1
|
DeAngelis PL. Chemoenzymatic synthesis with the Pasteurella hyaluronan synthase; production of a multitude of defined authentic, derivatized, and analog polymers. PROTEOGLYCAN RESEARCH 2024; 2:e70000. [PMID: 39735554 PMCID: PMC11673988 DOI: 10.1002/pgr2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/21/2024] [Indexed: 12/31/2024]
Abstract
Hyaluronan (HA; [-3-GlcNAc-1-beta-4-GlcA-1-beta] n ), an essential matrix polysaccharide of vertebrates and the molecular camouflage coating in certain pathogens, is polymerized by "HA synthase" (HAS) enzymes. Three HAS classes have been identified with biotechnological utility, but only the Class II PmHAS from Pasteurella multocida Type A has been useful for preparation of very defined HA polymers in vitro. Two general chemoenzymatic strategies with different size products are possible: (1) repetitive step-wise extension reactions by sequential addition of a single monosaccharide from a donor UDP-sugar onto an acceptor (or "primer") comprised of a short glycosaminoglycan chain (e.g., HA di-, tri- or tetrasaccharide) or an artificial glucuronide yielding homogeneous oligosaccharides in the range of 2 to ~20 monosaccharide units (n = 1 to ~10), or (2) "one-pot" polymerization reactions employing acceptor-mediated synchronization with stoichiometric size control yielding quasi-monodisperse (i.e., polydispersity approaching 1; very narrow size distributions) polysaccharides in the range of ~7 kDa to ~2 MDa (n = ~17 to 5000). In either strategy, acceptors containing non-carbohydrate functionalities (e.g., biotin, fluorophores, amines) can add useful moieties to the reducing termini of HA chains at 100% efficiency. As a further structural diversification, PmHAS can utilize a variety of unnatural UDP-sugar analogs thus adding novel groups (e.g., trifluoroacetyl, alkyne, azide, sulfhydryl) along the HA backbone and/or at its nonreducing terminus. This review discusses the current understanding and recent advances in HA chemoenzymatic synthesis methods using PmHAS. This powerful toolbox has potential for creation of a multitude of HA-based probes, therapeutics, drug conjugates, coatings, and biomaterials.
Collapse
Affiliation(s)
- Paul L DeAngelis
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
2
|
DeAngelis PL, Zimmer J. Hyaluronan synthases; mechanisms, myths, & mysteries of three types of unique bifunctional glycosyltransferases. Glycobiology 2023; 33:1117-1127. [PMID: 37769351 PMCID: PMC10939387 DOI: 10.1093/glycob/cwad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023] Open
Abstract
Hyaluronan (HA), the essential [-3-GlcNAc-1-β-4-GlcA-1-β-]n matrix polysaccharide in vertebrates and molecular camouflage coating in select pathogens, is polymerized by "HA synthase" (HAS) enzymes. The first HAS identified three decades ago opened the window for new insights and biotechnological tools. This review discusses current understanding of HA biosynthesis, its biotechnological utility, and addresses some misconceptions in the literature. HASs are fascinating enzymes that polymerize two different UDP-activated sugars via different glycosidic linkages. Therefore, these catalysts were the first examples to break the "one enzyme/one sugar transferred" dogma. Three distinct types of these bifunctional glycosyltransferases (GTs) with disparate architectures and reaction modes are known. Based on biochemical and structural work, we present an updated classification system. Class I membrane-integrated HASs employ a processive chain elongation mechanism and secrete HA across the plasma membrane. This complex operation is accomplished by functionally integrating a cytosolic catalytic domain with a channel-forming transmembrane region. Class I enzymes, containing a single GT family-2 (GT-2) module that adds both monosaccharide units to the nascent chain, are further subdivided into two groups that construct the polymer with opposite molecular directionalities: Class I-R and I-NR elongate the HA polysaccharide at either the reducing or the non-reducing end, respectively. In contrast, Class II HASs are membrane-associated peripheral synthases with a non-processive, non-reducing end elongation mechanism using two independent GT-2 modules (one for each type of monosaccharide) and require a separate secretion system for HA export. We discuss recent mechanistic insights into HA biosynthesis that promise biotechnological benefits and exciting engineering approaches.
Collapse
Affiliation(s)
- Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma, OK 73104, United States
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, Howard Hughes Medical Institute, University of Virginia, 480 Ray C. Hunt Dr, Charlottesville, VA 22908, United States
| |
Collapse
|
3
|
Verma S, Moreno IY, Sun M, Gesteira TF, Coulson-Thomas VJ. Age related changes in hyaluronan expression leads to Meibomian gland dysfunction. Matrix Biol 2023; 124:23-38. [PMID: 37949327 PMCID: PMC11095397 DOI: 10.1016/j.matbio.2023.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The prevalence of dry eye disease (DED) ranges from ∼5 to 50 % and its associated symptoms decrease productivity and reduce the quality of life. Approximately 85 % of all DED cases are caused by Meibomian gland dysfunction (MGD). As humans and mice age, their Meibomian glands (MGs) undergo age-related changes resulting in age related-MGD (ARMGD). The precise cause of ARMGD remains elusive, which makes developing therapies extremely challenging. We previously demonstrated that a hyaluronan (HA)-rich matrix exists surrounding the MG, regulating MG morphogenesis and homeostasis. Herein, we investigated whether changes to the HA matrix in the MG throughout life contributes towards ARMGD, and whether altering this HA matrix can prevent ARMGD. For such, HA synthase (Has) knockout mice were aged and compared to age matched wild type (wt) mice. MG morphology, lipid production, PPARγ expression, basal cell proliferation, stem cells, presence of atrophic glands and MG dropout were analyzed at 8 weeks, 6 months, 1 year and 2 years of age and correlated with the composition of the HA matrix. We found that as mice age, there is a loss of HA expression in and surrounding the MGs of wt mice, while, in contrast, Has1-/-Has3-/- mice present a significant increase in HA expression through Has2 upregulation. At 1 year, Has1-/-Has3-/- mice present significantly enlarged MGs, compared to age-matched wt mice and compared to all adult mice. Thus, Has1-/-Has3-/- mice continue to develop new glandular tissue as they age, instead of suffering MG atrophy. At 2 years, Has1-/-Has3-/- mice continue to present significantly larger MGs compared to age-matched wt mice. Has1-/-Has3-/- mice present increased lipid production, increased PPARγ expression and an increase in the number of proliferating cells when compared to wt mice at all-time points analyzed. Taken together, our data shows that a loss of the HA matrix surrounding the MG as mice age contributes towards ARMGD, and increasing Has2 expression, and consequently HA levels, prevents ARMGD in mice.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Isabel Y Moreno
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA
| | - Mingxia Sun
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA
| | - Tarsis Ferreira Gesteira
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA
| | - Vivien J Coulson-Thomas
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA.
| |
Collapse
|
4
|
Shikina E, Kovalevsky R, Shirkovskaya A, Toukach P. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput Struct Biotechnol J 2022; 20:6214-6236. [PMID: 36420162 PMCID: PMC9676211 DOI: 10.1016/j.csbj.2022.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.
