1
|
Foroutannejad S, Good LL, Lin C, Carter ZI, Tadesse MG, Lucius AL, Crane BR, Maillard RA. The cofactor-dependent folding mechanism of Drosophila cryptochrome revealed by single-molecule pulling experiments. Nat Commun 2023; 14:1057. [PMID: 36828841 PMCID: PMC9958137 DOI: 10.1038/s41467-023-36701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
The link between cofactor binding and protein activity is well-established. However, how cofactor interactions modulate folding of large proteins remains unknown. We use optical tweezers, clustering and global fitting to dissect the folding mechanism of Drosophila cryptochrome (dCRY), a 542-residue protein that binds FAD, one of the most chemically and structurally complex cofactors in nature. We show that the first dCRY parts to fold are independent of FAD, but later steps are FAD-driven as the remaining polypeptide folds around the cofactor. FAD binds to largely unfolded intermediates, yet with association kinetics above the diffusion-limit. Interestingly, not all FAD moieties are required for folding: whereas the isoalloxazine ring linked to ribitol and one phosphate is sufficient to drive complete folding, the adenosine ring with phosphates only leads to partial folding. Lastly, we propose a dCRY folding model where regions that undergo conformational transitions during signal transduction are the last to fold.
Collapse
Affiliation(s)
| | - Lydia L Good
- Department of Chemistry, Georgetown University, Washington, DC, USA
| | - Changfan Lin
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Zachariah I Carter
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mahlet G Tadesse
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, USA
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian R Crane
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
2
|
Liu S, Chen Y, Du T, Zhao W, Liu X, Zhang H, Yuan Q, Gao L, Dong Y, Gao X, Gong Y, Cao P. A dimer-monomer transition captured by the crystal structures of cyanobacterial apo flavodoxin. Biochem Biophys Res Commun 2023; 639:134-141. [PMID: 36493556 DOI: 10.1016/j.bbrc.2022.11.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
In cyanobacteria and algae (but not plants), flavodoxin (Fld) replaces ferredoxin (Fd) under stress conditions to transfer electrons from photosystem I (PSI) to ferredoxin-NADP+ reductase (FNR) during photosynthesis. Fld constitutes a small electron carrier noncovalently bound to flavin mononucleotide (FMN), and also an ideal model for revealing the protein/flavin-binding mechanism because of its relative simplicity compared to other flavoproteins. Here, we report two crystal structures of apo-Fld from Synechococcus sp. PCC 7942, one dimeric structure of 2.09 Å and one monomeric structure of 1.84 Å resolution. Analytical ultracentrifugation showed that in solution, apo-Fld exists both as monomers and dimers. Our dimer structure contains two ligand-binding pockets separated by a distance of 45 Å, much longer than the previous structures of FMN-bound dimers. These results suggested a potential dimer-monomer transition mechanism of cyanobacterial apo-Fld. We further propose that the dimer represents the "standby" state to stabilize itself, while the monomer constitutes the "ready" state to bind FMN. Furthermore, we generated a new docking model of cyanobacterial Fld-FNR complex based on the recently reported cryo-EM structures, and mapped the special interactions between Fld and FNR in detail.
Collapse
Affiliation(s)
- Shuwen Liu
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Yuanyuan Chen
- The Research Platform for Protein Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Tianming Du
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Wencong Zhao
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Xuejing Liu
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Heng Zhang
- Center for Multidisciplinary Research, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing, 100049, China
| | - Qing Yuan
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Liang Gao
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Yuhui Dong
- Center for Multidisciplinary Research, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing, 100049, China
| | - Xueyun Gao
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| | - Yong Gong
- Center for Multidisciplinary Research, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing, 100049, China.
| | - Peng Cao
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| |
Collapse
|
3
|
Larionova MD, Markova SV, Tikunova NV, Vysotski ES. The Smallest Isoform of Metridia longa Luciferase as a Fusion Partner for Hybrid Proteins. Int J Mol Sci 2020; 21:E4971. [PMID: 32674504 PMCID: PMC7403996 DOI: 10.3390/ijms21144971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 01/07/2023] Open
Abstract
Bioluminescent proteins are widely used as reporter molecules in various in vitro and in vivo assays. The smallest isoform of Metridia luciferase (MLuc7) is a highly active, naturally secreted enzyme which, along with other luciferase isoforms, is responsible for the bright bioluminescence of marine copepod Metridia longa. In this study, we report the construction of two variants of a hybrid protein consisting of MLuc7 and 14D5a single-chain antibody to the surface glycoprotein E of tick-borne encephalitis virus as a model fusion partner. We demonstrate that, whereas fusion of a single-chain antibody to either N- or C-terminus of MLuc7 does not affect its bioluminescence properties, the binding site on the single-chain antibody influences its binding capacity. The affinity of 14D5a-MLuc7 hybrid protein (KD = 36.2 nM) where the C-terminus of the single-chain antibody was fused to the N-terminus of MLuc7, appeared to be 2.5-fold higher than that of the reverse, MLuc7-14D5a (KD = 87.6 nM). The detection limit of 14D5a-MLuc7 hybrid protein was estimated to be 45 pg of the recombinant glycoprotein E. Although the smallest isoform of M. longa luciferase was tested as a fusion partner only with a single-chain antibody, it is reasonable to suppose that MLuc7 can also be successfully used as a partner for genetic fusion with other proteins.
Collapse
Affiliation(s)
- Marina D. Larionova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (M.D.L.); (S.V.M.)
| | - Svetlana V. Markova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (M.D.L.); (S.V.M.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Eugene S. Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (M.D.L.); (S.V.M.)
| |
Collapse
|
4
|
Burakova LP, Eremeeva EV, Vysotski ES. The interaction of C-terminal Tyr208 and Tyr13 of the first α-helix ensures a closed conformation of ctenophore photoprotein berovin. Photochem Photobiol Sci 2020; 19:313-323. [PMID: 32057065 DOI: 10.1039/c9pp00436j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light-sensitive Ca2+-regulated photoprotein berovin is responsible for the bioluminescence of the ctenophore Beroe abyssicola. It shares many properties of hydromedusan photoproteins although the degree of identity of its amino acid sequence with those of photoproteins is low. There is a hydrogen bond between C-terminal Pro and Arg situated in the N-terminal α-helix of hydromedusan photoproteins that supports a closed conformation of the internal cavity of the photoprotein molecule with bound 2-hydroperoxycoelenterazine. The C- and N-terminal hydrogen bond network is necessary to properly isolate the photoprotein active site from the solvent and consequently to provide a high quantum yield of the bioluminescence reaction. In order to find out which berovin residues perform the same function we modified the N- and C-termini of the protein by replacing or deleting various amino acid residues. The studies on berovin mutants showed that the interaction between C-terminal Tyr208 and Tyr13 localized in the first α-helix of the photoprotein is important for the stabilization and proper orientation of the oxygenated coelenterazine adduct within the internal cavity as well as for supporting the closed photoprotein conformation. We also suggest that the interplay between Tyr residues in ctenophore photoproteins occurs rather through the π-π interaction of their phenyl rings than through hydrogen bonds as in hydromedusan photoproteins.
Collapse
Affiliation(s)
- Ludmila P Burakova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.
| |
Collapse
|
5
|
Houwman JA, Westphal AH, Visser AJWG, Borst JW, van Mierlo CPM. Concurrent presence of on- and off-pathway folding intermediates of apoflavodoxin at physiological ionic strength. Phys Chem Chem Phys 2018; 20:7059-7072. [PMID: 29473921 DOI: 10.1039/c7cp07922b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Flavodoxins have a protein topology that can be traced back to the universal ancestor of the three kingdoms of life. Proteins with this type of architecture tend to temporarily misfold during unassisted folding to their native state and form intermediates. Several of these intermediate species are molten globules (MGs), which are characterized by a substantial amount of secondary structure, yet without the tertiary side-chain packing of natively folded proteins. An off-pathway MG is formed at physiological ionic strength in the case of the F44Y variant of Azotobacter vinelandii apoflavodoxin (i.e., flavodoxin without flavin mononucleotide (FMN)). Here, we show that at this condition actually two folding species of this apoprotein co-exist at equilibrium. These species were detected by using a combination of FMN fluorescence quenching upon cofactor binding to the apoprotein and of polarized time-resolved tryptophan fluorescence spectroscopy. Besides the off-pathway MG, we observe the simultaneous presence of an on-pathway folding intermediate, which is native-like. Presence of concurrent intermediates at physiological ionic strength enables future exploration of how aspects of the cellular environment, like for example involvement of chaperones, affect these species.
Collapse
Affiliation(s)
- Joseline A Houwman
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
6
|
Bioluminescent and biochemical properties of Cys-free Ca 2+ -regulated photoproteins obelin and aequorin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:97-105. [DOI: 10.1016/j.jphotobiol.2017.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 11/18/2022]
|
7
|
Mushtaq AU, Park JS, Bae SH, Kim HY, Yeo KJ, Hwang E, Lee KY, Jee JG, Cheong HK, Jeon YH. Ligand-Mediated Folding of the OmpA Periplasmic Domain from Acinetobacter baumannii. Biophys J 2017; 112:2089-2098. [PMID: 28538146 DOI: 10.1016/j.bpj.2017.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/10/2017] [Accepted: 04/13/2017] [Indexed: 11/27/2022] Open
Abstract
The periplasmic domain of OmpA from Acinetobacter baumannii (AbOmpA-PD) binds to diaminopimelate and anchors the outer membrane to the peptidoglycan layer in the cell wall. Although the crystal structure of AbOmpA-PD with its ligands has been reported, the mechanism of ligand-mediated folding of AbOmpA remains elusive. Here, we report that in vitro refolded apo-AbOmpA-PD in the absence of ligand exists as a mixture of two partially folded forms in solution: mostly unfolded (apo-state I) and hololike (apo-state II) states. Binding of the diaminopimelate or glycine ligand induced complete folding of AbOmpA-PD. The apo-state I was highly flexible and contained some secondary structural elements, whereas the apo-state II closely resembled the holo-state in terms of both structure and backbone dynamics, except for the ligand-binding region. 15N-relaxation-dispersion analyses for apo-state II revealed substantial motion on a millisecond timescale of residues in the H3 helix near the ligand-binding site, with this motion disappearing upon ligand binding. These results provide an insight into the ligand-mediated folding mechanism of AbOmpA-PD in solution.
