1
|
Metal-free class Ie ribonucleotide reductase from pathogens initiates catalysis with a tyrosine-derived dihydroxyphenylalanine radical. Proc Natl Acad Sci U S A 2018; 115:10022-10027. [PMID: 30224458 PMCID: PMC6176560 DOI: 10.1073/pnas.1811993115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conversion of ribonucleotides to the 2′-deoxyribonucleotides required for DNA biosynthesis is catalyzed by ribonucleotide reductases (RNRs) via a free-radical mechanism. Known types of RNRs all depend on redox-active transition metals—manganese, iron, or cobalt—for radical initiation. Pathogenic bacteria are challenged by transition metal sequestration and infliction of oxidative stress by their hosts, and the deployment of multiple RNRs with different metal requirements and radical-initiating oxidants is a known bacterial countermeasure. A class I RNR from two bacterial pathogens completely lacks transition metals in its active state and uses a tyrosine-derived dihydroxyphenylalanine radical as its initiator, embodying a novel tactic to combat transition metal- and oxidant-mediated innate immunity and reinforcing bacterial RNRs as potential antibiotic targets. All cells obtain 2′-deoxyribonucleotides for DNA synthesis through the activity of a ribonucleotide reductase (RNR). The class I RNRs found in humans and pathogenic bacteria differ in (i) use of Fe(II), Mn(II), or both for activation of the dinuclear-metallocofactor subunit, β; (ii) reaction of the reduced dimetal center with dioxygen or superoxide for this activation; (iii) requirement (or lack thereof) for a flavoprotein activase, NrdI, to provide the superoxide from O2; and (iv) use of either a stable tyrosyl radical or a high-valent dimetal cluster to initiate each turnover by oxidizing a cysteine residue in the α subunit to a radical (Cys•). The use of manganese by bacterial class I, subclass b-d RNRs, which contrasts with the exclusive use of iron by the eukaryotic Ia enzymes, appears to be a countermeasure of certain pathogens against iron deprivation imposed by their hosts. Here, we report a metal-free type of class I RNR (subclass e) from two human pathogens. The Cys• in its α subunit is generated by a stable, tyrosine-derived dihydroxyphenylalanine radical (DOPA•) in β. The three-electron oxidation producing DOPA• occurs in Escherichia coli only if the β is coexpressed with the NrdI activase encoded adjacently in the pathogen genome. The independence of this new RNR from transition metals, or the requirement for a single metal ion only transiently for activation, may afford the pathogens an even more potent countermeasure against transition metal-directed innate immunity.
Collapse
|
2
|
Endeward B, Marko A, Denysenkov VP, Sigurdsson ST, Prisner TF. Advanced EPR Methods for Studying Conformational Dynamics of Nucleic Acids. Methods Enzymol 2015; 564:403-25. [PMID: 26477259 DOI: 10.1016/bs.mie.2015.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pulsed electron paramagnetic resonance (EPR) spectroscopy has become an important tool for structural characterization of biomolecules allowing measurement of the distances between two paramagnetic spin labels attached to a biomolecule in the 2-8 nm range. In this chapter, we will focus on applications of this approach to investigate tertiary structure elements as well as conformational dynamics of nucleic acid molecules. Both aspects take advantage of using specific spin labels that are rigidly attached to the nucleobases, as they allow obtaining not only the distance but also the relative orientation between both nitroxide moieties with high accuracy. Thus, not only the distance but additionally the three Euler angles between both the nitroxide axis systems and the two polar angles of the interconnecting vector with respect to the nitroxide axis systems can be extracted from a single pair of spin labels. To extract all these parameters independently and unambiguously, a set of multifrequency/multifield pulsed EPR experiments have to be performed. We will describe the experimental procedure as well as newly developed spin labels, which are helpful to disentangle all these parameters, and tools which we have developed to analyze such data sets. The procedures and analyses will be illustrated by examples from our laboratory.
