1
|
Donkervoort S, van de Locht M, Ronchi D, Reunert J, McLean CA, Zaki M, Orbach R, de Winter JM, Conijn S, Hoomoedt D, Neto OLA, Magri F, Viaene AN, Foley AR, Gorokhova S, Bolduc V, Hu Y, Acquaye N, Napoli L, Park JH, Immadisetty K, Miles LB, Essawi M, McModie S, Ferreira LF, Zanotti S, Neuhaus SB, Medne L, ElBagoury N, Johnson KR, Zhang Y, Laing NG, Davis MR, Bryson-Richardson RJ, Hwee DT, Hartman JJ, Malik FI, Kekenes-Huskey PM, Comi GP, Sharaf-Eldin W, Marquardt T, Ravenscroft G, Bönnemann CG, Ottenheijm CAC. Pathogenic TNNI1 variants disrupt sarcomere contractility resulting in hypo- and hypercontractile muscle disease. Sci Transl Med 2024; 16:eadg2841. [PMID: 38569017 DOI: 10.1126/scitranslmed.adg2841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.
Collapse
Affiliation(s)
- Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martijn van de Locht
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| | - Dario Ronchi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, 20135, Italy
| | - Janine Reunert
- Department of General Pediatrics, University of Münster, Münster, 48149, Germany
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Melbourne, Victoria, 3004, Australia
- Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Victoria, 3168, Australia
| | - Maha Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Josine M de Winter
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| | - Stefan Conijn
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| | - Daan Hoomoedt
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| | - Osorio Lopes Abath Neto
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Francesca Magri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, 20122, Italy
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104 PA, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana Gorokhova
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Medical Genetics, Timone Children's Hospital, APHM, Marseille, 13005, France
- INSERM, U1251-MMG, Aix-Marseille Université, Marseille, 13009, France
| | - Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Acquaye
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Napoli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, 20122, Italy
| | - Julien H Park
- Department of General Pediatrics, University Hospital Münster, Münster, 48149 Germany
| | - Kalyan Immadisetty
- Department of Cell and Molecular Physiology, Loyola University, Chicago, IL 60153, USA
| | - Lee B Miles
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Mona Essawi
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Salar McModie
- Department of Neurology, Alfred Health, Melbourne, Victoria, 3004, Australia
| | - Leonardo F Ferreira
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Simona Zanotti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, 20122, Italy
| | - Sarah B Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Livija Medne
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nagham ElBagoury
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Kory R Johnson
- Bioinformatics Core, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong Zhang
- Bioinformatics Core, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nigel G Laing
- Neurogenetics Unit, Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
- Centre for Medical Research University of Western Australia, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Mark R Davis
- Neurogenetics Unit, Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | | | - Darren T Hwee
- Research and Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - James J Hartman
- Research and Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - Fady I Malik
- Research and Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | | | - Giacomo Pietro Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, 20135, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, 20122, Italy
| | - Wessam Sharaf-Eldin
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Thorsten Marquardt
- Department of General Pediatrics, University of Münster, Münster, 48149, Germany
| | - Gianina Ravenscroft
- Centre for Medical Research University of Western Australia, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| |
Collapse
|
2
|
Wang R, Hasegawa M, Suginobe H, Yoshihara C, Ishii Y, Ueyama A, Ueda K, Hashimoto K, Hirose M, Ishii R, Narita J, Watanabe T, Kawamura T, Taira M, Ueno T, Miyagawa S, Ishida H. Impaired Relaxation in Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Pathogenic TNNI3 Mutation of Pediatric Restrictive Cardiomyopathy. J Am Heart Assoc 2024; 13:e032375. [PMID: 38497452 PMCID: PMC11010001 DOI: 10.1161/jaha.123.032375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Restrictive cardiomyopathy (RCM) is characterized by impaired diastolic function with preserved ventricular contraction. Several pathogenic variants in sarcomere genes, including TNNI3, are reported to cause Ca2+ hypersensitivity in cardiomyocytes in overexpression models; however, the pathophysiology of induced pluripotent stem cell (iPSC)-derived cardiomyocytes specific to a patient with RCM remains unknown. METHODS AND RESULTS We established an iPSC line from a pediatric patient with RCM and a heterozygous TNNI3 missense variant, c.508C>T (p.Arg170Trp; R170W). We conducted genome editing via CRISPR/Cas9 technology to establish an isogenic correction line harboring wild type TNNI3 as well as a homozygous TNNI3-R170W. iPSCs were then differentiated to cardiomyocytes to compare their cellular physiological, structural, and transcriptomic features. Cardiomyocytes differentiated from heterozygous and homozygous TNNI3-R170W iPSC lines demonstrated impaired diastolic function in cell motion analyses as compared with that in cardiomyocytes derived from isogenic-corrected iPSCs and 3 independent healthy iPSC lines. The intracellular Ca2+ oscillation and immunocytochemistry of troponin I were not significantly affected in RCM-cardiomyocytes with either heterozygous or homozygous TNNI3-R170W. Electron microscopy showed that the myofibril and mitochondrial structures appeared to be unaffected. RNA sequencing revealed that pathways associated with cardiac muscle development and contraction, extracellular matrix-receptor interaction, and transforming growth factor-β were altered in RCM-iPSC-derived cardiomyocytes. CONCLUSIONS Patient-specific iPSC-derived cardiomyocytes could effectively represent the diastolic dysfunction of RCM. Myofibril structures including troponin I remained unaffected in the monolayer culture system, although gene expression profiles associated with cardiac muscle functions were altered.
Collapse
Affiliation(s)
- Renjie Wang
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Moyu Hasegawa
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Hidehiro Suginobe
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Chika Yoshihara
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Yoichiro Ishii
- Department of Pediatric Cardiology Osaka Children's and Women's Hospital Osaka Japan
| | - Atsuko Ueyama
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Kazutoshi Ueda
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Kazuhisa Hashimoto
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Masaki Hirose
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Ryo Ishii
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Jun Narita
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Takuji Watanabe
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Masaki Taira
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Takayoshi Ueno
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Hidekazu Ishida
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| |
Collapse
|
3
|
Dowrick JM, Taberner AJ, Han JC, Tran K. Methods for assessing cardiac myofilament calcium sensitivity. Front Physiol 2023; 14:1323768. [PMID: 38116581 PMCID: PMC10728676 DOI: 10.3389/fphys.2023.1323768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
Myofilament calcium (Ca2+) sensitivity is one of several mechanisms by which force production of cardiac muscle is modulated to meet the ever-changing demands placed on the heart. Compromised Ca2+ sensitivity is associated with pathologies, which makes it a parameter of interest for researchers. Ca2+ Sensitivity is the ratio of the association and dissociation rates between troponin C (TnC) and Ca2+. As it is not currently possible to measure these rates in tissue preparations directly, methods have been developed to infer myofilament sensitivity, typically using some combination of force and Ca2+ measurements. The current gold-standard approach constructs a steady-state force-Ca2+ relation by exposing permeabilised muscle samples to a range of Ca2+ concentrations and uses the half-maximal concentration as a proxy for sensitivity. While a valuable method for steady-state investigations, the permeabilisation process makes the method unsuitable when examining dynamic, i.e., twitch-to-twitch, changes in myofilament sensitivity. The ability of the heart to transiently adapt to changes in load is an important consideration when evaluating the impact of disease states. Alternative methods have been proffered, including force-Ca2+ phase loops, potassium contracture, hybrid experimental-modelling and conformation-based fluorophore approaches. This review provides an overview of the mechanisms underlying myofilament Ca2+ sensitivity, summarises existing methods, and explores, with modelling, whether any of them are suited to investigating dynamic changes in sensitivity. We conclude that a method that equips researchers to investigate the transient change of myofilament Ca2+ sensitivity is still needed. We propose that such a method will involve simultaneous measurements of cytosolic Ca2+ and TnC activation in actively twitching muscle and a biophysical model to interpret these data.