Collapse
Affiliation(s)
- Ameeq Ul Mushtaq
- College of Pharmacy, Korea University, Sejong-ro, Sejong, Republic of Korea
| | - Jeong Soon Park
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea; CKD Research Institute, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea; College of Pharmacy, Kyungpook National University, Buk-gu, Daegu, Republic of Korea
| | - Sung-Hun Bae
- CKD Research Institute, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hye-Yeon Kim
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea; Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Kwon Joo Yeo
- College of Pharmacy, Korea University, Sejong-ro, Sejong, Republic of Korea; Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea
| | - Eunha Hwang
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong-ro, Sejong, Republic of Korea
| | - Jun-Goo Jee
- College of Pharmacy, Kyungpook National University, Buk-gu, Daegu, Republic of Korea
| | - Hae-Kap Cheong
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea.
| | - Young Ho Jeon
- College of Pharmacy, Korea University, Sejong-ro, Sejong, Republic of Korea.
| |
Collapse
|
8
|
Houwman JA, van Mierlo CPM. Folding of proteins with a flavodoxin-like architecture. FEBS J 2017; 284:3145-3167. [PMID: 28380286 DOI: 10.1111/febs.14077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/13/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
Abstract
The flavodoxin-like fold is a protein architecture that can be traced back to the universal ancestor of the three kingdoms of life. Many proteins share this α-β parallel topology and hence it is highly relevant to illuminate how they fold. Here, we review experiments and simulations concerning the folding of flavodoxins and CheY-like proteins, which share the flavodoxin-like fold. These polypeptides tend to temporarily misfold during unassisted folding to their functionally active forms. This susceptibility to frustration is caused by the more rapid formation of an α-helix compared to a β-sheet, particularly when a parallel β-sheet is involved. As a result, flavodoxin-like proteins form intermediates that are off-pathway to native protein and several of these species are molten globules (MGs). Experiments suggest that the off-pathway species are of helical nature and that flavodoxin-like proteins have a nonconserved transition state that determines the rate of productive folding. Folding of flavodoxin from Azotobacter vinelandii has been investigated extensively, enabling a schematic construction of its folding energy landscape. It is the only flavodoxin-like protein of which cotranslational folding has been probed. New insights that emphasize differences between in vivo and in vitro folding energy landscapes are emerging: the ribosome modulates MG formation in nascent apoflavodoxin and forces this polypeptide toward the native state.
Collapse
Affiliation(s)
- Joseline A Houwman
- Laboratory of Biochemistry, Wageningen University and Research, The Netherlands
| | | |
Collapse
|
9
|
Huijbers MME, Martínez-Júlvez M, Westphal AH, Delgado-Arciniega E, Medina M, van Berkel WJH. Proline dehydrogenase from Thermus thermophilus does not discriminate between FAD and FMN as cofactor. Sci Rep 2017; 7:43880. [PMID: 28256579 PMCID: PMC5335563 DOI: 10.1038/srep43880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/30/2017] [Indexed: 12/19/2022] Open
Abstract
Flavoenzymes are versatile biocatalysts containing either FAD or FMN as cofactor. FAD often binds to a Rossmann fold, while FMN prefers a TIM-barrel or flavodoxin-like fold. Proline dehydrogenase is denoted as an exception: it possesses a TIM barrel-like fold while binding FAD. Using a riboflavin auxotrophic Escherichia coli strain and maltose-binding protein as solubility tag, we produced the apoprotein of Thermus thermophilus ProDH (MBP-TtProDH). Remarkably, reconstitution with FAD or FMN revealed that MBP-TtProDH has no preference for either of the two prosthetic groups. Kinetic parameters of both holo forms are similar, as are the dissociation constants for FAD and FMN release. Furthermore, we show that the holo form of MBP-TtProDH, as produced in E. coli TOP10 cells, contains about three times more FMN than FAD. In line with this flavin content, the crystal structure of TtProDH variant ΔABC, which lacks helices αA, αB and αC, shows no electron density for an AMP moiety of the cofactor. To the best of our knowledge, this is the first example of a flavoenzyme that does not discriminate between FAD and FMN as cofactor. Therefore, classification of TtProDH as an FAD-binding enzyme should be reconsidered.
Collapse
Affiliation(s)
- Mieke M. E. Huijbers
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Marta Martínez-Júlvez
- Department of Biochemistry and Molecular Cell Biology and Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Adrie H. Westphal
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Estela Delgado-Arciniega
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Milagros Medina
- Department of Biochemistry and Molecular Cell Biology and Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Willem J. H. van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
10
|
Houwman JA, André E, Westphal AH, van Berkel WJH, van Mierlo CPM. The Ribosome Restrains Molten Globule Formation in Stalled Nascent Flavodoxin. J Biol Chem 2016; 291:25911-25920. [PMID: 27784783 PMCID: PMC5207065 DOI: 10.1074/jbc.m116.756205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/13/2016] [Indexed: 11/06/2022] Open
Abstract
Folding of proteins usually involves intermediates, of which an important type is the molten globule (MG). MGs are ensembles of interconverting conformers that contain (non-)native secondary structure and lack the tightly packed tertiary structure of natively folded globular proteins. Whereas MGs of various purified proteins have been probed to date, no data are available on their presence and/or effect during protein synthesis. To study whether MGs arise during translation, we use ribosome-nascent chain (RNC) complexes of the electron transfer protein flavodoxin. Full-length isolated flavodoxin, which contains a non-covalently bound flavin mononucleotide (FMN) as cofactor, acquires its native α/β parallel topology via a folding mechanism that contains an off-pathway intermediate with molten globular characteristics. Extensive population of this MG state occurs at physiological ionic strength for apoflavodoxin variant F44Y, in which a phenylalanine at position 44 is changed to a tyrosine. Here, we show for the first time that ascertaining the binding rate of FMN as a function of ionic strength can be used as a tool to determine the presence of the off-pathway MG on the ribosome. Application of this methodology to F44Y apoflavodoxin RNCs shows that at physiological ionic strength the ribosome influences formation of the off-pathway MG and forces the nascent chain toward the native state.
Collapse
Affiliation(s)
- Joseline A Houwman
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Estelle André
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Adrie H Westphal
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Willem J H van Berkel
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Carlo P M van Mierlo
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
11
|
Eremeeva EV, van Berkel WJ, Vysotski ES. Transient-state kinetic analysis of complex formation between photoprotein clytin and GFP from jellyfishClytia gregaria. FEBS Lett 2016; 590:307-16. [DOI: 10.1002/1873-3468.12052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/15/2015] [Accepted: 12/23/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Elena V. Eremeeva
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences; Siberian Branch; Krasnoyarsk Russia
| | | | - Eugene S. Vysotski
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences; Siberian Branch; Krasnoyarsk Russia
| |
Collapse
|
12
|
Burakova LP, Stepanyuk GA, Eremeeva EV, Vysotski ES. Role of certain amino acid residues of the coelenterazine-binding cavity in bioluminescence of light-sensitive Ca2+-regulated photoprotein berovin. Photochem Photobiol Sci 2016; 15:691-704. [DOI: 10.1039/c6pp00050a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We suggest that in the inner cavity of ctenophore photoproteins coelenterazine is bound as a 2-peroxy anion which is stabilized owing to Coulomb interaction with a guanidinium group of R41 paired with Y204.
Collapse
Affiliation(s)
- Ludmila P. Burakova
- Photobiology Laboratory
- Institute of Biophysics
- Russian Academy of Sciences
- Siberian Branch
- Krasnoyarsk 660036
| | - Galina A. Stepanyuk
- Photobiology Laboratory
- Institute of Biophysics
- Russian Academy of Sciences
- Siberian Branch
- Krasnoyarsk 660036
| | - Elena V. Eremeeva
- Photobiology Laboratory
- Institute of Biophysics
- Russian Academy of Sciences
- Siberian Branch
- Krasnoyarsk 660036
| | - Eugene S. Vysotski
- Photobiology Laboratory
- Institute of Biophysics
- Russian Academy of Sciences
- Siberian Branch
- Krasnoyarsk 660036
| |
Collapse
|
13
|
van Son M, Lindhoud S, van der Wild M, van Mierlo CPM, Huber M. Double Electron-Electron Spin Resonance Tracks Flavodoxin Folding. J Phys Chem B 2015; 119:13507-14. [PMID: 26101942 DOI: 10.1021/acs.jpcb.5b00856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein folding is one of the important challenges in biochemistry. Understanding the folding process requires mapping of protein structure as it folds. Here we test the potential of distance determination between paramagnetic spin-labels by a pulsed electron paramagnetic resonance method. We use double electron-electron spin resonance (DEER) to study the denaturant-dependent equilibrium folding of flavodoxin. This flavoprotein is spin-labeled with MTSL ((1-oxy-,2,2,5,5-tetramethyl-d-pyrroline-3-methyl)-methanethiosulfonate) at positions 69 and 131. We find that nativelike spin-label separation dominates the distance distributions up to 0.8 M guanidine hydrochloride. At 2.3 M denaturant, the distance distributions show an additional component, which we attribute to a folding intermediate. Upon further increase of denaturant concentration, the protein expands and evidence for a larger number of conformations than in the native state is found. We thus demonstrate that DEER is a versatile technique to expand the arsenal of methods for investigating how proteins fold.
