1
|
Gambardella AR, Antonucci C, Zanetti C, Noto F, Andreone S, Vacca D, Pellerito V, Sicignano C, Parrottino G, Tirelli V, Tinari A, Falchi M, De Ninno A, Businaro L, Loffredo S, Varricchi G, Tripodo C, Afferni C, Parolini I, Mattei F, Schiavoni G. IL-33 stimulates the anticancer activities of eosinophils through extracellular vesicle-driven reprogramming of tumor cells. J Exp Clin Cancer Res 2024; 43:209. [PMID: 39061080 PMCID: PMC11282757 DOI: 10.1186/s13046-024-03129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Immune cell-derived extracellular vesicles (EV) affect tumor progression and hold promise for therapeutic applications. Eosinophils are major effectors in Th2-related pathologies recently implied in cancer. Here, we evaluated the anti-tumor activities of eosinophil-derived EV following activation with the alarmin IL-33. We demonstrate that IL-33-activated mouse and human eosinophils produce higher quantities of EV with respect to eosinophils stimulated with IL-5. Following incorporation of EV from IL-33-activated eosinophils (Eo33-EV), but not EV from IL-5-treated eosinophils (Eo5-EV), mouse and human tumor cells increased the expression of cyclin-dependent kinase inhibitor (CDKI)-related genes resulting in cell cycle arrest in G0/G1, reduced proliferation and inhibited tumor spheroid formation. Moreover, tumor cells incorporating Eo33-EV acquired an epithelial-like phenotype characterized by E-Cadherin up-regulation, N-Cadherin downregulation, reduced cell elongation and migratory extent in vitro, and impaired capacity to metastasize to lungs when injected in syngeneic mice. RNA sequencing revealed distinct mRNA signatures in Eo33-EV and Eo5-EV with increased presence of tumor suppressor genes and enrichment in pathways related to epithelial phenotypes and negative regulation of cellular processes in Eo33-EV compared to Eo5-EV. Our studies underscore novel IL-33-stimulated anticancer activities of eosinophils through EV-mediated reprogramming of tumor cells opening perspectives on the use of eosinophil-derived EV in cancer therapy.
Collapse
Affiliation(s)
| | - Caterina Antonucci
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Cristiana Zanetti
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Francesco Noto
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Davide Vacca
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, 90127, Italy
| | - Valentina Pellerito
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, 90127, Italy
| | - Chiara Sicignano
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Giuseppe Parrottino
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | | | - Antonella Tinari
- National Center for Gender Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore Di Sanità, Rome, Italy
| | - Adele De Ninno
- CNR-IFN Institute for Photonics and Nanotechnologies, Rome, Italy
| | - Luca Businaro
- CNR-IFN Institute for Photonics and Nanotechnologies, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, 80131, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, 80131, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, 80131, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, 80131, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, 90127, Italy
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore Di Sanità, Rome, Italy
| | - Isabella Parolini
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
- Laboratory of Molecular Medicine and DNA Repair, Department of Medicine, University of Udine, Udine, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy.
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy.
| |
Collapse
|
2
|
Zelenka T, Klonizakis A, Tsoukatou D, Papamatheakis DA, Franzenburg S, Tzerpos P, Tzonevrakis IR, Papadogkonas G, Kapsetaki M, Nikolaou C, Plewczynski D, Spilianakis C. The 3D enhancer network of the developing T cell genome is shaped by SATB1. Nat Commun 2022; 13:6954. [PMID: 36376298 PMCID: PMC9663569 DOI: 10.1038/s41467-022-34345-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanisms of tissue-specific gene expression regulation via 3D genome organization are poorly understood. Here we uncover the regulatory chromatin network of developing T cells and identify SATB1, a tissue-specific genome organizer, enriched at the anchors of promoter-enhancer loops. We have generated a T-cell specific Satb1 conditional knockout mouse which allows us to infer the molecular mechanisms responsible for the deregulation of its immune system. H3K27ac HiChIP and Hi-C experiments indicate that SATB1-dependent promoter-enhancer loops regulate expression of master regulator genes (such as Bcl6), the T cell receptor locus and adhesion molecule genes, collectively being critical for cell lineage specification and immune system homeostasis. SATB1-dependent regulatory chromatin loops represent a more refined layer of genome organization built upon a high-order scaffold provided by CTCF and other factors. Overall, our findings unravel the function of a tissue-specific factor that controls transcription programs, via spatial chromatin arrangements complementary to the chromatin structure imposed by ubiquitously expressed genome organizers.
Collapse
Affiliation(s)
- Tomas Zelenka
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Despina Tsoukatou
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Dionysios-Alexandros Papamatheakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | | | - Petros Tzerpos
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032, Hungary
| | | | - George Papadogkonas
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Manouela Kapsetaki
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Christoforos Nikolaou
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", 16672, Vari, Greece
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Charalampos Spilianakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece.
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
3
|
Kim RY, Sunkara KP, Bracke KR, Jarnicki AG, Donovan C, Hsu AC, Ieni A, Beckett EL, Galvão I, Wijnant S, Ricciardolo FL, Di Stefano A, Haw TJ, Liu G, Ferguson AL, Palendira U, Wark PA, Conickx G, Mestdagh P, Brusselle GG, Caramori G, Foster PS, Horvat JC, Hansbro PM. A microRNA-21-mediated SATB1/S100A9/NF-κB axis promotes chronic obstructive pulmonary disease pathogenesis. Sci Transl Med 2021; 13:eaav7223. [PMID: 34818056 DOI: 10.1126/scitranslmed.aav7223] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Richard Y Kim
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Krishna P Sunkara
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia.,Graduate School of Health, Discipline of Pharmacy, University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Intensive Care Unit, John Hunter Hospital, Newcastle, New South Wales 2308, Australia
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Andrew G Jarnicki
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria 3010, Australia
| | - Chantal Donovan
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, University of Messina, Messina 98100, Italy
| | - Emma L Beckett
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Izabela Galvão
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Sara Wijnant
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Fabio Lm Ricciardolo
- Rare Lung Disease Unit, Department of Clinical and Biological Sciences, University of Torino, San Luigi Gonzaga University Hospital Orbassano, Torino 10043, Italy
| | - Antonino Di Stefano
- Istituti Clinici Scientifici Maugeri, IRCCS, SpA Società Benefit, Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Veruno, Novara 28100, Italy
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Angela L Ferguson
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia.,Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2006, Australia
| | - Umamainthan Palendira
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Griet Conickx
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium.,Ablynx N.V., a Sanofi company, Ghent 9052, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina 98100, Italy
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| |
Collapse
|
4
|
Abstract
The regulatory circuits that define developmental decisions of thymocytes are still incompletely resolved. SATB1 protein is predominantly expressed at the CD4+CD8+cell stage exerting its broad transcription regulation potential with both activatory and repressive roles. A series of post-translational modifications and the presence of potential SATB1 protein isoforms indicate the complexity of its regulatory potential. The most apparent mechanism of its involvement in gene expression regulation is via the orchestration of long-range chromatin loops between genes and their regulatory elements. Multiple SATB1 perturbations in mice uncovered a link to autoimmune diseases while clinical investigations on cancer research uncovered that SATB1 has a promoting role in several types of cancer and can be used as a prognostic biomarker. SATB1 is a multivalent tissue-specific factor with a broad and yet undetermined regulatory potential. Future investigations on this protein could further uncover T cell-specific regulatory pathways and link them to (patho)physiology.
Collapse
Affiliation(s)
- Tomas Zelenka
- Department of Biology, University of Crete , Heraklion, Crete, Greece.,Gene Regulation & Genomics, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas , Heraklion, Crete, Greece
| | - Charalampos Spilianakis
- Department of Biology, University of Crete , Heraklion, Crete, Greece.,Gene Regulation & Genomics, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas , Heraklion, Crete, Greece
| |
Collapse
|
5
|
Ramanujam PL, Mehrotra S, Kumar RP, Verma S, Deshpande G, Mishra RK, Galande S. Global chromatin organizer SATB1 acts as a context-dependent regulator of the Wnt/Wg target genes. Sci Rep 2021; 11:3385. [PMID: 33564000 PMCID: PMC7873079 DOI: 10.1038/s41598-021-81324-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
Special AT-rich binding protein-1 (SATB1) integrates higher-order chromatin architecture with gene regulation, thereby regulating multiple signaling pathways. In mammalian cells SATB1 directly interacts with β-catenin and regulates the expression of Wnt targets by binding to their promoters. Whether SATB1 regulates Wnt/wg signaling by recruitment of β-catenin and/or its interactions with other components remains elusive. Since Wnt/Wg signaling is conserved from invertebrates to humans, we investigated SATB1 functions in regulation of Wnt/Wg signaling by using mammalian cell-lines and Drosophila. Here, we present evidence that in mammalian cells, SATB1 interacts with Dishevelled, an upstream component of the Wnt/Wg pathway. Conversely, ectopic expression of full-length human SATB1 but not that of its N- or C-terminal domains in the eye imaginal discs and salivary glands of third instar Drosophila larvae increased the expression of Wnt/Wg pathway antagonists and suppressed phenotypes associated with activated Wnt/Wg pathway. These data argue that ectopically-provided SATB1 presumably modulates Wnt/Wg signaling by acting as negative regulator in Drosophila. Interestingly, comparison of SATB1 with PDZ- and homeo-domain containing Drosophila protein Defective Proventriculus suggests that both proteins exhibit limited functional similarity in the regulation of Wnt/Wg signaling in Drosophila. Collectively, these findings indicate that regulation of Wnt/Wg pathway by SATB1 is context-dependent.
