [PMID: 25016018 DOI: 10.1074/jbc.m114.568147] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
β-Arrestins are signaling adaptors that bind to agonist-occupied G protein-coupled receptors (GPCRs) and target them for endocytosis; however, the mechanisms regulating receptor/β-arrestin complexes and trafficking in endosomes, remain ill defined. Here we show, in live cells, differential dynamic regulation of endosomal bradykinin B2 receptor (B2R) complexes with either β-arrestin-1 or -2. We find a novel role for MAPK in the B2R/β-arrestin-2 complex formation, receptor trafficking and signaling mediated by an ERK1/2 regulatory motif in the hinge domain of the rat β-arrestin-2 (PET(178)P), but not rat β-arrestin-1 (PER(177)P). While the ERK1/2 regulatory motif is conserved between rat and mouse β-arrestin-2, it is surprisingly not conserved in human β-arrestin-2 (PEK(178)P). However, mutation of lysine 178 to threonine is sufficient to confer MAPK sensitivity to the human β-arrestin-2. Furthermore, substitution for a phosphomimetic residue in both the rat and the human β-arrestin-2 (T/K178D) significantly stabilizes B2R/β-arrestin complexes in endosomes, delays receptor recycling to the plasma membrane and maintains intracellular MAPK signaling. Similarly, the endosomal trafficking of β2-adrenergic, angiotensin II type 1 and vasopressin V2 receptors was altered by the β-arrestin-2 T178D mutant. Our findings unveil a novel subtype specific mode of MAPK-dependent regulation of β-arrestins in intracellular trafficking and signaling of GPCRs, and suggest differential endosomal receptor/β-arrestin-2 signaling roles among species.
Collapse
Affiliation(s)
| | | | | | | | - Stéphane A Laporte
- From the Departments of Medicine, Pharmacology and Therapeutics, and Anatomy and Cell Biology, McGill University Health Center Research Institute, McGill University, Strathcona Anatomy & Dentistry Bldg., Quebec H3A 2B2, Canada
| |
Collapse
|