1
|
Di Stefano M, Galati S, Piazza L, Gado F, Granchi C, Macchia M, Giordano A, Tuccinardi T, Poli G. Watermelon: setup and validation of an in silico fragment-based approach. J Enzyme Inhib Med Chem 2024; 39:2356179. [PMID: 38864179 PMCID: PMC11232643 DOI: 10.1080/14756366.2024.2356179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/11/2024] [Indexed: 06/13/2024] Open
Abstract
We present a new computational approach, named Watermelon, designed for the development of pharmacophore models based on receptor structures. The methodology involves the sampling of potential hotspots for ligand interactions within a protein target's binding site, utilising molecular fragments as probes. By employing docking and molecular dynamics (MD) simulations, the most significant interactions formed by these probes within distinct regions of the binding site are identified. These interactions are subsequently transformed into pharmacophore features that delineates key anchoring sites for potential ligands. The reliability of the approach was experimentally validated using the monoacylglycerol lipase (MAGL) enzyme. The generated pharmacophore model captured features representing ligand-MAGL interactions observed in various X-ray co-crystal structures and was employed to screen a database of commercially available compounds, in combination with consensus docking and MD simulations. The screening successfully identified two new MAGL inhibitors with micromolar potency, thus confirming the reliability of the Watermelon approach.
Collapse
Affiliation(s)
- Miriana Di Stefano
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Lisa Piazza
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Francesca Gado
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Marco Macchia
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Yang N, Sun H, Xue Y, Zhang W, Wang H, Tao H, Liang X, Li M, Xu Y, Chen L, Zhang L, Huang L, Geng D. Inhibition of MAGL activates the Keap1/Nrf2 pathway to attenuate glucocorticoid-induced osteonecrosis of the femoral head. Clin Transl Med 2021; 11:e447. [PMID: 34185425 PMCID: PMC8167863 DOI: 10.1002/ctm2.447] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 01/12/2023] Open
Abstract
Glucocorticoids (GCs) are used in treating viral infections, acute spinal cord injury, autoimmune diseases, and shock. Several patients develop GC-induced osteonecrosis of the femoral head (ONFH). However, the pathogenic mechanisms underlying GC-induced ONFH remain poorly understood. GC-directed bone marrow mesenchymal stem cells (BMSCs) fate is an important factor that determines GC-induced ONFH. At high concentrations, GCs induce BMSC apoptosis by promoting oxidative stress. In the present study, we aimed to elucidate the molecular mechanisms that relieve GC-induced oxidative stress in BMSCs, which would be vital for treating ONFH. The endocannabinoid system regulates oxidative stress in multiple organs. Here, we found that monoacylglycerol lipase (MAGL), a key molecule in the endocannabinoid system, was significantly upregulated during GC treatment in osteoblasts both in vitro and in vivo. MAGL expression was positively correlated with expression of the NADPH oxidase family and apoptosis-related proteins. Functional analysis showed that MAGL inhibition markedly reduced oxidative stress and partially rescued BMSC apoptosis. Additionally, in vivo studies indicated that MAGL inhibition effectively attenuated GC-induced ONFH. Pathway analysis showed that MAGL inhibition regulated oxidative stress in BMSCs via the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. The expression of Nrf2, a major regulator of intracellular antioxidants, was upregulated by inhibiting MAGL. Nrf2 activation can mimic the effect of MAGL inhibition and significantly reduce GC-induced oxidative damage in BMSCs. The beneficial effects of MAGL inhibition were attenuated after the blockade of the Keap1/Nrf2 antioxidant signaling pathway. Notably, pharmacological blockade of MAGL conferred femoral head protection in GC-induced ONFH, even after oxidative stress responses were initiated. Therefore, MAGL may represent a novel target for the prevention and treatment of GC-induced ONFH.