Collapse
Affiliation(s)
- Praveena L Ramanujam
- Department of Biology, Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sonam Mehrotra
- Department of Biology, Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Mumbai, India
| | | | | | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Hyderabad, India.
| | - Sanjeev Galande
- Department of Biology, Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
6
|
Roychowdhury T, Chattopadhyay S. Chemical Decorations of "MARs" Residents in Orchestrating Eukaryotic Gene Regulation. Front Cell Dev Biol 2020; 8:602994. [PMID: 33409278 PMCID: PMC7779526 DOI: 10.3389/fcell.2020.602994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 01/19/2023] Open
Abstract
Genome organization plays a crucial role in gene regulation, orchestrating multiple cellular functions. A meshwork of proteins constituting a three-dimensional (3D) matrix helps in maintaining the genomic architecture. Sequences of DNA that are involved in tethering the chromatin to the matrix are called scaffold/matrix attachment regions (S/MARs), and the proteins that bind to these sequences and mediate tethering are termed S/MAR-binding proteins (S/MARBPs). The regulation of S/MARBPs is important for cellular functions and is altered under different conditions. Limited information is available presently to understand the structure–function relationship conclusively. Although all S/MARBPs bind to DNA, their context- and tissue-specific regulatory roles cannot be justified solely based on the available information on their structures. Conformational changes in a protein lead to changes in protein–protein interactions (PPIs) that essentially would regulate functional outcomes. A well-studied form of protein regulation is post-translational modification (PTM). It involves disulfide bond formation, cleavage of precursor proteins, and addition or removal of low-molecular-weight groups, leading to modifications like phosphorylation, methylation, SUMOylation, acetylation, PARylation, and ubiquitination. These chemical modifications lead to varied functional outcomes by mechanisms like modifying DNA–protein interactions and PPIs, altering protein function, stability, and crosstalk with other PTMs regulating subcellular localizations. S/MARBPs are reported to be regulated by PTMs, thereby contributing to gene regulation. In this review, we discuss the current understanding, scope, disease implications, and future perspectives of the diverse PTMs regulating functions of S/MARBPs.
Collapse
Affiliation(s)
- Tanaya Roychowdhury
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, India.,Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, India.,Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
7
|
Zaidi SK, Fritz AJ, Tracy KM, Gordon JA, Tye CE, Boyd J, Van Wijnen AJ, Nickerson JA, Imbalzano AN, Lian JB, Stein JL, Stein GS. Nuclear organization mediates cancer-compromised genetic and epigenetic control. Adv Biol Regul 2018; 69:1-10. [PMID: 29759441 PMCID: PMC6102062 DOI: 10.1016/j.jbior.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/13/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
Nuclear organization is functionally linked to genetic and epigenetic regulation of gene expression for biological control and is modified in cancer. Nuclear organization supports cell growth and phenotypic properties of normal and cancer cells by facilitating physiologically responsive interactions of chromosomes, genes and regulatory complexes at dynamic three-dimensional microenvironments. We will review nuclear structure/function relationships that include: 1. Epigenetic bookmarking of genes by phenotypic transcription factors to control fidelity and plasticity of gene expression as cells enter and exit mitosis; 2. Contributions of chromatin remodeling to breast cancer nuclear morphology, metabolism and effectiveness of chemotherapy; 3. Relationships between fidelity of nuclear organization and metastasis of breast cancer to bone; 4. Dynamic modifications of higher-order inter- and intra-chromosomal interactions in breast cancer cells; 5. Coordinate control of cell growth and phenotype by tissue-specific transcription factors; 6. Oncofetal epigenetic control by bivalent histone modifications that are functionally related to sustaining the stem cell phenotype; and 7. Noncoding RNA-mediated regulation in the onset and progression of breast cancer. The discovery of components to nuclear organization that are functionally related to cancer and compromise gene expression have the potential for translation to innovative cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Kirsten M Tracy
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Jonathan A Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Joseph Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Andre J Van Wijnen
- Departments of Orthopedic Surgery, Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Jeffrey A Nickerson
- Department of Pediatrics, UMass Medical School, Worcester, MA, United States
| | - Antony N Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, United States
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
8
|
Tetramerization of SATB1 is essential for regulating of gene expression. Mol Cell Biochem 2017; 430:171-178. [PMID: 28205095 DOI: 10.1007/s11010-017-2964-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/30/2017] [Indexed: 02/06/2023]
Abstract
Special AT-rich sequence-binding protein 1 (SATB1) functions as a 'genome organizer' in tumorigenesis. Our previous report showed that SATB1 forms a tetramer through its N-terminal ubiquitin like domain rather than the proposed PDZ domain. In the present study, we aim to illustrate whether this oligomerization is critical to its function as a global repressor of gene expression in vivo. Luciferase and GST pull-down assays demonstrated that disrupting SATB1's tetramerization not only affects the activities of promoters but also influences the recruitment of interaction partners. Furthermore, we developed stable cell lines that overexpressed either the SATB1 tetramer or STAB1 dimer (KWN-AAA) and monitored global gene expression. Gene expression profiling revealed that over 1000 genes were significantly upregulated or downregulated upon the overexpression of SATB1 or the SATB1 (KWN-AAA) mutant. These data implied that SATB1 might regulate gene expression through its different oligomerization state. In conclusion, we inferred that the oligomerization of SATB1 is pivotal to its function of different biological processes.
Collapse
|
9
|
Bengani H, Handley M, Alvi M, Ibitoye R, Lees M, Lynch SA, Lam W, Fannemel M, Nordgren A, Malmgren H, Kvarnung M, Mehta S, McKee S, Whiteford M, Stewart F, Connell F, Clayton-Smith J, Mansour S, Mohammed S, Fryer A, Morton J, Grozeva D, Asam T, Moore D, Sifrim A, McRae J, Hurles ME, Firth HV, Raymond FL, Kini U, Nellåker C, Ddd Study, FitzPatrick DR. Clinical and molecular consequences of disease-associated de novo mutations in SATB2. Genet Med 2017; 19:900-908. [PMID: 28151491 PMCID: PMC5548934 DOI: 10.1038/gim.2016.211] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/01/2016] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To characterize features associated with de novo mutations affecting SATB2 function in individuals ascertained on the basis of intellectual disability. METHODS Twenty previously unreported individuals with 19 different SATB2 mutations (11 loss-of-function and 8 missense variants) were studied. Fibroblasts were used to measure mutant protein production. Subcellular localization and mobility of wild-type and mutant SATB2 were assessed using fluorescently tagged protein. RESULTS Recurrent clinical features included neurodevelopmental impairment (19/19), absent/near absent speech (16/19), normal somatic growth (17/19), cleft palate (9/19), drooling (12/19), and dental anomalies (8/19). Six of eight missense variants clustered in the first CUT domain. Sibling recurrence due to gonadal mosaicism was seen in one family. A nonsense mutation in the last exon resulted in production of a truncated protein retaining all three DNA-binding domains. SATB2 nuclear mobility was mutation-dependent; p.Arg389Cys in CUT1 increased mobility and both p.Gly515Ser in CUT2 and p.Gln566Lys between CUT2 and HOX reduced mobility. The clinical features in individuals with missense variants were indistinguishable from those with loss of function. CONCLUSION SATB2 haploinsufficiency is a common cause of syndromic intellectual disability. When mutant SATB2 protein is produced, the protein appears functionally inactive with a disrupted pattern of chromatin or matrix association.Genet Med advance online publication 02 February 2017.
Collapse
Affiliation(s)
- Hemant Bengani
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Mark Handley
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Mohsan Alvi
- Avdeling for Medisinsk Genetikk, Oslo Universitetssykehus, Oslo, Norway
| | - Rita Ibitoye
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Melissa Lees
- North East Regional Genetics Service, Great Ormond Street Hospital, London, UK
| | - Sally Ann Lynch
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Dublin, Ireland
| | - Wayne Lam
- South East Scotland Genetic Service, Western General Hospital, Edinburgh, UK
| | | | - Ann Nordgren
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - H Malmgren
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - M Kvarnung
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sarju Mehta
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation, Cambridge, UK
| | - Shane McKee
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast, UK
| | - Margo Whiteford
- West of Scotland Genetic Services, Queen Elizabeth University Hospital, Glasgow, UK
| | - Fiona Stewart
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast, UK
| | - Fiona Connell
- South East Thames Regional Genetics Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Sahar Mansour
- Department of Clinical Genetics, St Georges Hospital, Tooting, UK
| | - Shehla Mohammed
- South East Thames Regional Genetics Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Alan Fryer
- Cheshire &Merseyside Regional Genetics Service, Liverpool Women's NHS foundation Trust, Liverpool, UK
| | - Jenny Morton
- West Midlands Regional Genetics Service, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | | | - Detelina Grozeva
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Tara Asam
- South-East Scotland Regional Genetics Laboratories, Western General Hospital, Edinburgh, UK
| | - David Moore
- South-East Scotland Regional Genetics Laboratories, Western General Hospital, Edinburgh, UK
| | - Alejandro Sifrim
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jeremy McRae
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Helen V Firth
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation, Cambridge, UK
| | - F Lucy Raymond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Usha Kini
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK.,Spires Cleft Centre, John Radcliffe Hospital, Oxford, UK
| | - Christoffer Nellåker
- Nuffield Department of Obstetrics &Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, UK.,Department of Engineering Science, University of Oxford, Institute of Biomedical Engineering, Oxford, UK.,Big Data Institute, University of Oxford, Oxford, UK
| | - Ddd Study
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK
| |
Collapse
|
10
|
Sankovski E, Karro K, Sepp M, Kurg R, Ustav M, Abroi A. Characterization of the nuclear matrix targeting sequence (NMTS) of the BPV1 E8/E2 protein--the shortest known NMTS. Nucleus 2016. [PMID: 26218798 DOI: 10.1080/19491034.2015.1074359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Technological advantages in sequencing and proteomics have revealed the remarkable diversity of alternative protein isoforms. Typically, the localization and functions of these isoforms are unknown and cannot be predicted. Also the localization signals leading to particular subnuclear compartments have not been identified and thus, predicting alternative functions due to alternative subnuclear localization is limited only to very few subnuclear compartments. Knowledge of the localization and function of alternative protein isoforms allows for a greater understanding of cellular complexity. In this article, we characterize a short and well-defined signal targeting the bovine papillomavirus type 1 E8/E2 protein to the nuclear matrix. The targeting signal comprises the peptide coded by E8 ORF, which is spliced together with part of the E2 ORF to generate the E8/E2 mRNA. Localization to the nuclear matrix correlates well with the transcription repression activities of E8/E2; a single point mutation directs the E8/E2 protein into the nucleoplasm, and transcription repression activity is lost. Our data prove that adding as few as ˜10 amino acids by alternative transcription/alternative splicing drastically alters the function and subnuclear localization of proteins. To our knowledge, E8 is the shortest known nuclear matrix targeting signal.
