1
|
Marella S, Sharma A, Ganesan V, Ferrer-Torres D, Krempski JW, Idelman G, Clark S, Nasiri Z, Vanoni S, Zeng C, Dlugosz AA, Zhou H, Wang S, Doyle AD, Wright BL, Spence JR, Chehade M, Hogan SP. IL-13-induced STAT3-dependent signaling networks regulate esophageal epithelial proliferation in eosinophilic esophagitis. J Allergy Clin Immunol 2023; 152:1550-1568. [PMID: 37652141 PMCID: PMC11102758 DOI: 10.1016/j.jaci.2023.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Basal zone hyperplasia (BZH) and dilated intercellular spaces (DISs) are thought to contribute to the clinical manifestations of eosinophilic esophagitis (EoE); however, the molecular pathways that drive BZH remain largely unexplored. OBJECTIVE We sought to define the role of IL-13-induced transcriptional programs in esophageal epithelial proliferation in EoE. METHODS We performed RNA sequencing, bioinformatics, Western blot, reverse transcriptase quantitative PCR, and histologic analyses on esophageal biopsies from healthy control and patients with EoE, primary esophageal cells derived from patients with EoE, and IL-13-stimulated esophageal epithelial keratinocytes grown at the air-liquid interface (EPC2-ALI). Genetic (shRNA) and pharmacologic (proteolysis-targeting chimera degrader) approaches and in vivo model of IL-13-induced esophageal epithelial remodeling (Krt5-rtTA x tetO-IL-13Tg) were used to define the role of signal transducer and activator of transcription 3 (STAT3) and STAT6 and secreted frizzled-related protein 1 (SFRP1) in esophageal epithelial proliferation. RESULTS RNA-sequencing analysis of esophageal biopsies (healthy control vs EoE) and EPC2-ALI revealed 82 common differentially expressed genes that were enriched for putative STAT3 target genes. In vitro and in vivo analyses revealed a link between IL-13-induced STAT3 and STAT6 phosphorylation, SFRP1 mRNA expression, and esophageal epithelial proliferation. In vitro studies showed that IL-13-induced esophageal epithelial proliferation was STAT3-dependent and regulated by the STAT3 target SFRP1. SFRP1 mRNA is increased in esophageal biopsies from patients with active EoE compared with healthy controls or patients in remission and identifies an esophageal suprabasal epithelial cell subpopulation that uniquely expressed the core EoE proinflammatory transcriptome genes (CCL26, ALOX15, CAPN14, ANO1, and TNFAIP6). CONCLUSIONS These studies identify SFRP1 as a key regulator of IL-13-induced and STAT3-dependent esophageal proliferation and BZH in EoE and link SFRP1+ esophageal epithelial cells with the proinflammatory and epithelial remodeling response in EoE.
Collapse
Affiliation(s)
- Sahiti Marella
- Department of Pathology, University of Michigan, Ann Arbor, Mich
| | - Ankit Sharma
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Varsha Ganesan
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | | | - James W Krempski
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Gila Idelman
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Sydney Clark
- Department of Pathology, University of Michigan, Ann Arbor, Mich
| | - Zena Nasiri
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Mich
| | - Simone Vanoni
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chang Zeng
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | - Haibin Zhou
- Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, Mich
| | - Shaomeng Wang
- Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, Mich
| | - Alfred D Doyle
- Division of Allergy, Asthma and Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Benjamin L Wright
- Division of Allergy, Asthma and Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz; Section of Allergy and Immunology, Division of Pulmonology, Phoenix Children's Hospital, Phoenix, Ariz
| | - Jason R Spence
- Internal Medicine, University of Michigan, Ann Arbor, Mich
| | - Mirna Chehade
- Mount Sinai Center for Eosinophilic Disorders, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Simon P Hogan
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
2
|
Transcriptional Regulation of RIP2 Gene by NFIB Is Associated with Cellular Immune and Inflammatory Response to APEC Infection. Int J Mol Sci 2022; 23:ijms23073814. [PMID: 35409172 PMCID: PMC8998712 DOI: 10.3390/ijms23073814] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Avian pathogenic E. coli (APEC) can cause localized or systemic infection, resulting in large economic losses per year, and impact health of humans. Previous studies showed that RIP2 (receptor interacting serine/threonine kinase 2) and its signaling pathway played an important role in immune response against APEC infection. In this study, chicken HD11 cells were used as an in vitro model to investigate the function of chicken RIP2 and the transcription factor binding to the RIP2 core promoter region via gene overexpression, RNA interference, RT-qPCR, Western blotting, dual luciferase reporter assay, CHIP-PCR, CCK-8, and flow cytometry assay following APEC stimulation. Results showed that APEC stimulation promoted RIP2 expression and cells apoptosis, and inhibited cells viability. Knockdown of RIP2 significantly improved cell viability and suppressed the apoptosis of APEC-stimulated cells. Transcription factor NFIB (Nuclear factor I B) and GATA1 (globin transcription factor 1) binding site was identified in the core promoter region of RIP2 from −2300 bp to −1839 bp. However, only NFIB was confirmed to be bound to the core promoter of RIP2. Overexpression of NFIB exacerbated cell injuries with significant reduction in cell viability and increased cell apoptosis and inflammatory cytokines levels, whereas opposite results were observed in NFIB inhibition treatment group. Moreover, RIP2 was up-regulated by NFIB overexpression, and RIP2 silence mitigated the effect of NFIB overexpression in cell apoptosis, inflammation, and activation of NFκB signaling pathways. This study demonstrated that NFIB overexpression accelerated APEC-induced apoptosis and inflammation via up-regulation of RIP2 mediated downstream pathways in chicken HD11 cells.