Collapse
Affiliation(s)
- Jarrah M. Dowrick
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Andrew J. Taberner
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science and Biomedical Engineering, University of Auckland, Auckland, New Zealand
| | - June-Chiew Han
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Ishida H, Narita J, Ishii R, Suginobe H, Tsuru H, Wang R, Yoshihara C, Ueyama A, Ueda K, Hirose M, Hashimoto K, Nagano H, Kogaki S, Kuramoto Y, Miyashita Y, Asano Y, Ozono K. Clinical Outcomes and Genetic Analyses of Restrictive Cardiomyopathy in Children. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:382-389. [PMID: 37377035 DOI: 10.1161/circgen.122.004054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/02/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Restrictive cardiomyopathy in children is rare and outcomes are very poor. However, little information is available concerning genotype-outcome correlations. METHODS We analyzed the clinical characteristics and genetic testing, including whole exome sequencing, of 28 pediatric restrictive cardiomyopathy patients who were diagnosed from 1998 to 2021 at Osaka University Hospital in Japan. RESULTS The median age at diagnosis (interquartile range) was 6 (2.25-8.5) years. Eighteen patients received heart transplantations and 5 patients were on the waiting list. One patient died while waiting for transplantation. Pathologic or likely-pathogenic variants were identified in 14 of the 28 (50%) patients, including heterozygous TNNI3 missense variants in 8 patients. TNNT2, MYL2, and FLNC missense variants were also identified. No significant differences in clinical manifestations and hemodynamic parameters between positive and negative pathogenic variants were detected. However, 2- and 5-year survival rates were significantly lower in patients with pathogenic variants (50% and 22%) compared with survival in patients without pathogenic variants (62% and 54%; P=0.0496, log-rank test). No significant differences were detected in the ratio of patients diagnosed at nationwide school heart disease screening program between positive and negative pathogenic variants. Patients diagnosed by school screening showed better transplant-free survival compared with patients diagnosed by heart failure symptoms (P=0.0027 in log-rank test). CONCLUSIONS In this study, 50% of pediatric restrictive cardiomyopathy patients had pathogenic or likely-pathogenic gene variants, and TNNI3 missense variants were the most frequent. Patients with pathogenic variants showed significantly lower transplant-free survival compared with patients without pathogenic variants.
Collapse
Affiliation(s)
- Hidekazu Ishida
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Jun Narita
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Ryo Ishii
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Hidehiro Suginobe
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Hirofumi Tsuru
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
- Department of Pediatrics, Niigata University School of Medicine, Japan (H.T.)
| | - Renjie Wang
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Chika Yoshihara
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Atsuko Ueyama
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Kazutoshi Ueda
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Masaki Hirose
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Kazuhisa Hashimoto
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Hiroki Nagano
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Shigetoyo Kogaki
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
- Department of Pediatrics and Neonatology, Osaka General Medical Center, Japan (S.K.)
| | - Yuki Kuramoto
- Department of Cardiology (Y.K., Y.M., Y.A.), Osaka University Graduate School of Medicine, Japan
| | - Yohei Miyashita
- Department of Cardiology (Y.K., Y.M., Y.A.), Osaka University Graduate School of Medicine, Japan
| | - Yoshihiro Asano
- Department of Cardiology (Y.K., Y.M., Y.A.), Osaka University Graduate School of Medicine, Japan
- Department of Genome Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (Y.A.)
| | - Keiichi Ozono
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| |
Collapse
|
5
|
Intact Transition Epitope Mapping-Force Differences between Original and Unusual Residues (ITEM-FOUR). Biomolecules 2023; 13:biom13010187. [PMID: 36671572 PMCID: PMC9856199 DOI: 10.3390/biom13010187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Antibody-based point-of-care diagnostics have become indispensable for modern medicine. In-depth analysis of antibody recognition mechanisms is the key to tailoring the accuracy and precision of test results, which themselves are crucial for targeted and personalized therapy. A rapid and robust method is desired by which binding strengths between antigens and antibodies of concern can be fine-mapped with amino acid residue resolution to examine the assumedly serious effects of single amino acid polymorphisms on insufficiencies of antibody-based detection capabilities of, e.g., life-threatening conditions such as myocardial infarction. The experimental ITEM-FOUR approach makes use of modern mass spectrometry instrumentation to investigate intact immune complexes in the gas phase. ITEM-FOUR together with molecular dynamics simulations, enables the determination of the influences of individually exchanged amino acid residues within a defined epitope on an immune complex's binding strength. Wild-type and mutated epitope peptides were ranked according to their experimentally determined dissociation enthalpies relative to each other, thereby revealing which single amino acid polymorphism caused weakened, impaired, and even abolished antibody binding. Investigating a diagnostically relevant human cardiac Troponin I epitope for which seven nonsynonymous single nucleotide polymorphisms are known to exist in the human population tackles a medically relevant but hitherto unsolved problem of current antibody-based point-of-care diagnostics.
Collapse
|
6
|
Martin AA, Thompson BR, Hahn D, Angulski ABB, Hosny N, Cohen H, Metzger JM. Cardiac Sarcomere Signaling in Health and Disease. Int J Mol Sci 2022; 23:16223. [PMID: 36555864 PMCID: PMC9782806 DOI: 10.3390/ijms232416223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The cardiac sarcomere is a triumph of biological evolution wherein myriad contractile and regulatory proteins assemble into a quasi-crystalline lattice to serve as the central point upon which cardiac muscle contraction occurs. This review focuses on the many signaling components and mechanisms of regulation that impact cardiac sarcomere function. We highlight the roles of the thick and thin filament, both as necessary structural and regulatory building blocks of the sarcomere as well as targets of functionally impactful modifications. Currently, a new focus emerging in the field is inter-myofilament signaling, and we discuss here the important mediators of this mechanism, including myosin-binding protein C and titin. As the understanding of sarcomere signaling advances, so do the methods with which it is studied. This is reviewed here through discussion of recent live muscle systems in which the sarcomere can be studied under intact, physiologically relevant conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Matsumoto M, Tsuru H, Suginobe H, Narita J, Ishii R, Hirose M, Hashimoto K, Wang R, Yoshihara C, Ueyama A, Tanaka R, Ozono K, Okajima T, Ishida H. Atomic force microscopy identifies the alteration of rheological properties of the cardiac fibroblasts in idiopathic restrictive cardiomyopathy. PLoS One 2022; 17:e0275296. [PMID: 36174041 PMCID: PMC9522286 DOI: 10.1371/journal.pone.0275296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Restrictive cardiomyopathy (RCM) is a rare disease characterized by increased ventricular stiffness and preserved ventricular contraction. Various sarcomere gene variants are known to cause RCM; however, more than a half of patients do not harbor such pathogenic variants. We recently demonstrated that cardiac fibroblasts (CFs) play important roles in inhibiting the diastolic function of cardiomyocytes via humoral factors and direct cell–cell contact regardless of sarcomere gene mutations. However, the mechanical properties of CFs that are crucial for intercellular communication and the cardiomyocyte microenvironment remain less understood. In this study, we evaluated the rheological properties of CFs derived from pediatric patients with RCM and healthy control CFs via atomic force microscopy. Then, we estimated the cellular modulus scale factor related to the cell stiffness, fluidity, and Newtonian viscosity of single cells based on the single power-law rheology model and analyzed the comprehensive gene expression profiles via RNA-sequencing. RCM-derived CFs showed significantly higher stiffness and viscosity and lower fluidity compared to healthy control CFs. Furthermore, RNA-sequencing revealed that the signaling pathways associated with cytoskeleton elements were affected in RCM CFs; specifically, cytoskeletal actin-associated genes (ACTN1, ACTA2, and PALLD) were highly expressed in RCM CFs, whereas several tubulin genes (TUBB3, TUBB, TUBA1C, and TUBA1B) were down-regulated. These results implies that the signaling pathways associated with cytoskeletal elements alter the rheological properties of RCM CFs, particularly those related to CF–cardiomyocyte interactions, thereby leading to diastolic cardiac dysfunction in RCM.