Collapse
Affiliation(s)
- B Endeward
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - A Marko
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - V P Denysenkov
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - S Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Reykjavık, Iceland
| | - T F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Kim SJ, Joo JC, Kim HS, Kwon I, Song BK, Yoo YJ, Kim YH. Development of the radical-stable Coprinus cinereus peroxidase (CiP) by blocking the radical attack. J Biotechnol 2014; 189:78-85. [DOI: 10.1016/j.jbiotec.2014.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/23/2014] [Accepted: 08/27/2014] [Indexed: 11/26/2022]
|
4
|
Epoxy Coenzyme A Thioester pathways for degradation of aromatic compounds. Appl Environ Microbiol 2012; 78:5043-51. [PMID: 22582071 DOI: 10.1128/aem.00633-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aromatic compounds (biogenic and anthropogenic) are abundant in the biosphere. Some of them are well-known environmental pollutants. Although the aromatic nucleus is relatively recalcitrant, microorganisms have developed various catabolic routes that enable complete biodegradation of aromatic compounds. The adopted degradation pathways depend on the availability of oxygen. Under oxic conditions, microorganisms utilize oxygen as a cosubstrate to activate and cleave the aromatic ring. In contrast, under anoxic conditions, the aromatic compounds are transformed to coenzyme A (CoA) thioesters followed by energy-consuming reduction of the ring. Eventually, the dearomatized ring is opened via a hydrolytic mechanism. Recently, novel catabolic pathways for the aerobic degradation of aromatic compounds were elucidated that differ significantly from the established catabolic routes. The new pathways were investigated in detail for the aerobic bacterial degradation of benzoate and phenylacetate. In both cases, the pathway is initiated by transforming the substrate to a CoA thioester and all the intermediates are bound by CoA. The subsequent reactions involve epoxidation of the aromatic ring followed by hydrolytic ring cleavage. Here we discuss the novel pathways, with a particular focus on their unique features and occurrence as well as ecological significance.
Collapse
|
5
|
Zhou B, Su L, Yuan YC, Un F, Wang N, Patel M, Xi B, Hu S, Yen Y. Structural basis on the dityrosyl-diiron radical cluster and the functional differences of human ribonucleotide reductase small subunits hp53R2 and hRRM2. Mol Cancer Ther 2010; 9:1669-79. [PMID: 20484015 DOI: 10.1158/1535-7163.mct-10-0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ribonucleotide reductase (RNR) is an enzyme for the de novo conversion of ribonucleotides to deoxyribonucleotides. The two human RNR small subunits hRRM2 and hp53R2 share 83% sequence homology but show distinct expression patterns and function. Structural analyses of the oxidized form of hRRM2 and hp53R2 indicate that both proteins contain a conserved Gln127-hp53R2/Gln165-hRRM2 close to the dinuclear iron center and the essential tyrosine residue Tyr124-hp53R2/Tyr162-hRRM2 forms hydrogen bonds with the tyrosine and iron ligands, implying a critical role for the glutamine residue in assembling the dityrosyl-diiron radical cofactor. The present work also showed that Tyr221 in hRRM2, which is replaced by Phe183 in hp53R2, forms a hydrogen bond with Tyr162 to extend the hydrogen bond network from Gln165-hRRM2. Mutagenesis and spectroscopic experiments suggested that the tyrosine-to-phenylalanine switch at Phe183-hp53R2/Tyr221-hRRM2 could lead to differences in radical generation or enzymatic activity for hp53R2 and hRRM2. This study correlates the distinct catalytic mechanisms of the small subunits hp53R2 and hRRM2 with a hydrogen-bonding network and provides novel directions for designing and developing subunit-specific therapeutic agents for human RNR enzymes.