Collapse
|
5
|
Recent advances in glycosaminoglycan analysis by various mass spectrometry techniques. Anal Bioanal Chem 2019; 411:3731-3741. [DOI: 10.1007/s00216-019-01722-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/14/2019] [Accepted: 02/26/2019] [Indexed: 01/10/2023]
|
6
|
Weigel PH, Baggenstoss BA, Washburn JL. Hyaluronan synthase assembles hyaluronan on a [GlcNAc(β1,4)]n-GlcNAc(α1→)UDP primer and hyaluronan retains this residual chitin oligomer as a cap at the nonreducing end. Glycobiology 2018; 27:536-554. [PMID: 28138013 PMCID: PMC5421502 DOI: 10.1093/glycob/cwx012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/26/2017] [Indexed: 01/03/2023] Open
Abstract
Class I hyaluronan synthases (HAS) assemble [GlcNAc(β1,4)GlcUA(β1,3)]n-UDP at the reducing end and also make chitin. Streptococcus equisimilis HAS (SeHAS) also synthesizes chitin-UDP oligosaccharides, (GlcNAc-β1,4)n-GlcNAc(α1→)UDP (Weigel et al. 2015). Here we determined if HAS uses chitin-UDPs as primers to initiate HA synthesis, leaving the non-HA primer at the nonreducing (NR) end. HA made by SeHAS membranes was purified, digested with streptomyces lyase, and hydrophobic oligomers were enriched by solid phase extraction and analyzed by MALDI-TOF MS. Jack bean hexosaminidase (JBH) and MS/MS were used to analyze 19 m/z species of possible GnHn ions with clustered GlcNAc (G) residues attached to disaccharide units (H): (GlcNAcβ1,4)2-5[GlcUA(β1,3)GlcNAc]2-6. JBH digestion sequentially removed GlcNAc from the NR-end of GnHn oligomers, producing successively smaller GnH2-3 series members. Since lyase releases dehydro-oligos (dHn; M-18), only the unique NR-end oligo lacks dehydro-GlcUA. Hn oligomers were undetectable in lyase digests, whereas JBH treatment created new H2-6m/z peaks (i.e. HA tetra- through dodeca-oligomers). MS/MS of larger GnHn species produced chitin (2-5 GlcNAcs), HA oligomers and multiple smaller series members with fewer GlcNAcs. All NR-ends (97%) started with GlcNAc, as a chitin trimer (three GlcNAcs), indicating that GlcNAc(β1,4)2GlcNAc(α1→)-UDP may be optimal for initiation of HA synthesis. Also, HA made by live S. pyogenes cells had G4Hn chitin-oligo NR-ends. We conclude that chitin-UDP functions in vitro and in live cells as a primer to initiate synthesis of all HA chains and these primers remain at the NR-ends of HA chains as residual chitin caps [(GlcNAc-β1,4)3-4].
Collapse
Affiliation(s)
- Paul H Weigel
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bruce A Baggenstoss
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jennifer L Washburn
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
7
|
Blackburn MR, Hubbard C, Kiessling V, Bi Y, Kloss B, Tamm LK, Zimmer J. Distinct reaction mechanisms for hyaluronan biosynthesis in different kingdoms of life. Glycobiology 2018; 28:108-121. [PMID: 29190396 PMCID: PMC6192386 DOI: 10.1093/glycob/cwx096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022] Open
Abstract
Hyaluronan (HA) is an acidic high molecular weight cell surface polysaccharide ubiquitously expressed by vertebrates, some pathogenic bacteria and even viruses. HA modulates many essential physiological processes and is implicated in numerous pathological conditions ranging from autoimmune diseases to cancer. In various pathogens, HA functions as a non-immunogenic surface polymer that reduces host immune responses. It is a linear polymer of strictly alternating glucuronic acid and N-acetylglucosamine units synthesized by HA synthase (HAS), a membrane-embedded family-2 glycosyltransferase. The enzyme synthesizes HA and secretes the polymer through a channel formed by its own membrane-integrated domain. To reveal how HAS achieves these tasks, we determined the biologically functional units of bacterial and viral HAS in a lipid bilayer environment by co-immunoprecipitation, single molecule fluorescence photobleaching, and site-specific cross-linking analyses. Our results demonstrate that bacterial HAS functions as an obligate homo-dimer with two functional HAS copies required for catalytic activity. In contrast, the viral enzyme, closely related to vertebrate HAS, functions as a monomer. Using site-specific cross-linking, we identify the dimer interface of bacterial HAS and show that the enzyme uses a reaction mechanism distinct from viral HAS that necessitates a dimeric assembly.
Collapse
Affiliation(s)
- Matthew R Blackburn
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Caitlin Hubbard
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yunchen Bi
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Brian Kloss
- Center on Membrane Protein Production and Analysis (COMPPÅ), New York Structural Biology Center (NYSBC), 89 Convent Avenue, New York, NY 10027, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| |
Collapse
|
8
|
Yang J, Cheng F, Yu H, Wang J, Guo Z, Stephanopoulos G. Key Role of the Carboxyl Terminus of Hyaluronan Synthase in Processive Synthesis and Size Control of Hyaluronic Acid Polymers. Biomacromolecules 2017; 18:1064-1073. [DOI: 10.1021/acs.biomac.6b01239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | | | | | | | | | - Gregory Stephanopoulos
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Baggenstoss BA, Harris EN, Washburn JL, Medina AP, Nguyen L, Weigel PH. Hyaluronan synthase control of synthesis rate and hyaluronan product size are independent functions differentially affected by mutations in a conserved tandem B-X7-B motif. Glycobiology 2016; 27:154-164. [PMID: 27558839 DOI: 10.1093/glycob/cww089] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 01/27/2023] Open
Abstract
Hyaluronan synthases (HAS) normally make large (>MDa) hyaluronan (HA) products. Smaller HA fragments (e.g. 100-400 kDa) produced in vivo are associated with inflammation and cell signaling by HA receptors that bind small, but not large, HA. Although HA fragments can arise from breakdown by hyaluronidases, HAS might also be regulated directly to synthesize small HA. Here we examined the Streptococcus equisimilis HAS (SeHAS) C-terminus, which contains a tandem B-X7-B motif (K398-X7-R406-X7-K414), by testing the effects of 27 site-specific scanning mutations and 7 C-terminal truncations on HA synthesis activity and weight-average mass. Although HAS enzymes cannot be HA-binding proteins, these motifs are highly conserved within the Class I HAS family. Fifteen Arg406 mutants made large MDa HA (86-110% wildtype size), with specific activities from 70% to 177% of wildtype. In contrast, 10 of 12 Lys398 mutants made HA that was 8-14% of wildtype size (≤250-480 kDa), with specific activities from 14% to 64% of wildtype. Four nearly inactive (2% wildtype activity) C-terminal truncation mutants made MDa HA (56-71% wildtype). The results confirm earlier findings with Cys-mutants [Weigel PH, Baggenstoss BA. 2012. Hyaluronan synthase polymerizing activity and control of product size are discrete enzyme functions that can be uncoupled by mutagenesis of conserved cysteines. Glycobiology 22:1302-1310] that HAS uses two independent activities to control HA size and HA synthesis rate; these are two separate functions. We conclude that HAS regulatory modifications that alter tandem B-X7-B motif conformation could mimic these mutagenesis-induced effects, allowing HAS in vivo to make small HA directly. The results also support a model in which the tandem-motif region is part of the intra-HAS pore and interacts directly with HA.