Collapse
|
3
|
Gunne-Braden A, Sullivan A, Gharibi B, Sheriff RSM, Maity A, Wang YF, Edwards A, Jiang M, Howell M, Goldstone R, Wollman R, East P, Santos SDM. GATA3 Mediates a Fast, Irreversible Commitment to BMP4-Driven Differentiation in Human Embryonic Stem Cells. Cell Stem Cell 2020; 26:693-706.e9. [PMID: 32302522 PMCID: PMC7487786 DOI: 10.1016/j.stem.2020.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/19/2019] [Accepted: 03/09/2020] [Indexed: 01/08/2023]
Abstract
During early development, extrinsic triggers prompt pluripotent cells to begin the process of differentiation. When and how human embryonic stem cells (hESCs) irreversibly commit to differentiation is a fundamental yet unanswered question. By combining single-cell imaging, genomic approaches, and mathematical modeling, we find that hESCs commit to exiting pluripotency unexpectedly early. We show that bone morphogenetic protein 4 (BMP4), an important differentiation trigger, induces a subset of early genes to mirror the sustained, bistable dynamics of upstream signaling. Induction of one of these genes, GATA3, drives differentiation in the absence of BMP4. Conversely, GATA3 knockout delays differentiation and prevents fast commitment to differentiation. We show that positive feedback at the level of the GATA3-BMP4 axis induces fast, irreversible commitment to differentiation. We propose that early commitment may be a feature of BMP-driven fate choices and that interlinked feedback is the molecular basis for an irreversible transition from pluripotency to differentiation. Irreversible commitment to BMP4-driven hESC differentiation is fast SMAD activation is sustained, bistable, and irreversible due to positive feedback GATA3 mirrors SMAD dynamics and mediates fast commitment to differentiation GATA3 is an early commitment gene
Collapse
Affiliation(s)
| | | | | | - Rahuman S M Sheriff
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, UK
| | - Alok Maity
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | | | | | | | | | | | - Roy Wollman
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | | | | |
Collapse
|
4
|
Petro B, Mahmud D, Taioli S, Ganapathy A, Senyuk V, Yoshinaga KG, Suphangul M, Rondelli D, Mahmud N. Chromatin-Modifying Agent-Expanded Human Cord Blood Cells Display Reduced Allostimulatory Capacity. THE JOURNAL OF IMMUNOLOGY 2019; 202:2493-2501. [PMID: 30842275 DOI: 10.4049/jimmunol.1800128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
Abstract
The limited number of hematopoietic stem cells (HSC) within a single unit of human cord blood currently limits its use as an alternate graft source. However, we have developed a strategy using 5-aza-2'-deoxycytidine (5azaD) and trichostatin A (TSA), which expands transplantable HSC 7- to 10-fold. In our current studies, we have assessed the allostimulatory capacity of the 5azaD/TSA-expanded grafts. The coexpression of immunophenotypic dendritic cell (DC) markers, such as HLA-DR/CD86 and HLA-DR/CD11c as determined by flow cytometry, and the allostimulatory capacity of 5azaD/TSA-expanded cells as determined by MLC were both significantly lower than control. It has been previously demonstrated that STAT3 is indispensable for the differentiation of DC from HSC. Real-time quantitative PCR analysis revealed that 5azaD/TSA-expanded cells expressed more STAT3 transcript than control while also expressing increased transcripts for STAT3 inhibitors including SHP1, p21, and GATA1. Western blot analysis indicates that chromatin-modifying agent-expanded grafts displayed a reduced ratio of p-STAT3 to total STAT3 than control cultures, which is likely indicative of STAT3 inactivity in 5azD/TSA-expanded grafts. Culturing 5azaD/TSA-expanded cord blood cells in extended cultures reveals that they are still capable of generating DC. Notably, STAT3 inactivity was transient because the transcript levels of STAT3 and its inhibitors, including SHP1, were comparable between 5azaD/TSA and control cultures following extended culture. Taken together, our studies indicate that the reduced allostimulatory capacity of 5azaD/TSA-expanded cells is likely because of reversible inhibition of STAT3-dependent DC differentiation. These results suggest that a graft composed of 5azaD/TSA-expanded cells possesses relatively less allostimulatory response but is still capable of generating DC in permissive conditions.
Collapse
Affiliation(s)
- Benjamin Petro
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612; and
| | - Dolores Mahmud
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612; and
| | - Simona Taioli
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612; and
| | - Amudha Ganapathy
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612; and
| | - Vitalyi Senyuk
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612; and
| | - Kazumi G Yoshinaga
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612; and
| | - Montha Suphangul
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612; and
| | - Damiano Rondelli
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612; and.,University of Illinois Cancer Center, Chicago, IL 60612
| | - Nadim Mahmud
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612; and .,University of Illinois Cancer Center, Chicago, IL 60612
| |
Collapse
|
5
|
Yang Z, He L, Lin K, Zhang Y, Deng A, Liang Y, Li C, Wen T. The KMT1A-GATA3-STAT3 Circuit Is a Novel Self-Renewal Signaling of Human Bladder Cancer Stem Cells. Clin Cancer Res 2017; 23:6673-6685. [PMID: 28765327 DOI: 10.1158/1078-0432.ccr-17-0882] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/28/2017] [Accepted: 07/27/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Bladder cancer is one of the most common urinary malignancies worldwide characterized by a high rate of recurrence and no targeted therapy method. Bladder cancer stem cells (BCSCs) play a crucial role in tumor initiation, metastasis, and drug resistance. However, the regulatory signaling and self-renewal mechanisms of BCSCs remain largely unknown. Here, we identified a novel signal, the KMT1A-GATA3-STAT3 circuit, which promoted the self-renewal and tumorigenicity of human BCSCs.Experimental Design: In a discovery step, human BCSCs and bladder cancer non-stem cells (BCNSCs) isolated from primary bladder cancer samples #1 and #2, and the bladder cancer cell line EJ were analyzed by transcriptome microarray. In a validation step, 10 paired bladder cancer and normal tissues, different tumor cell lines, the public microarray datasets of human bladder cancer, and The Cancer Genome Atlas database were applied for the verification of gene expression.Results: KMT1A was highly expressed and responsible for the increase of tri-methylating lysine 9 of histone H3 (H3K9me3) modification in BCSCs compared with either BCNSCs or normal bladder tissue. GATA3 bound to the -1710∼-1530 region of STAT3 promoter and repressed its transcription. H3K9me3 modification on the -1351∼-1172bp region of the GATA3 promoter mediated by KMT1A repressed the transcription of GATA3 and upregulated the expression of STAT3. In addition, the activated STAT3 triggered self-renewal of BCSCs. Furthermore, depletion of KMT1A or STAT3 abrogated the formation of BCSC tumorspheres and xenograft tumors.Conclusions: KMT1A positively regulated the self-renewal and tumorigenicity of human BCSCs via KMT1A-GATA3-STAT3 circuit, in which KMT1A could be a promising target for bladder cancer therapy. Clin Cancer Res; 23(21); 6673-85. ©2017 AACR.
Collapse
Affiliation(s)
- Zhao Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Luyun He
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kaisu Lin
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Aihua Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yong Liang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,Beijing Jianlan Institute of Medicine, Beijing, China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Žavbi M, Korošec P, Fležar M, Škrgat Kristan S, Marc Malovrh M, Rijavec M. Polymorphisms and haplotypes of the chromosome locus 17q12-17q21.1 contribute to adult asthma susceptibility in Slovenian patients. Hum Immunol 2016; 77:527-34. [PMID: 27163155 DOI: 10.1016/j.humimm.2016.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 02/18/2016] [Accepted: 05/04/2016] [Indexed: 11/24/2022]
Abstract
One of the major asthma susceptibility loci is 17q12-17q21.1, but the relationship between this locus and adult asthma is unclear. Association analysis of 13 single nucleotide polymorphisms (SNPs) and haplotypes from 17q12-17q21.1 was performed in 418 adult patients with asthma and 288 controls from Slovenia. Single SNP analysis revealed only marginal associations with adult asthma for SNPs located in GSDMA, GSDMB, ORMDL3 and ZPBP2 genes, and rs7219080 was the most highly associated. Analyses of asthma phenotypes found no association with atopy or lung function, but rs2305480 and rs8066582 were associated with childhood asthma and rs9916279 was associated with asthma in smokers. Notably, haplotypes consisting of rs9916279, rs8066582, rs1042658, and rs2302777 harbouring PSMD3, CSF3 and MED24 genes were highly associated with asthma. The four most common haplotypes, TCCG, TTTA, CCCA and TTCA, were more frequent in patients with asthma, whereas TTCG, TCCA, TCTA and TTTG were more frequent in controls. Only 3% of asthma patients belonged to haplotypes TTCG, TCCA, TCTA and TTTG compared with nearly one-third (31%) of controls. Associations confirmed that the 17q12-17q21.1 locus harbours a genetic determinant for asthma risk in adults and suggest that in addition to the previously known ORMDL3-GSDM locus, CSF3-PSMD3-MED24 also plays a role in asthma pathogenesis.