Collapse
Affiliation(s)
- Ning Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Houyi Sun
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Yi Xue
- Department of OrthopaedicsChangshu Hospital Affiliated to Nanjing University of Traditional Chinese MedicineChangshuChina
| | - Weicheng Zhang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Hongzhi Wang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Huaqiang Tao
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Xiaolong Liang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Meng Li
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Yaozeng Xu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Liang Chen
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Liang Zhang
- Department of Orthopaedics, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Lixin Huang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Dechun Geng
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| |
Collapse
|
3
|
Balenga NAB, Aflaki E, Kargl J, Platzer W, Schröder R, Blättermann S, Kostenis E, Brown AJ, Heinemann A, Waldhoer M. GPR55 regulates cannabinoid 2 receptor-mediated responses in human neutrophils. Cell Res 2011; 21:1452-69. [PMID: 21467997 PMCID: PMC3132458 DOI: 10.1038/cr.2011.60] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/20/2010] [Accepted: 01/12/2011] [Indexed: 12/16/2022] Open
Abstract
The directional migration of neutrophils towards inflammatory mediators, such as chemokines and cannabinoids, occurs via the activation of seven transmembrane G protein coupled receptors (7TM/GPCRs) and is a highly organized process. A crucial role for controlling neutrophil migration has been ascribed to the cannabinoid CB(2) receptor (CB(2)R), but additional modulatory sites distinct from CB(2)R have recently been suggested to impact CB(2)R-mediated effector functions in neutrophils. Here, we provide evidence that the recently de-orphanized 7TM/GPCR GPR55 potently modulates CB(2)R-mediated responses. We show that GPR55 is expressed in human blood neutrophils and its activation augments the migratory response towards the CB(2)R agonist 2-arachidonoylglycerol (2-AG), while inhibiting neutrophil degranulation and reactive oxygen species (ROS) production. Using HEK293 and HL60 cell lines, along with primary neutrophils, we show that GPR55 and CB(2)R interfere with each other's signaling pathways at the level of small GTPases, such as Rac2 and Cdc42. This ultimately leads to cellular polarization and efficient migration as well as abrogation of degranulation and ROS formation in neutrophils. Therefore, GPR55 limits the tissue-injuring inflammatory responses mediated by CB(2)R, while it synergizes with CB(2)R in recruiting neutrophils to sites of inflammation.
Collapse
MESH Headings
- Arachidonic Acids/pharmacology
- Cannabinoid Receptor Modulators/pharmacology
- Cell Degranulation/drug effects
- Cell Degranulation/physiology
- Cell Movement/drug effects
- Cell Movement/physiology
- Endocannabinoids
- Glycerides/pharmacology
- HEK293 Cells
- HL-60 Cells
- Humans
- Inflammation/genetics
- Inflammation/metabolism
- Neutrophil Activation/drug effects
- Neutrophil Activation/physiology
- Neutrophils/metabolism
- Reactive Oxygen Species/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Cannabinoid
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- cdc42 GTP-Binding Protein/genetics
- cdc42 GTP-Binding Protein/metabolism
- rac GTP-Binding Proteins/genetics
- rac GTP-Binding Proteins/metabolism
- RAC2 GTP-Binding Protein
Collapse
Affiliation(s)
- Nariman A B Balenga
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, Graz A-8010, Austria
| | - Elma Aflaki
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, Graz A-8010, Austria
| | - Wolfgang Platzer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, Graz A-8010, Austria
| | - Ralf Schröder
- Section Molecular, Cellular and Pharmacobiology, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Stefanie Blättermann
- Section Molecular, Cellular and Pharmacobiology, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Section Molecular, Cellular and Pharmacobiology, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Andrew J Brown
- Department of Screening and Compound Profiling, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, Graz A-8010, Austria
| | - Maria Waldhoer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, Graz A-8010, Austria
| |