Collapse
Affiliation(s)
- Bruce A Baggenstoss
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Edward N Harris
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jennifer L Washburn
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andria P Medina
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Long Nguyen
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Paul H Weigel
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
10
|
Zhao X, Chen Z, Gu G, Guo Z. Recent advances in the research of bacterial glucuronosyltransferases. J Carbohydr Chem 2016. [DOI: 10.1080/07328303.2016.1205597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Deen AJ, Arasu UT, Pasonen-Seppänen S, Hassinen A, Takabe P, Wojciechowski S, Kärnä R, Rilla K, Kellokumpu S, Tammi R, Tammi M, Oikari S. UDP-sugar substrates of HAS3 regulate its O-GlcNAcylation, intracellular traffic, extracellular shedding and correlate with melanoma progression. Cell Mol Life Sci 2016; 73:3183-204. [PMID: 26883802 PMCID: PMC11108457 DOI: 10.1007/s00018-016-2158-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/25/2016] [Accepted: 02/04/2016] [Indexed: 01/06/2023]
Abstract
Hyaluronan content is a powerful prognostic factor in many cancer types, but the molecular basis of its synthesis in cancer still remains unclear. Hyaluronan synthesis requires the transport of hyaluronan synthases (HAS1-3) from Golgi to plasma membrane (PM), where the enzymes are activated. For the very first time, the present study demonstrated a rapid recycling of HAS3 between PM and endosomes, controlled by the cytosolic levels of the HAS substrates UDP-GlcUA and UDP-GlcNAc. Depletion of UDP-GlcNAc or UDP-GlcUA shifted the balance towards HAS3 endocytosis, and inhibition of hyaluronan synthesis. In contrast, UDP-GlcNAc surplus suppressed endocytosis and lysosomal decay of HAS3, favoring its retention in PM, stimulating hyaluronan synthesis, and HAS3 shedding in extracellular vesicles. The concentration of UDP-GlcNAc also controlled the level of O-GlcNAc modification of HAS3. Increasing O-GlcNAcylation reproduced the effects of UDP-GlcNAc surplus on HAS3 trafficking, while its suppression showed the opposite effects, indicating that O-GlcNAc signaling is associated to UDP-GlcNAc supply. Importantly, a similar correlation existed between the expression of GFAT1 (the rate limiting enzyme in UDP-GlcNAc synthesis) and hyaluronan content in early and deep human melanomas, suggesting the association of UDP-sugar metabolism in initiation of melanomagenesis. In general, changes in glucose metabolism, realized through UDP-sugar contents and O-GlcNAc signaling, are important in HAS3 trafficking, hyaluronan synthesis, and correlates with melanoma progression.
Collapse
Affiliation(s)
- Ashik Jawahar Deen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland.
| | - Uma Thanigai Arasu
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
| | - Piia Takabe
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Sara Wojciechowski
- A. I. Virtanen Institute for Molecular Sciences, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Riikka Kärnä
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
| | - Raija Tammi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Markku Tammi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Sanna Oikari
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland.
- Institute of Dentistry, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland.
| |
Collapse
|
12
|
Mende M, Bednarek C, Wawryszyn M, Sauter P, Biskup MB, Schepers U, Bräse S. Chemical Synthesis of Glycosaminoglycans. Chem Rev 2016; 116:8193-255. [DOI: 10.1021/acs.chemrev.6b00010] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marco Mende
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Christin Bednarek
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Mirella Wawryszyn
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Paul Sauter
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Moritz B. Biskup
- Division
2—Informatics, Economics and Society, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Ute Schepers
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
13
|
Chavoshinejad R, Marei WFA, Hartshorne GM, Fouladi-Nashta AA. Localisation and endocrine control of hyaluronan synthase (HAS) 2, HAS3 and CD44 expression in sheep granulosa cells. Reprod Fertil Dev 2016; 28:765-75. [DOI: 10.1071/rd14294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the hormonal regulation of hyaluronan (HA) components in sheep granulosa cells. HA components are present in the reproductive tract and have a range of physical and signalling properties related to reproductive function in several species. First, abattoir-derived ovaries of sheep were used to determine the localisation of HA synthase (HAS) 1–3 and CD44 proteins in antral follicles. Staining for HAS1–3 and CD44 proteins was most intense in the granulosa layer. Accordingly, the expression of HAS2, HAS3 and CD44 mRNA was measured in cultured granulosa cells exposed to 0–50 ng mL–1 of 17β-oestradiol and different combinations of oestradiol, gonadotropins, insulin-like growth factor (IGF)-1 and insulin for 48–96 h (1 ng mL–1 FSH, 10 ng mL–1 insulin, 10 ng mL–1 IGF-1, 40 ng mL–1 E2 and 25 ng mL–1 LH.). mRNA expression was quantified by real-time polymerase chain reaction using a fold induction method. The results revealed that the hormones tested generally stimulated mRNA expression of the genes of interest in cultured granulosa cells. Specifically, oestradiol, when combined with IGF-1, insulin and FSH, stimulated HAS2 mRNA expression. Oestradiol and LH had synergistic effects in increasing HAS3 mRNA expression. In conclusion, we suggest that the hormones studied differentially regulate HAS2, HAS3 and CD44 in ovine granulosa cells in vitro. Further work is needed to address the signalling pathways involved.
Collapse
|
14
|
Bi Y, Hubbard C, Purushotham P, Zimmer J. Insights into the structure and function of membrane-integrated processive glycosyltransferases. Curr Opin Struct Biol 2015; 34:78-86. [PMID: 26342143 PMCID: PMC4684724 DOI: 10.1016/j.sbi.2015.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 12/23/2022]
Abstract
Complex carbohydrates perform essential functions in life, including energy storage, cell signaling, protein targeting, quality control, as well as supporting cell structure and stability. Extracellular polysaccharides (EPS) represent mainly structural polymers and are found in essentially all kingdoms of life. For example, EPS are important biofilm and capsule components in bacteria, represent major constituents in cell walls of fungi, algae, arthropods and plants, and modulate the extracellular matrix in vertebrates. Different mechanisms evolved by which EPS are synthesized. Here, we review the structures and functions of membrane-integrated processive glycosyltransferases (GTs) implicated in the synthesis and secretion of chitin, alginate, hyaluronan and poly-N-acetylglucosamine (PNAG).