Collapse
Affiliation(s)
- Mizuki Matsumoto
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Hirofumi Tsuru
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Niigata University School of Medicine, Niigata, Japan
| | - Hidehiro Suginobe
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Narita
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryo Ishii
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaki Hirose
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhisa Hashimoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Renjie Wang
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chika Yoshihara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsuko Ueyama
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryosuke Tanaka
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
- * E-mail: (HI); (TO)
| | - Hidekazu Ishida
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
- * E-mail: (HI); (TO)
| |
Collapse
|
8
|
Crean AM, Gharibeh L, Saleem Z, Glineur D, Maharaj G, Grau JB. Extended Myectomy for Hypertrophic Cardiomyopathy: Early Outcomes from a Nascent Center of Excellence in Canada. CJC Open 2022; 4:921-928. [DOI: 10.1016/j.cjco.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
|
9
|
Zheng M, Huang H, Zhu X, Ho H, Li L, Ji X. Clinical genetic testing in four highly suspected pediatric restrictive cardiomyopathy cases. BMC Cardiovasc Disord 2022; 22:240. [PMID: 35614389 PMCID: PMC9131548 DOI: 10.1186/s12872-022-02675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Restrictive cardiomyopathy (RCM) presents a high risk for sudden cardiac death in pediatric patients. Constrictive pericarditis (CP) exhibits a similar clinical presentation to RCM and requires differential diagnosis. While mutations of genes that encode sarcomeric and cytoskeletal proteins may lead to RCM, infection, rather than gene mutation, is the main cause of CP. Genetic testing may be helpful in the clinical diagnosis of RCM. METHODS In this case series study, we screened for TNNI3, TNNT2, and DES gene mutations that are known to be etiologically linked to RCM in four pediatric patients with suspected RCM. RESULTS We identified one novel heterozygous mutation, c.517C>T (substitution, position 517 C → T) (amino acid conversion, p.Leu173Phe), and two already known heterozygous mutations, c.508C>T (substitution, position 508, C → T) (amino acid conversion, p.Arg170Trp) and c.575G>A (substitution, position 575, G → A) (amino acid conversion, p.Arg192His), in the TNNI3 gene in three of the four patients. CONCLUSION Our findings support the notion that genetic testing may be helpful in the clinical diagnosis of RCM.
Collapse
Affiliation(s)
- Min Zheng
- Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Hong Huang
- Pediatric Department, North-Kuanren General Hospital of Chongqing, Chongqing, 401121, China
| | - Xu Zhu
- Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Harvey Ho
- Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Liling Li
- Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Xiaojuan Ji
- Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China.
| |
Collapse
|
10
|
Genetic Insights into Primary Restrictive Cardiomyopathy. J Clin Med 2022; 11:jcm11082094. [PMID: 35456187 PMCID: PMC9027761 DOI: 10.3390/jcm11082094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Restrictive cardiomyopathy is a rare cardiac disease causing severe diastolic dysfunction, ventricular stiffness and dilated atria. In consequence, it induces heart failure often with preserved ejection fraction and is associated with a high mortality. Since it is a poor clinical prognosis, patients with restrictive cardiomyopathy frequently require heart transplantation. Genetic as well as non-genetic factors contribute to restrictive cardiomyopathy and a significant portion of cases are of unknown etiology. However, the genetic forms of restrictive cardiomyopathy and the involved molecular pathomechanisms are only partially understood. In this review, we summarize the current knowledge about primary genetic restrictive cardiomyopathy and describe its genetic landscape, which might be of interest for geneticists as well as for cardiologists.
Collapse
|
11
|
Hassoun R, Budde H, Mügge A, Hamdani N. Cardiomyocyte Dysfunction in Inherited Cardiomyopathies. Int J Mol Sci 2021; 22:11154. [PMID: 34681814 PMCID: PMC8541428 DOI: 10.3390/ijms222011154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023] Open
Abstract
Inherited cardiomyopathies form a heterogenous group of disorders that affect the structure and function of the heart. Defects in the genes encoding sarcomeric proteins are associated with various perturbations that induce contractile dysfunction and promote disease development. In this review we aimed to outline the functional consequences of the major inherited cardiomyopathies in terms of myocardial contraction and kinetics, and to highlight the structural and functional alterations in some sarcomeric variants that have been demonstrated to be involved in the pathogenesis of the inherited cardiomyopathies. A particular focus was made on mutation-induced alterations in cardiomyocyte mechanics. Since no disease-specific treatments for familial cardiomyopathies exist, several novel agents have been developed to modulate sarcomere contractility. Understanding the molecular basis of the disease opens new avenues for the development of new therapies. Furthermore, the earlier the awareness of the genetic defect, the better the clinical prognostication would be for patients and the better the prevention of development of the disease.
Collapse
Affiliation(s)
- Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| | - Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
12
|
Tsuru H, Ishida H, Narita J, Ishii R, Suginobe H, Ishii Y, Wang R, Kogaki S, Taira M, Ueno T, Miyashita Y, Kioka H, Asano Y, Sawa Y, Ozono K. Cardiac Fibroblasts Play Pathogenic Roles in Idiopathic Restrictive Cardiomyopathy. Circ J 2021; 85:677-686. [PMID: 33583869 DOI: 10.1253/circj.cj-20-1008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Restrictive cardiomyopathy (RCM) is characterized by impaired ventricular relaxation. Although several mutations were reported in some patients, no mutations were identified in cardiomyocyte expressing genes of other patients, indicating that pathological mechanisms underlying RCM could not be determined by cardiomyocytes only. Cardiac fibroblasts (CFs) are a major cell population in the heart; however, the pathological roles of CFs in cardiomyopathy are not fully understood. METHODS AND RESULTS This study established 4 primary culture lines of CFs from RCM patients and analyzed their cellular physiology, the effects on the contraction and relaxation ability of healthy cardiomyocytes under co-culture with CFs, and RNA sequencing. Three of four patients hadTNNI3mutations. There were no significant alterations in cell proliferation, apoptosis, migration, activation, and attachment. However, when CFs from RCM patients were co-cultured with healthy cardiomyocytes, the relaxation velocity of cardiomyocytes was significantly impaired both under direct and indirect co-culture conditions. RNA sequencing revealed that gene expression profiles of CFs in RCM were clearly distinct from healthy CFs. The differential expression gene analysis identified that several extracellular matrix components and cytokine expressions were dysregulated in CFs from RCM patients. CONCLUSIONS The comprehensive gene expression patterns were altered in RCM-derived CFs, which deteriorated the relaxation ability of cardiomyocytes. The specific changes in extracellular matrix composition and cytokine secretion from CFs might affect pathological behavior of cardiomyocytes in RCM.
Collapse
Affiliation(s)
- Hirofumi Tsuru
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Hidekazu Ishida
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Jun Narita
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Ryo Ishii
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Hidehiro Suginobe
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Yoichiro Ishii
- Department of Pediatric Cardiology, Osaka Women's and Children's Hospital
| | - Renjie Wang
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Shigetoyo Kogaki
- Department of Pediatrics, Osaka University Graduate School of Medicine
- Department of Pediatrics and Neonatology, Osaka General Medical Center
| | - Masaki Taira
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Takayoshi Ueno
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Yohei Miyashita
- Department of Cardiology, Osaka University Graduate School of Medicine
| | - Hidetaka Kioka
- Department of Cardiology, Osaka University Graduate School of Medicine
| | - Yoshihiro Asano
- Department of Cardiology, Osaka University Graduate School of Medicine
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine
| |
Collapse
|
13
|
Genetic Restrictive Cardiomyopathy: Causes and Consequences-An Integrative Approach. Int J Mol Sci 2021; 22:ijms22020558. [PMID: 33429969 PMCID: PMC7827163 DOI: 10.3390/ijms22020558] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The sarcomere as the smallest contractile unit is prone to alterations in its functional, structural and associated proteins. Sarcomeric dysfunction leads to heart failure or cardiomyopathies like hypertrophic (HCM) or restrictive cardiomyopathy (RCM) etc. Genetic based RCM, a very rare but severe disease with a high mortality rate, might be induced by mutations in genes of non-sarcomeric, sarcomeric and sarcomere associated proteins. In this review, we discuss the functional effects in correlation to the phenotype and present an integrated model for the development of genetic RCM.
Collapse
|
14
|
McNamara JW, Schuckman M, Becker RC, Sadayappan S. A Novel Homozygous Intronic Variant in TNNT2 Associates With Feline Cardiomyopathy. Front Physiol 2020. [PMID: 33304277 DOI: 10.3389/fphys.2020.608473.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Hypertrophic cardiomyopathy (HCM) is a genetic disease of the heart and the most common cause of sudden cardiac death in the young. HCM is considered a disease of the sarcomere owing to the large number of mutations in genes encoding sarcomeric proteins. The riddle lies in discovering how these mutations lead to disease. As a result, treatments to prevent and/or treat HCM are limited to invasive surgical myectomies or ablations. The A31P variant of cardiac myosin binding protein-C, encoded by MYBPC3, was found to be more prevalent in a cohort of Maine Coon cats with HCM. However, other mutations in MYBPC3 and MYH7 have also been associated with HCM in cats of other breeds. In this study, we expand the spectrum of genes associated with HCM in cats. Results Next Generation Whole Genome sequencing was performed using DNA isolated from peripheral blood of a Maine Coon with cardiomyopathy that tested negative for the MYBPC3 A31P variant. Through risk stratification of variants, we identified a novel, homozygous intronic variant in cardiac troponin T (TNNT2). In silico analysis of the variant suggested that it may affect normal splicing of exon 3 of TNNT2. Both parents tested heterozygous for the mutation, but were unaffected by the disease. Echocardiography analyses revealed that the proband had shown early onset congestive heart failure, which is managed with a treatment regime including ACE and aldosterone inhibitors. Conclusion In summary, we are the first to demonstrate the association between TNNT2 mutations and HCM in felines, suggesting that this gene should be included in the testing panel of genes when performing genetic testing for HCM in cats.
