1
|
Osorno T, Arenas O, Ramírez-Suarez NJ, Echeverry FA, Gomez MDP, Nasi E. Light control of G protein signaling pathways by a novel photopigment. PLoS One 2018; 13:e0205015. [PMID: 30273391 PMCID: PMC6166976 DOI: 10.1371/journal.pone.0205015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/18/2018] [Indexed: 11/22/2022] Open
Abstract
Channelopsins and photo-regulated ion channels make it possible to use light to control electrical activity of cells. This powerful approach has lead to a veritable explosion of applications, though it is limited to changing membrane voltage of the target cells. An enormous potential could be tapped if similar opto-genetic techniques could be extended to the control of chemical signaling pathways. Photopigments from invertebrate photoreceptors are an obvious choice—as they do not bleach upon illumination -however, their functional expression has been problematic. We exploited an unusual opsin, pScop2, recently identified in ciliary photoreceptors of scallop. Phylogenetically, it is closer to vertebrate opsins, and offers the advantage of being a bi-stable photopigment. We inserted its coding sequence and a fluorescent protein reporter into plasmid vectors and demonstrated heterologous expression in various mammalian cell lines. HEK 293 cells were selected as a heterologous system for functional analysis, because wild type cells displayed the largest currents in response to the G-protein activator, GTP-γ-S. A line of HEK cells stably transfected with pScop2 was generated; after reconstitution of the photopigment with retinal, light responses were obtained in some cells, albeit of modest amplitude. In native photoreceptors pScop2 couples to Go; HEK cells express poorly this G-protein, but have a prominent Gq/PLC pathway linked to internal Ca mobilization. To enhance pScop2 competence to tap into this pathway, we swapped its third intracellular loop—important to confer specificity of interaction between 7TMDRs and G-proteins—with that of a Gq-linked opsin which we cloned from microvillar photoreceptors present in the same retina. The chimeric construct was evaluated by a Ca fluorescence assay, and was shown to mediate a robust mobilization of internal calcium in response to illumination. The results project pScop2 as a potentially powerful optogenetic tool to control signaling pathways.
Collapse
Affiliation(s)
- Tomás Osorno
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Oscar Arenas
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Fabio A. Echeverry
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - María del Pilar Gomez
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Enrico Nasi
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
2
|
Calcium activates the light-dependent conductance in melanopsin-expressing photoreceptors of amphioxus. Proc Natl Acad Sci U S A 2015; 112:7845-50. [PMID: 26056310 DOI: 10.1073/pnas.1420265112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Melanopsin, the photopigment of the "circadian" receptors that regulate the biological clock and the pupillary reflex in mammals, is homologous to invertebrate rhodopsins. Evidence supporting the involvement of phosphoinositides in light-signaling has been garnered, but the downstream effectors that control the light-dependent conductance remain unknown. Microvillar photoreceptors of the primitive chordate amphioxus also express melanopsin and transduce light via phospholipase-C, apparently not acting through diacylglycerol. We therefore examined the role of calcium in activating the photoconductance, using simultaneous, high time-resolution measurements of membrane current and Ca(2+) fluorescence. The light-induced calcium rise precedes the onset of the photocurrent, making it a candidate in the activation chain. Moreover, photolysis of caged Ca elicits an inward current of similar size, time course and pharmacology as the physiological photoresponse, but with a much shorter latency. Internally released calcium thus emerges as a key messenger to trigger the opening of light-dependent channels in melanopsin-expressing microvillar photoreceptors of early chordates.
Collapse
|
3
|
TRPC5 channel is the mediator of neurotrophin-3 in regulating dendritic growth via CaMKIIα in rat hippocampal neurons. J Neurosci 2012; 32:9383-95. [PMID: 22764246 DOI: 10.1523/jneurosci.6363-11.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neurotrophin-3 (NT-3) plays numerous important roles in the CNS and the elevation of intracellular Ca(2+) ([Ca(2+)](i)) is critical for these functions of NT-3. However, the mechanism by which NT-3 induces [Ca(2+)](i) elevation remains largely unknown. Here, we found that transient receptor potential canonical (TRPC) 5 protein and TrkC, the NT-3 receptor, exhibited a similar temporal expression in rat hippocampus and cellular colocalization in hippocampal neurons. Stimulation of the neurons by NT-3 induced a nonselective cation conductance and PLCγ-dependent [Ca(2+)](i) elevation, which were both blocked when TRPC5, but not TRPC6 channels, were inhibited. Moreover, the Ca(2+) influx through TRPC5 induced by NT-3 inhibited the neuronal dendritic growth through activation of calmodulin-dependent kinase (CaMK) IIα. In contrast, the Ca(2+) influx through TRPC6 induced by NT-4 promoted the dendritic growth. Thus, TRPC5 acts as a novel and specific mediator for NT-3 to regulate dendrite development through CaMKIIα.