Collapse
Affiliation(s)
- Yunchen Bi
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, United States
| | - Caitlin Hubbard
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, United States
| | - Pallinti Purushotham
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, United States
| | - Jochen Zimmer
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, United States.
| |
Collapse
|
15
|
Hyaluronan Synthase: The Mechanism of Initiation at the Reducing End and a Pendulum Model for Polysaccharide Translocation to the Cell Exterior. Int J Cell Biol 2015; 2015:367579. [PMID: 26472958 PMCID: PMC4581545 DOI: 10.1155/2015/367579] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/14/2015] [Indexed: 12/05/2022] Open
Abstract
Hyaluronan (HA) biosynthesis has been studied for over six decades, but our understanding of the biochemical details of how HA synthase (HAS) assembles HA is still incomplete. Class I family members include mammalian and streptococcal HASs, the focus of this review, which add new intracellular sugar-UDPs at the reducing end of growing hyaluronyl-UDP chains. HA-producing cells typically create extracellular HA coats (capsules) and also secrete HA into the surrounding space. Since HAS contains multiple transmembrane domains and is lipid-dependent, we proposed in 1999 that it creates an intraprotein HAS-lipid pore through which a growing HA-UDP chain is translocated continuously across the cell membrane to the exterior. We review here the evidence for a synthase pore-mediated polysaccharide translocation process and describe a possible mechanism (the Pendulum Model) and potential energy sources to drive this ATP-independent process. HA synthases also synthesize chitin oligosaccharides, which are created by cleavage of novel oligo-chitosyl-UDP products. The synthesis of chitin-UDP oligomers by HAS confirms the reducing end mechanism for sugar addition during HA assembly by streptococcal and mammalian Class I enzymes. These new findings indicate the possibility that HA biosynthesis is initiated by the ability of HAS to use chitin-UDP oligomers as self-primers.
Collapse
|
16
|
Siiskonen H, Oikari S, Pasonen-Seppänen S, Rilla K. Hyaluronan synthase 1: a mysterious enzyme with unexpected functions. Front Immunol 2015; 6:43. [PMID: 25699059 PMCID: PMC4318391 DOI: 10.3389/fimmu.2015.00043] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/22/2015] [Indexed: 11/13/2022] Open
Abstract
Hyaluronan synthase 1 (HAS1) is one of three isoenzymes responsible for cellular hyaluronan synthesis. Interest in HAS1 has been limited because its role in hyaluronan production seems to be insignificant compared to the two other isoenzymes, HAS2 and HAS3, which have higher enzymatic activity. Furthermore, in most cell types studied so far, the expression of its gene is low and the enzyme requires high concentrations of sugar precursors for hyaluronan synthesis, even when overexpressed in cell cultures. Both expression and activity of HAS1 are induced by pro-inflammatory factors like interleukins and cytokines, suggesting its involvement in inflammatory conditions. Has1 is upregulated in states associated with inflammation, like atherosclerosis, osteoarthritis, and infectious lung disease. In addition, both full length and splice variants of HAS1 are expressed in malignancies like bladder and prostate cancers, multiple myeloma, and malignant mesothelioma. Interestingly, immunostainings of tissue sections have demonstrated the role of HAS1 as a poor predictor in breast cancer, and is correlated with high relapse rate and short overall survival. Utilization of fluorescently tagged proteins has revealed the intracellular distribution pattern of HAS1, distinct from other isoenzymes. In all cell types studied so far, a high proportion of HAS1 is accumulated intracellularly, with a faint signal detected on the plasma membrane and its protrusions. Furthermore, the pericellular hyaluronan coat produced by HAS1 is usually thin without induction by inflammatory agents or glycemic stress and depends on CD44–HA interactions. These specific interactions regulate the organization of hyaluronan into a leukocyte recruiting matrix during inflammatory responses. Despite the apparently minor enzymatic activity of HAS1 under normal conditions, it may be an important factor under conditions associated with glycemic stress like metabolic syndrome, inflammation, and cancer.
Collapse
Affiliation(s)
- Hanna Siiskonen
- Department of Dermatology, Kuopio University Hospital, University of Eastern Finland , Kuopio , Finland
| | - Sanna Oikari
- Institute of Biomedicine, University of Eastern Finland , Kuopio , Finland
| | | | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland , Kuopio , Finland
| |
Collapse
|
17
|
Weigel PH, West CM, Zhao P, Wells L, Baggenstoss BA, Washburn JL. Hyaluronan synthase assembles chitin oligomers with -GlcNAc(α1→)UDP at the reducing end. Glycobiology 2015; 25:632-43. [PMID: 25583822 DOI: 10.1093/glycob/cwv006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
Class I hyaluronan synthases (HASs) assemble a polysaccharide containing the repeating disaccharide [GlcNAc(β1,4)GlcUA(β1,3)]n-UDP and vertebrate HASs also assemble (GlcNAc-β1,4)n homo-oligomers (chitin) in the absence of GlcUA-UDP. This multi-membrane domain CAZy GT2 family glycosyltransferase, which couples HA synthesis and translocation across the cell membrane, is atypical in that monosaccharides are incrementally assembled at the reducing, rather than the non-reducing, end of the growing polymer. Using Escherichia coli membranes containing recombinant Streptococcus equisimilis HAS, we demonstrate that a prokaryotic Class I HAS also synthesizes chitin oligomers (up to 15-mers, based on MS and MS/MS analyses of permethylated products). Furthermore, chitin oligomers were found attached at their reducing end to -4GlcNAc(α1→)UDP [i.e. (GlcNAcβ1,4)nGlcNAc(α1→)UDP]. These oligomers, which contained up to at least seven HexNAc residues, consisted of β4-linked GlcNAc residues, based on the sensitivity of the native products to jack bean β-N-acetylhexosaminidase. Interestingly, these oligomers exhibited mass defects of -2, or -4 for longer oligomers, that strictly depended on conjugation to UDP, but MS/MS analyses indicate that these species result from chemical dehydrogenations occurring in the gas phase. Identification of (GlcNAc-β1,4)n-GlcNAc(α1→)UDP as HAS reaction products, made in the presence of GlcNAc(α1→)UDP only, provides strong independent confirmation for the reducing terminal addition mechanism. We conclude that chitin oligomer products made by HAS are derived from the cleavage of these novel activated oligo-chitosyl-UDP oligomers. Furthermore, it is possible that these UDP-activated chitin oligomers could serve as self-assembled primers for initiating HA synthesis and ultimately modify the non-reducing terminus of HA with a chitin cap.
Collapse
Affiliation(s)
- Paul H Weigel
- Department of Biochemistry and Molecular Biology and the Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Christopher M West
- Department of Biochemistry and Molecular Biology and the Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712, USA
| | - Bruce A Baggenstoss
- Department of Biochemistry and Molecular Biology and the Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jennifer L Washburn
- Department of Biochemistry and Molecular Biology and the Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
18
|
Abstract
Hyaluronan is a polysaccharide with multiple functions in the human body being involved in creating flexible and protective layers in tissues and in many signalling pathways during embryonic development, wound healing, inflammation, and cancer. Hyaluronan is an important component of active pharmaceutical ingredients for treatment of, for example, arthritis and osteoarthritis, and its commercial value far exceeds that of other microbial extracellular polysaccharides. Traditionally hyaluronan is extracted from animal waste which is a well-established process now. However, biotechnological synthesis of biopolymers provides a wealth of new possibilities. Therefore, genetic/metabolic engineering has been applied in the area of tailor-made hyaluronan synthesis. Another approach is the controlled artificial (in vitro) synthesis of hyaluronan by enzymes. Advantage of using microbial and enzymatic synthesis for hyaluronan production is the simpler downstream processing and a reduced risk of viral contamination. In this paper an overview of the different methods used to produce hyaluronan is presented. Emphasis is on the advancements made in the field of the synthesis of bioengineered hyaluronan.