Collapse
|
4
|
Ye L, Zhang B, Seviour EG, Tao KX, Liu XH, Ling Y, Chen JY, Wang GB. Monoacylglycerol lipase (MAGL) knockdown inhibits tumor cells growth in colorectal cancer. Cancer Lett 2011; 307:6-17. [DOI: 10.1016/j.canlet.2011.03.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 03/09/2011] [Accepted: 03/11/2011] [Indexed: 01/29/2023]
|
5
|
Dietary Lecithin Source Affects Growth Potential and Gene Expression in Sparus aurata Larvae. Lipids 2010; 45:1011-23. [DOI: 10.1007/s11745-010-3471-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
|
6
|
Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 2010; 140:49-61. [PMID: 20079333 DOI: 10.1016/j.cell.2009.11.027] [Citation(s) in RCA: 727] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 08/18/2009] [Accepted: 11/04/2009] [Indexed: 12/21/2022]
Abstract
Tumor cells display progressive changes in metabolism that correlate with malignancy, including development of a lipogenic phenotype. How stored fats are liberated and remodeled to support cancer pathogenesis, however, remains unknown. Here, we show that the enzyme monoacylglycerol lipase (MAGL) is highly expressed in aggressive human cancer cells and primary tumors, where it regulates a fatty acid network enriched in oncogenic signaling lipids that promotes migration, invasion, survival, and in vivo tumor growth. Overexpression of MAGL in nonaggressive cancer cells recapitulates this fatty acid network and increases their pathogenicity-phenotypes that are reversed by an MAGL inhibitor. Impairments in MAGL-dependent tumor growth are rescued by a high-fat diet, indicating that exogenous sources of fatty acids can contribute to malignancy in cancers lacking MAGL activity. Together, these findings reveal how cancer cells can co-opt a lipolytic enzyme to translate their lipogenic state into an array of protumorigenic signals. PAPERFLICK:
Collapse
Affiliation(s)
- Daniel K Nomura
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
7
|
Molecular characterisation of MEK1/2- and MKK3/6-like mitogen-activated protein kinase kinases (MAPKK) from the fox tapeworm Echinococcus multilocularis. Int J Parasitol 2009; 40:555-67. [PMID: 19887070 DOI: 10.1016/j.ijpara.2009.10.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/15/2009] [Accepted: 10/16/2009] [Indexed: 11/22/2022]
Abstract
Mitogen-activated protein kinase kinases (MAPKKs) are essential components of evolutionary conserved signalling modules that regulate a variety of fundamental cellular processes in response to environmental stimuli. To date, no MAPKK ortholog has been characterised in free-living or parasitic flatworm species. Here, we report the identification and molecular characterisation of two such molecules in the human parasitic cestode Echinococcus multilocularis, the causative agent of alveolar echinococcosis. Using degenerative PCR approaches as well as 3'- and 5'-rapid amplification of cDNA ends (RACE), the cDNAs encoding two different E. multilocularis MAPKKs, EmMKK1 and EmMKK2, have been identified and fully cloned. Structurally, EmMKK1 and EmMKK2 closely resemble members of the MKK3/6- and the MEK1/2-MAPKK sub-families, respectively, from a variety of vertebrate and invertebrate organisms, and contain all catalytically important residues of MAPKKs at the corresponding positions. By reverse transcriptase-PCR analyses, expression of the EmMKK2-encoding gene, emmkk2, was observed in the larval stages, metacestode and protoscolex while emmkk1 displayed a protoscolex-specific expression pattern. In yeast two-hybrid analyses, EmMKK1 strongly interacted with the previously identified Echinococcus MAPKK kinase EmRaf but not with the Erk-like MAP kinase EmMPK1 or the p38-like MAP kinase EmMPK2. EmMKK2, on the other hand, not only interacted with EmRaf and a member of the parasite's 14-3-3 protein family, but also with EmMPK1, which was confirmed by co-immunoprecipitation assays. Incubation of in vitro cultivated metacestode vesicles with small-molecule inhibitors of Raf- and MEK-kinases resulted in a marked de-phosphorylation of EmMPK1 and negatively affected parasite growth, but was ineffective in vesicle killing. Taken together, our results define EmRaf, EmMKK2 and EmMPK1 as the three components of the Erk-like E. multilocularis MAPK cascade module and provide a solid basis for further investigations into the role of Erk-like MAPK signalling in parasite development and stem cell function.