Collapse
|
11
|
Coelho MB, Attig J, Ule J, Smith CWJ. Matrin3: connecting gene expression with the nuclear matrix. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:303-15. [PMID: 26813864 DOI: 10.1002/wrna.1336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 01/06/2023]
Abstract
As indicated by its name, Matrin3 was discovered as a component of the nuclear matrix, an insoluble fibrogranular network that structurally organizes the nucleus. Matrin3 possesses both DNA- and RNA-binding domains and, consistent with this, has been shown to function at a number of stages in the life cycle of messenger RNAs. These numerous activities indicate that Matrin3, and indeed the nuclear matrix, do not just provide a structural framework for nuclear activities but also play direct functional roles in these activities. Here, we review the structure, functions, and molecular interactions of Matrin3 and of Matrin3-related proteins, and the pathologies that can arise upon mutation of Matrin3. WIREs RNA 2016, 7:303-315. doi: 10.1002/wrna.1336 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Miguel B Coelho
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jan Attig
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | |
Collapse
|
12
|
Thakar J, Hartmann BM, Marjanovic N, Sealfon SC, Kleinstein SH. Comparative analysis of anti-viral transcriptomics reveals novel effects of influenza immune antagonism. BMC Immunol 2015; 16:46. [PMID: 26272204 PMCID: PMC4536893 DOI: 10.1186/s12865-015-0107-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 07/08/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Comparative analysis of genome-wide expression profiles are increasingly being used to study virus-specific host interactions. In order to gain mechanistic insights, gene expression profiles can be combined with information on DNA-binding sites of transcription factors to detect transcription factor activity (by analysis of target gene sets) during viral infections. Here, we apply this approach to study mechanisms of immune antagonism elicited by Influenza A virus (New Caledonia/20/1999) by comparing the transcriptional response with the non-pathogenic Newcastle disease virus (NDV), which lacks human immune antagonism. RESULTS Existing gene set approaches do not quantify activity in a way that can be statistically compared between responses. We thus developed a new method for Bayesian Estimation of Transcription factor Activity (BETA) that allows for such quantification and comparative analysis across multiple responses. BETA predicted decreased ISGF3 activity during influenza A infection of human dendritic cells (reflected in lower expression of Interferon Stimulated Genes, ISGs). This prediction was confirmed through a combination of mathematical modeling and experiments at different multiplicities of infection to show that ISGs were specifically blocked in infected cells. Suppression of the transcription factor SATB1 was also predicted as a novel effect of influenza-mediated immune antagonism, and validated experimentally. CONCLUSIONS Comparative analysis of genome-wide transcriptional profiles can reveal new effects of viral immune antagonism. We have developed a computational framework (BETA) that enables quantitative comparative analysis of transcription factor activities. This method will aid future studies to identify mechanistic differences in the host-pathogen interactions. Application of BETA to genome-wide transcriptional profiling data from human DCs identified SATB1 as a novel effect of influenza antagonism.
Collapse
Affiliation(s)
- Juilee Thakar
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06510, USA. .,Department of Microbiology and Immunology, University of Rochester, Rochester, NY, 14642, USA. .,Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, 14642, USA.
| | - Boris M Hartmann
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Nada Marjanovic
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06510, USA. .,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.
| |
Collapse
|
13
|
Wang G, Li B, Fu Y, He M, Wang J, Shen P, Bai L. miR-23a suppresses proliferation of osteosarcoma cells by targeting SATB1. Tumour Biol 2015; 36:4715-21. [PMID: 25619478 DOI: 10.1007/s13277-015-3120-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/14/2015] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence has shown that microRNAs are involved in multiple processes in cancer development and progression. Recent studies have shown that miR-23a functions as an oncogene in various human cancer types, but its role in osteosarcoma remains poorly understood. Here, we demonstrated that miR-23a is frequently downregulated in osteosarcoma specimens and cell lines compared with adjacent noncancerous tissues and cell line. Bioinformatics analysis further revealed SATB1 as a potential target of miR-23a. Data from luciferase reporter assays showed that miR-23a directly binds to the 3'UTR of SATB1 messenger RNA (mRNA). Furthermore, we found that expression patterns of miR-23a were inversely correlated with those of SATB1 in osteosarcoma tissues and cell lines, and overexpression of miR-23a suppressed SATB1 expression at both transcriptional and translational levels in osteosarcoma cell lines. In functional assays, miR-23a inhibited osteosarcoma cell proliferation, which could be reversed by overexpression of SATB1. Furthermore, knockdown of SATB1 reduced osteosarcoma cell proliferation, which resembled the inhibitory effects of miR-23a overexpression. Taken together, our data provide compelling evidence that miR-23a functions as a tumor suppressor in osteosarcoma, and its inhibitory effect on tumor are mediated chiefly through downregulation of SATB1.
Collapse
Affiliation(s)
- Guangbin Wang
- Department of Orthopedics, Shengjing Hospital, China Medical University, Shenyang, 110004, Liaoning, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Cheng C, Wan F, Liu L, Zeng F, Xing S, Wu X, Chen X, Zhu Z. Overexpression of SATB1 is associated with biologic behavior in human renal cell carcinoma. PLoS One 2014; 9:e97406. [PMID: 24835085 PMCID: PMC4023980 DOI: 10.1371/journal.pone.0097406] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 04/17/2014] [Indexed: 12/24/2022] Open
Abstract
Special AT-rich sequence-binding protein-1 (SATB1) has been reported to be aberrantly expressed in various cancers and correlated with the malignant behavior of cancer cells. However, the function of SATB1 in RCC remains unclear. With the combination of immunohistochemistry, western blotting, immunofluorescence, qRT-PCR, and cell proliferation, migration and invasion assays, we found that levels of SATB1 mRNA and protein were dramatically increased in human ccRCC tissues (P<0.001 for both), and upregulation of SATB1 was significantly associated with depth of invasion (P<0.001), lymph node status (P = 0.001) and TNM stage (P = 0.009). SATB1 knockdown inhibited the proliferation, migration and invasion of 786-O cells, whereas SATB1 overexpression promoted the growth and aggressive phenotype of ACHN cells in vitro. Furthermore, SATB1 expression was positively correlated with ZEB2 expression (P = 0.013), and inversely linked to levels of SATB2 and E-cadherin (P = 0.005 and P<0.001, respectively) in ccRCC tissues. Our data provide a basis for the concept that overexpression of SATB1 may play a critical role in the acquisition of an aggressive phenotype for RCC cells through EMT, providing new insights into the significance of SATB1 in invasion and metastasis of ccRCC, which may contribute to fully elucidating the exact mechanism of development and progression of RCC.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Wan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lian Liu
- Cancer Center of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuqing Zeng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shi'an Xing
- Central Laboratory of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaofei Wu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuepan Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaohui Zhu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Zhang H, Qu S, Li S, Wang Y, Li Y, Wang Y, Wang Z, Li R. Silencing SATB1 inhibits proliferation of human osteosarcoma U2OS cells. Mol Cell Biochem 2013; 378:39-45. [PMID: 23516037 DOI: 10.1007/s11010-013-1591-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
Abstract
It has been shown that over-expression of Special AT-rich binding protein 1 (SATB1) in breast cancer predicts a poor prognosis. This study was aimed at investigating the effects of silencing SATB1 on mesenchymal derived human osteosarcoma U2OS cells and the underlying mechanisms. The expressions of SATB1 and the related genes in the cells were detected by qRT-PCR and/or Western Blotting. SATB1 silencing was achieved by stable transfection with the vectors expressing small hairpin RNA versus SATB1. Cell proliferation was detected in a microplate reader with Cell Counting Kit-8 and the cell cycle was analyzed by flow cytometry using a cell cycle detection kit. The study found that SATB1 was particularly over-expressed in human osteosarcoma U2OS. Silencing SATB1 inhibited the proliferation of U2OS. It was found that inhibition of cell proliferation resulted from cell cycle arrest due to down-regulated expression of CFGF and JunB. The over-expression of SATB1 is responsible for abnormal proliferation of mesenchymal derived human Osteosatcoma U2OS cells, indicating that silencing SATB1 expression in the cells might be developed as an efficient osteosarcoma therapy. CTGF and JunB were involved in SATB1-mediated proliferation of U2OS cells.
Collapse
Affiliation(s)
- Haiying Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chu SH, Ma YB, Feng DF, Zhang H, Zhu ZA, Li ZQ, Jiang PC. Upregulation of SATB1 is associated with the development and progression of glioma. J Transl Med 2012; 10:149. [PMID: 22839214 PMCID: PMC3492129 DOI: 10.1186/1479-5876-10-149] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/16/2012] [Indexed: 02/08/2023] Open
Abstract
Background Special AT-rich sequence-binding protein-1 (SATB1) has been reported to be expressed in several human cancers and may have malignant potential. This study was aimed at investigating the expression and potential role of SATB1 in human glioma. Method The relationship between SATB1 expression, clinicopathological parameters, Ki67 expression and MGMT promoter methylation status was evaluated, and the prognostic value of SATB1 expression in patients with gliomas was analyzed. SATB1-specific shRNA sequences were synthesized, and U251 cells were transfected with SATB1 RNAi plasmids. Expression of SATB1 mRNA and protein was investigated by RT-PCR and immunofluoresence staining and western blotting. The expression of c-Met, SLC22A18, caspase-3 and bcl-2 protein was determined by western blotting. U251 cell growth and adherence was detected by methyl thiazole tetrazolium assay. The apoptosis of U251 cells was examined with a flow cytometer. The adherence, invasion, and in vitro angiogenesis assays of U251 cells were done. The growth and angiogenesis of SATB1 low expressing U251 cells was measured in an in vivo xenograft model. Results Of 70 tumors, 44 (62.9%) were positive for SATB1 expression. SATB1 expression was significantly associated with a high histological grade and with poor survival in univariate and multivariate analyses. SATB1 expression was also positively correlated with Ki67 expression but negatively with MGMT promoter methylation in glioma tissues. SATB1 shRNA expression vectors could efficiently induce the expression of SLC22A18 protein, increase the caspase-3 protein, inhibit the expression of SATB1, c-Met and bcl-2 protein, the growth, invasion, metastasis and angiogenesis of U251 cells, and induce apoptosis in vitro. Furthermore, the tumor growth of U251 cells expressing SATB1 shRNA were inhibited in vivo, and immunohistochemical analyses of tumor sections revealed a decreased vessel density in the animals where shRNA against SATB1 were expressed. Conclusions SATB1 may have an important role as a positive regulator of glioma development and progression, and that SATB1 might be a useful molecular marker for predicting the prognosis of glioma.