Collapse
Affiliation(s)
- Mateja Žavbi
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4204 Golnik, Slovenia
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4204 Golnik, Slovenia
| | - Matjaž Fležar
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4204 Golnik, Slovenia
| | - Sabina Škrgat Kristan
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4204 Golnik, Slovenia
| | - Mateja Marc Malovrh
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4204 Golnik, Slovenia
| | - Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4204 Golnik, Slovenia.
| |
Collapse
|
7
|
Schumacher A, Denecke B, Braunschweig T, Stahlschmidt J, Ziegler S, Brandenburg LO, Stope MB, Martincuks A, Vogt M, Görtz D, Camporeale A, Poli V, Müller-Newen G, Brümmendorf TH, Ziegler P. Angptl4 is upregulated under inflammatory conditions in the bone marrow of mice, expands myeloid progenitors, and accelerates reconstitution of platelets after myelosuppressive therapy. J Hematol Oncol 2015; 8:64. [PMID: 26054961 PMCID: PMC4460974 DOI: 10.1186/s13045-015-0152-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/07/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Upon inflammation, myeloid cell generation in the bone marrow (BM) is broadly enhanced by the action of induced cytokines which are produced locally and at multiple sites throughout the body. METHODS Using microarray studies, we found that Angptl4 is upregulated in the BM during systemic inflammation. RESULTS Recombinant murine Angptl4 (rmAngptl4) stimulated the proliferation of myeloid colony-forming units (CFUs) in vitro. Upon repeated in vivo injections, rmAngptl4 increased BM progenitor cell frequency and this was paralleled by a relative increase in phenotypically defined granulocyte-macrophage progenitors (GMPs). Furthermore, in vivo treatment with rmAngptl4 resulted in elevated platelet counts in steady-state mice while allowing a significant acceleration of reconstitution of platelets after myelosuppressive therapy. The administration of rmAngptl4 increased the number of CD61(+)CD41(low)-expressing megakaryocytes (MK) in the BM of steady-state and in the spleen of transplanted mice. Furthermore, rmAngptl4 improved the in vitro differentiation of immature MKs from hematopoietic stem and progenitor cells. Mechanistically, using a signal transducer and activator of transcription 3 (STAT3) reporter knockin model, we show that rmAngptl4 induces de novo STAT3 expression in immature MK which could be important for the effective expansion of MKs after myelosuppressive therapy. CONCLUSION Whereas the definitive role of Angptl4 in mediating the effects of lipopolysaccharide (LPS) on the BM has to be demonstrated by further studies involving multiple cytokine knockouts, our data suggest that Angptl4 plays a critical role during hematopoietic, especially megakaryopoietic, reconstitution following stem cell transplantation.
Collapse
Affiliation(s)
- Anne Schumacher
- Department of Oncology, Hematology and Stem Cell Transplantation, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research IZKF Aachen, RWTH Aachen University Hospital, Aachen, Germany.
| | - Till Braunschweig
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Jasmin Stahlschmidt
- Department of Oncology, Hematology and Stem Cell Transplantation, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Susanne Ziegler
- Department of Oncology, Hematology and Stem Cell Transplantation, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Lars-Ove Brandenburg
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany.
| | - Antons Martincuks
- Department of Biochemistry and Molecular Biology, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Michael Vogt
- Institute for Laboratory Animal Science, University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Dieter Görtz
- Department of Biochemistry and Molecular Biology, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Annalisa Camporeale
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126, Turin, Italy.
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126, Turin, Italy.
| | - Gerhard Müller-Newen
- Department of Biochemistry and Molecular Biology, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Tim H Brümmendorf
- Department of Oncology, Hematology and Stem Cell Transplantation, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Patrick Ziegler
- Department of Oncology, Hematology and Stem Cell Transplantation, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
- Institute for Occupational and Social Medicine, Aachen University, Aachen, Germany.
| |
Collapse
|
8
|
Abstract
Heterozygous familial or sporadic GATA2 mutations cause a multifaceted disorder, encompassing susceptibility to infection, pulmonary dysfunction, autoimmunity, lymphoedema and malignancy. Although often healthy in childhood, carriers of defective GATA2 alleles develop progressive loss of mononuclear cells (dendritic cells, monocytes, B and Natural Killer lymphocytes), elevated FLT3 ligand, and a 90% risk of clinical complications, including progression to myelodysplastic syndrome (MDS) by 60 years of age. Premature death may occur from childhood due to infection, pulmonary dysfunction, solid malignancy and MDS/acute myeloid leukaemia. GATA2 mutations include frameshifts, amino acid substitutions, insertions and deletions scattered throughout the gene but concentrated in the region encoding the two zinc finger domains. Mutations appear to cause haplo-insufficiency, which is known to impair haematopoietic stem cell survival in animal models. Management includes genetic counselling, prevention of infection, cancer surveillance, haematopoietic monitoring and, ultimately, stem cell transplantation upon the development of MDS or another life-threatening complication.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
9
|
Weiss MS, Peñalver Bernabé B, Shin S, Asztalos S, Dubbury SJ, Mui MD, Bellis AD, Bluver D, Tonetti DA, Saez-Rodriguez J, Broadbelt LJ, Jeruss JS, Shea LD. Dynamic transcription factor activity and networks during ErbB2 breast oncogenesis and targeted therapy. Integr Biol (Camb) 2014; 6:1170-82. [PMID: 25303361 PMCID: PMC4237672 DOI: 10.1039/c4ib00086b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tissue development and disease progression are multi-stage processes controlled by an evolving set of key regulatory factors, and identifying these factors necessitates a dynamic analysis spanning relevant time scales. Current omics approaches depend on incomplete biological databases to identify critical cellular processes. Herein, we present TRACER (TRanscriptional Activity CEll aRrays), which was employed to quantify the dynamic activity of numerous transcription factor (TFs) simultaneously in 3D and networks for TRACER (NTRACER), a computational algorithm that allows for cellular rewiring to establish dynamic regulatory networks based on activity of TF reporter constructs. We identified major hubs at various stages of culture associated with normal and abnormal tissue growth (i.e., ELK-1 and E2F1, respectively) and the mechanism of action for a targeted therapeutic, lapatinib, through GATA-1, which were confirmed in human ErbB2 positive breast cancer patients and human ErbB2 positive breast cancer cell lines that were either sensitive or resistant to lapatinib.