Collapse
|
8
|
Abstract
2-Arachidonoylglycerol is an arachidonic acid-containing monoacylglycerol isolated from the rat brain and canine gut as an endogenous ligand for the cannabinoid receptors (CB1 and CB2). 2-Arachidonoylglycerol binds to both the CB1 receptor, abundantly expressed in the nervous system, and the CB2 receptor, mainly expressed in the immune system, with high affinity, and exhibits a variety of cannabimimetic activities. Notably, anandamide, another endogenous ligand for the cannabinoid receptors, acts as a partial agonist at these cannabinoid receptors, whereas 2-arachidonoylglycerol acts as a full agonist. The results of structure-activity relationship experiments strongly suggested that 2-arachidonoylglycerol rather than anandamide is the true natural ligand for both the CB1 and the CB2 receptors. Evidence is gradually accumulating which shows that 2-arachidonoylglycerol plays physiologically and pathophysiologically essential roles in various mammalian tissues and cells.
Collapse
Affiliation(s)
- Takayuki Sugiura
- Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa, Japan.
| |
Collapse
|
9
|
Bosier B, Hermans E, Lambert DM. Concomitant activation of adenylyl cyclase suppresses the opposite influences of CB(1) cannabinoid receptor agonists on tyrosine hydroxylase expression. Biochem Pharmacol 2008; 77:216-27. [PMID: 18992715 DOI: 10.1016/j.bcp.2008.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/03/2008] [Accepted: 10/08/2008] [Indexed: 11/26/2022]
Abstract
The CB(1) cannabinoid receptor shows complex interactions with intracellular signalling partners, and responses to cannabinoid ligands are likely to be influenced by concomitant inputs modifying the overall tone of signalling cascades. This appears even more relevant as we previously evidenced opposite regulations of tyrosine hydroxylase (TH) expression by the two common cannabinoid agonists HU 210 and CP 55,940. Therefore, we studied the consequences of manipulating adenylyl cyclase activity with forskolin on the regulation of TH gene transcription in neuroblastoma cells (N1E-115). Reporter gene experiments performed with the luciferase sequence cloned under the control of modified fragments of the TH gene promoter revealed that the AP-1 consensus sequence is essential for cannabinoid-mediated regulation of TH expression. Consistently, inhibition of PKC totally blocked the responses mediated by both HU 210 and CP 55,940. In addition, forskolin which boosts adenylyl cyclase activity remarkably modified the responses to the cannabinoid agonists. Thus, in these conditions, both agonists efficiently reduced TH gene promoter activity, a response requiring functional PKA/CRE-dependent signallings. Finally, the modulations of the promoter were inhibited in pertussis toxin treated cells, suggesting that responses to both agonists are mediated through G(i/o)-dependent mechanisms. Emphasising on the importance of functional selectivity at GPCRs, these data demonstrate that the concomitant activation of adenylyl cyclase by forskolin strongly influences the biochemical responses triggered by distinct cannabinoid agonists. Together our results suggest that the physiological modulation of TH expression by cannabinoid agonists in dopaminergic neurons would be influenced by additional endogenous inputs.