Collapse
Affiliation(s)
- Martin van Son
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University , PO Box 9504, 2300 RA Leiden, The Netherlands
| | - Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University , 6700 ET Wageningen, The Netherlands
| | - Matthijs van der Wild
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University , PO Box 9504, 2300 RA Leiden, The Netherlands
| | - Carlo P M van Mierlo
- Laboratory of Biochemistry, Wageningen University , 6700 ET Wageningen, The Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University , PO Box 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|
14
|
Lindhoud S, Pirchi M, Westphal AH, Haran G, van Mierlo CPM. Gradual Folding of an Off-Pathway Molten Globule Detected at the Single-Molecule Level. J Mol Biol 2015; 427:3148-57. [PMID: 26163276 DOI: 10.1016/j.jmb.2015.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/27/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
Molten globules (MGs) are compact, partially folded intermediates that are transiently present during folding of many proteins. These intermediates reside on or off the folding pathway to native protein. Conformational evolution during folding of off-pathway MGs is largely unexplored. Here, we characterize the denaturant-dependent structure of apoflavodoxin's off-pathway MG. Using single-molecule fluorescence resonance energy transfer (smFRET), we follow conversion of unfolded species into MG down to denaturant concentrations that favor formation of native protein. Under strongly denaturing conditions, fluorescence resonance energy transfer histograms show a single peak, arising from unfolded protein. The smFRET efficiency distribution shifts to higher value upon decreasing denaturant concentration because the MG folds. Strikingly, upon approaching native conditions, the fluorescence resonance energy transfer efficiency of the MG rises above that of native protein. Thus, smFRET exposes the misfolded nature of apoflavodoxin's off-pathway MG. We show that conversion of unfolded into MG protein is a gradual, second-order-like process that simultaneously involves separate regions within the polypeptide.
Collapse
Affiliation(s)
- Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Menahem Pirchi
- Chemical Physics Department, Weizmann Institute of Science, Herzl St 234, Rehovot 76100, Israel
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Gilad Haran
- Chemical Physics Department, Weizmann Institute of Science, Herzl St 234, Rehovot 76100, Israel.
| | - Carlo P M van Mierlo
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands.
| |
Collapse
|
15
|
Hamdane D, Bou-Nader C, Cornu D, Hui-Bon-Hoa G, Fontecave M. Flavin-Protein Complexes: Aromatic Stacking Assisted by a Hydrogen Bond. Biochemistry 2015; 54:4354-64. [PMID: 26120776 DOI: 10.1021/acs.biochem.5b00501] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzyme-catalyzed reactions often rely on a noncovalently bound cofactor whose reactivity is tuned by its immediate environment. Flavin cofactors, the most versatile catalyst encountered in biology, are often maintained within the protein throughout numbers of complex ionic and aromatic interactions. Here, we have investigated the role of π-π stacking and hydrogen bond interactions between a tyrosine and the isoalloxazine moiety of the flavin adenine dinucleotide (FAD) in an FAD-dependent RNA methyltransferase. Combining several static and time-resolved spectroscopies as well as biochemical approaches, we showed that aromatic stacking is assisted by a hydrogen bond between the phenol group and the amide of an adjacent active site loop. A mechanism of recognition and binding of the redox cofactor is proposed.
Collapse
Affiliation(s)
- Djemel Hamdane
- †Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Charles Bou-Nader
- †Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - David Cornu
- ‡INSERM U779, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
| | - Gaston Hui-Bon-Hoa
- §Plateforme IMAGIF, Centre de Recherche de Gif, Centre National de la Recherche Scientifique, 1 avenue de le terrasse, 91191 Gif Sur Yvette, France
| | - Marc Fontecave
- †Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
16
|
Houwman JA, Westphal AH, van Berkel WJH, van Mierlo CPM. Stalled flavodoxin binds its cofactor while fully exposed outside the ribosome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1317-24. [PMID: 26073784 DOI: 10.1016/j.bbapap.2015.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/26/2015] [Accepted: 06/10/2015] [Indexed: 01/10/2023]
Abstract
Correct folding of proteins is crucial for cellular homeostasis. More than thirty percent of proteins contain one or more cofactors, but the impact of these cofactors on co-translational folding remains largely unknown. Here, we address the binding of flavin mononucleotide (FMN) to nascent flavodoxin, by generating ribosome-arrested nascent chains that expose either the entire protein or C-terminally truncated segments thereof. The native α/β parallel fold of flavodoxin is among the most ancestral and widely distributed folds in nature and exploring its co-translational folding is thus highly relevant. In Escherichia coli (strain BL21(DE3) Δtig::kan) FMN turns out to be limiting for saturation of this flavoprotein on time-scales vastly exceeding those of flavodoxin synthesis. Because the ribosome affects protein folding, apoflavodoxin cannot bind FMN during its translation. As a result, binding of cofactor to released protein is the last step in production of this flavoprotein in the cell. We show that once apoflavodoxin is entirely synthesized and exposed outside the ribosome to which it is stalled by an artificial linker containing the SecM sequence, the protein is natively folded and capable of binding FMN.
Collapse
Affiliation(s)
- Joseline A Houwman
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Carlo P M van Mierlo
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands.
| |
Collapse
|
17
|
The chaperone role of the pyridoxal 5′-phosphate and its implications for rare diseases involving B6-dependent enzymes. Clin Biochem 2014; 47:158-65. [DOI: 10.1016/j.clinbiochem.2013.11.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/28/2013] [Accepted: 11/30/2013] [Indexed: 02/06/2023]
|
18
|
Role of key residues of obelin in coelenterazine binding and conversion into 2-hydroperoxy adduct. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 127:133-9. [DOI: 10.1016/j.jphotobiol.2013.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/10/2013] [Accepted: 08/20/2013] [Indexed: 11/21/2022]
|
19
|
Reconstructing a flavodoxin oxidoreductase with early amino acids. Int J Mol Sci 2013; 14:12843-52. [PMID: 23783279 PMCID: PMC3709815 DOI: 10.3390/ijms140612843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 11/16/2022] Open
Abstract
Primitive proteins are proposed to have utilized organic cofactors more frequently than transition metals in redox reactions. Thus, an experimental validation on whether a protein constituted solely by early amino acids and an organic cofactor can perform electron transfer activity is an urgent challenge. In this paper, by substituting "late amino acids (C, F, M, T, W, and Y)" with "early amino acids (A, L, and V)" in a flavodoxin, we constructed a flavodoxin mutant and evaluated its characteristic properties. The major results showed that: (1) The flavodoxin mutant has structural characteristics similar to wild-type protein; (2) Although the semiquinone and hydroquinone flavodoxin mutants possess lower stability than the corresponding form of wild-type flavodoxin, the redox potential of double electron reduction Em,7 (fld) reached -360 mV, indicating that the flavodoxin mutant constituted solely by early amino acids can exert effective electron transfer activity.
Collapse
|
20
|
Distant residues mediate picomolar binding affinity of a protein cofactor. Nat Commun 2013; 3:1010. [PMID: 22910356 PMCID: PMC3432467 DOI: 10.1038/ncomms2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/18/2012] [Indexed: 12/11/2022] Open
Abstract
Numerous proteins require cofactors to be active. Computer simulations suggest that cooperative interaction networks achieve optimal cofactor binding. There is a need for the experimental identification of the residues crucial for stabilizing these networks and thus for cofactor binding. Here we investigate the electron transporter flavodoxin, which contains flavin mononucleotide as non-covalently bound cofactor. We show that after binding flavin mononucleotide with nanomolar affinity, the protein relaxes extremely slowly (time constant ~5 days) to an energetically more favourable state with picomolar-binding affinity. Rare small-scale openings of this state are revealed through H/D exchange of N(3)H of flavin. We find that H/D exchange can pinpoint amino acids that cause tight cofactor binding. These hitherto unknown residues are dispersed throughout the structure, and many are located distantly from the flavin and seem irrelevant to flavodoxin's function. Quantification of the thermodynamics of ligand binding is important for understanding, engineering, designing and evolving ligand-binding proteins. Flavodoxin requires tight binding of its FMN cofactor to be active, but the residues involved are unknown. In this biophysical study, FMN binding is shown to change from nanomolar to picomolar affinity on extremely slow protein relaxation and the residues responsible for cofactor binding are identified.