Collapse
|
19
|
Wang R, Liu X, Küster-Schöck E, Fagotto F. Proteomic analysis of differences in ectoderm and mesoderm membranes by DiGE. J Proteome Res 2012; 11:4575-93. [PMID: 22852788 DOI: 10.1021/pr300379m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ectoderm and mesoderm can be considered as prototypes for epithelial and mesenchymal cell types. These two embryonic tissues display clear differences in adhesive and motility properties, which are phenomenologically well characterized but remain largely unexplored at the molecular level. Because the key downstream regulations must occur at the plasma membrane and in the underlying actin cortical structures, we have set out to compare the protein content of membrane fractions from Xenopus ectoderm and mesoderm tissues using 2-dimensional difference gel electrophoresis (DiGE). We have thus identified several proteins that are enriched in one or the other tissues, including regulators of the cytoskeleton and of cell signaling. This study represents to our knowledge the first attempt to use proteomics specifically targeted to the membrane-cortex compartment of embryonic tissues. The identified components should help unraveling a variety of tissue-specific functions in the embryo.
Collapse
Affiliation(s)
- Renee Wang
- Department of Biology, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
20
|
DeAngelis PL. Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow. Appl Microbiol Biotechnol 2012; 94:295-305. [PMID: 22391966 DOI: 10.1007/s00253-011-3801-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 10/28/2022]
Abstract
Glycosaminoglycans [GAGs] are essential heteropolysaccharides in vertebrate tissues that are also, in certain cases, employed as virulence factors by microbes. Hyaluronan [HA], heparin, and chondroitin sulfate [CS] are GAGs currently used in various medical applications and together are multi-billion dollar products thus targets for production by animal-free manufacture. By using bacteria as the source of GAGs, the pathogen's sword may be converted into a plowshare to help avoid potential liabilities springing from the use of animal-derived GAGs including adventitious agents (e.g., prions, pathogens), antigenicity, degradation of the environment, and depletion of endangered species. HA from microbes, which have a chemical structure identical to human HA, has already been commercialized and sold at the ton-scale. Substantial progress towards microbial heparin and CS has been made, but these vertebrate polymers are more complicated structurally than the unsulfated bacterial polysaccharide precursors thus require additional processing steps. This review provides an overview of GAG structure, medical applications, microbial biosynthesis, and the state of bacterial GAG production systems. Representatives of all glycosyltransferase enzymes that polymerize the sugar chains of the three main GAGs have been identified and serve as the core technology to harness, but the proteins involved in sugar precursor formation and chain export steps of biosynthesis are also essential to the GAG production process. In addition, this review discusses future directions and potential important issues. Overall, this area is poised to make great headway to produce safer (both increased purity and more secure supply chains) non-animal GAG-based therapeutics.
Collapse
Affiliation(s)
- Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA.
| |
Collapse
|
21
|
Dhugga KS. Biosynthesis of non-cellulosic polysaccharides of plant cell walls. PHYTOCHEMISTRY 2012; 74:8-19. [PMID: 22137036 DOI: 10.1016/j.phytochem.2011.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/08/2011] [Indexed: 05/25/2023]
Abstract
Enzymes that make the polymer backbones of plant cell wall polysaccharides have proven to be recalcitrant to biochemical purification. Availability of mutational genetics and genomic tools paved the way for rapid progress in identifying genes encoding various cell wall glycan synthases. Mutational genetics, the primary tool used in unraveling cellulose biosynthesis, was ineffective in assigning function to any of the hemicellulosic, polymerizing glycan synthases. A combination of comparative genomics and functional expression in a heterologous system allowed identification of various cellulose synthase-like (Csl) sequences as being involved in the formation of β-1,4-mannan, β-1,4-glucan, and mixed-linked glucan. A number of xylose-deficient mutants have led to a variety of genes, none of which thus far possesses the motifs known to be conserved among polymerizing β-glycan synthases. Except for xylan synthase, which appears to be an agglomerate of proteins just like cellulose synthase, Golgi glycan synthases already identified suggest that the catalytic polypeptide by itself is sufficient for enzyme activity, most likely as a homodimer. Several of the Csl genes remain to be assigned a function. The possibility of the involvement of various Csl genes in making more than one product remains.
Collapse
Affiliation(s)
- Kanwarpal S Dhugga
- Genetic Discovery, DuPont Agricultural Biotechnology, Pioneer Hi-Bred International, Johnston, IA 50131, United States.
| |
Collapse
|
22
|
Tlapak-Simmons VL, Medina AP, Baggenstoss BA, Nguyen L, Baron CA, Weigel PH. Clustered Conserved Cysteines in Hyaluronan Synthase Mediate Cooperative Activation by Mg 2+ Ions and Severe Inhibitory Effects of Divalent Cations. ACTA ACUST UNITED AC 2012; Suppl 1:001. [PMID: 25267933 DOI: 10.4172/2153-0637.s1-001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hyaluronan synthase (HAS) uses UDP-GlcUA and UDP-GlcNAc to make hyaluronan (HA). Streptococcus equisimilis HAS (SeHAS) contains four conserved cysteines clustered near the membrane, and requires phospholipids and Mg2+ for activity. Activity of membrane-bound or purified enzyme displayed a sigmoidal saturation profile for Mg2+ with a Hill coefficient of 2. To assess if Cys residues are important for cooperativity we examined the Mg2+ dependence of mutants with various combinations of Cys-to-Ala mutations. All Cys-mutants lost the cooperative response to Mg2+. In the presence of Mg2+, other divalent cations inhibited SeHAS with different potencies (Cu2+~Zn2+ >Co2+ >Ni2+ >Mn2+ >Ba2+ Sr2+ Ca2+). Some divalent metal ions likely inhibit by displacement of Mg2+-UDP-Sugar complexes (e.g. Ca2+, Sr2+ and Ba2+ had apparent Ki values of 2-5 mM). In contrast, Zn2+ and Cu2+ inhibited more potently (apparent Ki ≤ 0.2 mM). Inhibition of Cys-null SeHAS by Cu2+, but not Zn2+, was greatly attenuated compared to wildtype. Double and triple Cys-mutants showed differing sensitivities to Zn2+ or Cu2+. Wildtype SeHAS allowed to make HA prior to exposure to Zn2+ or Cu2+ was protected from inhibition, indicating that access of metal ions to sensitive functional groups was hindered in processively acting HA•HAS complexes. We conclude that clustered Cys residues mediate cooperative interactions with Mg2+ and that transition metal ions inhibit SeHAS very potently by interacting with one or more of these -SH groups.