Collapse
Affiliation(s)
- Barbara Bosier
- Unité de Chimie Pharmaceutique et de Radiopharmacie, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
10
|
Differential modulation of AP-1- and CRE-driven transcription by cannabinoid agonists emphasizes functional selectivity at the CB1 receptor. Br J Pharmacol 2008; 155:24-33. [PMID: 18536748 DOI: 10.1038/bjp.2008.230] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Long-term adaptations to pharmacological stimuli frequently originate from modulation of complex intracellular signalling pathways. We previously reported that HU210 and CP55940, two CB1 cannabinoid receptor agonists, induced opposite effects on TH expression. Herein, we characterized their influence on cAMP response element (CRE) and activator protein 1 (AP-1)-mediated regulation of gene transcription. EXPERIMENTAL APPROACH The activity of the agonists was examined on transfected N1E-115 cells in which expression of the luciferase reporter gene was controlled by transcription promoters consisting of repeats of either CRE or AP-1 elements. In addition, the implication of classical signalling pathways was investigated using a variety of kinase inhibitors. KEY RESULTS Consistent with the CB1-mediated reduction of cAMP accumulation, both ligands decreased CRE-driven luciferase expression with similar potencies. HU210 also exhibited a concentration-dependent reduction of luciferase activity in cells engineered to examine AP-1-controlled transcription, whereas such response was not obtained with CP55940. Responses were all inhibited by SR141716A and were modified in Pertussis toxin-treated cells, suggesting agonist-selective regulations of distinct Gi/o-dependent mechanisms through CB1 receptor activation. Finally, PKC inhibitors efficiently inhibited the paradoxical effect of HU210 on AP-1-mediated transcription, indicating selective regulation of PKC-dependent responses. CONCLUSIONS AND IMPLICATIONS Together, our results demonstrate that two cannabinoid ligands, commonly used as reference agonists acting on the same receptor with similar affinities, differentially modulate gene transcription through distinct controls of AP-1. This could reflect activation of distinct subsets of Gi/o-proteins, supporting the concept of functional selectivity at CB1 receptors.
Collapse
|
11
|
Caffarel MM, Moreno-Bueno G, Cerutti C, Palacios J, Guzman M, Mechta-Grigoriou F, Sanchez C. JunD is involved in the antiproliferative effect of Δ9-tetrahydrocannabinol on human breast cancer cells. Oncogene 2008; 27:5033-44. [DOI: 10.1038/onc.2008.145] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Harkany T, Guzmán M, Galve-Roperh I, Berghuis P, Devi LA, Mackie K. The emerging functions of endocannabinoid signaling during CNS development. Trends Pharmacol Sci 2007; 28:83-92. [PMID: 17222464 DOI: 10.1016/j.tips.2006.12.004] [Citation(s) in RCA: 291] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/08/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
In the postnatal brain, endocannabinoids acting as retrograde messengers regulate the function of many synapses. By contrast, the understanding of endocannabinoid functions that regulate fundamental developmental processes such as cell proliferation, migration, differentiation and survival during patterning of the CNS is just beginning to unfold. Increasing the knowledge of basic developmental and signaling principles that are controlled by endocannabinoids will provide important insights into the molecular mechanisms that establish functional neuronal circuits in the brain. Moreover, determining the molecular basis of permanent modifications to cellular structure and intercellular communication imposed by cannabis smoking during pregnancy will provide novel therapeutic targets for alleviating pathogenic changes in affected offspring. Here, we summarize recent findings regarding the ontogeny of the endocannabinoid system in neurons that sculpt the temporal and spatial diversity of cellular functions during CNS development.
Collapse
Affiliation(s)
- Tibor Harkany
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden.
| | | | | | | | | | | |
Collapse
|
13
|
Graham ES, Ball N, Scotter EL, Narayan P, Dragunow M, Glass M. Induction of Krox-24 by endogenous cannabinoid type 1 receptors in Neuro2A cells is mediated by the MEK-ERK MAPK pathway and is suppressed by the phosphatidylinositol 3-kinase pathway. J Biol Chem 2006; 281:29085-95. [PMID: 16864584 DOI: 10.1074/jbc.m602516200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuro2a cells endogenously express cannabinoid type 1 (CB1) receptors. CB1 stimulation with HU210 activated ERK and induced the transcription factor Krox-24. A functional MEK-ERK pathway is an important requirement for CB1-mediated Krox-24 induction as blockade of MEK signaling by UO126 reduces both basal and CB1-mediated activation of Krox-24. CB1 receptor stimulation did not activate either JNK or p38 MAPK pathways or the pro-proliferation phosphatidylinositol 3-kinase (PI3K)-Akt pathway. However, serum removal or blockade of PI3K signaling by LY294002 transiently stimulated basal Krox-24 expression and increased CB1-mediated induction of Krox-24. This was consistent with a transient increase in pMEK, pERK, and pCREB levels following PI3K blockade. These data demonstrate that CB1-mediated activation of the Krox-24 transcription factor is negatively regulated through the PI3K-Akt pathway and reveals several points of signaling cross-talk between these two important kinase pathways.