Collapse
Affiliation(s)
- Sheng-Hua Chu
- Department of Neurosurgery, NO 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 280 Mo He Road, Bao Shan District, Shanghai 201900, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Barboro P, Repaci E, D’Arrigo C, Balbi C. The role of nuclear matrix proteins binding to matrix attachment regions (Mars) in prostate cancer cell differentiation. PLoS One 2012; 7:e40617. [PMID: 22808207 PMCID: PMC3394767 DOI: 10.1371/journal.pone.0040617] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/11/2012] [Indexed: 11/19/2022] Open
Abstract
In tumor progression definite alterations in nuclear matrix (NM) protein composition as well as in chromatin structure occur. The NM interacts with chromatin via specialized DNA sequences called matrix attachment regions (MARs). In the present study, using a proteomic approach along with a two-dimensional Southwestern assay and confocal laser microscopy, we show that the differentiation of stabilized human prostate carcinoma cells is marked out by modifications both NM protein composition and bond between NM proteins and MARs. Well-differentiated androgen-responsive and slowly growing LNCaP cells are characterized by a less complex pattern and by a major number of proteins binding MAR sequences in comparison to 22Rv1 cells expressing androgen receptor but androgen-independent. Finally, in the poorly differentiated and strongly aggressive androgen-independent PC3 cells the complexity of NM pattern further increases and a minor number of proteins bind the MARs. Furthermore, in this cell line with respect to LNCaP cells, these changes are synchronous with modifications in both the nuclear distribution of the MAR sequences and in the average loop dimensions that significantly increase. Although the expression of many NM proteins changes during dedifferentiation, only a very limited group of MAR-binding proteins seem to play a key role in this process. Variations in the expression of poly (ADP-ribose) polymerase (PARP) and special AT-rich sequence-binding protein-1 (SATB1) along with an increase in the phosphorylation of lamin B represent changes that might trigger passage towards a more aggressive phenotype. These results suggest that elucidating the MAR-binding proteins that are involved in the differentiation of prostate cancer cells could be an important tool to improve our understanding of this carcinogenesis process, and they could also be novel targets for prostate cancer therapy.
Collapse
Affiliation(s)
- Paola Barboro
- IRCCS Azienda Ospedaliera Universitaria San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Department of Diagnostic Technologies, Genoa, Italy
| | - Erica Repaci
- IRCCS Azienda Ospedaliera Universitaria San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Department of Diagnostic Technologies, Genoa, Italy
| | - Cristina D’Arrigo
- C.N.R., Istituto per lo Studio delle Macromolecole, ISMAC, Sezione di Genova, Genoa, Italy
| | - Cecilia Balbi
- IRCCS Azienda Ospedaliera Universitaria San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Department of Diagnostic Technologies, Genoa, Italy
- * E-mail:
| |
Collapse
|
18
|
Zeve D, Seo J, Suh JM, Stenesen D, Tang W, Berglund ED, Wan Y, Williams LJ, Lim A, Martinez MJ, McKay RM, Millay DP, Olson EN, Graff JM. Wnt signaling activation in adipose progenitors promotes insulin-independent muscle glucose uptake. Cell Metab 2012; 15:492-504. [PMID: 22482731 PMCID: PMC3325026 DOI: 10.1016/j.cmet.2012.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/14/2011] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Adipose tissues provide circulating nutrients and hormones. We present in vivo mouse studies highlighting roles for Wnt signals in both aspects of metabolism. β-catenin activation in PPARγ-expressing fat progenitors (PBCA) decreased fat mass and induced fibrotic replacement of subcutaneous fat specifically. In spite of lipodystrophy, PBCA mice did not develop the expected diabetes and hepatosteatosis, but rather exhibited improved glucose metabolism and normal insulin sensitivity. Glucose uptake was increased in muscle independently of insulin, associated with cell-surface translocation of glucose transporters and AMPK activation. Ex vivo assays showed these effects were likely secondary to blood-borne signals since PBCA sera or conditioned media from PBCA fat progenitors enhanced glucose uptake and activated AMPK in muscle cultures. Thus, adipose progenitor Wnt activation dissociates lipodystrophy from dysfunctional metabolism and highlights a fat-muscle endocrine axis, which may represent a potential therapy to lower blood glucose and improve metabolism.
Collapse
Affiliation(s)
- Daniel Zeve
- Department of Developmental Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9133, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Notani D, Ramanujam PL, Kumar PP, Gottimukkala KP, Kumar-Sinha C, Galande S. N-terminal PDZ-like domain of chromatin organizer SATB1 contributes towards its function as transcription regulator. J Biosci 2011; 36:461-9. [PMID: 21799257 DOI: 10.1007/s12038-011-9091-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The special AT-rich DNA-binding protein 1 (SATB1) is a matrix attachment region (MAR)-binding protein that acts as a global repressor via recruitment of CtBP1:HDAC1-containing co-repressors to its binding targets. The N-terminal PSD95/Dlg-A/ZO-1 (PDZ)-like domain of SATB1 mediates interactions with several chromatin proteins. In the present study, we set out to address whether the PDZ-domain-mediated interactions of SATB1 are critical for its in vivo function as a global repressor. We reasoned that since the N-terminal PDZ-like domain (amino acid residues 1-204) lacks DNA binding activity, it would fail to recruit the interacting partners of SATB1 to its genomic binding sites and hence would not repress the SATB1-regulated genes. Indeed, in vivo MAR-linked luciferase reporter assay revealed that overexpression of the PDZ-like domain resulted in de-repression, indicating that the PDZ-like domain exerts a dominant negative effect on genes regulated by SATB1. Next, we developed a stable dominant negative model in human embryonic kidney (HEK) 293T cells that conditionally expressed the N-terminal 1-204 region harbouring the PDZ-like domain of SATB1. To monitor the effect of sequestration of the interaction partners on the global gene regulation by SATB1, transcripts from the induced and uninduced clones were subjected to gene expression profiling. Clustering of expression data revealed that 600 out of 19000 genes analysed were significantly upregulated upon overexpression of the PDZ-like domain. Induced genes were found to be involved in important signalling cascades and cellular functions. These studies clearly demonstrated the role of PDZ domain of SATB1 in global gene regulation presumably through its interaction with other cellular proteins.
Collapse
Affiliation(s)
- Dimple Notani
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | | | | | | | | | | |
Collapse
|
20
|
Meldi L, Brickner JH. Compartmentalization of the nucleus. Trends Cell Biol 2011; 21:701-8. [PMID: 21900010 PMCID: PMC3970429 DOI: 10.1016/j.tcb.2011.08.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 12/14/2022]
Abstract
The nucleus is a spatially organized compartment. The most obvious way in which this is achieved is at the level of chromosomes. The positioning of chromosomes with respect to nuclear landmarks and with respect to each other is both non-random and cell-type specific. This suggests that cells possess molecular mechanisms to influence the folding and disposition of chromosomes within the nucleus. The localization of many proteins is also heterogeneous within the nucleus. Therefore, chromosome folding and the localization of proteins leads to a model in which individual genes are positioned in distinct protein environments that can affect their transcriptional state. We focus here on the spatial organization of the nucleus and how it impacts upon gene expression.
Collapse
Affiliation(s)
- Lauren Meldi
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | | |
Collapse
|
21
|
Lan D, Tang C, Li M, Yue H. Screening and identification of differentially expressed genes from chickens infected with Newcastle disease virus by suppression subtractive hybridization. Avian Pathol 2010; 39:151-9. [PMID: 20544419 DOI: 10.1080/03079451003716383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Newcastle disease is an important viral infectious disease caused by Newcastle disease virus (NDV), which leads to severe economic losses in the poultry industry worldwide. The molecular mechanisms involved in the pathogenesis of NDV and the host-directed antiviral responses remain poorly understood. In this study, we screened and identified the differentially expressed transcripts from chicken spleen 36 h post NDV infection using suppression subtractive hybridization (SSH). From the SSH library, we obtained 140 significant differentially expressed sequence tags (ESTs), which could be divided into three categories: high homology genes (58), high homology ESTs (62) and novel ESTs (20). The 58 high homology genes could be grouped into nine clusters based on the best known function of their protein products, which involved signalling transduction (HSPC166, PDE7B, GRIA4, GARNL1), transcriptional regulation (ANP32A, LOC423724, SATB1, QKI, ETV6), cellular molecular dynamics (MYLK, MYO7A, DCTN6), cytoskeleton (LAMA4, LAMC1, COL4A1), stress response (DNAJC15, CIRBP), immune response (TIA1, TOX, CMIP), metabolism (RPS15A, RPL32, GLUT8, CYPR21, DPYD, LOC417295), oxidation-reduction (TXN, MSRB3, GCLC), and others. In addition, we found that the 20 novel ESTs provide a clue for the discovery of some new genes associated with infection. In summary, our findings demonstrate previously unrecognized changes in gene transcription that are associated with NDV infection in vivo, and many differentially expressed genes identified in the study clearly merit further investigation. Our data provide new insights into better understanding the molecular mechanism of host-NDV interaction.