Collapse
|
21
|
Lindhoud S, Westphal AH, Visser AJWG, Borst JW, van Mierlo CPM. Fluorescence of Alexa fluor dye tracks protein folding. PLoS One 2012; 7:e46838. [PMID: 23056480 PMCID: PMC3466183 DOI: 10.1371/journal.pone.0046838] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022] Open
Abstract
Fluorescence spectroscopy is an important tool for the characterization of protein folding. Often, a protein is labeled with appropriate fluorescent donor and acceptor probes and folding-induced changes in Förster Resonance Energy Transfer (FRET) are monitored. However, conformational changes of the protein potentially affect fluorescence properties of both probes, thereby profoundly complicating interpretation of FRET data. In this study, we assess the effects protein folding has on fluorescence properties of Alexa Fluor 488 (A488), which is commonly used as FRET donor. Here, A488 is covalently attached to Cys69 of apoflavodoxin from Azotobacter vinelandii. Although coupling of A488 slightly destabilizes apoflavodoxin, the three-state folding of this protein, which involves a molten globule intermediate, is unaffected. Upon folding of apoflavodoxin, fluorescence emission intensity of A488 changes significantly. To illuminate the molecular sources of this alteration, we applied steady state and time-resolved fluorescence techniques. The results obtained show that tryptophans cause folding-induced changes in quenching of Alexa dye. Compared to unfolded protein, static quenching of A488 is increased in the molten globule. Upon populating the native state both static and dynamic quenching of A488 decrease considerably. We show that fluorescence quenching of Alexa Fluor dyes is a sensitive reporter of conformational changes during protein folding.
Collapse
Affiliation(s)
- Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Adrie H. Westphal
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Antonie J. W. G. Visser
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
- Microspectroscopy Centre, Wageningen University, Wageningen, The Netherlands
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
- Microspectroscopy Centre, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
22
|
Lindhoud S, Westphal AH, Borst JW, van Mierlo CPM. Illuminating the off-pathway nature of the molten globule folding intermediate of an α-β parallel protein. PLoS One 2012; 7:e45746. [PMID: 23029219 PMCID: PMC3448718 DOI: 10.1371/journal.pone.0045746] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022] Open
Abstract
Partially folded protein species transiently form during folding of most proteins. Often, these species are molten globules, which may be on- or off-pathway to the native state. Molten globules are ensembles of interconverting protein conformers that have a substantial amount of secondary structure, but lack virtually all tertiary side-chain packing characteristics of natively folded proteins. Due to solvent-exposed hydrophobic groups, molten globules are prone to aggregation, which can have detrimental effects on organisms. The molten globule observed during folding of the 179-residue apoflavodoxin from Azotobacter vinelandii is off-pathway, as it has to unfold before native protein can form. Here, we study folding of apoflavodoxin and characterize its molten globule using fluorescence spectroscopy and Förster Resonance Energy Transfer (FRET). Apoflavodoxin is site-specifically labeled with fluorescent donor and acceptor dyes, utilizing dye-inaccessibility of Cys69 in cofactor-bound protein. Donor (i.e., Alexa Fluor 488) is covalently attached to Cys69 in all apoflavodoxin variants used. Acceptor (i.e., Alexa Fluor 568) is coupled to Cys1, Cys131 and Cys178, respectively. Our FRET data show that apoflavodoxin's molten globule forms in a non-cooperative manner and that its N-terminal 69 residues fold last. In addition, striking conformational differences between molten globule and native protein are revealed, because the inter-label distances sampled in the 111-residue C-terminal segment of the molten globule are shorter than observed for native apoflavodoxin. Thus, FRET sheds light on the off-pathway nature of the molten globule during folding of an α-β parallel protein.
Collapse
Affiliation(s)
- Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Adrie H. Westphal
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
- Microspectroscopy Centre, Wageningen University, Wageningen, The Netherlands
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
- Microspectroscopy Centre, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
23
|
Lindhoud S, van den Berg WAM, van den Heuvel RHH, Heck AJR, van Mierlo CPM, van Berkel WJH. Cofactor binding protects flavodoxin against oxidative stress. PLoS One 2012; 7:e41363. [PMID: 22829943 PMCID: PMC3400614 DOI: 10.1371/journal.pone.0041363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/20/2012] [Indexed: 11/23/2022] Open
Abstract
In organisms, various protective mechanisms against oxidative damaging of proteins exist. Here, we show that cofactor binding is among these mechanisms, because flavin mononucleotide (FMN) protects Azotobacter vinelandii flavodoxin against hydrogen peroxide-induced oxidation. We identify an oxidation sensitive cysteine residue in a functionally important loop close to the cofactor, i.e., Cys69. Oxidative stress causes dimerization of apoflavodoxin (i.e., flavodoxin without cofactor), and leads to consecutive formation of sulfinate and sulfonate states of Cys69. Use of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) reveals that Cys69 modification to a sulfenic acid is a transient intermediate during oxidation. Dithiothreitol converts sulfenic acid and disulfide into thiols, whereas the sulfinate and sulfonate forms of Cys69 are irreversible with respect to this reagent. A variable fraction of Cys69 in freshly isolated flavodoxin is in the sulfenic acid state, but neither oxidation to sulfinic and sulfonic acid nor formation of intermolecular disulfides is observed under oxidising conditions. Furthermore, flavodoxin does not react appreciably with NBD-Cl. Besides its primary role as redox-active moiety, binding of flavin leads to considerably improved stability against protein unfolding and to strong protection against irreversible oxidation and other covalent thiol modifications. Thus, cofactors can protect proteins against oxidation and modification.
Collapse
Affiliation(s)
- Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | | | - Robert H. H. van den Heuvel
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
24
|
Montersino S, van Berkel WJH. Functional annotation and characterization of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:433-42. [PMID: 22207056 DOI: 10.1016/j.bbapap.2011.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/09/2011] [Accepted: 12/14/2011] [Indexed: 12/11/2022]
Abstract
The genome of Rhodococcus jostii RHA1 contains an unusually large number of oxygenase encoding genes. Many of these genes have yet an unknown function, implying that a notable part of the biochemical and catabolic biodiversity of this Gram-positive soil actinomycete is still elusive. Here we present a multiple sequence alignment and phylogenetic analysis of putative R. jostii RHA1 flavoprotein hydroxylases. Out of 18 candidate sequences, three hydroxylases are absent in other available Rhodococcus genomes. In addition, we report the biochemical characterization of 3-hydroxybenzoate 6-hydroxylase (3HB6H), a gentisate-producing enzyme originally mis-annotated as salicylate hydroxylase. R. jostii RHA1 3HB6H expressed in Escherichia coli is a homodimer with each 47kDa subunit containing a non-covalently bound FAD cofactor. The enzyme has a pH optimum around pH 8.3 and prefers NADH as external electron donor. 3HB6H is active with a series of 3-hydroxybenzoate analogues, bearing substituents in ortho- or meta-position of the aromatic ring. Gentisate, the physiological product, is a non-substrate effector of 3HB6H. This compound is not hydroxylated but strongly stimulates the NADH oxidase activity of the enzyme.
Collapse
|
25
|
Ayuso-Tejedor S, Abián O, Velázquez-Campoy A, Sancho J. Mechanism of FMN Binding to the Apoflavodoxin from Helicobacter pylori. Biochemistry 2011; 50:8703-11. [PMID: 21910456 DOI: 10.1021/bi201025y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Flavodoxins are bacterial electron transport proteins whose redox competence is due to the presence of a tightly but noncovalently bound FMN molecule. While the thermodynamics of the complex are understood, the mechanism of association between the apoflavodoxin and the redox cofactor is not so clear. We investigate here the mechanism of FMN binding to the apoflavodoxin from Helicobacter pylori, an essential protein that is being used as a target to develop antimicrobials. This flavodoxin is structurally peculiar as it lacks the typical bulky residue interacting with the FMN re face but bears instead a small alanine. FMN binding is biphasic, regardless of the presence of phosphate molecules in solution, while riboflavin binding takes place in a single step, the rate constant of which coincides with the fast phase of FMN binding. A mutational study at the isoalloxazine and phosphate subsites for FMN binding clearly indicates that FMN association is always limited by interaction with the isoalloxazine subsite because mutating residues that interact with the phosphate moiety of FMN in the native complex hardly changes the observed rate constants and amplitudes. In contrast, replacing tyr92, which interacts with the isoalloxazine, greatly lowers the rate constants. Our analysis indicates that the two FMN binding phases observed are related neither with alternative or sequential interaction with the two binding subsites nor with the presence of bound phosphate. It is possible that they reflect the intrinsic conformational heterogeneity of the apoflavodoxin ensemble.
Collapse
Affiliation(s)
- S Ayuso-Tejedor
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza 50009, Spain
| | | | | | | |
Collapse
|
26
|
Biophysical characterization of Entamoeba histolytica phosphoserine aminotransferase (EhPSAT): role of cofactor and domains in stability and subunit assembly. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:599-610. [DOI: 10.1007/s00249-010-0654-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 11/21/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
|
27
|
Tischler D, Kermer R, Gröning JAD, Kaschabek SR, van Berkel WJH, Schlömann M. StyA1 and StyA2B from Rhodococcus opacus 1CP: a multifunctional styrene monooxygenase system. J Bacteriol 2010; 192:5220-7. [PMID: 20675468 PMCID: PMC2944547 DOI: 10.1128/jb.00723-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 07/24/2010] [Indexed: 11/20/2022] Open
Abstract
Two-component flavoprotein monooxygenases are emerging biocatalysts that generally consist of a monooxygenase and a reductase component. Here we show that Rhodococcus opacus 1CP encodes a multifunctional enantioselective flavoprotein monooxygenase system composed of a single styrene monooxygenase (SMO) (StyA1) and another styrene monooxygenase fused to an NADH-flavin oxidoreductase (StyA2B). StyA1 and StyA2B convert styrene and chemical analogues to the corresponding epoxides at the expense of FADH2 provided from StyA2B. The StyA1/StyA2B system presents the highest monooxygenase activity in an equimolar ratio of StyA1 and StyA2B, indicating (transient) protein complex formation. StyA1 is also active when FADH2 is supplied by StyB from Pseudomonas sp. VLB120 or PheA2 from Rhodococcus opacus 1CP. However, in both cases the reductase produces an excess of FADH2, resulting in a high waste of NADH. The epoxidation rate of StyA1 heavily depends on the type of reductase. This supports that the FADH2-induced activation of StyA1 requires interprotein communication. We conclude that the StyA1/StyA2B system represents a novel type of multifunctional flavoprotein monooxygenase. Its unique mechanism of cofactor utilization provides new opportunities for biotechnological applications and is highly relevant from a structural and evolutionary point of view.