Collapse
Affiliation(s)
- E Scott Graham
- Department of Pharmacology, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
14
|
Lépicier P, Bibeau-Poirier A, Lagneux C, Servant MJ, Lamontagne D. Signaling Pathways Involved in the Cardioprotective Effects of Cannabinoids. J Pharmacol Sci 2006; 102:155-66. [PMID: 17031075 DOI: 10.1254/jphs.crj06011x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The aim of the present article is to review the cardioprotective properties of cannabinoids, with an emphasis on the signaling pathways involved. Cannabinoids have been reported to protect against ischemia in rat isolated hearts, as well as in rats and mice in vivo. Although these effects have been observed mostly with a pre-treatment of a cannabinoid, we report that the selective CB(2)-receptor agonist JWH133 is able to reduce infarct size when administered either before ischemia, during the entire ischemic period, or just upon reperfusion. Little is known about the signaling pathways involved in these cardioprotective effects. Likely candidates include protein kinase C (PKC) and mitogen-activated protein kinases (MAPK) since they are activated during ischemia-reperfusion and contribute to the protective effect ischemic preconditioning. The use of pharmacological inhibitors suggests that PKC, p38 MAPK, and p42/p44 MAPK (ERK1/2) contribute to the protective effect of cannabinoids. In addition, perfusion with JWH133 in healthy hearts caused an increase in both p38 MAPK phosphorylation level and activity, whereas the CB(1)-receptor agonist ACEA was associated with an increase in the phosphorylation status of both ERK1 and ERK2 without any change in activity. During ischemia, both agonists doubled p38 MAPK activity, whereas ERK1/2 phosphorylation level and activity during reperfusion were enhanced only by the CB(1)-receptor agonist. Finally, although nitric oxide (NO) was shown to exert both pro and anti-apoptotic effects on cardiomyocytes, with an apparently controversial effect on myocardial survival, our data suggest that NO may contribute to the cardioprotective effect of some cannabinoids.
Collapse
|
15
|
Gokoh M, Kishimoto S, Oka S, Metani Y, Sugiura T. 2-Arachidonoylglycerol, an endogenous cannabinoid receptor ligand, enhances the adhesion of HL-60 cells differentiated into macrophage-like cells and human peripheral blood monocytes. FEBS Lett 2005; 579:6473-8. [PMID: 16288744 DOI: 10.1016/j.febslet.2005.10.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 09/29/2005] [Accepted: 10/12/2005] [Indexed: 01/21/2023]
Abstract
2-Arachidonoylglycerol (2-AG), an endogenous cannabionoid receptor (CB1 and CB2) ligand, enhanced the adhesion of HL-60 cells differentiated into macrophage-like cells to fibronectin and the vascular cell adhesion molecule-1. The CB2 receptor, Gi/Go, intracellular free Ca(2+) and phosphatidylinositol 3-kinase were shown to be involved in 2-AG-induced augmented cell adhesion. 2-AG also enhanced the adhesion of human monocytic leukemia U937 cells and peripheral blood monocytes. These results strongly suggest that 2-AG plays some essential role in inflammatory reactions and immune responses by inducing robust adhesion to extracellular matrix proteins and adhesion molecules in several types of inflammatory cells and immune-competent cells.
Collapse
Affiliation(s)
- Maiko Gokoh
- Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa 199-0195, Japan
| | | | | | | | | |
Collapse
|