Collapse
Affiliation(s)
- M S Weiss
- Chemical and Biological Engineering Department, Northwestern University, Evanston, IL, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bu Y, Su F, Wang X, Gao H, Lei L, Chang N, Wu Q, Hu K, Zhu X, Chang Z, Meng K, Xiong JW. Protein tyrosine phosphatase PTPN9 regulates erythroid cell development through STAT3 dephosphorylation in zebrafish. J Cell Sci 2014; 127:2761-70. [PMID: 24727614 DOI: 10.1242/jcs.145367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Protein tyrosine phosphatases (PTPs) are involved in hematopoiesis, but the function of many PTPs is not well characterized in vivo. Here, we have identified Ptpn9a, an ortholog of human PTPN9, as a crucial regulator of erythroid cell development in zebrafish embryos. ptpn9a, but not ptpn9b, was expressed in the posterior lateral plate mesoderm and intermediate cell mass - two primitive hematopoietic sites during zebrafish embryogenesis. Morpholino-mediated knockdown of ptpn9a caused erythrocytes to be depleted by inhibiting erythroid cell maturation without affecting erythroid proliferation and apoptosis. Consistently, both dominant-negative PTPN9 (with mutation C515S) and siRNA against PTPN9 inhibited erythroid differentiation in human K562 cells. Mechanistically, depletion of ptpn9 in zebrafish embryos in vivo or in K562 cells in vitro increased phosphorylated STAT3, and the hyper-phosphorylated STAT3 entrapped and prevented the transcription factors GATA1 and ZBP-89 (also known as ZNF148) from regulating erythroid gene expression. These findings imply that PTPN9 plays an important role in erythropoiesis by disrupting an inhibitory complex of phosphorylated STAT3, GATA1 and ZBP-89, providing new cellular and molecular insights into the role of ptpn9a in developmental hematopoiesis.
Collapse
Affiliation(s)
- Ye Bu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, 100871 China
| | - Fuqin Su
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Xu Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, 100871 China
| | - Hai Gao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, 100871 China Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100094 China
| | - Lei Lei
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, 100871 China
| | - Nannan Chang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, 100871 China
| | - Qing Wu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, 100871 China
| | - Keping Hu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100094 China
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, 100871 China
| | - Zhijie Chang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Kun Meng
- Beijing Shenogen Biomedical Company Ltd, Beijing, 100085 China
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, 100871 China
| |
Collapse
|
11
|
Tibes R, Bogenberger JM, Geyer HL, Mesa RA. JAK2 inhibitors in the treatment of myeloproliferative neoplasms. Expert Opin Investig Drugs 2012; 21:1755-74. [PMID: 22991927 DOI: 10.1517/13543784.2012.721352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Dysregulation of JAK-STAT signaling is a pathogenetic hallmark of myeloproliferative neoplasms (MPNs) arising from several distinct molecular aberrations, including mutations in JAK2, the thrombopoietin receptor (MPL), mutations in negative regulators of JAK-STAT signaling, such as lymphocyte-specific adapter protein (SH2B3), and epigenetic dysregulation as seen with Suppressor of Cytokine Signaling (SOCS) proteins. In addition, growth factor/cytokine stimulatory events activate JAK-STAT signaling independent of mutations. AREAS COVERED The various mutations and molecular events activating JAK-STAT signaling in MPNs are reviewed. Detailed inhibitory kinase profiles of the currently developed JAK inhibitors are presented. Clinical trial results for currently developed JAK targeting agents are comprehensively summarized. The limitations of JAK-STAT targeting in MPNs, as well as potential rational combination therapies with JAK2 inhibitors, are discussed. EXPERT OPINION Aberrant JAK-STAT signaling is an underlying theme in the pathogenesis of MPNs. While JAK2 inhibitors are active in JAK2V617F and wild-type JAK2 MPNs, JAK2V617F mutation-specific or JAK2-selective inhibitors may possess unique clinical attributes. Complimentary targeting of parallel pathways operating in MPNs may offer novel therapeutic approaches in combination with JAK inhibition. Understanding the intricacies of JAK-STAT pathway activation, including growth factor/cytokine-driven signaling, will open new avenues for therapeutic intervention at known and novel molecular vulnerabilities of MPNs.
Collapse
Affiliation(s)
- Raoul Tibes
- Mayo Clinic, Hematology, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
12
|
Liu W, Yu Y, Li G, Tang S, Zhang Y, Wang Y, Zhang S, Zhang Y. Single-nucleotide polymorphisms in the promoter of the growth hormone-releasing hormone receptor gene are associated with growth and reproduction traits in chickens. Anim Genet 2012; 43:564-9. [PMID: 22497307 DOI: 10.1111/j.1365-2052.2011.02306.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2011] [Indexed: 11/28/2022]
Abstract
Growth hormone-releasing hormone receptor (GHRHR) plays a critical role in growth hormone (GH) synthesis, release and regulation in animals. The objective of this study was to investigate variations of the chicken GHRHR gene and their associations with growth and reproduction traits in 768 Beijing You chickens. Results revealed three single nucleotide polymorphisms (SNPs) in the promoter region of the gene (g.-1654A>G, g.-1411A>G and g.-142T>C). Association analysis revealed that the novel SNP g.-1654A>G had significant effects on chicken body weight at 7, 9, 11, 13, 17 weeks of age and the age of first egg as well as egg number at 32, 36 and 40 weeks. Significant association was also observed between g.-1411A>G and g.-142T>C with EN24. Moreover, the age of first egg was distinctly related with g.-142T>C (P < 0.05). Although significant statistical difference was not detected in GHRHR mRNA levels among genotypes of the SNPs (P > 0.05), strong expression variations of the gene were found between the ages 17 and 20 weeks in the population (P < 0.05). These results suggest that the three SNPs in the GHRHR promoter could be used as potential genetic markers to improve the growth and reproductive traits in chickens.
Collapse
Affiliation(s)
- W Liu
- Key Laboratory of Agricultural Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Increased basal intracellular signaling patterns do not correlate with JAK2 genotype in human myeloproliferative neoplasms. Blood 2011; 118:1610-21. [DOI: 10.1182/blood-2011-02-335042] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Abstract
Myeloproliferative neoplasms (MPNs) are associated with recurrent activating mutations of signaling proteins such as Janus kinase 2 (JAK2). However, the actual downstream signaling events and how these alter myeloid homeostasis are poorly understood. We developed an assay to measure basal levels of phosphorylated signaling intermediates by flow cytometry during myeloid differentiation in MPN patients. Our study provides the first systematic demonstration of specific signaling events and their comparison with disease phenotype and JAK2 mutation status. We demonstrate increased basal signaling in MPN patients, which occurs in both early and later stages of myeloid differentiation. In addition, the pattern of signaling is not correlated with JAK2 mutation status and signaling intensity is poorly correlated with mutant JAK2 allele burden. In contrast, signaling differences are detected between different MPN disease phenotypes. Finally, we demonstrate that signaling can be inhibited by a JAK2-selective small molecule, but that this inhibition is not JAK2 V617F specific, because MPN patients with mutant JAK2, wild-type JAK2, and control patients were inhibited to a similar degree. Our data suggest that, in addition to JAK2 mutations, other factors contribute significantly to the MPN phenotype, results that are relevant to both the pathogenesis and therapy of MPN.