Collapse
Affiliation(s)
- Dirk Tischler
- Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Johansson R, Torrents E, Lundin D, Sprenger J, Sahlin M, Sjöberg BM, Logan DT. High-resolution crystal structures of the flavoprotein NrdI in oxidized and reduced states--an unusual flavodoxin. Structural biology. FEBS J 2010; 277:4265-77. [PMID: 20831589 DOI: 10.1111/j.1742-4658.2010.07815.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The small flavoprotein NrdI is an essential component of the class Ib ribonucleotide reductase system in many bacteria. NrdI interacts with the class Ib radical generating protein NrdF. It is suggested to be involved in the rescue of inactivated diferric centres or generation of active dimanganese centres in NrdF. Although NrdI bears a superficial resemblance to flavodoxin, its redox properties have been demonstrated to be strikingly different. In particular, NrdI is capable of two-electron reduction, whereas flavodoxins are exclusively one-electron reductants. This has been suggested to depend on a lesser destabilization of the negatively-charged hydroquinone state than in flavodoxins. We have determined the crystal structures of NrdI from Bacillus anthracis, the causative agent of anthrax, in the oxidized and semiquinone forms, at resolutions of 0.96 and 1.4 Å, respectively. These structures, coupled with analysis of all curated NrdI sequences, suggest that NrdI defines a new structural family within the flavodoxin superfamily. The conformational behaviour of NrdI in response to FMN reduction is very similar to that of flavodoxins, involving a peptide flip in a loop near the N5 atom of the flavin ring. However, NrdI is much less negatively charged than flavodoxins, which is expected to affect its redox properties significantly. Indeed, sequence analysis shows a remarkable spread in the predicted isoelectric points of NrdIs, from approximately pH 4-10. The implications of these observations for class Ib ribonucleotide reductase function are discussed.
Collapse
Affiliation(s)
- Renzo Johansson
- Department of Biochemistry and Structural Biology, Lund University, Sweden
| | | | | | | | | | | | | |
Collapse
|
29
|
Nabuurs SM, van Mierlo CPM. Interrupted hydrogen/deuterium exchange reveals the stable core of the remarkably helical molten globule of alpha-beta parallel protein flavodoxin. J Biol Chem 2009; 285:4165-4172. [PMID: 19959481 DOI: 10.1074/jbc.m109.087932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kinetic intermediates that appear early during protein folding often resemble the relatively stable molten globule intermediates formed by several proteins under mildly denaturing conditions. Molten globules have a substantial amount of secondary structure but lack virtually all tertiary side-chain packing characteristics of natively folded proteins. Due to exposed hydrophobic groups, molten globules are prone to aggregation, which can have detrimental effects on organisms. The molten globule that is observed during folding of alpha-beta parallel flavodoxin from Azotobacter vinelandii is a remarkably non-native species. This folding intermediate is helical and contains no beta-sheet and is kinetically off-pathway to the native state. It can be trapped under native-like conditions by substituting residue Phe(44) for Tyr(44). To characterize this species at the residue level, in this study, use is made of interrupted hydrogen/deuterium exchange detected by NMR spectroscopy. In the molten globule of flavodoxin, the helical region comprising residues Leu(110)-Val(125) is shown to be better protected against exchange than the other ordered parts of the folding intermediate. This helical region is better buried than the other helices, causing its context-dependent stabilization against unfolding. Residues Leu(110)-Val(125) thus form the stable core of the helical molten globule of alpha-beta parallel flavodoxin, which is almost entirely structured. Non-native docking of helices in the molten globule of flavodoxin prevents formation of the parallel beta-sheet of native flavodoxin. Hence, to produce native alpha-beta parallel protein molecules, the off-pathway species needs to unfold.
Collapse
Affiliation(s)
- Sanne M Nabuurs
- From the Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Carlo P M van Mierlo
- From the Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
| |
Collapse
|
30
|
Non-native hydrophobic interactions detected in unfolded apoflavodoxin by paramagnetic relaxation enhancement. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:689-98. [PMID: 19894043 PMCID: PMC2841281 DOI: 10.1007/s00249-009-0556-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/30/2009] [Accepted: 10/09/2009] [Indexed: 11/15/2022]
Abstract
Transient structures in unfolded proteins are important in elucidating the molecular details of initiation of protein folding. Recently, native and non-native secondary structure have been discovered in unfolded A. vinelandii flavodoxin. These structured elements transiently interact and subsequently form the ordered core of an off-pathway folding intermediate, which is extensively formed during folding of this α–β parallel protein. Here, site-directed spin-labelling and paramagnetic relaxation enhancement are used to investigate long-range interactions in unfolded apoflavodoxin. For this purpose, glutamine-48, which resides in a non-native α-helix of unfolded apoflavodoxin, is replaced by cysteine. This replacement enables covalent attachment of nitroxide spin-labels MTSL and CMTSL. Substitution of Gln-48 by Cys-48 destabilises native apoflavodoxin and reduces flexibility of the ordered regions in unfolded apoflavodoxin in 3.4 M GuHCl, because of increased hydrophobic interactions in the unfolded protein. Here, we report that in the study of the conformational and dynamic properties of unfolded proteins interpretation of spin-label data can be complicated. The covalently attached spin-label to Cys-48 (or Cys-69 of wild-type apoflavodoxin) perturbs the unfolded protein, because hydrophobic interactions occur between the label and hydrophobic patches of unfolded apoflavodoxin. Concomitant hydrophobic free energy changes of the unfolded protein (and possibly of the off-pathway intermediate) reduce the stability of native spin-labelled protein against unfolding. In addition, attachment of MTSL or CMTSL to Cys-48 induces the presence of distinct states in unfolded apoflavodoxin. Despite these difficulties, the spin-label data obtained here show that non-native contacts exist between transiently ordered structured elements in unfolded apoflavodoxin.
Collapse
|
31
|
Nabuurs SM, Westphal AH, aan den Toorn M, Lindhoud S, van Mierlo CPM. Topological switching between an alpha-beta parallel protein and a remarkably helical molten globule. J Am Chem Soc 2009; 131:8290-5. [PMID: 19456154 DOI: 10.1021/ja9014309] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Partially folded protein species transiently exist during folding of most proteins. Often these species are molten globules, which may be on- or off-pathway to native protein. Molten globules have a substantial amount of secondary structure but lack virtually all the tertiary side-chain packing characteristic of natively folded proteins. These ensembles of interconverting conformers are prone to aggregation and potentially play a role in numerous devastating pathologies, and thus attract considerable attention. The molten globule that is observed during folding of apoflavodoxin from Azotobacter vinelandii is off-pathway, as it has to unfold before native protein can be formed. Here we report that this species can be trapped under nativelike conditions by substituting amino acid residue F44 by Y44, allowing spectroscopic characterization of its conformation. Whereas native apoflavodoxin contains a parallel beta-sheet surrounded by alpha-helices (i.e., the flavodoxin-like or alpha-beta parallel topology), it is shown that the molten globule has a totally different topology: it is helical and contains no beta-sheet. The presence of this remarkably nonnative species shows that single polypeptide sequences can code for distinct folds that swap upon changing conditions. Topological switching between unrelated protein structures is likely a general phenomenon in the protein structure universe.
Collapse
Affiliation(s)
- Sanne M Nabuurs
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
5-fluorotryptophan as dual probe for ground-state heterogeneity and excited-state dynamics in apoflavodoxin. FEBS Lett 2009; 583:2785-8. [PMID: 19619543 DOI: 10.1016/j.febslet.2009.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/13/2009] [Accepted: 07/13/2009] [Indexed: 11/21/2022]
Abstract
The apoflavodoxin protein from Azotobacter vinelandii harboring three tryptophan (Trp) residues, was biosynthetically labeled with 5-fluorotryptophan (5-FTrp). 5-FTrp has the advantage that chemical differences in its microenvironment can be sensitively visualized via (19)F NMR. Moreover, it shows simpler fluorescence decay kinetics. The occurrence of FRET was earlier observed via the fluorescence anisotropy decay of WT apoflavodoxin and the anisotropy decay parameters are in excellent agreement with distances between and relative orientations of all Trp residues. The anisotropy decay in 5-FTrp apoflavodoxin demonstrates that the distances and orientations are identical for this protein. This work demonstrates the added value of replacing Trp by 5-FTrp to study structural features of proteins via (19)F NMR and fluorescence spectroscopy.