Collapse
Affiliation(s)
- Bingsen Zhou
- Department of Molecular Pharmacology, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rogers MS, Tyler EM, Akyumani N, Kurtis CR, Spooner RK, Deacon SE, Tamber S, Firbank SJ, Mahmoud K, Knowles PF, Phillips SEV, McPherson MJ, Dooley DM. The stacking tryptophan of galactose oxidase: a second-coordination sphere residue that has profound effects on tyrosyl radical behavior and enzyme catalysis. Biochemistry 2007; 46:4606-18. [PMID: 17385891 PMCID: PMC2532978 DOI: 10.1021/bi062139d] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The function of the stacking tryptophan, W290, a second-coordination sphere residue in galactose oxidase, has been investigated via steady-state kinetics measurements, absorption, CD and EPR spectroscopy, and X-ray crystallography of the W290F, W290G, and W290H variants. Enzymatic turnover is significantly slower in the W290 variants. The Km for D-galactose for W290H is similar to that of the wild type, whereas the Km is greatly elevated in W290G and W290F, suggesting a role for W290 in substrate binding and/or positioning via the NH group of the indole ring. Hydrogen bonding between W290 and azide in the wild type-azide crystal structure are consistent with this function. W290 modulates the properties and reactivity of the redox-active tyrosine radical; the Y272 tyrosyl radicals in both the W290G and W290H variants have elevated redox potentials and are highly unstable compared to the radical in W290F, which has properties similar to those of the wild-type tyrosyl radical. W290 restricts the accessibility of the Y272 radical site to solvent. Crystal structures show that Y272 is significantly more solvent exposed in the W290G variant but that W290F limits solvent access comparable to the wild-type indole side chain. Spectroscopic studies indicate that the Cu(II) ground states in the semireduced W290 variants are very similar to that of the wild-type protein. In addition, the electronic structures of W290X-azide complexes are also closely similar to the wild-type electronic structure. Azide binding and azide-mediated proton uptake by Y495 are perturbed in the variants, indicating that tryptophan also modulates the function of the catalytic base (Y495) in the wild-type enzyme. Thus, W290 plays multiple critical roles in enzyme catalysis, affecting substrate binding, the tyrosyl radical redox potential and stability, and the axial tyrosine function.
Collapse
Affiliation(s)
- Melanie S. Rogers
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Ejan M. Tyler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Nana Akyumani
- Astbury Centre for Structural Molecular Biology & Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Christian R. Kurtis
- Astbury Centre for Structural Molecular Biology & Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - R. Kate Spooner
- Astbury Centre for Structural Molecular Biology & Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sarah E. Deacon
- Astbury Centre for Structural Molecular Biology & Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sunita Tamber
- Astbury Centre for Structural Molecular Biology & Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Susan J. Firbank
- Astbury Centre for Structural Molecular Biology & Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Khaled Mahmoud
- Astbury Centre for Structural Molecular Biology & Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter F. Knowles
- Astbury Centre for Structural Molecular Biology & Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Simon E. V. Phillips
- Astbury Centre for Structural Molecular Biology & Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael J. McPherson
- Astbury Centre for Structural Molecular Biology & Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David M. Dooley
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
7
|
Bennati M, Lendzian F, Schmittel M, Zipse H. Spectroscopic and theoretical approaches for studying radical reactions in class I ribonucleotide reductase. Biol Chem 2005; 386:1007-22. [PMID: 16218873 DOI: 10.1515/bc.2005.117] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ribonucleotide reductases (RNRs) catalyze the production of deoxyribonucleotides, which are essential for DNA synthesis and repair in all organisms. The three currently known classes of RNRs are postulated to utilize a similar mechanism for ribonucleotide reduction via a transient thiyl radical, but they differ in the way this radical is generated. Class I RNR, found in all eukaryotic organisms and in some eubacteria and viruses, employs a diferric iron center and a stable tyrosyl radical in a second protein subunit, R2, to drive thiyl radical generation near the substrate binding site in subunit R1. From extensive experimental and theoretical research during the last decades, a general mechanistic model for class I RNR has emerged, showing three major mechanistic steps: generation of the tyrosyl radical by the diiron center in subunit R2, radical transfer to generate the proposed thiyl radical near the substrate bound in subunit R1, and finally catalytic reduction of the bound ribonucleotide. Amino acid- or substrate-derived radicals are involved in all three major reactions. This article summarizes the present mechanistic picture of class I RNR and highlights experimental and theoretical approaches that have contributed to our current understanding of this important class of radical enzymes.