Collapse
Affiliation(s)
- Daoliang Lan
- College of Life Science and Technology, Southwest University for Nationality, Chengdu, People's Republic of China
| | | | | | | |
Collapse
|
22
|
CD22 EXON 12 deletion as a pathogenic mechanism of human B-precursor leukemia. Proc Natl Acad Sci U S A 2010; 107:16852-7. [PMID: 20841423 DOI: 10.1073/pnas.1007896107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Here, we report that primary leukemic cells from infants with newly diagnosed B-precursor leukemia express a truncated and functionally defective CD22 coreceptor protein that is unable to transmit apoptotic signals because it lacks most of the intracellular domain, including the key regulatory signal transduction elements and all of the cytoplasmic tyrosine residues. Expression of this structurally and functionally abnormal CD22 protein is associated with a very aggressive in vivo growth of patients' primary leukemia cells causing disseminated overt leukemia in SCID mice. The abnormal CD22 coreceptor is encoded by a profoundly aberrant mRNA arising from a splicing defect that causes the deletion of exon 12 (c.2208-c.2327) (CD22ΔE12) and results in a truncating frameshift mutation. The splicing defect is associated with multiple homozygous mutations within a 132-bp segment of the intronic sequence between exons 12 and 13. These mutations cause marked changes in the predicted secondary structures of the mutant CD22 pre-mRNA sequences that affect the target motifs for the splicing factors hnRNP-L, PTB, and PCBP that are up-regulated in infant leukemia cells. Forced expression of the mutant CD22ΔE12 protein in transgenic mice perturbs B-cell development, as evidenced by B-precursor/B-cell hyperplasia, and corrupts the regulation of gene expression, causing reduced expression levels of several genes with a tumor suppressor function. We further show that CD22ΔE12-associated unique gene expression signature is a discriminating feature of newly diagnosed infant leukemia patients. These striking findings implicate CD22ΔE12 as a previously undescribed pathogenic mechanism in human B-precursor leukemia.
Collapse
|
23
|
Phosphorylation-dependent interaction of SATB1 and PIAS1 directs SUMO-regulated caspase cleavage of SATB1. Mol Cell Biol 2010; 30:2823-36. [PMID: 20351170 DOI: 10.1128/mcb.01603-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Special AT-rich sequence-binding protein 1 (SATB1) is a tissue-restricted genome organizer that provides a key link between DNA loop organization, chromatin modification/remodeling, and transcription factor association at matrix attachment regions (MARs). The SUMO E3 ligase PIAS1 enhances SUMO conjugation to SATB1 lysine-744, and this modification regulates caspase-6 mediated cleavage of SATB1 at promyelocytic leukemia nuclear bodies (PML NBs). Since this regulated caspase cleavage occurs on only a subset of SATB1, and the products are relatively stable, proteolysis likely mediates cellular processes other than programmed cell death. However, the mechanism for the spatial and temporal regulation of SATB1 sumoylation and caspase cleavage is not known. Here we report that these processes are controlled by SATB1 phosphorylation; specifically, PIAS1 interaction with SATB1 is inhibited by phosphorylation. Mutagenesis studies identified interaction of the PIAS SAP (scaffold attachment factor-A/B/acinus/PIAS) motif with SATB1 N-terminal sequences. Notably, phosphorylation of SATB1 at threonine-188 regulates its interaction with PIAS1. Sequences near this phosphorylation site, LXXLL (residues 193 to 197), appear to be conserved among a subset of SUMO substrate proteins. Thus, this motif may be commonly involved in interaction with the PIAS SAP, and phosphorylation may similarly inhibit some of these substrates by preventing their interaction with the ligase.
Collapse
|
24
|
Wang TY, Han ZM, Chai YR, Zhang JH. A mini review of MAR-binding proteins. Mol Biol Rep 2010; 37:3553-60. [PMID: 20174991 DOI: 10.1007/s11033-010-0003-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 02/08/2010] [Indexed: 02/08/2023]
Abstract
Genomic DNA encompasses several levels of organization, the nuclear matrix mediates the formation of DNA loop domains that are anchored to matrix attachment regions (MARs). By means of specific interaction with MAR binding proteins (MARBPs), MAR plays an important regulation role in enhancing transgene expression, decreasing expression variation among individuals of different transformants and serving as the replication origin. Through these years, some MARBPs have been identified and characterized from humans, plants, animals and algae so far and the list is growing. Most of MARBPs exist in a co-repressor/co-activator complex and involve in chromosome folding, regulation of gene expression, influencing cell development and inducing cell apoptosis. This review covers recent advances that have contributed to our understanding of MARBPs.
Collapse
Affiliation(s)
- Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, Henan, 453003, People's Republic of China.
| | | | | | | |
Collapse
|
25
|
Sreenath K, Pavithra L, Singh S, Sinha S, Dash PK, Siddappa NB, Ranga U, Mitra D, Chattopadhyay S. Nuclear matrix protein SMAR1 represses HIV-1 LTR mediated transcription through chromatin remodeling. Virology 2010; 400:76-85. [PMID: 20153010 DOI: 10.1016/j.virol.2010.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 12/30/2009] [Accepted: 01/12/2010] [Indexed: 01/08/2023]
Abstract
Nuclear Matrix and MARs have been implicated in the transcriptional regulation of host as well as viral genes but their precise role in HIV-1 transcription remains unclear. Here, we show that >98% of HIV sequences contain consensus MAR element in their promoter. We show that SMAR1 binds to the LTR MAR and reinforces transcriptional silencing by tethering the LTR MAR to nuclear matrix. SMAR1 associated HDAC1-mSin3 corepressor complex is dislodged from the LTR upon cellular activation by PMA/TNFalpha leading to an increase in the acetylation and a reduction in the trimethylation of histones, associated with the recruitment of RNA Polymerase II on the LTR. Overexpression of SMAR1 lead to reduction in LTR mediated transcription, both in a Tat dependent and independent manner, resulting in a decreased virion production. These results demonstrate the role of SMAR1 in regulating viral transcription by alternative compartmentalization of LTR between the nuclear matrix and chromatin.
Collapse
Affiliation(s)
- Kadreppa Sreenath
- National Centre for Cell science, University of Pune Campus, Ganeshkhind, Pune 411007, Maharashtra, India
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Patani N, Jiang W, Mansel R, Newbold R, Mokbel K. The mRNA expression of SATB1 and SATB2 in human breast cancer. Cancer Cell Int 2009; 9:18. [PMID: 19642980 PMCID: PMC2731048 DOI: 10.1186/1475-2867-9-18] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 07/30/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND SATB1 is a nuclear protein that has been recently reported to be a 'genome organizer' which delineates specific epigenetic modifications at target gene loci, directly up-regulating metastasis-associated genes while down-regulating tumor-suppressor genes. In this study, the level of mRNA expression of SATB1 and SATB2 were assessed in normal and malignant breast tissue in a cohort of women with breast cancer and correlated to conventional clinico-pathological parameters. MATERIALS AND METHODS Breast cancer tissues (n = 115) and normal background tissues (n = 31) were collected immediately after excision during surgery. Following RNA extraction, reverse transcription was carried out and transcript levels were determined using real-time quantitative PCR and normalized against beta-actin expression. Transcript levels within the breast cancer specimens were compared to the normal background tissues and analyzed against TNM stage, nodal involvement, tumour grade and clinical outcome over a 10 year follow-up period. RESULTS The levels of SATB1 were higher in malignant compared with normal breast tissue (p = 0.0167). SATB1 expression increased with increasing TNM stage (TNM1 vs. TNM2 p = 0.0264), increasing tumour grade (grade1 vs. grade 3 p = 0.017; grade 2 vs. grade 3 p = 0.0437; grade 1 vs. grade 2&3 p = 0.021) and Nottingham Prognostic Index (NPI) (NPI-1 vs. NPI-3 p = 0.0614; NPI-2 vs. NPI-3 p = 0.0495). Transcript levels were associated with oestrogen receptor (ER) positivity (ER(-) vs. ER(+) p = 0.046). SABT1 expression was also significantly correlated with downstream regulated genes IL-4 and MAF-1 (Pearson's correlation coefficient r = 0.21 and r = 0.162) and SATB2 (r = 0.506). After a median follow up of 10 years, there was a trend for higher SATB1 expression to be associated with shorter overall survival (OS). Higher levels of SATB2 were also found in malignant compared to background tissue (p = 0.049). SATB2 expression increased with increasing tumour grade (grade 1 vs. grade 3 p = 0.035). SATB2 was associated with ER positivity (ER(-) vs. ER(+) p = 0.0283) within ductal carcinomas. Higher transcript levels showed a significant association with poorer OS (p = 0.0433). CONCLUSION SATB1 mRNA expression is significantly associated with poor prognostic parameters in breast cancer, including increasing tumour grade, TNM stage and NPI. SATB2 mRNA expression is significantly associated with increasing tumour grade and poorer OS. These results are consistent with the notion that SATB1 acts as a 'master genome organizer' in human breast carcinogenesis.
Collapse
Affiliation(s)
- Neill Patani
- Department of Breast Surgery, St. George's University of London, London, UK
- The London Breast Institute, The Princess Grace Hospital, London, UK
| | - Wen Jiang
- Metastasis and Angiogenesis Research Group, University Department of Surgery, Cardiff University, Cardiff, UK
| | - Robert Mansel
- Metastasis and Angiogenesis Research Group, University Department of Surgery, Cardiff University, Cardiff, UK
| | - Robert Newbold
- The Brunel Institute of Cancer Genetics and Pharmacogenomics, London, UK
| | - Kefah Mokbel
- Department of Breast Surgery, St. George's University of London, London, UK
- The London Breast Institute, The Princess Grace Hospital, London, UK
- The Brunel Institute of Cancer Genetics and Pharmacogenomics, London, UK
| |
Collapse
|
27
|
Mladenov EV, Kalev PS, Anachkova BB. Nuclear matrix binding site in the Rad51 recombinase. J Cell Physiol 2009; 219:202-8. [DOI: 10.1002/jcp.21665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Gong H, Wang Z, Zhao GW, Lv X, Wei GH, Wang L, Liu DP, Liang CC. SATB1 regulates beta-like globin genes through matrix related nuclear relocation of the cluster. Biochem Biophys Res Commun 2009; 383:11-5. [PMID: 19332023 DOI: 10.1016/j.bbrc.2009.03.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 03/13/2009] [Indexed: 11/28/2022]
Abstract
The nuclear location and relocation of genes play crucial regulatory roles in gene expression. SATB1, a MAR-binding protein, has been found to regulate beta-like globin genes through chromatin remodeling. In this study, we generated K562 cells over-expressing wild-type or nuclear matrix targeting sequences (NMTS)-deficient SATB1 and found that like wild-type SATB1, NMTS-deficient SATB1 induces out loop of beta-globin cluster from its chromosome territory (CT), while it is unable to associate the cluster with the nuclear matrix as wild-type SATB1 does and had no regulatory functions to the beta-globin cluster. Besides, our data showed that the transacting factor occupancies and chromatin modifications at beta-globin cluster were differentially affected by wild-type and NMTS-deficient SATB1. These results indicate that SATB1 regulates beta-like globin genes at the nuclear level interlaced with chromatin and DNA level, and emphasize the nuclear matrix binding activity of SATB1 to its regulatory function.