Collapse
|
14
|
Muromoto R, Kuroda M, Togi S, Sekine Y, Nanbo A, Shimoda K, Oritani K, Matsuda T. Functional involvement of Daxx in gp130-mediated cell growth and survival in BaF3 cells. Eur J Immunol 2010; 40:3570-80. [PMID: 21108476 DOI: 10.1002/eji.201040688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/02/2010] [Accepted: 09/02/2010] [Indexed: 01/05/2023]
Abstract
Death domain-associated protein (Daxx) is a multifunctional protein that modulates both cell death and transcription. Several recent studies have indicated that Daxx is a mediator of lymphocyte death and/or growth suppression, although the detailed mechanism is unclear. Previously, we reported that Daxx suppresses IL-6 family cytokine-induced gene expression by interacting with STAT3. STAT3 is important for the growth and survival of lymphocytes; therefore, we here examined the role of Daxx in the gp130/STAT3-dependent cell growth/survival signals. We found that Daxx suppresses the gp130/STAT3-dependent cell growth and that Daxx endogenously interacts with STAT3 and inhibits the DNA-binding activity of STAT3. Moreover, small-interfering RNA-mediated knockdown of Daxx enhanced the expression of STAT3-target genes and accelerated the STAT3-mediated cell cycle progression. In addition, knockdown of Daxx-attenuated lactate dehydrogenase leakage from cells, indicating that Daxx positively regulates cell death during gp130/STAT3-mediated cell proliferation. Notably, Daxx specifically suppressed the levels of Bcl2 mRNA and protein, even in cytokine-unstimulated cells, indicating that Daxx regulates Bcl2 expression independently of activated STAT3. These results suggest that Daxx suppresses gp130-mediated cell growth and survival by two independent mechanisms: inhibition of STAT3-induced transcription and down-regulation of Bcl2 expression.
Collapse
Affiliation(s)
- Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
He D, Chen T, Yang M, Zhu X, Wang C, Cao X, Cai Z. Small Rab GTPase Rab7b promotes megakaryocytic differentiation by enhancing IL-6 production and STAT3-GATA-1 association. J Mol Med (Berl) 2010; 89:137-50. [PMID: 20953574 DOI: 10.1007/s00109-010-0689-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 09/17/2010] [Accepted: 09/27/2010] [Indexed: 11/28/2022]
Abstract
Induction of the differentiation of human leukemia cells is a useful strategy in treatment of human leukemia. However, the molecular mechanisms involved in leukemia cell differentiation have not been fully elucidated. Interleukin 6 (IL-6) is a pleiotropic cytokine acting on a variety of cell types, and plays important roles in hematopoiesis. GATA binding protein 1 (GATA-1) is an important transcription factor involved in either megakaryocytic or erythrocytic differentiation. Herein we report that Rab7b, a late endosome/lysosome-localized myeloid small GTPase, promotes phorbol-12-myristate-13-acetate (PMA)-induced megakaryocytic differentiation by increasing nuclear factor κB (NF-κB)-dependent IL-6 production and subsequently enhancing the association of activated signal transducer and activator of transcription 3 (STAT3) with GATA-1. By using PMA-induced megakaryocytic differentiation of leukemia cells as a model, we investigated the roles of Rab7b in megakaryocytic differentiation. We find that Rab7b can potentiate PMA-induced upregulation of megakaryocytic markers, production of IL-6, and activation of NF-κB. Inhibitor of NF-κB and neutralizing antibodies for IL-6 or the IL-6 signaling receptor gp130 can block the effects of Rab7b in megakaryocytic differentiation. In Rab7b-silenced cells, PMA-induced activation of NF-κB, IL-6 production, and megakaryocytic differentiation are impaired. Furthermore, we demonstrate that IL-6-induced activation of STAT3 and the subsequent association of STAT3 with GATA-1 may contribute to PMA-induced and Rab7b-mediated transcriptional upregulation of megakaryocytic differentiation markers. Therefore, our data suggest that Rab7b may play important roles in megakaryopoiesis by activating NF-κB and promoting IL-6 production. Our study also indicates that the IL-6-induced association of STAT3 with GATA-1 may regulate megakaryocytic differentiation.
Collapse
Affiliation(s)
- Donghua He
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, 38 Zheda Road, Hangzhou, 310027, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Tokunaga M, Ezoe S, Tanaka H, Satoh Y, Fukushima K, Matsui K, Shibata M, Tanimura A, Oritani K, Matsumura I, Kanakura Y. BCR-ABL but not JAK2 V617F inhibits erythropoiesis through the Ras signal by inducing p21CIP1/WAF1. J Biol Chem 2010; 285:31774-82. [PMID: 20663870 DOI: 10.1074/jbc.m110.118653] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BCR-ABL is a causative tyrosine kinase (TK) of chronic myelogenous leukemia (CML). In CML patients, although myeloid cells are remarkably proliferating, erythroid cells are rather decreased and anemia is commonly observed. This phenotype is quite different from that observed in polycythemia vera (PV) caused by JAK2 V617F, whereas both oncogenic TKs activate common downstream molecules at the level of hematopoietic stem cells (HSCs). To clarify this mechanism, we investigated the effects of BCR-ABL and JAK2 V617F on erythropoiesis. Enforced expression of BCR-ABL but not of JAK2 V617F in murine LSK (Lineage(-)Sca-1(hi)CD117(hi)) cells inhibited the development of erythroid cells. Among several signaling molecules downstream of BCR-ABL, an active mutant of N-Ras (N-RasE12) but not of STAT5 or phosphatidylinositol 3-kinase (PI3-K) inhibited erythropoiesis, while N-RasE12 enhanced the development of myeloid cells. BCR-ABL activated Ras signal more intensely than JAK2 V617F, and inhibition of Ras by manumycin A, a farnesyltransferase inhibitor, ameliorated erythroid colony formation of CML cells. As for the mechanisms of Ras-induced suppression of erythropoiesis, we found that GATA-1, an erythroid-specific transcription factor, blocked Ras-mediated mitogenic signaling at the level of MEK through the direct interaction. Furthermore, enforced expression of N-RasE12 in LSK cells derived from p53-, p16(INK4a)/p19(ARF)-, and p21(CIP1/WAF1)-null/wild-type mice revealed that suppressed erythroid cell growth by N-RasE12 was restored only by p21(CIP1/WAF1) deficiency, indicating that a cyclin-dependent kinase (CDK) inhibitor, p21(CIP1/WAF1), plays crucial roles in Ras-induced suppression of erythropoiesis. These data would, at least partly, explain why respective oncogenic TKs cause different disease phenotypes.
Collapse
Affiliation(s)
- Masahiro Tokunaga
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tani-ichi S, Lee HC, Ye SK, Ikuta K. Accessibility control of TCR Vγ region by STAT5. Int Immunol 2010; 22:693-703. [PMID: 20547543 DOI: 10.1093/intimm/dxq054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The signal of the IL-7R and signal transducers and activators of transcription (STAT) 5 plays an essential role in gammadelta T-cell development by inducing V-J recombination in the TCRgamma locus. Previously, we have shown that STAT5 binds to the Jgamma promoters and controls chromatin accessibility by histone acetylation. However, little is known on control mechanism of Vgamma region by the IL-7R. To elucidate the regulation by STAT5, we first analyzed the chromatin status of Vgamma region in primary thymocytes. The levels of histone H3 acetylation are high at Vgamma5, HsA element and Vgamma2 in Rag2(-/-) thymocytes but low in IL-7R alpha-chain (IL-7Ralpha)-deficient early thymocytes, suggesting that IL-7R signaling controls the accessibility of the Vgamma region. In addition, high levels of histone H3 acetylation and germ line transcription were induced at Vgamma5 and HsA by cytokine and STAT5 in cytokine-dependent Ba/F3 and other hematopoietic cell lines. Importantly, the chromatin accessibility of Vgamma5 gene is increased by cytokine signal. Furthermore, STAT5 was not recruited to a non-canonical STAT-binding motif in the endogenous chromatin of the Vgamma5 promoter by cytokine stimulation, while STAT5 binds to a consensus motif in the HsA element. In accordance with this result, STAT5 does not directly activate the Vgamma5 promoter by reporter assay. These results suggested that while STAT5 directly binds to HsA element and induces its histone acetylation, STAT5 indirectly activates the Vgamma5 promoter. Thus, this study implies a potential role of STAT5 in accessibility control of Vgamma region, especially at Vgamma5 and HsA.