Collapse
Affiliation(s)
- Valarie L Tlapak-Simmons
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Andria P Medina
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Bruce A Baggenstoss
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Long Nguyen
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Christina A Baron
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Paul H Weigel
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| |
Collapse
|
23
|
Affiliation(s)
- Ahmed Faik
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
24
|
Glycosaminoglycans from earthworms (Eisenia andrei). Glycoconj J 2009; 27:249-57. [PMID: 20013352 DOI: 10.1007/s10719-009-9273-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 11/26/2009] [Accepted: 11/29/2009] [Indexed: 10/20/2022]
Abstract
The whole tissue of the earthworm (Eisenia andrei) was lyophilized and extracted to purify glycosaminoglycans. Fractions, eluting from an anion-exchange column at 1.0 M and 2.0 M NaCl, showed the presence of acidic polysaccharides on agarose gel electrophoresis. Monosaccharide compositional analysis showed that galactose and glucose were most abundant monosaccharides in both fractions. Depolymerization of the polysaccharide mixture with glycosaminoglycan-degrading enzymes confirmed the presence of chondroitin sulfate/dermatan sulfate and heparan sulfate in the 2.0 M NaCl fraction. The content of GAGs (uronic acid containing polysaccharide) in the 2.0 M NaCl fraction determined by carbazole assay was 2%. Disaccharide compositional analysis using liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) analysis after chondroitinase digestion (ABC and ACII), showed that the chondroitin sulfate/dermatan sulfate contained a 4-O-sulfo (76%), 2,4-di-O-sulfo (15%), 6-O-sulfo (6%), and unsulfated (4%) uronic acid linked N-acetylgalactosamine residues. LC-ESI-MS analysis of heparin lyase I/II/III digests demonstrated the presence of N-sulfo (69%), N-sulfo-6-O-sulfo (25%) and 2-O-sulfo-N-sulfo-6-O-sulfo (5%) uronic acid linked N-acetylglucosamine residues.
Collapse
|
25
|
Sandhu APS, Randhawa GS, Dhugga KS. Plant cell wall matrix polysaccharide biosynthesis. MOLECULAR PLANT 2009; 2:840-50. [PMID: 19825661 DOI: 10.1093/mp/ssp056] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The wall of an expanding plant cell consists primarily of cellulose microfibrils embedded in a matrix of hemicellulosic and pectic polysaccharides along with small amounts of structural and enzymatic proteins. Matrix polysaccharides are synthesized in the Golgi and exported to the cell wall by exocytosis, where they intercalate among cellulose microfibrils, which are made at the plasma membrane and directly deposited into the cell wall. Involvement of Golgi glucan synthesis in auxin-induced cell expansion has long been recognized; however, only recently have the genes corresponding to glucan synthases been identified. Biochemical purification was unsuccessful because of the labile nature and very low abundance of these enzymes. Mutational genetics also proved fruitless. Expression of candidate genes identified through gene expression profiling or comparative genomics in heterologous systems followed by functional characterization has been relatively successful. Several genes from the cellulose synthase-like (Csl) family have been found to be involved in the synthesis of various hemicellulosic glycans. The usefulness of this approach, however, is limited to those enzymes that probably do not form complexes consisting of unrelated proteins. Nonconventional approaches will continue to incrementally unravel the mechanisms of Golgi polysaccharide biosynthesis.
Collapse
Affiliation(s)
- Ajay Pal S Sandhu
- Crop Genetics Research and Development, Pioneer Hi-Bred International, Inc., A DuPont Company, 7300 NW 62nd Avenue, Johnston, IA 50131, USA
| | | | | |
Collapse
|
26
|
Forsee WT, Cartee RT, Yother J. Characterization of the lipid linkage region and chain length of the cellubiuronic acid capsule of Streptococcus pneumoniae. J Biol Chem 2009; 284:11826-35. [PMID: 19228688 DOI: 10.1074/jbc.m900386200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The processive reaction mechanisms of beta-glycosyl-polymerases are poorly understood. The cellubiuronan synthase of Streptococcus pneumoniae catalyzes the synthesis of the type 3 capsular polysaccharide through the alternate additions of beta-1,3-Glc and beta-1,4-GlcUA. The processive multistep reaction involves the sequential binding of two nucleotide sugar donors in coordination with the extension of a polysaccharide chain associated with the carbohydrate acceptor recognition site. Degradation analysis using cellubiuronan-specific depolymerase demonstrated that the oligosaccharide-lipid and polysaccharide-lipid products synthesized in vitro with recombinant cellubiuronan synthase had a similar oligosaccharyl-lipid at their reducing termini, providing definitive evidence for a precursor-product relationship and also confirming that growth occurred at the nonreducing end following initiation on phosphatidylglycerol. The presence of a lipid marker at the reducing end allowed the quantitative determination of cellubiuronic acid polysaccharide chain lengths. As the UDP-GlcUA concentration was increased from 1 to 11.5 mum, the level of synthase in the transitory processive state decreased, with the predominant oligosaccharide-lipid product containing 3 uronic acid residues, whereas the proportion of synthase in the fully processive state increased and the polysaccharide chain length increased from 320 to 6700 monosaccharide units. In conjunction with other kinetic data, these results suggest that the formation of a complex between a tetrauronosyl oligomer and the carbohydrate acceptor recognition site plays a central role in coordinating the repetitive interaction of the synthase with the nucleotide sugar donors and modulating the chain length of cellubiuronan polysaccharide.
Collapse
Affiliation(s)
- W Thomas Forsee
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
27
|
The role of GlcNAc in formation and function of extracellular matrices. Comp Biochem Physiol B Biochem Mol Biol 2008; 149:215-26. [DOI: 10.1016/j.cbpb.2007.10.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/17/2007] [Accepted: 10/17/2007] [Indexed: 01/27/2023]
|
28
|
Ingram KR, Wann AKT, Angel CK, Coleman PJ, Levick JR. Cyclic movement stimulates hyaluronan secretion into the synovial cavity of rabbit joints. J Physiol 2008; 586:1715-29. [PMID: 18202097 DOI: 10.1113/jphysiol.2007.146753] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The novel hypothesis that the secretion of the joint lubricant hyaluronan (HA) is coupled to movement has implications for normal function and osteoarthritis, and was tested in the knee joints of anaesthetized rabbits. After washing out the endogenous synovial fluid HA (miscibility coefficient 0.4), secretion into the joint cavity was measured over 5 h in static joints and in passively cycled joints. The net static secretion rate (11.2 +/- 0.7 microg h(-1), mean +/- s.e.m., n = 90) correlated with the variable endogenous HA mass (mean 367 +/- 8 microg), with a normalized value of 3.4 +/- 0.2 microg h(-1) (100 microg)(-1) . Cyclic joint movement approximately doubled the net HA secretion rate to 22.6 +/- 1.2 microg h(-1) (n = 77) and raised the normalized percentage to 5.9 +/- 0.3 microg h(-1) (100 microg)(-1). Secretion was inhibited by 2-deoxyglucose and iodoacetate, confirming active secretion. The net accumulation rate underestimated true secretion rate due to some trans-synovial loss. HA turnover time (endogenous mass/secretion rate) was 17-30 h (static) to 8-15 h (moved) The results demonstrate for the first time that the active secretion of HA is coupled to joint usage. Movement-secretion coupling may protect joints against the damaging effects of repetitive joint use, replace HA lost during periods of immobility (overnight), and contribute to the clinical benefit of exercise therapy in moderate osteoarthritis.