Collapse
Affiliation(s)
- Huan Gong
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Dong Dan San Tiao, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Shiue CN, Berkson RG, Wright APH. c-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells. Oncogene 2009; 28:1833-42. [PMID: 19270725 DOI: 10.1038/onc.2009.21] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
c-Myc is an oncogenic transcription factor capable of activating transcription by all three nuclear RNA polymerases, thus acting as a high-level coordinator of protein synthesis capacity and cell growth rate. c-Myc recruits RNA polymerase I-related transcription factors to the rDNA when quiescent cells are stimulated to re-enter the cell cycle. Using a model system of cell lines with variable c-Myc status, we show that on stimulation c-Myc rapidly induces gene loop structures in rDNA chromatin that juxtapose upstream and downstream rDNA sequences. c-Myc activation is both necessary and sufficient for this change in rDNA chromatin conformation. c-Myc activation induces association of TTF-1 with the rDNA, and c-Myc is physically associated with induced rDNA gene loops. The origins of two or more rDNA gene loops are closely juxtaposed, suggesting the possibility that c-Myc induces nucleolar chromatin hubs. Induction of rDNA gene loops may be an early step in the reprogramming of quiescent cells as they re-enter the growth cycle.
Collapse
Affiliation(s)
- C-N Shiue
- Södertörns Högskola and Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | | |
Collapse
|
30
|
Mertz JA, Lozano MM, Dudley JP. Rev and Rex proteins of human complex retroviruses function with the MMTV Rem-responsive element. Retrovirology 2009; 6:10. [PMID: 19192308 PMCID: PMC2661877 DOI: 10.1186/1742-4690-6-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 02/03/2009] [Indexed: 11/11/2022] Open
Abstract
Background Mouse mammary tumor virus (MMTV) encodes the Rem protein, an HIV Rev-like protein that enhances nuclear export of unspliced viral RNA in rodent cells. We have shown that Rem is expressed from a doubly spliced RNA, typical of complex retroviruses. Several recent reports indicate that MMTV can infect human cells, suggesting that MMTV might interact with human retroviruses, such as human immunodeficiency virus (HIV), human T-cell leukemia virus (HTLV), and human endogenous retrovirus type K (HERV-K). In this report, we test whether the export/regulatory proteins of human complex retroviruses will increase expression from vectors containing the Rem-responsive element (RmRE). Results MMTV Rem, HIV Rev, and HTLV Rex proteins, but not HERV-K Rec, enhanced expression from an MMTV-based reporter plasmid in human T cells, and this activity was dependent on the RmRE. No RmRE-dependent reporter gene expression was detectable using Rev, Rex, or Rec in HC11 mouse mammary cells. Cell fractionation and RNA quantitation experiments suggested that the regulatory proteins did not affect RNA stability or nuclear export in the MMTV reporter system. Rem had no demonstrable activity on export elements from HIV, HTLV, or HERV-K. Similar to the Rem-specific activity in rodent cells, the RmRE-dependent functions of Rem, Rev, or Rex in human cells were inhibited by a dominant-negative truncated nucleoporin that acts in the Crm1 pathway of RNA and protein export. Conclusion These data argue that many retroviral regulatory proteins recognize similar complex RNA structures, which may depend on the presence of cell-type specific proteins. Retroviral protein activity on the RmRE appears to affect a post-export function of the reporter RNA. Our results provide additional evidence that MMTV is a complex retrovirus with the potential for viral interactions in human cells.
Collapse
Affiliation(s)
- Jennifer A Mertz
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
| | | | | |
Collapse
|
31
|
SATB1 is required for CD8 coreceptor reversal. Mol Immunol 2008; 46:207-11. [PMID: 18722016 DOI: 10.1016/j.molimm.2008.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 07/06/2008] [Indexed: 01/19/2023]
Abstract
Intrathymic signals induce the differentiation of immature CD4(+)CD8(+) double positive (DP) thymocytes into mature CD4(+) or CD8(+) single positive (SP) T cells. The transcriptional mechanism by which CD8 lineage is determined is not fully understood. The best evidence, which favors the kinetic signaling/coreceptor reversal model, indicates that signaled DP thymocytes terminate CD8 transcription prior to their subsequent re-initiation of CD8 transcription and ultimate differentiation into CD8SP T cells. We and others have shown that CD8 lineage commitment is severely perturbed in mice in which expression of the transcription factor SATB1 is either conventionally knocked out or T cell-specifically knocked down. Here, we demonstrate that, as with normal thymocytes, cultured SATB1-deficient DP thymocytes inactivate CD8 coreceptor transcription following receipt of signals (PMA plus ionomycin) that mimic TCR-mediated positive selection. However, this terminated CD8 transcription is not re-initiated by signals (IL-7) conducive to CD8 differentiation in SATB1-deficient DP. We show that SATB1 specifically binds to a cis-regulatory element within the CD8 enhancer (E8(III)) known to be required for coreceptor reversal. A requirement in CD8 coreceptor reversal identifies SATB1 as an essential trans-regulator of CD8 lineage fate, whose action may be mediated via recruitment to the E8(III) DP enhancer.
Collapse
|
32
|
Tan JAT, Sun Y, Song J, Chen Y, Krontiris TG, Durrin LK. SUMO conjugation to the matrix attachment region-binding protein, special AT-rich sequence-binding protein-1 (SATB1), targets SATB1 to promyelocytic nuclear bodies where it undergoes caspase cleavage. J Biol Chem 2008; 283:18124-34. [PMID: 18408014 DOI: 10.1074/jbc.m800512200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SATB1 (special AT-rich sequence-binding protein-1) provides a key link between DNA loop organization, chromatin modification/remodeling, and association of transcription factors at matrix attachment regions (MARs). To investigate the role of SATB1 in cellular events, we performed a yeast two-hybrid screen that identified SUMO-1, Ubc9, and protein inhibitor of activated STAT (PIAS) family members as SATB1 interaction partners. These proteins, working in concert, enhanced SUMO conjugation to lysine-744 of SATB1. Overexpression of SUMO or PIAS in Jurkat cells, which express high levels of endogenous SATB1, exhibited enhanced caspase cleavage of this MAR-associating protein. Sumoylation-deficient SATB1 (SATB1(K744R)) failed to display the characteristic caspase cleavage pattern; however, fusion of SUMO in-frame to SATB1(K744R) restored cleavage. A SUMO-independent interaction of inactive caspase-6 and SATB1 was noted. A subset of total cellular SATB1 localized into promyelocytic leukemia nuclear bodies where enhanced SATB1 cleavage was detected subsequent to caspase activation. These results reveal a novel sumoylation-directed caspase cleavage of this key regulatory molecule. The role of regulated proteolysis of SATB1 may be to control transcription in immune cells during normal cell functions or to assist in efficient and rapid clearance of nonfunctional or potentially damaging immune cells.
Collapse
Affiliation(s)
- Joseph-Anthony T Tan
- Division of Molecular Medicine, Division of Immunology, and Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
33
|
Purbey PK, Singh S, Kumar PP, Mehta S, Ganesh KN, Mitra D, Galande S. PDZ domain-mediated dimerization and homeodomain-directed specificity are required for high-affinity DNA binding by SATB1. Nucleic Acids Res 2008; 36:2107-22. [PMID: 18187506 PMCID: PMC2367706 DOI: 10.1093/nar/gkm1151] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To better understand DNA recognition and transcription activity by SATB1, the T-lineage-enriched chromatin organizer and transcription factor, we have determined its optimal DNA-binding sequence by random oligonucleotide selection. The consensus SATB1-binding sequence (CSBS) comprises a palindromic sequence in which two identical AT-rich half-sites are arranged as inverted repeats flanking a central cytosine or guanine. Strikingly, the CSBS half-site is identical to the conserved element ‘TAATA’ bound by the known homeodomains (HDs). Furthermore, we show that the high-affinity binding of SATB1 to DNA is dimerization-dependent and the HD also binds in similar fashion. Binding studies using HD-lacking SATB1 and binding target with increased spacer between the two half-sites led us to propose a model for SATB1–DNA complex in which the HDs bind in an antiparallel fashion to the palindromic consensus element via minor groove, bridged by the PDZ-like dimerization domain. CSBS-driven in vivo reporter analysis indicated that SATB1 acts as a repressor upon binding to the CSBS and most of its derivatives and the extent of repression is proportional to SATB1's binding affinity to these sequences. These studies provide mechanistic insights into the mode of DNA binding and its effect on the regulation of transcription by SATB1.
Collapse
|
34
|
Galande S, Purbey PK, Notani D, Kumar PP. The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. Curr Opin Genet Dev 2007; 17:408-14. [PMID: 17913490 DOI: 10.1016/j.gde.2007.08.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 07/27/2007] [Accepted: 08/17/2007] [Indexed: 02/07/2023]
Abstract
Compartmentalized distribution of functional components is a hallmark of the eukaryotic nucleus. Technological advances in recent years have provided unprecedented insights into the role of chromatin organization and interactions of various structural-functional components toward gene regulation. SATB1, the global chromatin organizer and transcription factor, has emerged as a key factor integrating higher-order chromatin architecture with gene regulation. Studies in recent years have unraveled the role of SATB1 in organization of chromatin 'loopscape' and its dynamic nature in response to physiological stimuli. SATB1 organizes the MHC class-I locus into distinct chromatin loops by tethering MARs to nuclear matrix at fixed distances. Silencing of SATB1 mimics the effects of IFNgamma treatment on chromatin loop architecture of the MHC class-I locus and altered expression of genes within the locus. At genome-wide level, SATB1 seems to play a role in organization of the transcriptionally poised chromatin.