Collapse
Affiliation(s)
- James W McNamara
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Maggie Schuckman
- Department of Cardiology, MedVet Cincinnati, Fairfax, OH, United States
| | - Richard C Becker
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
15
|
McNamara JW, Schuckman M, Becker RC, Sadayappan S. A Novel Homozygous Intronic Variant in TNNT2 Associates With Feline Cardiomyopathy. Front Physiol 2020; 11:608473. [PMID: 33304277 PMCID: PMC7701303 DOI: 10.3389/fphys.2020.608473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a genetic disease of the heart and the most common cause of sudden cardiac death in the young. HCM is considered a disease of the sarcomere owing to the large number of mutations in genes encoding sarcomeric proteins. The riddle lies in discovering how these mutations lead to disease. As a result, treatments to prevent and/or treat HCM are limited to invasive surgical myectomies or ablations. The A31P variant of cardiac myosin binding protein-C, encoded by MYBPC3, was found to be more prevalent in a cohort of Maine Coon cats with HCM. However, other mutations in MYBPC3 and MYH7 have also been associated with HCM in cats of other breeds. In this study, we expand the spectrum of genes associated with HCM in cats. RESULTS Next Generation Whole Genome sequencing was performed using DNA isolated from peripheral blood of a Maine Coon with cardiomyopathy that tested negative for the MYBPC3 A31P variant. Through risk stratification of variants, we identified a novel, homozygous intronic variant in cardiac troponin T (TNNT2). In silico analysis of the variant suggested that it may affect normal splicing of exon 3 of TNNT2. Both parents tested heterozygous for the mutation, but were unaffected by the disease. Echocardiography analyses revealed that the proband had shown early onset congestive heart failure, which is managed with a treatment regime including ACE and aldosterone inhibitors. CONCLUSION In summary, we are the first to demonstrate the association between TNNT2 mutations and HCM in felines, suggesting that this gene should be included in the testing panel of genes when performing genetic testing for HCM in cats.
Collapse
Affiliation(s)
- James W. McNamara
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Maggie Schuckman
- Department of Cardiology, MedVet Cincinnati, Fairfax, OH, United States
| | - Richard C. Becker
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
16
|
Cimiotti D, Fujita-Becker S, Möhner D, Smolina N, Budde H, Wies A, Morgenstern L, Gudkova A, Sejersen T, Sjöberg G, Mügge A, Nowaczyk MM, Reusch P, Pfitzer G, Stehle R, Schröder RR, Mannherz HG, Kostareva A, Jaquet K. Infantile restrictive cardiomyopathy: cTnI-R170G/W impair the interplay of sarcomeric proteins and the integrity of thin filaments. PLoS One 2020; 15:e0229227. [PMID: 32182250 PMCID: PMC7077804 DOI: 10.1371/journal.pone.0229227] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
TNNI3 encoding cTnI, the inhibitory subunit of the troponin complex, is the main target for mutations leading to restrictive cardiomyopathy (RCM). Here we investigate two cTnI-R170G/W amino acid replacements, identified in infantile RCM patients, which are located in the regulatory C-terminus of cTnI. The C-terminus is thought to modulate the function of the inhibitory region of cTnI. Both cTnI-R170G/W strongly enhanced the Ca2+-sensitivity of skinned fibres, as is typical for RCM-mutations. Both mutants strongly enhanced the affinity of troponin (cTn) to tropomyosin compared to wildtype cTn, whereas binding to actin was either strengthened (R170G) or weakened (R170W). Furthermore, the stability of reconstituted thin filaments was reduced as revealed by electron microscopy. Filaments containing R170G/W appeared wavy and showed breaks. Decoration of filaments with myosin subfragment S1 was normal in the presence of R170W, but was irregular with R170G. Surprisingly, both mutants did not affect the Ca2+-dependent activation of reconstituted cardiac thin filaments. In the presence of the N-terminal fragment of cardiac myosin binding protein C (cMyBPC-C0C2) cooperativity of thin filament activation was increased only when the filaments contained wildtype cTn. No effect was observed in the presence of cTn containing R170G/W. cMyBPC-C0C2 significantly reduced binding of wildtype troponin to actin/tropomyosin, but not of both mutant cTn. Moreover, we found a direct troponin/cMyBPC-C0C2 interaction using microscale thermophoresis and identified cTnI and cTnT, but not cTnC as binding partners for cMyBPC-C0C2. Only cTn containing cTnI-R170G showed a reduced affinity towards cMyBPC-C0C2. Our results suggest that the RCM cTnI variants R170G/W impair the communication between thin and thick filament proteins and destabilize thin filaments.
Collapse
Affiliation(s)
- Diana Cimiotti
- Department of Clinical Pharmacology and Molecular Cardiology, Ruhr-University of Bochum, Bochum, Germany.,Cardiology, Bergmannsheil and St. Josef Hospital, Clinics of the Ruhr-University Bochum, Bochum, Germany
| | - Setsuko Fujita-Becker
- Cryoelectron Microscopy, BioQuant, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Desirée Möhner
- Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Natalia Smolina
- Department of Molecular Biology and Genetics, Almazov Federal Medical Research Center, St. Petersburg, Russia
| | - Heidi Budde
- Department of Clinical Pharmacology and Molecular Cardiology, Ruhr-University of Bochum, Bochum, Germany.,Cardiology, Bergmannsheil and St. Josef Hospital, Clinics of the Ruhr-University Bochum, Bochum, Germany
| | - Aline Wies
- Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Lisa Morgenstern
- Department of Clinical Pharmacology and Molecular Cardiology, Ruhr-University of Bochum, Bochum, Germany.,Cardiology, Bergmannsheil and St. Josef Hospital, Clinics of the Ruhr-University Bochum, Bochum, Germany
| | - Alexandra Gudkova
- Department of Molecular Biology and Genetics, Almazov Federal Medical Research Center, St. Petersburg, Russia
| | - Thomas Sejersen
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Gunnar Sjöberg
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Andreas Mügge
- Cardiology, Bergmannsheil and St. Josef Hospital, Clinics of the Ruhr-University Bochum, Bochum, Germany
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Peter Reusch
- Department of Clinical Pharmacology and Molecular Cardiology, Ruhr-University of Bochum, Bochum, Germany
| | | | - Robert Stehle
- Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rasmus R Schröder
- Cryoelectron Microscopy, BioQuant, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Hans G Mannherz
- Department of Clinical Pharmacology and Molecular Cardiology, Ruhr-University of Bochum, Bochum, Germany.,Department of Anatomy and Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Anna Kostareva
- Department of Molecular Biology and Genetics, Almazov Federal Medical Research Center, St. Petersburg, Russia.,Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kornelia Jaquet
- Department of Clinical Pharmacology and Molecular Cardiology, Ruhr-University of Bochum, Bochum, Germany.,Cardiology, Bergmannsheil and St. Josef Hospital, Clinics of the Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
17
|
Mishra M, Tiwari S, Gunaseelan A, Li D, Hammock BD, Gomes AV. Improving the sensitivity of traditional Western blotting via Streptavidin containing Poly-horseradish peroxidase (PolyHRP). Electrophoresis 2019; 40:1731-1739. [PMID: 31021001 DOI: 10.1002/elps.201900059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 11/10/2022]
Abstract
Immunoassays such as ELISAs and Western blotting have been the common choice for protein validation studies for the past several decades. Technical advancements and modifications are continuously being developed to enhance the detection sensitivity of these procedures. Among them, Streptavidin-containing poly-horseradish peroxidase (PolyHRP) based detection strategies have been shown to improve signals in ELISA. The use of commercially available Streptavidin and antibodies conjugated with many HRPs (PolyHRPs) to potentially enhance the detection sensitivity in Western blotting has not been previously investigated in a comprehensive manner. The use of PolyHRP-secondary antibody instead of HRP-secondary antibody increased the Western blotting sensitivity up to 85% depending on the primary antibody used. The use of a biotinylated secondary antibody and commercially available Streptavidin-conjugated with HRP or PolyHRP all resulted in increased sensitivity with respect to antigen detection. Utilizing a biotinylated secondary antibody and Streptavidin-conjugated PolyHRP resulted in as much as a 110-fold increase in Western blotting sensitivity over traditional Western blotting methods. Quantification of troponin I in rat heart lysates showed that the traditional Western blotting method only detected troponin I in ≥2 μg of lysate while Streptavidin-conjugated PolyHRP20 detected troponin I in ≥50 ng of lysate. A modified blocking procedure is also described that eliminated the interference caused by the endogenous biotinylated proteins. These results suggest that Streptavidin-conjugated PolyHRP and PolyHRP secondary antibodies are likely to be commonly utilized for Western blots in the future.