Collapse
Affiliation(s)
- Shizue Tani-ichi
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
18
|
Yao X, Kodeboyina S, Liu L, Dzandu J, Sangerman J, Ofori-Acquah SF, Pace BS. Role of STAT3 and GATA-1 interactions in gamma-globin gene expression. Exp Hematol 2009; 37:889-900. [PMID: 19447160 DOI: 10.1016/j.exphem.2009.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 04/06/2009] [Accepted: 05/08/2009] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We previously demonstrated a silencing role for signal transducers and activators of transcription 3 (STAT3) in gamma-globin gene regulation in primary erythroid cells. Recently, GATA-1, a key transcription factor involved in hematopoietic cell development, was shown to directly inhibit STAT3 activity in vivo. Therefore, we completed studies to determine if interactions between these two factors influence gamma-globin gene expression. MATERIALS AND METHODS Chromatin immunoprecipitation assay was used to ascertain in vivo protein binding at the gamma-globin 5' untranslated region (5'UTR); protein-protein interactions were examined by coimmunoprecipitation analysis. In vitro protein-DNA binding were completed using surface plasmon resonance and electrophoretic mobility shift assay. Activity of a luciferase gamma-globin promoter reporter and levels of gamma-globin messenger RNA and fetal hemoglobin in stable K562 cell lines overexpressing STAT3 and GATA-1, were used to determine the influence of the STAT3/GATA-1 interaction on gamma-globin gene expression. RESULTS We observed interaction between STAT3 and GATA-1 in K562 and mouse erythroleukemia cells in vivo at the gamma-globin 5'UTR by chromatin immunoprecipitation assay. Electrophoretic mobility shift assay performed with a 41-base pair gamma-globin DNA probe (gamma41) demonstrated the presence of STAT3 and GATA-1 proteins in complexes assembled at the gamma-globin 5'UTR. A consensus STAT3 DNA probe inhibited GATA-1-binding in a concentration-dependent manner, and the converse was also true. Enforced STAT3 expression augmented its binding at the gamma-globin 5'UTR in vivo and silenced gamma-promoter-driven luciferase activity. Stable enforced STAT3 expression in K562 cells reduced endogenous gamma-globin messenger RNA level. This effect was reversed by GATA-1. CONCLUSION These data provide evidence that GATA-1 can reverse STAT3-mediated gamma-globin gene silencing in erythroid cells.
Collapse
Affiliation(s)
- Xiao Yao
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Tex. 75080, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Fukushima K, Matsumura I, Ezoe S, Tokunaga M, Yasumi M, Satoh Y, Shibayama H, Tanaka H, Iwama A, Kanakura Y. FIP1L1-PDGFRalpha imposes eosinophil lineage commitment on hematopoietic stem/progenitor cells. J Biol Chem 2009; 284:7719-32. [PMID: 19147501 DOI: 10.1074/jbc.m807489200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although leukemogenic tyrosine kinases (LTKs) activate a common set of downstream molecules, the phenotypes of leukemia caused by LTKs are rather distinct. Here we report the molecular mechanism underlying the development of hypereosinophilic syndrome/chronic eosinophilic leukemia by FIP1L1-PDGFRalpha. When introduced into c-Kit(high)Sca-1(+)Lineage(-) cells, FIP1L1-PDGFRalpha conferred cytokine-independent growth on these cells and enhanced their self-renewal, whereas it did not immortalize common myeloid progenitors in in vitro replating assays and transplantation assays. Importantly, FIP1L1-PDGFRalpha but not TEL-PDGFRbeta enhanced the development of Gr-1(+)IL-5Ralpha(+) eosinophil progenitors from c-Kit(high)Sca-1(+)Lineage(-) cells. FIP1L1-PDGFRalpha also promoted eosinophil development from common myeloid progenitors. Furthermore, when expressed in megakaryocyte/erythrocyte progenitors and common lymphoid progenitors, FIP1L1-PDGFRalpha not only inhibited differentiation toward erythroid cells, megakaryocytes, and B-lymphocytes but aberrantly developed eosinophil progenitors from megakaryocyte/erythrocyte progenitors and common lymphoid progenitors. As for the mechanism of FIP1L1-PDGFRalpha-induced eosinophil development, FIP1L1-PDGFRalpha was found to more intensely activate MEK1/2 and p38(MAPK) than TEL-PDGFRbeta. In addition, a MEK1/2 inhibitor and a p38(MAPK) inhibitor suppressed FIP1L1-PDGFRalpha-promoted eosinophil development. Also, reverse transcription-PCR analysis revealed that FIP1L1-PDGFRalpha augmented the expression of C/EBPalpha, GATA-1, and GATA-2, whereas it hardly affected PU.1 expression. In addition, short hairpin RNAs against C/EBPalpha and GATA-2 and GATA-3KRR, which can act as a dominant-negative form over all GATA members, inhibited FIP1L1-PDGFRalpha-induced eosinophil development. Furthermore, FIP1L1-PDGFRalpha and its downstream Ras inhibited PU.1 activity in luciferase assays. Together, these results indicate that FIP1L1-PDGFRalpha enhances eosinophil development by modifying the expression and activity of lineage-specific transcription factors through Ras/MEK and p38(MAPK) cascades.
Collapse
Affiliation(s)
- Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Huang Z, Richmond TD, Muntean AG, Barber DL, Weiss MJ, Crispino JD. STAT1 promotes megakaryopoiesis downstream of GATA-1 in mice. J Clin Invest 2008; 117:3890-9. [PMID: 18060035 DOI: 10.1172/jci33010] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 10/01/2007] [Indexed: 12/21/2022] Open
Abstract
Thrombocytosis is associated with inflammation, and certain inflammatory cytokines, including IFN-gamma, stimulate megakaryocyte and platelet production. However, the roles of IFN-gamma and its downstream effector STAT1 in megakaryocyte development are poorly understood. We previously reported that STAT1 expression was significantly downregulated in Gata1-knockdown murine megakaryocytes, which also have impaired terminal maturation. Here, we show that ectopic expression of STAT1, or its target effector IRF-1, rescued multiple defects in Gata1-deficient megakaryopoiesis in mice, inducing polyploidization and expression of a subset of platelet-expressing genes. Enforced expression of STAT1, IRF-1, or GATA-1 enhanced phosphorylation of STAT1, STAT3, and STAT5 in cultured Gata1-deficient murine megakaryocytes, with concomitant megakaryocyte maturation. In contrast, enhanced thrombopoietin signaling, conferred by enforced expression of constitutively active JAK2 or c-MPL, induced phosphorylation of STAT3 and STAT5, but not STAT1, and failed to rescue megakaryocyte maturation. Finally, megakaryocytes from Stat1(-/-) mice were defective in polyploidization. Together, these findings reveal a unique role for STAT1 in megakaryopoiesis and provide new insights into how GATA-1 regulates this process. Our studies elucidate potential mechanisms by which various inflammatory disorders can cause elevated platelet counts.