Collapse
Affiliation(s)
- Sanjeev Galande
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | | | | | | |
Collapse
|
35
|
Abstract
T lymphocyte development is directed by a gene-expression program that occurs in the complex nucleoprotein environment of chromatin. This review examines basic principles of chromatin regulation and evaluates ongoing progress toward understanding how the chromatin template is manipulated to control gene expression and gene recombination in developing thymocytes. Special attention is devoted to the loci encoding T cell receptors alpha and beta, T cell coreceptors CD4 and CD8, and the enzyme terminal deoxynucleotidyl transferase. The properties of SATB1, a notable organizer of thymocyte chromatin, are also addressed.
Collapse
Affiliation(s)
- Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710 USA.
| |
Collapse
|
36
|
Kumar PP, Mehta S, Purbey PK, Notani D, Jayani RS, Purohit HJ, Raje DV, Ravi DS, Bhonde RR, Mitra D, Galande S. SATB1-binding sequences and Alu-like motifs define a unique chromatin context in the vicinity of human immunodeficiency virus type 1 integration sites. J Virol 2007; 81:5617-27. [PMID: 17376900 PMCID: PMC1900249 DOI: 10.1128/jvi.01405-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 03/07/2007] [Indexed: 02/07/2023] Open
Abstract
Retroviral integration has recently been shown to be nonrandom, favoring transcriptionally active regions of chromatin. However, the mechanism for integration site selection by retroviruses is not clear. We show here the occurrence of Alu-like motifs in the sequences flanking the reported viral integration sites that are significantly different from those obtained from the randomly picked sequences from the human genome, suggesting that unique primary sequence features exist in the genomic regions targeted by human immunodeficiency virus type 1 (HIV-1). Additionally, these sequences were preferentially bound by SATB1, the T lineage-restricted chromatin organizer, in vitro and in vivo. Alu repeats make up nearly 10% of the human genome and have been implicated in the regulation of transcription. To specifically isolate sequences flanking the viral integration sites and also harboring both Alu-like repeats and SATB1-binding sites, we combined chromatin immunoprecipitation with sequential PCRs. The cloned sequences flanking HIV-1 integration sites were specifically immunoprecipitated and amplified from the pool of anti-SATB1-immunoprecipitated genomic DNA fragments isolated from HIV-1 NL4.3-infected Jurkat T-cell chromatin. Moreover, many of these sequences were preferentially partitioned in the DNA associated tightly with the nuclear matrix and not in the chromatin loops. Strikingly, many of these regions were disfavored for integration when SATB1 was silenced, providing unequivocal evidence for its role in HIV-1 integration site selection. We propose that definitive sequence features such as the Alu-like motifs and SATB1-binding sites provide a unique chromatin context in vivo which is preferentially targeted by the HIV-1 integration machinery.
Collapse
Affiliation(s)
- Pavan P Kumar
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune 411007, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zaidi SK, Young DW, Javed A, Pratap J, Montecino M, van Wijnen A, Lian JB, Stein JL, Stein GS. Nuclear microenvironments in biological control and cancer. Nat Rev Cancer 2007; 7:454-63. [PMID: 17522714 DOI: 10.1038/nrc2149] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleic acids and regulatory proteins are compartmentalized in microenvironments within the nucleus. This subnuclear organization may support convergence and the integration of physiological signals for the combinatorial control of gene expression, DNA replication and repair. Nuclear organization is modified in many cancers. There are cancer-related changes in the composition, organization and assembly of regulatory complexes at intranuclear sites. Mechanistic insights into the temporal and spatial organization of machinery for gene expression within the nucleus, which is compromised in tumours, provide a novel platform for diagnosis and therapy.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- University of Massachusetts Medical School and UMASS Memorial Cancer Center, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Martins RP, Krawetz SA. Decondensing the protamine domain for transcription. Proc Natl Acad Sci U S A 2007; 104:8340-5. [PMID: 17483471 PMCID: PMC1895951 DOI: 10.1073/pnas.0700076104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Potentiation is the transition from higher-order, transcriptionally silent chromatin to a less condensed state requisite to accommodating the molecular elements required for transcription. To examine the underlying mechanism of potentiation an approximately 13.7-kb mouse protamine domain of increased nuclease sensitivity flanked by 5' and 3' nuclear matrix attachment regions was defined. The potentiated DNase I-sensitive region is formed at the pachytene spermatocyte stage with the recruitment to the nuclear matrix of a large approximately 9.6-kb region just upstream of the domain. Attachment is then specified in the transcribing round spermatid, recapitulating the organization of the human cluster. In comparison to other modifiers that have no effect, i.e., histone methylation, HP1, and SATB1, topoisomerase engages nuclear matrix binding as minor marks of histone acetylation appear. Reorganization is marked by specific sites of topoisomerase II activity that are initially detected in leptotene-zygotene spermatocytes just preceding the formation of the DNase I-sensitive domain. This has provided a likely model of the events initiating potentiation, i.e., the opening of a chromatin domain.
Collapse
Affiliation(s)
| | - Stephen A. Krawetz
- *Center for Molecular Medicine and Genetics and
- Department of Obstetrics and Gynecology, School of Medicine and Institute for Scientific Computing, Wayne State University, Detroit, MI 48201
- To whom correspondence should be addressed at:
253 C. S. Mott Center, 275 East Hancock Avenue, Detroit, MI 48201. E-mail:
| |
Collapse
|
39
|
Kim D, Probst L, Das C, Tucker PW. REKLES is an ARID3-restricted multifunctional domain. J Biol Chem 2007; 282:15768-77. [PMID: 17400556 DOI: 10.1074/jbc.m700397200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bright/Dril1/ARID3a is a B cell-specific, matrix association (or attachment) region-binding transcriptional regulator of immunoglobulin heavy chain genes and of E2F1-dependent cell cycle progression. Bright contains a central DNA binding domain termed ARID (AT-rich interacting domain) and a C-terminal region termed REKLES (for a conserved amino acid motif). The ARID domain has been identified in seven highly conserved families of metazoan proteins (ARID1-5 and JARID1-2), whereas REKLES is found only in the ARID3 subfamily (composed of Bright/ARID3a, Bdp/ARID3b, and Bright-like/ARID3c). REKLES consists of two subdomains: a modestly conserved N-terminal REKLESalpha and a highly conserved (among ARID3 orthologous proteins) C-terminal REKLESbeta. Previously we showed that Bright undergoes nucleocytoplasmic shuttling and that REKLESalpha and -beta were required, respectively, for nuclear import and Crm1-dependent nuclear export. Here we show that Bright further requires REKLESbeta for self-association or paralogue association and for nuclear matrix targeting. REK-LES promotes and regulates the extent of Bright multimerization, which occurs in the absence or presence of target DNA and is necessary for specific DNA binding. REKLESbeta-mediated interaction of Bright with Bdp, which localizes strictly to the nucleus, traps Bright within the nucleus via neutralization of its nuclear export activity. These results identify REKLES as a multifunctional domain that has co-evolved with and regulates functional properties of the ARID3 DNA binding domain.
Collapse
Affiliation(s)
- Dongkyoon Kim
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas, Austin, Texas 78712-0162, USA
| | | | | | | |
Collapse
|
40
|
Mertz JA, Kobayashi R, Dudley JP. ALY is a common coactivator of RUNX1 and c-Myb on the type B leukemogenic virus enhancer. J Virol 2007; 81:3503-13. [PMID: 17229714 PMCID: PMC1866045 DOI: 10.1128/jvi.02253-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type B leukemogenic virus (TBLV), a mouse mammary tumor virus (MMTV) variant, often induces T-cell leukemias and lymphomas by c-myc activation following viral DNA integration. Transfection assays using a c-myc reporter plasmid indicated that the TBLV long terminal repeat (LTR) enhancer is necessary for T-cell-specific increases in basal reporter activity. The sequence requirements for this effect were studied using mutations of the 62-bp enhancer region in an MMTV LTR reporter vector. Deletion of a nuclear factor A-binding site dramatically reduced reporter activity in Jurkat T cells. However, a 41-bp enhancer missing the RUNX1 site still retained minimal enhancer function. DNA affinity purification using a TBLV enhancer oligomer containing the RUNX1 binding site followed by mass spectrometry resulted in the identification of ALY. Subsequent experiments focused on the reconstitution of enhancer activity in epithelial cells. ALY overexpression synergized with RUNX1B on TBLV enhancer activity, and synergism required the RUNX1B-binding site. A predicted c-Myb binding site in the enhancer was confirmed after c-myb overexpression elevated TBLV LTR reporter activity, and overexpression of c-Myb and RUNX1B together showed additive effects on reporter gene levels. ALY also synergized with c-Myb, and coimmunoprecipitation experiments demonstrated an interaction between ALY and c-Myb. These experiments suggest a central role for ALY in T-cell enhancer function and oncogene activation.
Collapse
Affiliation(s)
- Jennifer A Mertz
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, One University Station, A5000 24th Street and Speedway, ESB 226, Austin, TX 78712-0162, USA
| | | | | |
Collapse
|
41
|
Kumar PP, Bischof O, Purbey PK, Notani D, Urlaub H, Dejean A, Galande S. Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nat Cell Biol 2006; 9:45-56. [PMID: 17173041 DOI: 10.1038/ncb1516] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 11/08/2006] [Indexed: 02/07/2023]
Abstract
The function of the subnuclear structure the promyelocytic leukaemia (PML) body is unclear largely because of the functional heterogeneity of its constituents. Here, we provide the evidence for a direct link between PML, higher-order chromatin organization and gene regulation. We show that PML physically and functionally interacts with the matrix attachment region (MAR)-binding protein, special AT-rich sequence binding protein 1 (SATB1) to organize the major histocompatibility complex (MHC) class I locus into distinct higher-order chromatin-loop structures. Interferon gamma (IFNgamma) treatment and silencing of either SATB1 or PML dynamically alter chromatin architecture, thus affecting the expression profile of a subset of MHC class I genes. Our studies identify PML and SATB1 as a regulatory complex that governs transcription by orchestrating dynamic chromatin-loop architecture.