Collapse
Affiliation(s)
- Manish Mishra
- Department of Neurobiology, Physiology and Behavior University of California, Davis, CA, USA
| | - Shuchita Tiwari
- Department of Neurobiology, Physiology and Behavior University of California, Davis, CA, USA
| | - Anita Gunaseelan
- Department of Neurobiology, Physiology and Behavior University of California, Davis, CA, USA
| | - Dongyang Li
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior University of California, Davis, CA, USA
| |
Collapse
|
18
|
Li CJ, Chen CS, Yiang GT, Tsai APY, Liao WT, Wu MY. Advanced Evolution of Pathogenesis Concepts in Cardiomyopathies. J Clin Med 2019; 8:jcm8040520. [PMID: 30995779 PMCID: PMC6518034 DOI: 10.3390/jcm8040520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiomyopathy is a group of heterogeneous cardiac diseases that impair systolic and diastolic function, and can induce chronic heart failure and sudden cardiac death. Cardiomyopathy is prevalent in the general population, with high morbidity and mortality rates, and contributes to nearly 20% of sudden cardiac deaths in younger individuals. Genetic mutations associated with cardiomyopathy play a key role in disease formation, especially the mutation of sarcomere encoding genes and ATP kinase genes, such as titin, lamin A/C, myosin heavy chain 7, and troponin T1. Pathogenesis of cardiomyopathy occurs by multiple complex steps involving several pathways, including the Ras-Raf-mitogen-activated protein kinase-extracellular signal-activated kinase pathway, G-protein signaling, mechanotransduction pathway, and protein kinase B/phosphoinositide 3-kinase signaling. Excess biomechanical stress induces apoptosis signaling in cardiomyocytes, leading to cell loss, which can induce myocardial fibrosis and remodeling. The clinical features and pathophysiology of cardiomyopathy are discussed. Although several basic and clinical studies have investigated the mechanism of cardiomyopathy, the detailed pathophysiology remains unclear. This review summarizes current concepts and focuses on the molecular mechanisms of cardiomyopathy, especially in the signaling from mutation to clinical phenotype, with the aim of informing the development of therapeutic interventions.
Collapse
Affiliation(s)
- Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Chien-Sheng Chen
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Andy Po-Yi Tsai
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan.
| | - Wan-Ting Liao
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Chinese Medicine Department, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
19
|
Janssens JV, Ma B, Brimble MA, Van Eyk JE, Delbridge LMD, Mellor KM. Cardiac troponins may be irreversibly modified by glycation: novel potential mechanisms of cardiac performance modulation. Sci Rep 2018; 8:16084. [PMID: 30382112 PMCID: PMC6208411 DOI: 10.1038/s41598-018-33886-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023] Open
Abstract
Dynamic movements of the cardiac troponin complex are an important component of the cardiac cycle. Whether cardiac troponins are subjected to irreversible advanced glycation end-product (AGE) modification is unknown. This study interrogated human and rat cardiac troponin-C, troponin-I and troponin-T to identify endogenous AGE modifications using mass spectrometry (LC-MS/MS). AGE modifications were detected on two amino acid residues of human troponin-C (Lys6, Lys39), thirteen troponin-I residues (Lys36, Lys50, Lys58, Arg79, Lys117, Lys120, Lys131, Arg148, Arg162, Lys164, Lys183, Lys193, Arg204), and three troponin-T residues (Lys107, Lys125, Lys227). AGE modifications of three corresponding troponin-I residues (Lys58, Lys120, Lys194) and two corresponding troponin-T residues (Lys107, Lys227) were confirmed in cardiac tissue extracts from an experimental rodent diabetic model. Additionally, novel human troponin-I phosphorylation sites were detected (Thr119, Thr123). Accelerated AGE modification of troponin-C was evident in vitro with hexose sugar exposure. This study provides the first demonstration of the occurrence of cardiac troponin complex AGE-modifications. These irreversible AGE modifications are situated in regions of the troponin complex known to be important in myofilament relaxation, and may be of particular pathological importance in the pro-glycation environment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
| | - Brendan Ma
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Margaret A Brimble
- Department of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Kimberley M Mellor
- Department of Physiology, University of Melbourne, Melbourne, Australia. .,Department of Physiology, University of Auckland, Auckland, New Zealand. .,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
20
|
Ruan YP, Lu CX, Zhao XY, Liang RJ, Lian H, Routledge M, Wu W, Zhang X, Fan ZJ. Restrictive Cardiomyopathy Resulting from a Troponin I Type 3 Mutation in a Chinese Family. ACTA ACUST UNITED AC 2018; 31:1-7. [PMID: 28031081 DOI: 10.1016/s1001-9294(16)30015-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Objective To identify the pathogenic variant responsible for restrictive cardiomyopathy (RCM) in a Chinese family.Methods Next generation sequencing was used for detecting the mutation and Results verified by sequencing. We used restriction enzyme digestion to test the mutation in the family members and 200 unrelated normal subjects without any cardiac inherited diseases when the mutation was identified.Results Five individuals died from cardiac diseases, two of whom suffered from sudden cardiac death. Two individuals have suffered from chronic cardiac disorders. Mutation analysis revealed a novel missense mutation in exon 7 of troponin I type 3 (TNNI3), resulting in substitution of serine (S) with proline (P) at amino acid position 150, which cosegregated with the disease in the family, which is predicted to be probably damaging using PolyPhen-2. The mutation was not detected in the 200 unrelated subjects we tested.Conclusion Using next generation sequencing, which has very recently been shown to be successful in identifying novel causative mutations of rare Mendelian disorders, we found a novel mutation of TNNI3 in a Chinese family with RCM.
Collapse
Affiliation(s)
- Yan-Ping Ruan
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Chao-Xia Lu
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xiao-Yi Zhao
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Rui-Juan Liang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Hui Lian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Michael Routledge
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JZ, UK
| | - Wei Wu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Zhong-Jie Fan
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
21
|
Genetic background of Japanese patients with pediatric hypertrophic and restrictive cardiomyopathy. J Hum Genet 2018; 63:989-996. [PMID: 29907873 DOI: 10.1038/s10038-018-0479-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/28/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) and restrictive cardiomyopathy (RCM) present a high risk for sudden cardiac death in pediatric patients. The aim of this study was to identify disease-associated genetic variants in Japanese patients with pediatric HCM and RCM. We analyzed 67 cardiomyopathy-associated genes in 46 HCM and 7 RCM patients diagnosed before 16 years of age using a next-generation sequencing system. We found that 78% of HCM and 71% of RCM patients carried disease-associated genetic variants. Disease-associated genetic variants were identified in 80% of HCM patients with a family history and in 77% of HCM patients with no apparent family history (NFH). MYH7 and/or MYBPC3 variants comprised 76% of HCM-associated variants, whereas troponin complex-encoding genes comprised 75% of the RCM-associated variants. In addition, 91% of HCM patients with implantable cardioverter-defibrillators and infant cases had NFH, and the 88% of HCM patients carrying disease-associated genetic variants were males who carried MYH7 or MYBPC3 variants. Moreover, two disease-associated LAMP2, one DES and one FHOD3 variants, were identified in HCM patients. In this study, pediatric HCM and RCM patients were found to carry disease-associated genetic variants at a high rate. Most of the variants were in MYH7 or MYPBC3 for HCM and TNNT2 or TNNI3 for RCM.