Collapse
|
33
|
Guelker M, Stagg L, Wittung-Stafshede P, Shamoo Y. Pseudosymmetry, high copy number and twinning complicate the structure determination of Desulfovibrio desulfuricans (ATCC 29577) flavodoxin. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:523-34. [PMID: 19465766 PMCID: PMC2685730 DOI: 10.1107/s0907444909010075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 03/18/2009] [Indexed: 11/10/2022]
Abstract
The crystal structure of oxidized flavodoxin from Desulfovibrio desulfuricans (ATCC 29577) was determined by molecular replacement in two crystal forms, P3(1)21 and P4(3), at 2.5 and 2.0 A resolution, respectively. Structure determination in space group P3(1)21 was challenging owing to the presence of pseudo-translational symmetry and a high copy number in the asymmetric unit (8). Initial phasing attempts in space group P3(1)21 by molecular replacement using a poor search model (46% identity) and multi-wavelength anomalous dispersion were unsuccessful. It was necessary to solve the structure in a second crystal form, space group P4(3), which was characterized by almost perfect twinning, in order to obtain a suitable search model for molecular replacement. This search model with complementary approaches to molecular replacement utilizing the pseudo-translational symmetry operators determined by analysis of the native Patterson map facilitated the selection and manual placement of molecules to generate an initial solution in the P3(1)21 crystal form. During the early stages of refinement, application of the appropriate twin law, (-h, -k, l), was required to converge to reasonable R-factor values despite the fact that in the final analysis the data were untwinned and the twin law could subsequently be removed. The approaches used in structure determination and refinement may be applicable to other crystal structures characterized by these complicating factors. The refined model shows flexibility of the flavin mononucleotide coordinating loops indicated by the isolation of two loop conformations and provides a starting point for the elucidation of the mechanism used for protein-partner recognition.
Collapse
Affiliation(s)
- Megan Guelker
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street, MS-140, Houston, TX 77005, USA
| | - Loren Stagg
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street, MS-140, Houston, TX 77005, USA
| | - Pernilla Wittung-Stafshede
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street, MS-140, Houston, TX 77005, USA
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Yousif Shamoo
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street, MS-140, Houston, TX 77005, USA
| |
Collapse
|
34
|
Nabuurs SM, Westphal AH, van Mierlo CPM. Noncooperative Formation of the off-pathway molten globule during folding of the alpha-beta parallel protein apoflavodoxin. J Am Chem Soc 2009; 131:2739-46. [PMID: 19170491 DOI: 10.1021/ja8089476] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During folding of many proteins, molten globules are formed. These partially folded forms of proteins have a substantial amount of secondary structure but lack virtually all tertiary side-chain packing characteristic of native structures. Molten globules are ensembles of interconverting conformers and are prone to aggregation, which can have detrimental effects on organisms. Consequently, molten globules attract considerable attention. The molten globule that is observed during folding of flavodoxin from Azotobacter vinelandii is a kinetically off-pathway species, as it has to unfold before the native state of the protein can be formed. This intermediate contains helices and can be populated at equilibrium using guanidinium hydrochloride as denaturant, allowing the use of NMR spectroscopy to follow molten globule formation at the residue level. Here, we track changes in chemical shifts of backbone amides, as well as disappearance of resonances of unfolded apoflavodoxin, upon decreasing denaturant concentration. Analysis of the data shows that structure formation within virtually all parts of the unfolded protein precedes folding to the molten globule state. This folding transition is noncooperative and involves a series of distinct transitions. Four structured elements in unfolded apoflavodoxin transiently interact and subsequently form the ordered core of the molten globule. Although hydrophobic, tryptophan side chains are not involved in the latter process. This ordered core is gradually extended upon decreasing denaturant concentration, but part of apoflavodoxin's molten globule remains random coil in the denaturant range investigated. The results presented here, together with those reported on the molten globule of alpha-lactalbumin, show that helical molten globules apparently fold in a noncooperative manner.
Collapse
Affiliation(s)
- Sanne M Nabuurs
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | |
Collapse
|
35
|
The intrinsic fluorescence of apo-obelin and apo-aequorin and use of its quenching to characterize coelenterazine binding. FEBS Lett 2009; 583:1939-44. [PMID: 19426732 DOI: 10.1016/j.febslet.2009.04.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 04/23/2009] [Accepted: 04/28/2009] [Indexed: 11/23/2022]
Abstract
The intrinsic fluorescence of two apo-photoproteins has been characterized and its concentration-dependent quenching by coelenterazine has been for the first time applied to determine the apparent dissociation constants for coelenterazine binding with apo-aequorin (1.2+/-0.12 microM) and apo-obelin (0.2+/-0.04 microM). Stopped-flow measurements of fluorescence quenching showed that coelenterazine binding is a millisecond-scale process, in contrast to the formation of an active photoprotein complex taking several hours. This finding evidently shows that the rate-limiting step of active photoprotein formation is the conversion of coelenterazine into its 2-hydroperoxy derivative.
Collapse
|
36
|
Singh K, Bhakuni V. Guanidine Hydrochloride- and Urea-Induced Unfolding of Toxoplasma gondii Ferredoxin-NADP+ Reductase: Stabilization of a Functionally Inactive Holo-Intermediate. J Biochem 2009; 145:721-31. [DOI: 10.1093/jb/mvp029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Nabuurs SM, Westphal AH, van Mierlo CPM. Extensive formation of off-pathway species during folding of an alpha-beta parallel protein is due to docking of (non)native structure elements in unfolded molecules. J Am Chem Soc 2009; 130:16914-20. [PMID: 19053416 DOI: 10.1021/ja803841n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detailed information about unfolded states is required to understand how proteins fold. Knowledge about folding intermediates formed subsequently is essential to get a grip on pathological aggregation phenomena. During folding of apoflavodoxin, which adopts the widely prevalent alpha-beta parallel topology, most molecules fold via an off-pathway folding intermediate with helical properties. To better understand why this species is formed, guanidine hydrochloride-unfolded apoflavodoxin is characterized at the residue level using heteronuclear NMR spectroscopy. In 6.0 M denaturant, the protein behaves as a random coil. In contrast, at 3.4 M denaturant, secondary shifts and (1)H-(15)N relaxation rates report four transiently ordered regions in unfolded apoflavodoxin. These regions have restricted flexibility on the (sub)nanosecond time scale. Secondary shifts show that three of these regions form alpha-helices, which are populated about 10% of the time, as confirmed by far-UV CD data. One region of unfolded apoflavodoxin adopts non-native structure. Of the alpha-helices observed, two are present in native apoflavodoxin as well. A substantial part of the third helix becomes beta-strand while forming native protein. Chemical shift changes due to amino acid residue replacement show that the latter alpha-helix has hydrophobic interactions with all other ordered regions in unfolded apoflavodoxin. Remarkably, these ordered segments dock non-natively, which causes strong competition with on-pathway folding. Thus, rather than directing productive folding, conformational preorganization in the unfolded state of an alpha-beta parallel-type protein promotes off-pathway species formation.
Collapse
Affiliation(s)
- Sanne M Nabuurs
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | |
Collapse
|
38
|
Engel R, Westphal AH, Huberts DH, Nabuurs SM, Lindhoud S, Visser AJ, van Mierlo CP. Macromolecular Crowding Compacts Unfolded Apoflavodoxin and Causes Severe Aggregation of the Off-pathway Intermediate during Apoflavodoxin Folding. J Biol Chem 2008; 283:27383-27394. [DOI: 10.1074/jbc.m802393200] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Abstract
Submolecular details of Azotobacter vinelandii apoflavodoxin (apoFD) (un)folding are revealed by time-resolved fluorescence anisotropy using wild-type protein and variants lacking one or two of apoFD's three tryptophans. ApoFD equilibrium (un)folding by guanidine hydrochloride follows a three-state model: native <--> unfolded <--> intermediate. In native protein, W128 is a sink for Förster resonance energy transfer (FRET). Consequently, unidirectional FRET with a 50-ps transfer correlation time occurs from W167 to W128. FRET from W74 to W167 is much slower (6.9 ns). In the intermediate, W128 and W167 have native-like geometry because the 50-ps transfer time is observed. However, non-native structure exists between W74 and W167 because instead of 6.9 ns the transfer correlation time is 2.0 ns. In unfolded apoFD this 2.0-ns transfer correlation time is also detected. This decrease in transfer correlation time is a result of W74 and W167 becoming solvent accessible and randomly oriented toward one another. Apparently W74 and W167 are near-natively separated in the folding intermediate and in unfolded apoFD. Both tryptophans may actually be slightly closer in space than in the native state, even though apoFD's radius increases substantially upon unfolding. In unfolded apoFD the 50-ps transfer time observed for native and intermediate folding states becomes 200 ps as W128 and W167 are marginally further separated than in the native state. Apparently, apoFD's unfolded state is not a featureless statistical coil but contains well-defined substructures. The approach presented is a powerful tool to study protein folding.
Collapse
|
40
|
Cremades N, Bueno M, Neira JL, Velázquez-Campoy A, Sancho J. Conformational Stability of Helicobacter pylori Flavodoxin. J Biol Chem 2008; 283:2883-95. [DOI: 10.1074/jbc.m705677200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
41
|
Cremades N, Velazquez-Campoy A, Freire E, Sancho J. The flavodoxin from Helicobacter pylori: structural determinants of thermostability and FMN cofactor binding. Biochemistry 2007; 47:627-39. [PMID: 18095659 DOI: 10.1021/bi701365e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Flavodoxin has been recently recognized as an essential protein for a number of pathogenic bacteria including Helicobacter pylori, where it has been proposed to constitute a target for antibacterial drug development. One way we are exploring to screen for novel inhibitory compounds is to perform thermal upshift assays, for which a detailed knowledge of protein thermostability and cofactor binding properties is of great help. However, very little is known on the stability and ligand binding properties of H. pylori flavodoxin, and its peculiar FMN binding site together with the variety of behaviors observed within the flavodoxin family preclude extrapolations. We have thus performed a detailed experimental and computational analysis of the thermostability and cofactor binding energetics of H. pylori flavodoxin, and we have found that the thermal unfolding equilibrium is more complex that any other previously described for flavodoxins as it involves the accumulation of two distinct equilibrium intermediates. Fortunately the entire stability and binding data can be satisfactorily fitted to a model, summarized in a simple phase diagram, where the cofactor only binds to the native state. On the other hand, we show how variability of thermal unfolding behavior within the flavodoxin family can be predicted using structure-energetics relationships implemented in the COREX algorithm. The different distribution and ranges of local stabilities of the Anabaena and H. pylori apoflavodoxins explain the essential experimental differences observed: much lower Tm1, greater resistance to global unfolding, and more pronounced cold denaturation in H. pylori. Finally, a new strategy is proposed to identify using COREX structural characteristics of equilibrium intermediate states populated during protein unfolding.