Collapse
Affiliation(s)
- Marina Bennati
- Institut für Physikalische und Theoretische Chemie und BMRZ, J.W. Goethe-Universität Frankfurt, Marie-Curie-Str. 11, D-60439 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
8
|
Farquhar ER, Koehntop KD, Emerson JP, Que L. Post-translational self-hydroxylation: A probe for oxygen activation mechanisms in non-heme iron enzymes. Biochem Biophys Res Commun 2005; 338:230-9. [PMID: 16165090 DOI: 10.1016/j.bbrc.2005.08.191] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 08/25/2005] [Indexed: 10/25/2022]
Abstract
Recent years have seen considerable evolution in our understanding of the mechanisms of oxygen activation by non-heme iron enzymes, with high-valent iron-oxo intermediates coming to the forefront as formidably potent oxidants. In the absence of substrate, the generation of vividly colored chromophores deriving from the self-hydroxylation of a nearby aromatic amino acid for a number of these enzymes has afforded an opportunity to discern the conditions under which O2 activation occurs to generate a high-valent iron intermediate, and has provided a basis for a rigorous mechanistic examination of the oxygenation process. Here, we summarize the current evidence for self-hydroxylation processes in both mononuclear non-heme iron enzymes and in mutant forms of ribonucleotide reductase, and place it within the context of our developing understanding of the oxidative transformations accomplished by non-heme iron centers.
Collapse
Affiliation(s)
- Erik R Farquhar
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
9
|
Koehntop KD, Marimanikkuppam S, Ryle MJ, Hausinger RP, Que L. Self-hydroxylation of taurine/alpha-ketoglutarate dioxygenase: evidence for more than one oxygen activation mechanism. J Biol Inorg Chem 2005; 11:63-72. [PMID: 16320009 DOI: 10.1007/s00775-005-0059-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 10/13/2005] [Indexed: 10/25/2022]
Abstract
2-Aminoethanesulfonic acid (taurine)/alpha-ketoglutarate (alphaKG) dioxygenase (TauD) is a mononuclear non-heme iron enzyme that catalyzes the hydroxylation of taurine to generate sulfite and aminoacetaldehyde in the presence of O2, alphaKG, and Fe(II). Fe(II)TauD complexed with alphaKG or succinate, the decarboxylated product of alphaKG, reacts with O2 in the absence of prime substrate to generate 550- and 720-nm chromophores, respectively, that are interconvertible by the addition or removal of bound bicarbonate and have resonance Raman features characteristic of an Fe(III)-catecholate complex. Mutagenesis studies suggest that both reactions result in the self-hydroxylation of the active-site residue Tyr73, and liquid chromatography nano-spray mass spectrometry/mass spectrometry evidence corroborates this result for the succinate reaction. Furthermore, isotope-labeling resonance Raman studies demonstrate that the oxygen atom incorporated into the tyrosyl residue derives from H2 18O and 18O2 for the alphaKG and succinate reactions, respectively, suggesting distinct mechanistic pathways. Whereas the alphaKG-dependent hydroxylation likely proceeds via an Fe(IV) = O intermediate that is known to be generated during substrate hydroxylation, we propose Fe(III)-OOH (or Fe(V) = O) as the oxygenating species in the succinate-dependent reaction. These results demonstrate the two oxygenating mechanisms available to enzymes with a 2-His-1-carboxylate triad, depending on whether the electron source donates one or two electrons.
Collapse
Affiliation(s)
- Kevin D Koehntop
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
10
|
Voevodskaya N, Lendzian F, Gräslund A. A stable FeIII-FeIV replacement of tyrosyl radical in a class I ribonucleotide reductase. Biochem Biophys Res Commun 2005; 330:1213-6. [PMID: 15823572 DOI: 10.1016/j.bbrc.2005.03.104] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Indexed: 11/30/2022]
Abstract
Ribonucleotide reductase (RNR) of Chlamydia trachomatis is a class I RNR enzyme composed of two homodimeric components, proteins R1 and R2. In class I RNR, R1 has the substrate binding site, whereas R2 has a diferric site and normally in its active form a stable tyrosyl free radical. C. trachomatis RNR is unusual, because its R2 component has a phenylalanine in the place of the radical carrier tyrosine. Replacing the tyrosyl radical, a paramagnetic Fe(III)-Fe(IV) species (species X, normally a transient intermediate in the process leading to radical formation) may provide the oxidation equivalent needed to start the catalytic process via long range electron transfer from the active site in R1. Here EPR spectroscopy shows that in C. trachomatis RNR, species X can become essentially stable when formed in a complete RNR (R1/R2/substrate) complex, adding further weight to the possible role of this species X in the catalytic reaction.
Collapse
Affiliation(s)
- N Voevodskaya
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | |
Collapse
|