Collapse
|
22
|
Abstract
Precision medicine aims to achieve improved survival by strategies that recognize the genetic and phenotypic individuality of patients and stratify treatment accordingly. Genetic cardiomyopathies represent an ideal disease group to fully embark on this concept: they are in total frequent diseases with a marked morbidity and mortality and there is ample knowledge about their predisposing genetic factors and associated functional mechanisms. The current review highlights the genetic etiology and gives examples of the diverse treatment strategies that are envisaged in the future.
Collapse
|
23
|
Gilda JE, Gomes AV. Proteasome dysfunction in cardiomyopathies. J Physiol 2017; 595:4051-4071. [PMID: 28181243 DOI: 10.1113/jp273607] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) plays a critical role in removing unwanted intracellular proteins and is involved in protein quality control, signalling and cell death. Because the heart is subject to continuous metabolic and mechanical stress, the proteasome plays a particularly important role in the heart, and proteasome dysfunction has been suggested as a causative factor in cardiac dysfunction. Proteasome impairment has been detected in cardiomyopathies, heart failure, myocardial ischaemia, and hypertrophy. Proteasome inhibition is also sufficient to cause cardiac dysfunction in healthy pigs, and patients using a proteasome inhibitor for cancer therapy have a higher incidence of heart failure. In this Topical Review we discuss the experimental data which suggest UPS dysfunction is a common feature of cardiomyopathies, with an emphasis on hypertrophic cardiomyopathy caused by sarcomeric mutations. We also propose potential mechanisms by which cardiomyopathy-causing mutations may lead to proteasome impairment, such as altered calcium handling and increased oxidative stress due to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jennifer E Gilda
- Department of Neurobiology, Physiology, and Behaviour, University of California, Davis, CA, 95616, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behaviour, University of California, Davis, CA, 95616, USA.,Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
24
|
Hwang JW, Jang MA, Jang SY, Seo SH, Seong MW, Park SS, Ki CS, Kim DK. Diverse Phenotypic Expression of Cardiomyopathies in a Family with TNNI3 p.Arg145Trp Mutation. Korean Circ J 2017; 47:270-277. [PMID: 28382084 PMCID: PMC5378035 DOI: 10.4070/kcj.2016.0213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/15/2016] [Accepted: 09/19/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic diagnosis of cardiomyopathies is challenging, due to the marked genetic and allelic heterogeneity and the lack of knowledge of the mutations that lead to clinical phenotypes. Here, we present the case of a large family, in which a single TNNI3 mutation caused variable phenotypic expression, ranging from restrictive cardiomyopathy (RCMP) to hypertrophic cardiomyopathy (HCMP) to near-normal phenotype. The proband was a 57-year-old female with HCMP. Examining the family history revealed that her elder sister had expired due to severe RCMP. Using a next-generation sequencing-based gene panel to analyze the proband, we identified a known TNNI3 gene mutation, c.433C>T, which is predicted to cause an amino acid substitution (p.Arg145Trp) in the highly conserved inhibitory region of the cardiac troponin I protein. Sanger sequencing confirmed that six relatives with RCMP or near-normal phenotypes also carried this mutation. To our knowledge, this is the first genetically confirmed family with diverse phenotypic expression of cardiomyopathies in Korea. Our findings demonstrate familial implications, where a single mutation in a sarcomere protein can cause diverse phenotypic expression of cardiomyopathies.
Collapse
Affiliation(s)
- Ji-Won Hwang
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mi-Ae Jang
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, Korea
| | - Shin Yi Jang
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk-Kyung Kim
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Liu X, Zhang L, Pacciulli D, Zhao J, Nan C, Shen W, Quan J, Tian J, Huang X. Restrictive Cardiomyopathy Caused by Troponin Mutations: Application of Disease Animal Models in Translational Studies. Front Physiol 2016; 7:629. [PMID: 28066262 PMCID: PMC5165243 DOI: 10.3389/fphys.2016.00629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022] Open
Abstract
Cardiac troponin I (cTnI) plays a critical role in regulation of cardiac function. Studies have shown that the deficiency of cTnI or mutations in cTnI (particularly in the C-terminus of cTnI) results in diastolic dysfunction (impaired relaxation) due to an increased myofibril sensitivity to calcium. The first clinical study revealing the association between restrictive cardiomyopathy (RCM) with cardiac troponin mutations was reported in 2003. In order to illustrate the mechanisms underlying the cTnI mutation caused cardiomyopathy, we have generated a cTnI gene knockout mouse model and transgenic mouse lines with the reported point mutations in cTnI C-terminus. In this paper, we summarize our studies using these animal models from our laboratory and the other in vitro studies using reconstituted filament and cultured cells. The potential mechanisms underlying diastolic dysfunction and heart failure caused by these cTnI C-terminal mutations are discussed as well. Furthermore, calcium desensitizing in correction of impaired relaxation in myocardial cells due to cTnI mutations is discussed. Finally, we describe a model of translational study, i.e., from bedside to bench and from bench to bedside. These studies may enrich our understanding of the mechanism underlying inherited cardiomyopathies and provide the clues to search for target-oriented medication aiming at the treatment of diastolic dysfunction and heart failure.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Cardiovascular Research Laboratory, Division of Cardiology, Chongqing Medical University Children's Hospital Chongqing, China
| | - Lei Zhang
- Cardiovascular Research Laboratory, Division of Cardiology, Chongqing Medical University Children's Hospital Chongqing, China
| | - Daniel Pacciulli
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Boca Raton, FL, USA
| | - Jianquan Zhao
- Department of Cardiology, Bayannaoer City Hospital Bayannaoer, China
| | - Changlong Nan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Boca Raton, FL, USA
| | - Wen Shen
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Boca Raton, FL, USA
| | - Junjun Quan
- Cardiovascular Research Laboratory, Division of Cardiology, Chongqing Medical University Children's Hospital Chongqing, China
| | - Jie Tian
- Cardiovascular Research Laboratory, Division of Cardiology, Chongqing Medical University Children's Hospital Chongqing, China
| | - Xupei Huang
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Boca Raton, FL, USA
| |
Collapse
|
26
|
Nguyen S, Siu R, Dewey S, Cui Z, Gomes AV. Amino Acid Changes at Arginine 204 of Troponin I Result in Increased Calcium Sensitivity of Force Development. Front Physiol 2016; 7:520. [PMID: 27895589 PMCID: PMC5108889 DOI: 10.3389/fphys.2016.00520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/20/2016] [Indexed: 11/26/2022] Open
Abstract
Mutations in human cardiac troponin I (cTnI) have been associated with restrictive, dilated, and hypertrophic cardiomyopathies. The most commonly occurring residue on cTnI associated with familial hypertrophic cardiomyopathy (FHC) is arginine (R), which is also the most common residue at which multiple mutations occur. Two FHC mutations are known to occur at cTnI arginine 204, R204C and R204H, and both are associated with poor clinical prognosis. The R204H mutation has also been associated with restrictive cardiomyopathy (RCM). To characterize the effects of different mutations at the same residue (R204) on the physiological function of cTnI, six mutations at R204 (C, G, H, P, Q, W) were investigated in skinned fiber studies. Skinned fiber studies showed that all tested mutations at R204 caused significant increases in Ca2+ sensitivity of force development (ΔpCa50 = 0.22–0.35) when compared to wild-type (WT) cTnI. Investigation of the interactions between the cTnI mutants and WT cardiac troponin C (cTnC) or WT cardiac troponin T (cTnT) showed that all the mutations investigated, except R204G, affected either or both cTnI:cTnT and cTnI:cTnC interactions. The R204H mutation affected both cTnI:cTnT and cTnI:cTnC interactions while the R204C mutation affected only the cTnI:cTnC interaction. These results suggest that different mutations at the same site on cTnI could have varying effects on thin filament interactions. A mutation in fast skeletal TnI (R174Q, homologous to cTnI R204Q) also significantly increased Ca2+ sensitivity of force development (ΔpCa50 = 0.16). Our studies indicate that known cTnI mutations associated with poor prognosis (R204C and R204H) exhibit large increases in Ca2+ sensitivity of force development. Therefore, other R204 mutations that cause similar increases in Ca2+ sensitivity are also likely to have poor prognoses.