Collapse
Affiliation(s)
- Nunilo Cremades
- Biocomputation and Complex Systems Physics Institute, Universidad de Zaragoza, 50009-Zaragoza, Spain
| | | | | | | |
Collapse
|
42
|
Martínez-Júlvez M, Cremades N, Bueno M, Pérez-Dorado I, Maya C, Cuesta-López S, Prada D, Falo F, Hermoso JA, Sancho J. Common conformational changes in flavodoxins induced by FMN and anion binding: the structure of Helicobacter pylori apoflavodoxin. Proteins 2007; 69:581-94. [PMID: 17623845 DOI: 10.1002/prot.21410] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Flavodoxins, noncovalent complexes between apoflavodoxins and flavin mononucleotide (FMN), are useful models to investigate the mechanism of protein/flavin recognition. In this respect, the only available crystal structure of an apoflavodoxin (that from Anabaena) showed a closed isoalloxazine pocket and the presence of a bound phosphate ion, which posed many questions on the recognition mechanism and on the potential physiological role exerted by phosphate ions. To address these issues we report here the X-ray structure of the apoflavodoxin from the pathogen Helicobacter pylori. The protein naturally lacks one of the conserved aromatic residues that close the isoalloxazine pocket in Anabaena, and the structure has been determined in a medium lacking phosphate. In spite of these significant differences, the isoallozaxine pocket in H. pylori apoflavodoxin appears also closed and a chloride ion is bound at a native-like FMN phosphate site. It seems thus that it is a general characteristic of apoflavodoxins to display closed, non-native, isoalloxazine binding sites together with native-like, rather promiscuous, phosphate binding sites that can bear other available small anions present in solution. In this respect, both binding energy hot spots of the apoflavodoxin/FMN complex are initially unavailable to FMN binding and the specific spot for FMN recognition may depend on the dynamics of the two candidate regions. Molecular dynamics simulations show that the isoalloxazine binding loops are intrinsically flexible at physiological temperatures, thus facilitating the intercalation of the cofactor, and that their mobility is modulated by the anion bound at the phosphate site.
Collapse
Affiliation(s)
- Marta Martínez-Júlvez
- Biocomputation and Complex Systems Physics Institute (BiFi), Universidad de Zaragoza, Unidad Asociada al IQFR-CSIC, Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sedlak E, Wittung-Stafshede P. Discrete Roles of Copper Ions in Chemical Unfolding of Human Ceruloplasmin. Biochemistry 2007; 46:9638-44. [PMID: 17661447 DOI: 10.1021/bi700715e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human ceruloplasmin (CP) is a multicopper oxidase essential for normal iron homeostasis. The protein has six beta-barrel domains with one type 1 copper in each of domains 2, 4, and 6; the remaining copper ions form a catalytic trinuclear cluster, one type 2 and two type 3 coppers, at the interface between domains 1 and 6. We have characterized urea-induced unfolding of holo- and apo-forms of CP by far-UV circular dichroism, intrinsic fluorescence, 8-anilinonaphthalene-1-sulfonic acid binding, visible absorption, copper content, and oxidase activity probes (pH 7, 23 degrees C). We find that holo-CP unfolds in a complex reaction with at least one intermediate. The formation of the intermediate correlates with decreased secondary structure, exposure of aromatics, loss of two coppers, and reduced oxidase activity; this step is reversible, indicating that the trinuclear cluster remains intact. Further additions of urea trigger complete protein unfolding and loss of all coppers. Attempts to refold this species result in an inactive apoprotein with molten-globule characteristics. The apo-form of CP also unfolds in a multistep reaction, albeit the intermediate appears at a slightly lower urea concentration. Again, correct refolding is possible from the intermediate but not the unfolded state. Our study demonstrates that in vitro equilibrium unfolding of CP involves intermediates and that the copper ions are removed in stages. When the catalytic site is finally destroyed, refolding is not possible at neutral pH. This implies a mechanistic role for the trinuclear metal cluster as a nucleation point, aligning domains 1 and 6, during CP folding in vivo.
Collapse
Affiliation(s)
- Erik Sedlak
- Department of Biochemistry and Cell Biology, Keck Center for Structural Computational Biology, Texas, USA
| | | |
Collapse
|
44
|
Abe M, Ohno S, Yokogawa T, Nakanishi T, Arisaka F, Hosoya T, Hiramatsu T, Suzuki M, Ogasawara T, Sawasaki T, Nishikawa K, Kitamura M, Hori H, Endo Y. Detection of structural changes in a cofactor binding protein by using a wheat germ cell-free protein synthesis system coupled with unnatural amino acid probing. Proteins 2007; 67:643-52. [PMID: 17348022 DOI: 10.1002/prot.21341] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A cell-free protein synthesis system is a powerful tool with which unnatural amino acids can be introduced into polypeptide chains. Here, the authors describe unnatural amino acid probing in a wheat germ cell-free translation system as a method for detecting the structural changes that occur in a cofactor binding protein on a conversion of the protein from an apo-form to a holo-form. The authors selected the FMN-binding protein from Desulfovibrio vulgaris as a model protein. The apo-form of the protein was synthesized efficiently in the absence of FMN. The purified apo-form could be correctly converted to the holo-form. Thus, the system could synthesize the active apo-form. Gel filtration chromatography, analytical ultracentrifugation, and circular dichroism-spectra studies suggested that the FMN-binding site of the apo-form is open as compared with the holo-form. To confirm this idea, the unnatural amino acid probing was performed by incorporating 3-azido-L-tyrosine at the Tyr35 residue in the FMN-binding site. The authors optimized three steps in their system. The introduced 3-azido-L-tyrosine residue was subjected to specific chemical modification by a fluorescein-triarylphosphine derivative. The initial velocity of the apo-form reaction was 20 fold faster than that of the holo-form, demonstrating that the Tyr35 residue in the apo-form is open to solvent.
Collapse
Affiliation(s)
- Masato Abe
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mocan I, Georgescauld F, Gonin P, Thoraval D, Cervoni L, Giartosio A, Dabernat-Arnaud S, Crouzet M, Lacombe ML, Lascu I. Protein phosphorylation corrects the folding defect of the neuroblastoma (S120G) mutant of human nucleoside diphosphate kinase A/Nm23-H1. Biochem J 2007; 403:149-56. [PMID: 17155928 PMCID: PMC1828887 DOI: 10.1042/bj20061141] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human nucleoside diphosphate (NDP) kinase A is a 'house-keeping' enzyme essential for the synthesis of nonadenine nucleoside (and deoxynucleoside) 5'-triphosphate. It is involved in complex cellular regulatory functions including the control of metastatic tumour dissemination. The mutation S120G has been identified in high-grade neuroblastomas. We have shown previously that this mutant has a folding defect: the urea-denatured protein could not refold in vitro. A molten globule folding intermediate accumulated, whereas the wild-type protein folded and associated into active hexamers. In the present study, we report that autophosphorylation of the protein corrected the folding defect. The phosphorylated S120G mutant NDP kinase, either autophosphorylated with ATP as donor, or chemically prosphorylated by phosphoramidate, refolded and associated quickly with high yield. Nucleotide binding had only a small effect. ADP and the non-hydrolysable ATP analogue 5'-adenyly-limido-diphosphate did not promote refolding. ATP-promoted refolding was strongly inhibited by ADP, indicating protein dephosphorylation. Our findings explain why the mutant enzyme is produced in mammalian cells and in Escherichia coli in a soluble form and is active, despite the folding defect of the S120G mutant observed in vitro. We generated an inactive mutant kinase by replacing the essential active-site histidine residue at position 118 with an asparagine residue, which abrogates the autophosphorylation. The double mutant H118N/S120G was expressed in inclusion bodies in E. coli. Its renaturation stops at a folding intermediate and cannot be reactivated by ATP in vitro. The transfection of cells with this double mutant might be a good model to study the cellular effects of folding intermediates.