Collapse
Affiliation(s)
- Pavan P Kumar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | | | | | | | | | | |
Collapse
|
42
|
Maitra U, Seo J, Lozano MM, Dudley JP. Differentiation-induced cleavage of Cutl1/CDP generates a novel dominant-negative isoform that regulates mammary gene expression. Mol Cell Biol 2006; 26:7466-78. [PMID: 17015474 PMCID: PMC1636867 DOI: 10.1128/mcb.01083-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cutl1/CCAAT displacement protein (CDP) is a transcriptional repressor of mouse mammary tumor virus (MMTV), a betaretrovirus that is a paradigm for mammary-specific gene regulation. Virgin mammary glands have high levels of full-length CDP (200 kDa) that binds to negative regulatory elements (NREs) to repress MMTV transcription. During late pregnancy, full-length CDP levels decline, and a 150-kDa form of CDP (CDP150) appears concomitantly with a decline in DNA-binding activity for the MMTV NREs and an increase in viral transcripts. Developmental regulation of CDP was recapitulated in the normal mammary epithelial line, SCp2. Western blotting of tissue and SCp2 nuclear extracts confirmed that CDP150 lacks the C terminus. Transfection of tagged full-length and mutant cDNAs into SCp2 cells and use of a cysteine protease inhibitor demonstrated that CDP is proteolytically processed within the homeodomain to remove the C terminus during differentiation. Mixing of virgin and lactating mammary extracts or transfection of mutant CDP cDNAs missing the homeodomain into cells containing full-length CDP also abrogated NRE binding. Loss of DNA binding correlated with increased expression of MMTV and other mammary-specific genes, indicating that CDP150 is a developmentally induced dominant-negative protein. Thus, a novel posttranslational process controls Cutl1/CDP activity and gene expression in the mammary gland.
Collapse
Affiliation(s)
- Urmila Maitra
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin, 24th and Speedway, ESB 226, Austin, TX 78712-0162, USA
| | | | | | | |
Collapse
|
43
|
Pavan Kumar P, Purbey PK, Sinha CK, Notani D, Limaye A, Jayani RS, Galande S. Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo. Mol Cell 2006; 22:231-43. [PMID: 16630892 DOI: 10.1016/j.molcel.2006.03.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/19/2006] [Accepted: 03/10/2006] [Indexed: 12/14/2022]
Abstract
SATB1 regulates gene expression by acting as a "docking site" for several chromatin remodeling enzymes and also by recruiting corepressors (HDACs) or coactivators (HATs) directly to promoters. However, how these contrasting effectors act at the level of SATB1 is not clear. We show here that phosphorylation by PKC acts as a switch to determine whether SATB1 interacts with HDAC1 or PCAF. Phosphorylation and dephosphorylation of SATB1 exerted opposing effects on MAR-linked reporter activity in vivo. SATB1 interacted with both CBP/p300 and PCAF HATs; however, these interactions resulted in the acetylation of the PDZ-like domain of SATB1 by PCAF but not by CBP/p300 and resulted in loss of its DNA binding activity. Using the T cell activation model, we provide mechanistic insights into how IL-2 transcription is reciprocally governed by the phosphorylation status of SATB1 and propose that a similar mechanism may dictate the ability of SATB1 to function as a global regulator.
Collapse
Affiliation(s)
- P Pavan Kumar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | | | | | | | | | | |
Collapse
|
44
|
Tetko IV, Haberer G, Rudd S, Meyers B, Mewes HW, Mayer KFX. Spatiotemporal expression control correlates with intragenic scaffold matrix attachment regions (S/MARs) in Arabidopsis thaliana. PLoS Comput Biol 2006; 2:e21. [PMID: 16604187 PMCID: PMC1420657 DOI: 10.1371/journal.pcbi.0020021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 02/07/2006] [Indexed: 11/18/2022] Open
Abstract
Scaffold/matrix attachment regions (S/MARs) are essential for structural organization of the chromatin within the nucleus and serve as anchors of chromatin loop domains. A significant fraction of genes in Arabidopsis thaliana contains intragenic S/MAR elements and a significant correlation of S/MAR presence and overall expression strength has been demonstrated. In this study, we undertook a genome scale analysis of expression level and spatiotemporal expression differences in correlation with the presence or absence of genic S/MAR elements. We demonstrate that genes containing intragenic S/MARs are prone to pronounced spatiotemporal expression regulation. This characteristic is found to be even more pronounced for transcription factor genes. Our observations illustrate the importance of S/MARs in transcriptional regulation and the role of chromatin structural characteristics for gene regulation. Our findings open new perspectives for the understanding of tissue- and organ-specific regulation of gene expression. Scaffold/matrix attachment regions (S/MARs) are AT-rich DNA sequences that mediate structural organization of the chromatin within the nucleus. These elements constitute anchor points of the DNA for the chromatin scaffold and serve to organize the chromatin into structural domains. Studies on individual genes led to the conclusion that the dynamic and complex organization of the chromatin mediated by S/MAR elements plays an important role in the regulation of gene expression. In addition to intergenic S/MARs, which likely exert import insulator effects, more than 2,000 intragenic S/MARs have been shown to be present within the Arabidopsis genome. In this study, the authors set out to analyze the effects of these intragenic S/MAR elements on the regulation of the genes affected. Making use of exhaustive and multidimensional expression datasets available for Arabidopsis, the authors analyzed overall expression differences and correlation of intragenic S/MARs with spatiotemporal expression of genes. On a genome scale, pronounced tissue- and organ-specific and developmental expression patterns of S/MAR-containing genes have been detected. Notably, transcription factor genes contain a significant higher portion of S/MARs. The pronounced difference in expression characteristics of S/MAR-containing genes emphasizes their functional importance and the importance of structural chromosomal characteristics for gene regulation in plants as well as within other eukaryotes.
Collapse
Affiliation(s)
- Igor V Tetko
- GSF National Research Center for Environment and Health, MIPS, Institute for Bioinformatics, Neuherberg, Germany
| | - Georg Haberer
- GSF National Research Center for Environment and Health, MIPS, Institute for Bioinformatics, Neuherberg, Germany
| | - Stephen Rudd
- Bioinformatics Group, Turku Centre for Biotechnology, Tykistokatu, Turku, Finland
| | - Blake Meyers
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, Newark, New Jersey, United States of America
| | - Hans-Werner Mewes
- GSF National Research Center for Environment and Health, MIPS, Institute for Bioinformatics, Neuherberg, Germany
- Department of Genome-Oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Klaus F. X Mayer
- GSF National Research Center for Environment and Health, MIPS, Institute for Bioinformatics, Neuherberg, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Moorefield KS, Yin H, Nichols TD, Cathcart C, Simmons SO, Horowitz JM. Sp2 localizes to subnuclear foci associated with the nuclear matrix. Mol Biol Cell 2006; 17:1711-22. [PMID: 16467376 PMCID: PMC1415311 DOI: 10.1091/mbc.e05-11-1063] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have reported that extracts prepared from many human and mouse cell lines show little or no Sp2 DNA-binding activity and that Sp2 has little or no capacity to stimulate transcription of promoters that are activated by Sp1, Sp3, and Sp4. Using an array of chimeric Sp1/Sp2 proteins we showed further that Sp2 DNA-binding activity and trans-activation are each negatively regulated in mammalian cells. As part of an ongoing effort to study Sp2 function and regulation we characterized its subcellular localization in comparison with other Sp-family members in fixed and live cells. We report that 1) Sp2 localizes largely within subnuclear foci associated with the nuclear matrix, and 2) these foci are distinct from promyelocytic oncogenic domains and appear to be stable during an 18-h time course of observation. Deletion analyses identified a 37 amino acid sequence spanning the first zinc-"finger" that is sufficient to direct nuclear matrix association, and this region also encodes a bipartite nuclear localization sequence. A second nuclear matrix targeting sequence is encoded within the Sp2 trans-activation domain. We conclude that Sp2 preferentially associates with the nuclear matrix and speculate that this subcellular localization plays an important role in the regulation of Sp2 function.
Collapse
Affiliation(s)
- K Scott Moorefield
- Graduate Program in Genomic Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | |
Collapse
|
46
|
Yamaguchi H, Tateno M, Yamasaki K. Solution Structure and DNA-binding Mode of the Matrix Attachment Region-binding Domain of the Transcription Factor SATB1 That Regulates the T-cell Maturation. J Biol Chem 2006; 281:5319-27. [PMID: 16371359 DOI: 10.1074/jbc.m510933200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SATB1 is a transcriptional regulator controlling the gene expression that is essential in the maturation of the immune T-cell. SATB1 binds to the nuclear matrix attachment regions of DNA, where it recruits histone deacetylase and represses transcription through a local chromatin remodeling. Here we determined the solution structure of the matrix attachment region-binding domain, possessing similarity to the CUT DNA-binding domain, of human SATB1 by NMR spectroscopy. The structure consists of five alpha-helices, in which the N-terminal four are arranged similarly to the four-helix structure of the CUT domain of hepatocyte nuclear factor 6alpha. By an NMR chemical shift perturbation analysis and by surface plasmon resonance analyses of SATB1 mutant proteins, an interface for DNA binding was revealed to be located at the third helix and the surrounding regions. Surface plasmon resonance experiments using groove-specific binding drugs and methylated DNAs indicated that the domain recognizes DNA from the major groove side. These observations suggested that SATB1 possesses a DNA-binding mode similar to that of the POU-specific DNA-binding domain, which is known to share structural similarity to the four-helix CUT domain.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Age Dimension Research Center, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | | | | |
Collapse
|