Collapse
Affiliation(s)
- Susan Nguyen
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis Davis, CA, USA
| | - Rylie Siu
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis Davis, CA, USA
| | - Shannamar Dewey
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis Davis, CA, USA
| | - Ziyou Cui
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis Davis, CA, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, DavisDavis, CA, USA; Department of Physiology and Membrane Biology, University of California, DavisDavis, CA, USA
| |
Collapse
|
27
|
Marston SB. Why Is there a Limit to the Changes in Myofilament Ca 2+-Sensitivity Associated with Myopathy Causing Mutations? Front Physiol 2016; 7:415. [PMID: 27725803 PMCID: PMC5035734 DOI: 10.3389/fphys.2016.00415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
Mutations in striated muscle contractile proteins have been found to be the cause of a number of inherited muscle diseases; in most cases the mechanism proposed for causing the disease is derangement of the thin filament-based Ca2+-regulatory system of the muscle. When considering the results of experiments reported over the last 15 years, one feature has been frequently noted, but rarely discussed: the magnitude of changes in myofilament Ca2+-sensitivity due to myopathy-causing mutations in skeletal or heart muscle seems to be always in the range 1.5-3x EC50. Such consistency suggests it may be related to a fundamental property of muscle regulation; in this article we will investigate whether this observation is true and consider why this should be so. A literature search found 71 independent measurements of HCM mutation-induced change of EC50 ranging from 1.15 to 3.8-fold with a mean of 1.87 ± 0.07 (sem). We also found 11 independent measurements of increased Ca2+-sensitivity due to mutations in skeletal muscle proteins ranging from 1.19 to 2.7-fold with a mean of 2.00 ± 0.16. Investigation of dilated cardiomyopathy-related mutations found 42 independent determinations with a range of EC50 wt/mutant from 0.3 to 2.3. In addition we found 14 measurements of Ca2+-sensitivity changes due skeletal muscle myopathy mutations ranging from 0.39 to 0.63. Thus, our extensive literature search, although not necessarily complete, found that, indeed, the changes in myofilament Ca2+-sensitivity due to disease-causing mutations have a bimodal distribution and that the overall changes in Ca2+-sensitivity are quite small and do not extend beyond a three-fold increase or decrease in Ca2+-sensitivity. We discuss two mechanism that are not necessarily mutually exclusive. Firstly, it could be that the limit is set by the capabilities of the excitation-contraction machinery that supplies activating Ca2+ and that striated muscle cannot work in a way compatible with life outside these limits; or it may be due to a fundamental property of the troponin system and the permitted conformational transitions compatible with efficient regulation.
Collapse
Affiliation(s)
- Steven B Marston
- National Heart & Lung Institute, Imperial College London London, UK
| |
Collapse
|
28
|
Meyer NL, Chase PB. Role of cardiac troponin I carboxy terminal mobile domain and linker sequence in regulating cardiac contraction. Arch Biochem Biophys 2016; 601:80-7. [PMID: 26971468 PMCID: PMC4899117 DOI: 10.1016/j.abb.2016.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/26/2016] [Accepted: 03/08/2016] [Indexed: 01/24/2023]
Abstract
Inhibition of striated muscle contraction at resting Ca(2+) depends on the C-terminal half of troponin I (TnI) in thin filaments. Much focus has been on a short inhibitory peptide (Ip) sequence within TnI, but structural studies and identification of disease-associated mutations broadened emphasis to include a larger mobile domain (Md) sequence at the C-terminus of TnI. For Md to function effectively in muscle relaxation, tight mechanical coupling to troponin's core-and thus tropomyosin-is presumably needed. We generated recombinant, human cardiac troponins containing one of two TnI constructs: either an 8-amino acid linker between Md and the rest of troponin (cTnILink8), or an Md deletion (cTnI1-163). Motility assays revealed that Ca(2+)-sensitivity of reconstituted thin filament sliding was markedly increased with cTnILink8 (∼0.9 pCa unit leftward shift of speed-pCa relation compared to WT), and increased further when Md was missing entirely (∼1.4 pCa unit shift). Cardiac Tn's ability to turn off filament sliding at diastolic Ca(2+) was mostly (61%), but not completely eliminated with cTnI1-163. TnI's Md is required for full inhibition of unloaded filament sliding, although other portions of troponin-presumably including Ip-are also necessary. We also confirm that TnI's Md is not responsible for superactivation of actomyosin cycling by troponin.
Collapse
Affiliation(s)
- Nancy L Meyer
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR, USA
| | - P Bryant Chase
- Department of Biological Science and Program in Molecular Biophysics, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
29
|
Gilda JE, Xu Q, Martinez ME, Nguyen ST, Chase PB, Gomes AV. The functional significance of the last 5 residues of the C-terminus of cardiac troponin I. Arch Biochem Biophys 2016; 601:88-96. [PMID: 26919894 PMCID: PMC4899223 DOI: 10.1016/j.abb.2016.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/06/2016] [Accepted: 02/22/2016] [Indexed: 11/15/2022]
Abstract
The C-terminal region of cardiac troponin I (cTnI) is known to be important in cardiac function, as removal of the last 17 C-terminal residues of human cTnI has been associated with myocardial stunning. To investigate the C-terminal region of cTnI, three C-terminal deletion mutations in human cTnI were generated: Δ1 (deletion of residue 210), Δ3 (deletion of residues 208-210), and Δ5 (deletion of residues 206-210). Mammalian two-hybrid studies showed that the interactions between cTnI mutants and cardiac troponin C (cTnC) or cardiac troponin T (cTnT) were impaired in Δ3 and Δ5 mutants when compared to wild-type cTnI. Troponin complexes containing 2-[4'-(iodoacetamido) anilino] naphthalene-6-sulfonic acid (IAANS) labeled cTnC showed that the troponin complex containing cTnI Δ5 had a small increase in Ca(2+) affinity (P < 0.05); while the cTnI Δ1- and Δ3 troponin complexes showed no difference in Ca(2+) affinity when compared to wild-type troponin. In vitro motility assays showed that all truncation mutants had increased Ca(2+) dependent motility relative to wild-type cTnI. These results suggest that the last 5 C-terminal residues of cTnI influence the binding of cTnI with cTnC and cTnT and affect the Ca(2+) dependence of filament sliding, and demonstrate the importance of this region of cTnI.
Collapse
Affiliation(s)
- Jennifer E Gilda
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, 95616, USA
| | - Qian Xu
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, 95616, USA
| | - Margaret E Martinez
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Susan T Nguyen
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, 95616, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, 95616, USA.
| |
Collapse
|
30
|
Thompson BR, Martindale J, Metzger JM. Sarcomere neutralization in inherited cardiomyopathy: small-molecule proof-of-concept to correct hyper-Ca2+-sensitive myofilaments. Am J Physiol Heart Circ Physiol 2016; 311:H36-43. [PMID: 27199134 DOI: 10.1152/ajpheart.00981.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/05/2016] [Indexed: 11/22/2022]
Abstract
The sarcomere is the functional unit of the heart. Alterations in sarcomere activation lead to disease states such as hypertrophic and restrictive cardiomyopathy (HCM/RCM). Mutations in many of the sarcomeric genes are causal for HCM/RCM. In most cases, these mutations result in increased Ca(2+) sensitivity of the sarcomere, giving rise to altered systolic and diastolic function. There is emerging evidence that small-molecule sarcomere neutralization is a potential therapeutic strategy for HCM/RCM. To pursue proof-of-concept, W7 was used here because of its well-known Ca(2+) desensitizer biochemical effects at the level of cardiac troponin C. Acute treatment of adult cardiac myocytes with W7 caused a dose-dependent (1-10 μM) decrease in contractility in a Ca(2+)-independent manner. Alkalosis was used as an in vitro experimental model of acquired heightened Ca(2+) sensitivity, resulting in increased live cell contractility and decreased baseline sarcomere length, which were rapidly corrected with W7. As an inherited cardiomyopathy model, R193H cardiac troponin I (cTnI) transgenic myocytes showed significant decreased baseline sarcomere length and slowed relaxation that were rapidly and dose-dependently corrected by W7. Langendorff whole heart pacing stress showed that R193H cTnI transgenic hearts had elevated end-diastolic pressures at all pacing frequencies compared with hearts from nontransgenic mice. Acute treatment with W7 rapidly restored end-diastolic pressures to normal values in R193H cTnI hearts, supporting a sarcomere intrinsic mechanism of dysfunction. The known off-target effects of W7 notwithstanding, these results provide further proof-of-concept that small-molecule-based sarcomere neutralization is a potential approach to remediate hyper-Ca(2+)-sensitive sarcomere function.