Collapse
Affiliation(s)
- Iulia Mocan
- *Institut de Biochimie et Génétique Cellulaires (UMR 5095), Université Victor Segalen Bordeaux2 and CNRS, 33077 Bordeaux Cedex, France
| | - Florian Georgescauld
- *Institut de Biochimie et Génétique Cellulaires (UMR 5095), Université Victor Segalen Bordeaux2 and CNRS, 33077 Bordeaux Cedex, France
| | - Philippe Gonin
- *Institut de Biochimie et Génétique Cellulaires (UMR 5095), Université Victor Segalen Bordeaux2 and CNRS, 33077 Bordeaux Cedex, France
| | - Didier Thoraval
- *Institut de Biochimie et Génétique Cellulaires (UMR 5095), Université Victor Segalen Bordeaux2 and CNRS, 33077 Bordeaux Cedex, France
| | - Laura Cervoni
- †Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’ and the Center of Molecular Biology of Consiglio Nazionale delle Ricerche, Università degli Studi ‘La Sapienza’, 00185 Rome, Italy
| | - Anna Giartosio
- †Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’ and the Center of Molecular Biology of Consiglio Nazionale delle Ricerche, Università degli Studi ‘La Sapienza’, 00185 Rome, Italy
| | | | - Marc Crouzet
- *Institut de Biochimie et Génétique Cellulaires (UMR 5095), Université Victor Segalen Bordeaux2 and CNRS, 33077 Bordeaux Cedex, France
| | - Marie-Lise Lacombe
- §Unité 680 INSERM, Faculté de Médecine Pierre et Marie Curie, site Saint-Antoine, 75012 Paris, France
| | - Ioan Lascu
- *Institut de Biochimie et Génétique Cellulaires (UMR 5095), Université Victor Segalen Bordeaux2 and CNRS, 33077 Bordeaux Cedex, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
46
|
Deu E, Kirsch JF. Cofactor-Directed Reversible Denaturation Pathways: The Cofactor-Stabilized Escherichia coli Aspartate Aminotransferase Homodimer Unfolds through a Pathway That Differs from That of the Apoenzyme. Biochemistry 2007; 46:5819-29. [PMID: 17441730 DOI: 10.1021/bi602632d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While the urea-mediated unfolding pathway of the Escherichia coli aspartate aminotransferase (eAATase) homodimer proceeds through a reversible three-state process with a partially folded dimeric intermediate, D D* 2U (E. Deu and J. F. Kirsch, accompanying paper), that of a cofactor-stabilized form differs. Pyridoxal phosphate, which binds at the intersubunit active sites, stabilizes the native form by 6 kcal mol-1 and dissociates during the D <==> D* transition. Reductive trapping of the cofactor to a nondissociable derivative (PPL-eAATase) precludes the formation of D*. A novel monomeric intermediate (M'-PPL) with 70% of the native secondary structure (circular dichroism) was identified in the unfolding pathway of PPL-eAATase: D-PPL2 <==> 2M'-PPL <==> 2U-PPL. The combined results define two structural regions with distinct stabilities: the active site region (ASR) and the generally more stable, dimerization region (DMR). The DMR includes the key intersubunit contacts. It is responsible for the multimeric nature of D*, and its disorder leads to dimer dissociation. Selective strengthening of the ASR-cofactor interactions by cofactor trapping reverses the relative stabilities of the two regions (from DMR > ASR in the apoenzyme to ASR > DMR in PPL-eAATase) and results in a reordering of the eAATase denaturation pathway.
Collapse
Affiliation(s)
- Edgar Deu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3206, USA
| | | |
Collapse
|
47
|
Hu Y, Li Y, Zhang X, Guo X, Xia B, Jin C. Solution structures and backbone dynamics of a flavodoxin MioC from Escherichia coli in both Apo- and Holo-forms: implications for cofactor binding and electron transfer. J Biol Chem 2006; 281:35454-66. [PMID: 16963438 DOI: 10.1074/jbc.m607336200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Flavodoxins play central roles in the electron transfer involving various biological processes in microorganisms. The mioC gene of Escherichia coli encodes a 16-kDa flavodoxin and locates next to the chromosomal replication initiation origin (oriC). Extensive researches have been carried out to investigate the relationship between mioC transcription and replication initiation. Recently, the MioC protein was proposed to be essential for the biotin synthase activity in vitro. Nevertheless, the exact role of MioC in biotin synthesis and its physiological function in vivo remain elusive. In order to understand the molecular basis of the biological functions of MioC and the cofactor-binding mechanisms of flavodoxins, we have determined the solution structures of both the apo- and holo-forms of E. coli MioC protein at high resolution by nuclear magnetic resonance spectroscopy. The overall structures of both forms consist of an alpha/beta sandwich, which highly resembles the classical flavodoxin fold. However, significant diversities are observed between the two forms, especially the stabilization of the FMN-binding loops and the notable extension of secondary structures upon FMN binding. Structural comparison reveals fewer negative charged and aromatic residues near the FMN-binding site of MioC, as compared with that of flavodoxin 1 from E. coli, which may affect both the redox potentials and the redox partner interactions. Furthermore, the backbone dynamics studies reveal the conformational flexibility at different time scales for both apo- and holo-forms of MioC, which may play important roles for cofactor binding and electron transfer.
Collapse
Affiliation(s)
- Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
48
|
Campos LA, Sancho J. Native-specific stabilization of flavodoxin by the FMN cofactor: structural and thermodynamical explanation. Proteins 2006; 63:581-94. [PMID: 16444751 DOI: 10.1002/prot.20855] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Flavodoxins are useful models to investigate protein/cofactor interactions. The binding energy of the apoflavodoxin-FMN complex is high and therefore the holoflavodoxin is expected to be more stable than the apoprotein. This expectation has been challenged by reports on the stability of Desulfovibrio desulfuricans flavodoxin indicating that FMN binds to the unfolded polypeptide with similar affinity as to the native state, thus causing no net effect on protein stability. In previous work, we have analyzed in detail the stability of the apoflavodoxin from Anabaena PCC 7119 and the energetics of its functional complex with FMN. Here, we use the Anabaena holoprotein to directly investigate the contribution of the bound cofactor to protein stability through a detailed analysis of the chemical and thermal denaturation equilibria. Our data clearly shows that FMN binding largely stabilizes the protein towards both chemical and thermal denaturation, and that the stabilization observed at 25 degrees C in low ionic strength conditions is precisely the one expected if full release of the cofactor takes place upon flavodoxin unfolding. On the other hand, the binding of FMN to the native polypeptide is shown to simplify the thermal unfolding so that, while apoflavodoxin follows a three-state mechanism, the holoprotein unfolds in a two-state fashion. Comparison of the X-ray structure of native apoflavodoxin with the phi-structure of the thermal intermediate indicates that the increase in cooperativity driven by the cofactor originates in its preferential binding to the native state, which is a consequence of the disorganization in the intermediate of the FMN binding loops and of an adjacent longer loop.
Collapse
Affiliation(s)
- L A Campos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias & Biocomputation and Complex Systems Physics Institute, Universidad de Zaragoza, Zaragoza, Spain
| | | |
Collapse
|
49
|
Muralidhara BK, Rathinakumar R, Wittung-Stafshede P. Folding of Desulfovibrio desulfuricans flavodoxin is accelerated by cofactor fly-casting. Arch Biochem Biophys 2006; 451:51-8. [PMID: 16730634 DOI: 10.1016/j.abb.2006.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 03/07/2006] [Accepted: 03/31/2006] [Indexed: 11/27/2022]
Abstract
Folding of cofactor-binding proteins involves ligand binding in addition to polypeptide folding. We here assess the kinetic folding/binding landscape for Desulfovibrio desulfuricans flavodoxin that coordinates an FMN cofactor. The apo-form folds in a two-step process involving a burst-phase intermediate. Studies on Tyr98Ala and Trp60Ala variants reveal that these aromatics-that stack with the FMN in the holo-form-are not participating in the apo-protein folding pathway. However, these residues are essential for FMN interactions with the unfolded protein during refolding of holo-flavodoxin. Unfolding of wild-type holo-flavodoxin is coupled to FMN dissociation whereas for Tyr98Ala and Trp60Ala holo-variants, FMN dissociates before polypeptide unfolding. Both variants refold as apo-proteins before FMN rebinds. In sharp contrast, refolding of unfolded wild-type holo-flavodoxin is over an order of magnitude faster than that of the apo-form, the pathway does not include a burst-phase intermediate, and the speed is independent of FMN excess ratio. These observations demonstrate that FMN binds rapidly to the unfolded polypeptide and guides folding straight to the native state. As this path to functional D. desulfuricans holo-flavodoxin is faster than if the cofactor binds to pre-folded apo-protein, this is one of few examples where molecular recognition via a "fly-casting" mechanism is kinetically favored.
Collapse
Affiliation(s)
- B K Muralidhara
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | |
Collapse
|
50
|
Bollen YJM, Kamphuis MB, van Mierlo CPM. The folding energy landscape of apoflavodoxin is rugged: hydrogen exchange reveals nonproductive misfolded intermediates. Proc Natl Acad Sci U S A 2006; 103:4095-100. [PMID: 16537490 PMCID: PMC1449652 DOI: 10.1073/pnas.0509133103] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many native proteins occasionally form partially unfolded forms (PUFs), which can be detected by hydrogen/deuterium exchange and NMR spectroscopy. Knowledge about these metastable states is required to better understand the onset of folding-related diseases. So far, not much is known about where PUFs reside within the energy landscape for protein folding. Here, four PUFs of the relatively large apoflavodoxin (179 aa) are identified. Remarkably, at least three of them are partially misfolded conformations. The misfolding involves side-chain contacts as well as the protein backbone. The rates at which the PUFs interconvert with native protein have been determined. Comparison of these rates with stopped-flow data positions the PUFs in apoflavodoxin's complex folding energy landscape. PUF1 and PUF2 are unfolding excursions that start from native apoflavodoxin but do not continue to the unfolded state. PUF3 and PUF4 could be similar excursions, but their rates of formation suggest that they are on a dead-end folding route that starts from unfolded apoflavodoxin and does not continue all of the way to native protein. All PUFs detected thus are off the protein's productive folding route.
Collapse
Affiliation(s)
- Yves J. M. Bollen
- *Department of Structural Biology, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands; and
| | - Monique B. Kamphuis
- Laboratory of Biochemistry, Wageningen University, 6703 HA, Wageningen, The Netherlands
| | - Carlo P. M. van Mierlo
- Laboratory of Biochemistry, Wageningen University, 6703 HA, Wageningen, The Netherlands
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|