Collapse
|
4
|
Berberián G, Podjarny A, DiPolo R, Beaugé L. Metabolic regulation of the squid nerve Na⁺/Ca²⁺ exchanger: recent kinetic, biochemical and structural developments. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 108:47-63. [PMID: 21964458 DOI: 10.1016/j.pbiomolbio.2011.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/30/2011] [Accepted: 09/13/2011] [Indexed: 11/25/2022]
Abstract
The Na⁺/Ca²⁺ exchangers are structural membrane proteins, essential for the extrusion of Ca²⁺ from most animal cells. Apart from the transport sites, they have several interacting ionic and metabolic sites located at the intracellular loop of the exchanger protein. One of these, the intracellular Ca²⁺ regulatory sites, are essential and must be occupied by Ca²⁺ to allow any type of ion (Na⁺ or Ca²⁺) translocation. Intracellular protons and Na⁺ are inhibitory by reducing the affinity of the regulatory sites for Ca²⁺; MgATP stimulates by antagonizing H⁺ and Na⁺. We have proposed a kinetic scheme to explain all ionic and metabolic regulation of the squid nerve Na⁺/Ca²⁺ exchanger. This model uniquely accounts for most of the new kinetic data provided here; however, none of the existing models can explain the trans effects of the Ca(i)²⁺-regulatory sites on external cation transport sites; i.e. all models are incomplete. MgATP up-regulation of the squid Na⁺/Ca²⁺ exchanger requires a cytosolic protein, which has been recently identified as a member of the lipocalin super family of Lipid Binding Proteins (LBP or FABP) of 132 amino acids (ReP1-NCXSQ, access to GenBank EU981897). This protein was cloned, expressed and purified. To be active, ReP1-NCXSQ must be phosphorylated from MgATP by a kinase present in the plasma membrane. Phosphorylated ReP1-NCXSQ can stimulate the exchanger in the absence of ATP. Experiments with proteoliposomes proved that this up-regulation can take place just with the lipid membrane and the exchanger protein. The structure of ReP1-NCXSQ predicted from the amino acid sequence has been confirmed by X-ray crystal analysis; it has a "barrel" formed by ten beta sheets and two alpha helices, with a lipid coordinated by hydrogen bonds with Arg 126 and Tyr 128.
Collapse
Affiliation(s)
- Graciela Berberián
- Laboratorio de Biofísica, Instituto de Investigación Médica "Mercedes y Martín Ferreyra" (INIMEC-CONICET), Casilla de Correo 389, 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
5
|
Ying SW, Tibbs GR, Picollo A, Abbas SY, Sanford RL, Accardi A, Hofmann F, Ludwig A, Goldstein PA. PIP2-mediated HCN3 channel gating is crucial for rhythmic burst firing in thalamic intergeniculate leaflet neurons. J Neurosci 2011; 31:10412-23. [PMID: 21753018 PMCID: PMC6623048 DOI: 10.1523/jneurosci.0021-11.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/21/2011] [Accepted: 05/30/2011] [Indexed: 01/26/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate a pacemaking current, I(h), which regulates neuronal excitability and oscillatory activity in the brain. Although all four HCN isoforms are expressed in the brain, the functional contribution of HCN3 is unknown. Using immunohistochemistry, confocal microscopy, and whole-cell patch-clamp recording techniques, we investigated HCN3 function in thalamic intergeniculate leaflet (IGL) neurons, as HCN3 is reportedly preferentially expressed in these cells. We observed that I(h) recorded from IGL, but not ventral geniculate nucleus, neurons in HCN2(+/+) mice and rats activated slowly and were cAMP insensitive, which are hallmarks of HCN3 channels. We also observed strong immunolabeling for HCN3, with no labeling for HCN1 and HCN4, and only very weak labeling for HCN2. Deletion of HCN2 did not alter I(h) characteristics in mouse IGL neurons. These data together indicate that the HCN3 channel isoform generated I(h) in IGL neurons. Intracellular phosphatidylinositol-4,5-bisphosphate (PIP(2)) shifted I(h) activation to more depolarized potentials and accelerated activation kinetics. Upregulation of HCN3 function by PIP(2) augmented low-threshold burst firing and spontaneous oscillations; conversely, depletion of PIP(2) or pharmacologic block of I(h) resulted in a profound inhibition of excitability. The results indicate that functional expression of HCN3 channels in IGL neurons is crucial for intrinsic excitability and rhythmic burst firing, and PIP(2) serves as a powerful modulator of I(h)-dependent properties via an effect on HCN3 channel gating. Since the IGL is a major input to the suprachiasmatic nucleus, regulation of pacemaking function by PIP(2) in the IGL may influence sleep and circadian rhythms.