Collapse
Affiliation(s)
- K R Ingram
- Physiology, Basic Medical Sciences, St George's Hospital Medical School, University of London, London SW17 0RE, UK.
| | | | | | | | | |
Collapse
|
29
|
Hyaluronic Acid: Its Function and Degradation in in vivo Systems. BIOACTIVE NATURAL PRODUCTS (PART N) 2008. [DOI: 10.1016/s1572-5995(08)80035-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Weigel PH, DeAngelis PL. Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem 2007; 282:36777-81. [PMID: 17981795 DOI: 10.1074/jbc.r700036200] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hyaluronan synthases (HASs) are glycosyltransferases that catalyze polymerization of hyaluronan found in vertebrates and certain microbes. HASs transfer two distinct monosaccharides in different linkages and, in certain cases, participate in polymer transfer out of the cell. In contrast, the vast majority of glycosyltransferases form only one sugar linkage. Although our understanding of HAS biochemistry is still incomplete, very good progress has been made since the first genetic identification of a HAS in 1993. New enzymes have been discovered, and some molecular details have emerged. Important findings are the lipid dependence of Class I HASs, the function of HASs as protein monomers, and the elucidation of mechanisms of synthesis by Class II HAS. We propose three classes of HASs based on differences in protein sequences, predicted membrane topologies, potential architectures, mechanisms, and direction of polymerization.
Collapse
Affiliation(s)
- Paul H Weigel
- Department of Biochemistry and Molecular Biology and the Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | |
Collapse
|
31
|
Perlstein DL, Zhang Y, Wang TS, Kahne DE, Walker S. The direction of glycan chain elongation by peptidoglycan glycosyltransferases. J Am Chem Soc 2007; 129:12674-5. [PMID: 17914829 PMCID: PMC3206585 DOI: 10.1021/ja075965y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Deborah L Perlstein
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
32
|
Kyossev Z, Weigel PH. An enzyme capture assay for analysis of active hyaluronan synthases. Anal Biochem 2007; 371:62-70. [PMID: 17904513 DOI: 10.1016/j.ab.2007.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 08/14/2007] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
Abstract
We describe a sensitive assay for detection of active hyaluronan synthases (HASs) capable of synthesizing hyaluronan (HA) without use of radioactive uridine 5'-diphosphate sugar precursors. The HAS capture assay is based on the binding of a biotinylated HA binding protein (bHABP) to HA chains that are associated with HAS and the subsequent capture of bHABP-HA-HAS complexes with streptavidin-agarose. Specific HAS proteins (e.g., HAS1, not HAS2 or HAS3) captured in this pull-down approach are readily immunodetected by Western blot analysis using appropriate antibodies. The assay was used to detect active HAS proteins in cell membranes, purified recombinant Streptococcus equisimilis HAS (SeHAS), and in vitro translated human HAS1 or SeHAS. The HAS capture assay was also used to assess the fraction of HAS molecules that were active, which cannot be done using standard assays for synthase activity. Assay sensitivity for detection of purified SeHAS is <1 pmol.
Collapse
Affiliation(s)
- Zhetcho Kyossev
- Department of Biochemistry & Molecular Biology and The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | |
Collapse
|
33
|
Peña MJ, Zhong R, Zhou GK, Richardson EA, O'Neill MA, Darvill AG, York WS, Ye ZH. Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. THE PLANT CELL 2007; 19:549-63. [PMID: 17322407 PMCID: PMC1867335 DOI: 10.1105/tpc.106.049320] [Citation(s) in RCA: 308] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Mutations of Arabidopsis thaliana IRREGULAR XYLEM8 (IRX8) and IRX9 were previously shown to cause a collapsed xylem phenotype and decreases in xylose and cellulose in cell walls. In this study, we characterized IRX8 and IRX9 and performed chemical and structural analyses of glucuronoxylan (GX) from irx8 and irx9 plants. IRX8 and IRX9 are expressed specifically in cells undergoing secondary wall thickening, and their encoded proteins are targeted to the Golgi, where GX is synthesized. 1H-NMR spectroscopy showed that the reducing end of Arabidopsis GX contains the glycosyl sequence 4-beta-D-Xylp-(1-->4)-beta-D-Xylp-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-D-GalpA-(1-->4)-D-Xylp, which was previously identified in birch (Betula verrucosa) and spruce (Picea abies) GX. This indicates that the reducing end structure of GXs is evolutionarily conserved in woody and herbaceous plants. This sequence is more abundant in irx9 GX than in the wild type, whereas irx8 and fragile fiber8 (fra8) plants are nearly devoid of it. The number of GX chains increased and the GX chain length decreased in irx9 plants. Conversely, the number of GX chains decreased and the chain length heterodispersity increased in irx8 and fra8 plants. Our results suggest that IRX9 is required for normal GX elongation and indicate roles for IRX8 and FRA8 in the synthesis of the glycosyl sequence at the GX reducing end.
Collapse
Affiliation(s)
- Maria J Peña
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Studies of the polysaccharide hyaluronan (hyaluronic acid) started more than a century ago in Uppsala. This article describes the general development of hyaluronan research from an Uppsala point of view and is thus strongly biased. The readers are referred to other reviews for a more objective description of the history.
Collapse
Affiliation(s)
- Torvard C Laurent
- Institute of Medical Biochemistry and Microbiology, University of Uppsala, Sweden.
| |
Collapse
|
35
|
Weigel PH, Kyossev Z, Torres LC. Phospholipid Dependence and Liposome Reconstitution of Purified Hyaluronan Synthase. J Biol Chem 2006; 281:36542-51. [PMID: 16984914 DOI: 10.1074/jbc.m606529200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous radiation inactivation and enzyme characterization studies demonstrated that the Streptococcus equisimilis hyaluronan synthase (seHAS) is phospholipid-dependent and that cardiolipin (CL) is the best phospholipid for enzyme activation. Here we investigated the ability of seHAS, purified in the absence of added lipid, to be activated by synthetic phosphatidic acid (PA), phosphatidylserine, or CL lipids containing fatty acyl chains of different length or different numbers of double bonds. The most effective lipid was tetraoleoyl CL (TO-CL), whereas tetramyristoyl CL (TM-CL) was ineffective. None of the phosphatidylserine species tested gave significant activation. PAs containing C10 to C18 saturated acyl chains were not effective activators, and neither were oleoyl lyso PA, dilinoleoyl PA, or PA containing one oleoyl chain and either a palmitoyl or stearoyl chain. In contrast, dioleoyl PA stimulated seHAS approximately 10-fold, to approximately 20% of the activity observed with TO-CL. The tested acidic lipids such as PA and CL activated the enzyme most efficiently if they contained only oleic acid. Mixing experiments showed that the enzyme interacts preferentially with TO-CL in the presence of TM-CL. Similarly, seHAS incorporated into phosphotidylcholine-based liposomes showed increasing activity with increasing TO-CL, but not TM-CL, content. Inactivation of membrane-bound seHAS by solubilization with Nonidet P-40 was prevented by TO-CL, but not TM-CL. The pH dependence of seHAS in the presence of synthetic or naturally occurring CLs showed the same pattern of lipid preference between pH 6 and 10.5. Unexpectedly, HAS showed lipid-independent activity at pH 11.5. The results suggest that Class I HAS enzymes are lipid-dependent and that assembly of active seHAS-lipid complexes has high specificity for the phospholipid head group and the nature of the fatty acyl chains.