Collapse
Affiliation(s)
- Zan Huang
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
21
|
Kristensen NN, Olsen J, Gad M, Claesson MH. Genome-wide expression profiling during protection from colitis by regulatory T cells. Inflamm Bowel Dis 2008; 14:75-87. [PMID: 17924563 DOI: 10.1002/ibd.20277] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND In the adoptive transfer model of colitis it has been shown that regulatory T cells (Treg) can hinder disease development and cure already existing mild colitis. The mechanisms underlying this regulatory effect of CD4(+)CD25(+) Tregs are not well understood. METHODS To identify pathways of importance for immune regulation in protected mice we studied the genome-wide expression profile in the inflamed rectum of SCID mice with CD4(+) T cell transfer colitis and in the uninflamed rectum of mice protected from colitis by Treg cells. We used DNA microarray technology (Affymetrix GeneChip Mouse Genome 430 2.0 Array), which enabled an analysis of a complete set of RNA transcript levels in each sample. Array results were confirmed by real-time reverse-transcriptase polymerase chain reaction (RT-PCR). RESULTS Data were analyzed using combined projections to latent structures and functional annotation analysis. The colitic samples were clearly distinguishable from samples from normal mice by a vast number of inflammation- and growth factor-related transcripts. In contrast, the Treg-protected animals could not be distinguished from either the normal BALB/c mice or the normal SCID mice. mRNA expression profiles of cytokine, chemokine, and growth factor genes were significantly altered in colitic as opposed to noncolitic mice. In particular, the transcription factors STAT3, GATA2, and NFkappaB, the cytokine IL1beta, and the chemokine receptors CXCR3 and CCR1 as well as their ligands all seemingly play central roles in the inflammatory processes. CONCLUSIONS We suggest that these molecules alone or in combination could be future therapeutic targets.
Collapse
Affiliation(s)
- Nanna Ny Kristensen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Panum Institute, Denmark.
| | | | | | | |
Collapse
|
22
|
Kurdi M, Booz GW. Can the protective actions of JAK-STAT in the heart be exploited therapeutically? Parsing the regulation of interleukin-6-type cytokine signaling. J Cardiovasc Pharmacol 2007; 50:126-41. [PMID: 17703129 DOI: 10.1097/fjc.0b013e318068dd49] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activation of the transcription factor signal transducers and activators of transcription (STAT) 3 is a defining feature of the interleukin (IL)-6 family of cytokines, which include IL-6, leukemia inhibitory factor, and cardiotrophin-1. These cytokines, as well as STAT3 activation, have been shown to be protective for cardiac myocytes and necessary for ischemia preconditioning. However, the mechanisms that regulate IL-6-type cytokine signaling in cardiac myocytes are largely unexplored. We propose that the protective character of IL-6-type cytokine signaling in cardiac myocytes is determined principally by three mechanisms: redox status of the nonreceptor tyrosine kinase Janus kinase 1 (JAK) 1 that activates STAT3, phosphorylation of STAT3 within the transcriptional activation domain on serine 727, and STAT3-mediated induction of suppressor of cytokine signaling (SOCS) 3 that terminates IL-6-type cytokine signaling. Moreover, we hypothesize that hyperactivation of the JAK kinases, particularly JAK2, mismatched STAT3 serine-tyrosine phosphorylation or heightened STAT3 transcriptional activity, and SOCS3 induction may ultimately prove detrimental. Here we summarize recent evidence that supports this hypothesis, as well as additional possible mechanisms of JAK-STAT regulation. Understanding how IL-6-type cytokine signaling is regulated in cardiac myocytes has great significance for exploiting the therapeutic potential of these cytokines and the phenomenon of preconditioning.
Collapse
Affiliation(s)
- Mazen Kurdi
- Division of Molecular Cardiology, Cardiovascular Research Institute, College of Medicine, The Texas A&M University System Health Science Center, College Station, TX 76504, USA
| | | |
Collapse
|
23
|
Onai N, Obata-Onai A, Schmid MA, Manz MG. Flt3 in regulation of type I interferon-producing cell and dendritic cell development. Ann N Y Acad Sci 2007; 1106:253-61. [PMID: 17360795 DOI: 10.1196/annals.1392.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flt3-ligand is a nonredundant cytokine in type I interferon-producing cell (IPC) and dendritic cell (DC) development. We demonstrated that IPC and DC differentiation potential is confined to Flt3(+)-hematopoietic progenitor cells, that Flt3-ligand drives development along both lymphoid and myeloid developmental pathways from Flt3(+)-progenitors to Flt3(+)-IPCs and -DCs, and that in vivo pharmacologic inhibition of Flt3-signaling leads to disruption of IPC and DC development in spite of consecutive Flt3-ligand upregulation in treated animals. We here summarize our recent findings that overexpression of human Flt3 in Flt3(-) and Flt3(+) hematopoietic progenitors rescues and enhances their IPC and DC differentiation potential, respectively. Based on these data, we propose an instructive, demand-regulated, cytokine-driven IPC and DC regeneration model, where high Flt3-ligand levels initiate a self-sustaining, Flt3-STAT3 and -PU.1-mediated IPC and DC differentiation program in Flt3(+)-hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Nobuyuki Onai
- Institute for Research in Biomedicine (IRB), Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| | | | | | | |
Collapse
|
24
|
Minoo P, Hu L, Xing Y, Zhu NL, Chen H, Li M, Borok Z, Li C. Physical and functional interactions between homeodomain NKX2.1 and winged helix/forkhead FOXA1 in lung epithelial cells. Mol Cell Biol 2007; 27:2155-65. [PMID: 17220277 PMCID: PMC1820505 DOI: 10.1128/mcb.01133-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
NKX2.1 is a homeodomain transcription factor that controls development of the brain, lung, and thyroid. In the lung, Nkx2.1 is expressed in a proximo-distal gradient and activates specific genes in phenotypically distinct epithelial cells located along this axis. The mechanisms by which NKX2.1 controls its target genes may involve interactions with other transcription factors. We examined whether NKX2.1 interacts with members of the winged-helix/forkhead family of FOXA transcription factors to regulate two spatially and cell type-specific genes, SpC and Ccsp. The results show that NKX2.1 interacts physically and functionally with FOXA1. The nature of the interaction is inhibitory and occurs through the NKX2.1 homeodomain in a DNA-independent manner. On SpC, which lacks a FOXA1 binding site, FOXA1 attenuates NKX2.1-dependent transcription. Inhibition of FOXA1 by small interfering RNA increased SpC mRNA, demonstrating the in vivo relevance of this finding. In contrast, FOXA1 and NKX2.1 additively activate transcription from Ccsp, which includes both NKX2.1 and FOXA1 binding sites. In electrophoretic mobility shift assays, the GST-FOXA1 fusion protein interferes with the formation of NKX2.1 transcriptional complexes by potentially masking the latter's homeodomain DNA binding function. These findings suggest a novel mode of selective gene regulation by proximo-distal gradient distribution of and functional interactions between forkhead and homeodomain transcription factors.