Collapse
Affiliation(s)
- Shui-Wang Ying
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lange K. Fundamental role of microvilli in the main functions of differentiated cells: Outline of an universal regulating and signaling system at the cell periphery. J Cell Physiol 2010; 226:896-927. [PMID: 20607764 DOI: 10.1002/jcp.22302] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Abstract
Photoreceptors in metazoans can be grouped into two classes, with their photoreceptive membrane derived either from cilia or microvilli. Both classes use some form of the visual pigment protein opsin, which together with 11-cis retinaldehyde absorbs light and activates a G-protein cascade, resulting in the opening or closing of ion channels. Considerable attention has recently been given to the molecular evolution of the opsins and other photoreceptor proteins; much is also known about transduction in the various photoreceptor types. Here we combine this knowledge in an attempt to understand why certain photoreceptors might have conferred particular selective advantages during evolution. We suggest that microvillar photoreceptors became predominant in most invertebrate species because of their single-photon sensitivity, high temporal resolution, and large dynamic range, and that rods and a duplex retina provided primitive chordates and vertebrates with similar sensitivity and dynamic range, but with a smaller expenditure of ATP.
Collapse
|
8
|
Huang J, Liu CH, Hughes SA, Postma M, Schwiening CJ, Hardie RC. Activation of TRP channels by protons and phosphoinositide depletion in Drosophila photoreceptors. Curr Biol 2010; 20:189-97. [PMID: 20116246 DOI: 10.1016/j.cub.2009.12.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/06/2009] [Accepted: 12/04/2009] [Indexed: 11/17/2022]
Abstract
BACKGROUND Phototransduction in microvillar photoreceptors is mediated via G protein-coupled phospholipase C (PLC), but how PLC activation leads to the opening of the light-sensitive TRPC channels (TRP and TRPL) remains unresolved. In Drosophila, InsP(3) appears not to be involved, and recent studies have implicated lipid products of PLC activity, e.g., diacylglycerol, its metabolites, or the reduction in PIP(2). The fact that hydrolysis of the phosphodiester bond in PIP(2) by PLC also releases a proton is seldom recognized and has neither been measured in vivo nor implicated previously in a signaling context. RESULTS Following depletion of PIP(2) and other phosphoinositides by a variety of experimental manipulations, the light-sensitive channels in Drosophila photoreceptors become remarkably sensitive to rapid and reversible activation by the lipophilic protonophore 2-4 dinitrophenol in a pH-dependent manner. We further show that light induces a rapid (<10 ms) acidification originating in the microvilli, which is eliminated in mutants of PLC, and that heterologously expressed TRPL channels are activated by acidification of the cytosolic surface of inside-out patches. CONCLUSIONS Our results indicate that a combination of phosphoinositide depletion and acidification of the membrane/boundary layer is sufficient to activate the light-sensitive channels. Together with the demonstration of light-induced, PLC-dependent acidification, this suggests that excitation in Drosophila photoreceptors may be mediated by PLC's dual action of phosphoinositide depletion and proton release.
Collapse
Affiliation(s)
- Jiehong Huang
- Department of Physiology, Development, and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Seeing begins in the photoreceptors, where light is absorbed and signaled to the nervous system. Throughout the animal kingdom, photoreceptors are diverse in design and purpose. Nonetheless, phototransduction-the mechanism by which absorbed photons are converted into an electrical response-is highly conserved and based almost exclusively on a single class of photoproteins, the opsins. In this Review, we survey the G protein-coupled signaling cascades downstream from opsins in photoreceptors across vertebrate and invertebrate species, noting their similarities as well as differences.