Collapse
Affiliation(s)
- Paul H Weigel
- Department of Biochemistry and Molecular Biology, the Oklahoma Center for Medical Glycobiology, Oklahoma City, Oklahoma 73190, USA.
| | | | | |
Collapse
|
36
|
Abstract
The mechanism of hyaluronan biosynthesis in vertebrates had been proposed to occur at the reducing end of growing chains. This mechanism was questioned because a recombinant synthase appeared to add new monosaccharides to the non-reducing end. I reinvestigated this problem with membranes from the eukaryotic B6 cell line. The membranes were incubated with UDP-[3H]GlcNAc and UDP-[14C]GlcA to yield differentially labelled reducing terminal and non-reducing terminal domains. Digestion of the product with a mixture of the exoglycosidases beta-glucuronidase and beta-N-acetylglucosaminidase truncated the hyaluronan chain strictly from the non-reducing end. The change in 3H/14C ratio of the remaining hyaluronan fraction, during the course of exoglycosidase digestion, confirmed the original results that the native eukaryotic synthase extended hyaluronan at the reducing end. This mechanism demands that the UDP-hyaluronan terminus is bound to the active site within the synthase and should compete with the substrates for binding. Accordingly, increasing substrate concentrations enhanced hyaluronan release from the synthase. A model is proposed that explains the direction of chain elongation at the reducing end by the native synthase and at the non-reducing end by the recombinant synthase based on a loss of binding affinity of the synthase towards the growing UDP-hyaluronan chain.
Collapse
Affiliation(s)
- Peter Prehm
- Münster University Hospital, Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstrasse 15, D-48149 Münster, Germany.
| |
Collapse
|
37
|
Kumari K, Baggenstoss BA, Parker AL, Weigel PH. Mutation of Two Intramembrane Polar Residues Conserved within the Hyaluronan Synthase Family Alters Hyaluronan Product Size. J Biol Chem 2006; 281:11755-60. [PMID: 16505475 DOI: 10.1074/jbc.m600727200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We identified two conserved polar amino acids within different membrane domains (MD) of Streptococcus equisimilis hyaluronan synthase (seHAS), Lys48 in MD2 and Glu327 in MD4. In eukaryotic HASs, the position of the Glu is very similar and the Lys is replaced by a conserved polar Gln. To assess whether Lys48 and Glu327 interact or influence seHAS activity, we investigated the effects of changing Lys48 to Arg or Glu and Glu327 to Lys, Asp, or Gln. Mutants, including a double switch variant with Lys48 and Glu327 exchanged, were expressed and assayed in Escherichia coli membranes. SeHASE327Q and seHASE327K were expressed at low levels, whereas seHASE327D and the Lys48 mutants were expressed well. The specific enzyme activities (relative to wild type) were 17 and 7% for the K48R and K48E mutants and 26 and 38% for the E327Q and E327D mutants, respectively. In contrast, seHAS(E327K) showed only 0.16% of wild-type activity but was rescued over 46-fold by changing Lys48 to Glu. Expression of the seHASE327K,K48E protein was also rescued to near wild-type levels. Based on size exclusion chromatography coupled to multiangle laser light scattering analysis, all the variants synthesized hyaluronan (HA) of smaller weight-average molar mass than wild-type enzyme (3.6 MDa); the smallest HA (approximately 0.6 MDa) was made by seHASE327K,K48E and seHASK48E. The results indicate that Glu327 within MD4 is a critical residue for the stability of seHAS, that it may interact with Lys48 within MD2, and that these residues are involved in the ability of HAS to synthesize very large HA.
Collapse
Affiliation(s)
- Kshama Kumari
- Department of Biochemistry and Molecular Biology and The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
38
|
Rilla K, Siiskonen H, Spicer AP, Hyttinen JMT, Tammi MI, Tammi RH. Plasma membrane residence of hyaluronan synthase is coupled to its enzymatic activity. J Biol Chem 2005; 280:31890-7. [PMID: 16014622 DOI: 10.1074/jbc.m504736200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan is a multifunctional glycosaminoglycan up to 10(7) Da molecular mass produced by the integral membrane glycosyltransferase, hyaluronan synthase (HAS). When expressed in keratinocytes, N-terminally tagged green fluorescent protein-HAS2 and -HAS3 isoenzymes were found to travel through endoplasmic reticulum (ER), Golgi, plasma membrane, and endocytic vesicles. A distinct enrichment of plasma membrane HAS was found in cell protrusions. The total turnover time of HAS3 was 4-5 h as judged by the green fluorescent protein signal decay and hyaluronan synthesis inhibition in cycloheximide-treated cells. The transfer from ER to Golgi took about 1 h, and the dwell time on the plasma membrane was less than 2 h in experiments with a relief and introduction, respectively, of brefeldin A. Constructs of HAS3 with 16- and 45-amino-acid C-terminal deletions mostly stayed within the ER, whereas a D216A missense mutant was localized within the Golgi complex but not the plasma membrane. Both types of mutations were almost or completely inactive, similar to the wild type enzyme that had its entry to the plasma membrane experimentally blocked by brefeldin A. Inhibition of hyaluronan synthesis by UDP-glucuronic acid starvation using 4-methyl-umbelliferone also prevented HAS access to the plasma membrane. The results demonstrate that 1) a latent pool of HAS exists within the ER-Golgi pathway; 2) this pool can be rapidly mobilized and activated by insertion into the plasma membrane; and 3) inhibition of HAS activity through mutation or substrate starvation results in exclusion of HAS from the plasma membrane.
Collapse
Affiliation(s)
- Kirsi Rilla
- Department of Anatomy, University of Kuopio, FIN-70211 Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
39
|
SAXENA INDERM, BROWN RMALCOLM. Cellulose biosynthesis: current views and evolving concepts. ANNALS OF BOTANY 2005; 96:9-21. [PMID: 15894551 PMCID: PMC4246814 DOI: 10.1093/aob/mci155] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
AIMS To outline the current state of knowledge and discuss the evolution of various viewpoints put forth to explain the mechanism of cellulose biosynthesis. * SCOPE Understanding the mechanism of cellulose biosynthesis is one of the major challenges in plant biology. The simplicity in the chemical structure of cellulose belies the complexities that are associated with the synthesis and assembly of this polysaccharide. Assembly of cellulose microfibrils in most organisms is visualized as a multi-step process involving a number of proteins with the key protein being the cellulose synthase catalytic sub-unit. Although genes encoding this protein have been identified in almost all cellulose synthesizing organisms, it has been a challenge in general, and more specifically in vascular plants, to demonstrate cellulose synthase activity in vitro. The assembly of glucan chains into cellulose microfibrils of specific dimensions, viewed as a spontaneous process, necessitates the assembly of synthesizing sites unique to most groups of organisms. The steps of polymerization (requiring the specific arrangement and activity of the cellulose synthase catalytic sub-units) and crystallization (directed self-assembly of glucan chains) are certainly interlinked in the formation of cellulose microfibrils. Mutants affected in cellulose biosynthesis have been identified in vascular plants. Studies on these mutants and herbicide-treated plants suggest an interesting link between the steps of polymerization and crystallization during cellulose biosynthesis. * CONCLUSIONS With the identification of a large number of genes encoding cellulose synthases and cellulose synthase-like proteins in vascular plants and the supposed role of a number of other proteins in cellulose biosynthesis, a complete understanding of this process will necessitate a wider variety of research tools and approaches than was thought to be required a few years back.
Collapse
|