Collapse
Affiliation(s)
- Parviz Minoo
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kirito K, Kaushansky K. Transcriptional regulation of megakaryopoiesis: thrombopoietin signaling and nuclear factors. Curr Opin Hematol 2006; 13:151-6. [PMID: 16567958 DOI: 10.1097/01.moh.0000219660.03657.4b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE OF REVIEW Thrombopoietin, the primary regulator of megakaryopoiesis, acts by modulating several nuclear transcription factors. This review focuses on recent studies that have provided new insights into the functional roles of these proteins. RECENT FINDINGS Among the transcription factors responsible for megakaryopoiesis, important roles for the signal transducer and activator of transcription and Forkhead box proteins have been defined. In addition, in the past several years, two new groups of transcription factors have been found to be affected by thrombopoietin signaling, homeodomain-containing HOX proteins and hypoxia-inducible factor. The HOX transcription factors, which play key roles in body pattern development, are also expressed in adult hematopoietic stem cells and play pivotal roles in their proliferation. Thrombopoietin controls the levels of expression and modifies the function of homeodomain proteins in thrombopoietin-responsive leukemic cells and in primary immature hematopoietic cells. Levels of hypoxia-inducible factor, a master transcription factor required for the adaptation to hypoxic conditions, is also affected by thrombopoietin in these cells. SUMMARY The discovery that a diverse range of transcription factors are downstream effectors of thrombopoietin helps to explain the molecular mechanisms by which the hormone affects hematopoiesis.
Collapse
Affiliation(s)
- Keita Kirito
- Department of Hematology, Yamanashi Medical University, Yamansahi-Ken, Japan
| | | |
Collapse
|
26
|
Holley MC, Kneebone A, Milo M. Information for gene networks in inner ear development: a study centered on the transcription factor gata2. Hear Res 2006; 227:32-40. [PMID: 16797894 DOI: 10.1016/j.heares.2006.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 04/12/2006] [Accepted: 04/27/2006] [Indexed: 01/15/2023]
Abstract
The search for molecular mechanisms to stimulate sensory regeneration in the mammalian inner ear is commonly based upon developmental studies. This has revealed many genes that regulate the differentiation of sensory cells. A major challenge is to place these genes into the context of functional networks that describe developmental processes more fully and increase the chances of identifying useful therapeutic targets. We used a novel approach to identify genes that are functionally related to the transcription factor gata2. Temporal profiles of gene expression were derived from three conditionally immortal cell lines and clustered to those of gata2 by applying the gamma model for oligonucleotide signals, a statistical method that allows quantitative analysis of oligonucleotide array data. We derived an objective list of 28 genes that clustered with gata2 in all three cell lines. A number of these genes have known functional links with gata2. Genes encoding CCAAT/enhancer binding proteins (C/EBP) and signal transducer and activation of transcription 3 (Stat3) are especially interesting as they are known to bind gata proteins directly. The results provide strong evidence that our experimental approach can reveal functional relationships between genes that regulate fundamental processes in the differentiation of sensory cells in the inner ear.
Collapse
Affiliation(s)
- M C Holley
- Department of Biomedical Science, University of Sheffield, Addison Building, Western Bank, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
27
|
Onai N, Obata-Onai A, Tussiwand R, Lanzavecchia A, Manz MG. Activation of the Flt3 signal transduction cascade rescues and enhances type I interferon-producing and dendritic cell development. ACTA ACUST UNITED AC 2006; 203:227-38. [PMID: 16418395 PMCID: PMC2118073 DOI: 10.1084/jem.20051645] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Flt3 ligand (Flt3L) is a nonredundant cytokine in type I interferon–producing cell (IPC) and dendritic cell (DC) development, and IPC and DC differentiation potential is confined to Flt3+ hematopoietic progenitor cells. Here, we show that overexpression of human Flt3 in Flt3− (Flt3−Lin−IL-7Rα−Thy1.1−c-Kit+) and Flt3+ (Flt3+Lin−IL-7Rα−Thy1.1−c-Kit+) hematopoietic progenitors rescues and enhances their IPC and DC differentiation potential, respectively. In defined hematopoietic cell populations, such as Flt3− megakaryocyte/erythrocyte-restricted progenitors (MEPs), enforced Flt3 signaling induces transcription of IPC, DC, and granulocyte/macrophage (GM) development–affiliated genes, including STAT3, PU.1, and G-/M-/GM-CSFR, and activates differentiation capacities to these lineages. Moreover, ectopic expression of Flt3 downstream transcription factors STAT3 or PU.1 in Flt3− MEPs evokes Flt3 receptor expression and instructs differentiation into IPCs, DCs, and myelomonocytic cells, whereas GATA-1 expression and consecutive megakaryocyte/erythrocyte development is suppressed. Based on these data, we propose a demand-regulated, cytokine-driven DC and IPC regeneration model, in which high Flt3L levels initiate a self-sustaining, Flt3-STAT3– and Flt3-PU.1–mediated IPC and DC differentiation program in Flt3+ hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Nobuyuki Onai
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland
| | | | | | | | | |
Collapse
|
28
|
Kuhl C, Atzberger A, Iborra F, Nieswandt B, Porcher C, Vyas P. GATA1-mediated megakaryocyte differentiation and growth control can be uncoupled and mapped to different domains in GATA1. Mol Cell Biol 2005; 25:8592-606. [PMID: 16166640 PMCID: PMC1265752 DOI: 10.1128/mcb.25.19.8592-8606.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 05/18/2005] [Accepted: 07/10/2005] [Indexed: 11/20/2022] Open
Abstract
The DNA-binding hemopoietic zinc finger transcription factor GATA1 promotes terminal megakaryocyte differentiation and restrains abnormal immature megakaryocyte expansion. How GATA1 coordinates these fundamental processes is unclear. Previous studies of synthetic and naturally occurring mutant GATA1 molecules demonstrate that DNA-binding and interaction with the essential GATA1 cofactor FOG-1 (via the N-terminal finger) are required for gene expression in terminally differentiating megakaryocytes and for platelet production. Moreover, acquired mutations deleting the N-terminal 84 amino acids are specifically detected in megakaryocytic leukemia in human Down syndrome patients. In this study, we have systematically dissected GATA1 domains required for platelet release and control of megakaryocyte growth by ectopically expressing modified GATA1 molecules in primary GATA1-deficient fetal megakaryocyte progenitors. In addition to DNA binding, distinct N-terminal regions, including residues in the first 84 amino acids, promote platelet release and restrict megakaryocyte growth. In contrast, abrogation of GATA1-FOG-1 interaction leads to loss of differentiation, but growth of blocked immature megakaryocytes is controlled. Thus, distinct GATA1 domains regulate terminal megakaryocyte gene expression leading to platelet release and restrain megakaryocyte growth, and these processes can be uncoupled.
Collapse
Affiliation(s)
- Christiane Kuhl
- Department of Hematology, Weatherall Institute of Molecular Medicine, University of Oxford and John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | |
Collapse
|