Collapse
Affiliation(s)
- King-Wai Yau
- Solomon H. Snyder Department of Neuroscience and Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
10
|
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2) has emerged as a versatile regulator of TRP ion channels. In many cases, the regulation involves interactions of channel proteins with the lipid itself independent of its hydrolysis products. The functions of the regulation mediated by such interactions are diverse. Some TRP channels absolutely require PIP2 for functioning, while others are inhibited. A change of gating is common to all, endowing the lipid a role for modulation of the sensitivity of the channels to their physiological stimuli. The activation of TRP channels may also influence cellular PIP2 levels via the influx of Ca2+ through these channels. Depletion of PIP2 in the plasma membrane occurs upon activation of TRPV1, TRPM8, and possibly TRPM4/5 in heterologous expression systems, whereas resynthesis of PIP2 requires Ca2+ entry through the TRP/TRPL channels in Drosophila photoreceptors. These developments concerning PIP2 regulation of TRP channels reinforce the significance of the PLC signaling cascade in TRP channel function, and provide further perspectives for understanding the physiological roles of these ubiquitous and often enigmatic channels.
Collapse
Affiliation(s)
- F Qin
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
11
|
Abstract
Drosophila phototransduction serves as a model for phosphoinositide (PI) signaling and for characterizing the mechanisms regulating transient receptor potential (TRP) channels in vivo. Activation of TRP and TRP-like (TRPL) requires hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), resulting in the generation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Although a role for IP3 has been excluded, TRP channels have been proposed to be activated by either a reduction of inhibitory PIP2 or production of DAG/polyunsaturated fatty acids. Here, we characterize a protein, phosphatidylinositol synthase (dPIS), required for a key step during PIP2 regeneration, the production of phosphatidylinositol. Overexpression of dPIS suppressed the retinal degeneration resulting from two other mutations affecting PIP2 cycling, rdgB (retinal degeneration B) and cds (CDP-diacylglycerol synthase). To characterize the role of dPIS, we generated a mutation in dpis, which represented the first mutation in a gene encoding a PI synthase in an animal. In contrast to other mutations that reduce PIP2 regeneration, the dpis1 mutation eliminated all PI synthase activity in flies and resulted in lethality. In mosaic animals, we found that dPIS was essential for maintaining the photoresponse. Because the dpis1 mutation eliminates production of an enzyme essential for PIP2 regeneration, our data argue against activation of TRP and TRPL through a reduction of inhibitory PIP2.
Collapse
Affiliation(s)
- Tao Wang
- Departments of Biological Chemistry and Neuroscience, The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Craig Montell
- Departments of Biological Chemistry and Neuroscience, The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
12
|
Abstract
Transient receptor potential (TRP) channels are regulated by a wide variety of physical and chemical factors. Recently, several members of the TRP channel family were reported to be regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2), PIP(2)). This review will summarize the current knowledge on PIP(2) regulation of TRP channels and discuss the possibility that PIP(2) is a common regulator of mammalian TRP channels.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
13
|
Abstract
Transient receptor potential (TRP) channels mediate responses in a large variety of signaling mechanisms. Most studies on mammalian TRP channels rely on heterologous expression, but their relevance to in vivo tissues is not entirely clear. In contrast, Drosophila TRP and TRP-like (TRPL) channels allow direct analyses of in vivo function. In Drosophila photoreceptors, activation of TRP and TRPL is mediated via the phosphoinositide cascade, with both Ca2+ and diacylglycerol (DAG) essential for generating the light response. In tissue culture cells, TRPL channels are constitutively active, and lipid second messengers greatly facilitate this activity. Inhibition of phospholipase C (PLC) completely blocks lipid activation of TRPL, suggesting that lipid activation is mediated via PLC. In vivo studies in mutant Drosophila also reveal an acute requirement for lipid-producing enzyme, which may regulate PLC activity. Thus, PLC and its downstream second messengers, Ca2+ and DAG, constitute critical mediators of TRP/TRPL gating in vivo.
Collapse
Affiliation(s)
- Baruch Minke
- Department of Physiology and the Kühne Minerva Center for Studies of Visual Transduction, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; ,
| | - Moshe Parnas
- Department of Physiology and the Kühne Minerva Center for Studies of Visual Transduction, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; ,
| |
Collapse
|