Collapse
Affiliation(s)
- Brian R Thompson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Joshua Martindale
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
31
|
Mouton JM, Pellizzon AS, Goosen A, Kinnear CJ, Herbst PG, Brink PA, Moolman-Smook JC. Diagnostic disparity and identification of two TNNI3 gene mutations, one novel and one arising de novo, in South African patients with restrictive cardiomyopathy and focal ventricular hypertrophy. Cardiovasc J Afr 2016; 26:63-9. [PMID: 25940119 PMCID: PMC4815569 DOI: 10.5830/cvja-2015-019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/27/2015] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION The minimum criterion for the diagnosis of hypertrophic cardiomyopathy (HCM) is thickening of the left ventricular wall, typically in an asymmetrical or focal fashion, and it requires no functional deficit. Using this criterion, we identified a family with four affected individuals and a single unrelated individual essentially with restrictive cardiomyopathy (RCM). Mutations in genes coding for the thin filaments of cardiac muscle have been described in RCM and HCM with 'restrictive features'. One such gene encodes for cardiac troponin I (TNNI3), a sub-unit of the troponin complex involved in the regulation of striated muscle contraction. We hypothesised that mutations in TNNI3 could underlie this particular phenotype, and we therefore screened TNNI3 for mutations in 115 HCM probands. METHODS Clinical investigation involved examination, echocardiography, chest X-ray and an electrocardiogram of both the index cases and close relatives. The study cohort consisted of 113 South African HCM probands, with and without known founder HCM mutations, and 100 ethnically matched control individuals. Mutation screening of TNNI3 for diseasecausing mutations were performed using high-resolution melt (HRM) analysis. RESULTS HRM analyses identified three previously described HCM-causing mutations (p.Pro82Ser, p.Arg162Gln, p.Arg170Gln) and a novel exonic variant (p.Leu144His). A previous study involving the same amino acid identified a p.Leu144Gln mutation in a patient presenting with RCM, with clinical features of HCM. We observed the novel p.Leu144His mutation in three siblings with clinical RCM and varying degrees of ventricular hypertrophy. The isolated index case with the de novo p.Arg170Gln mutation presented with a similar phenotype. Both mutations were absent in a healthy control group. CONCLUSION We have identified a novel disease-causing p.Leu144His mutation and a de novo p.Arg170Gln mutation associated with RCM and focal ventricular hypertrophy, often below the typical diagnostic threshold for HCM. Our study provides information regarding TNNI3 mutations underlying RCM in contrast to other causes of a similar presentation, such as constrictive pericarditis or infiltration of cardiac muscle, all with marked right-sided cardiac manifestations. This study therefore highlights the need for extensive mutation screening of genes encoding for sarcomeric proteins, such as TNNI3 to identify the underlying cause of this particular phenotype.
Collapse
Affiliation(s)
- Jomien M Mouton
- SA MRC Centre for Tuberculosis Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Adriano S Pellizzon
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town South Africa
| | - Althea Goosen
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town South Africa
| | - Craig J Kinnear
- SA MRC Centre for Tuberculosis Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Philip G Herbst
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Health Sciences, Tygerberg Academic Hospital, Stellenbosch University, Cape Town, South Africa
| | - Paul A Brink
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town South Africa
| | - Johanna C Moolman-Smook
- SA MRC Centre for Tuberculosis Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
32
|
Zhang L, Nan C, Chen Y, Tian J, Jean-Charles PY, Getfield C, Wang X, Huang X. Calcium desensitizer catechin reverses diastolic dysfunction in mice with restrictive cardiomyopathy. Arch Biochem Biophys 2015; 573:69-76. [PMID: 25813360 DOI: 10.1016/j.abb.2015.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 11/26/2022]
Abstract
Diastolic dysfunction refers to an impaired relaxation and an abnormality in ventricular blood filling during diastole while systolic function is preserved. Cardiac myofibril hypersensitivity to Ca(2+) is a major factor that causes impaired relaxation of myocardial cells. The present study investigates the effect of the green tea extract catechins on myofibril calcium desensitization and restoration of diastolic function in a restrictive cardiomyopathy (RCM) mouse model with cardiac troponin mutations. Wild type (WT) and RCM mice were treated daily with catechin (epigallocatechin-3-gallate, EGCg, 50 mg/kg body weight) for 3 months. Echocardiography and cell based assays were performed to measure cardiac structure and flow-related variables including chamber dimensions, fraction shortening, trans-mitral flow patterns in the experimental mice. In addition, myocyte contractility and calcium dynamics were measured in WT and RCM cardiomyocytes treated in vitro with 5 μM EGCg. Our data indicated that RCM mice treated with EGCg showed an improved diastolic function while systolic function remained unchanged. At the cellular level, sarcomere relaxation and calcium decay were accelerated in RCM myocardial cells treated with EGCg. These results suggest that catechin is effective in reversing the impaired relaxation in RCM myocardial cells and rescuing the RCM mice with diastolic dysfunction.
Collapse
Affiliation(s)
- Lei Zhang
- Division of Cardiology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Changlong Nan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA; Center for Molecular Biology and Biotechnology, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yuan Chen
- Division of Cardiology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Tian
- Division of Cardiology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Pierre-Yves Jean-Charles
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA
| | - Cecile Getfield
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA
| | - Xiaoqing Wang
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA
| | - Xupei Huang
- Division of Cardiology, Children's Hospital, Chongqing Medical University, Chongqing, China; Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA; Center for Molecular Biology and Biotechnology, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
33
|
A cis-regulatory mutation in troponin-I of Drosophila reveals the importance of proper stoichiometry of structural proteins during muscle assembly. Genetics 2015; 200:149-65. [PMID: 25747460 DOI: 10.1534/genetics.115.175604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/01/2015] [Indexed: 02/02/2023] Open
Abstract
Rapid and high wing-beat frequencies achieved during insect flight are powered by the indirect flight muscles, the largest group of muscles present in the thorax. Any anomaly during the assembly and/or structural impairment of the indirect flight muscles gives rise to a flightless phenotype. Multiple mutagenesis screens in Drosophila melanogaster for defective flight behavior have led to the isolation and characterization of mutations that have been instrumental in the identification of many proteins and residues that are important for muscle assembly, function, and disease. In this article, we present a molecular-genetic characterization of a flightless mutation, flightless-H (fliH), originally designated as heldup-a (hdp-a). We show that fliH is a cis-regulatory mutation of the wings up A (wupA) gene, which codes for the troponin-I protein, one of the troponin complex proteins, involved in regulation of muscle contraction. The mutation leads to reduced levels of troponin-I transcript and protein. In addition to this, there is also coordinated reduction in transcript and protein levels of other structural protein isoforms that are part of the troponin complex. The altered transcript and protein stoichiometry ultimately culminates in unregulated acto-myosin interactions and a hypercontraction muscle phenotype. Our results shed new insights into the importance of maintaining the stoichiometry of structural proteins during muscle assembly for proper function with implications for the identification of mutations and disease phenotypes in other species, including humans.
Collapse
|
34
|
Nonaka M, Morimoto S. Experimental models of inherited cardiomyopathy and its therapeutics. World J Cardiol 2014; 6:1245-1251. [PMID: 25548614 PMCID: PMC4278159 DOI: 10.4330/wjc.v6.i12.1245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/08/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathy is a disease of myocardium categorized into three major forms, hypertrophic (HCM), dilated (DCM) and restrictive cardiomyopathy (RCM), which has recently been demonstrated to be a monogenic disease due to mutations in various proteins expressed in cardiomyocytes. Mutations in HCM and RCM typically increase the myofilament sensitivity to cytoplasmic Ca2+, leading to systolic hyperfunction and diastolic dysfunction. In contrast, mutations in DCM typically decrease the myofilament sensitivity to cytoplasmic Ca2+ and/or force generation/transmission, leading to systolic dysfunction. Creation of genetically-manipulated transgenic and knock-in animals expressing mutant proteins exogenously and endogenously, respectively, in their hearts provides valuable animal models to discover the molecular and cellular mechanisms for pathogenesis and promising therapeutic strategy in vivo. Recently, cardiomyocytes have been differentiated from patient’s induced pluripotent stem cells as a model of inherited cardiomyopathies in vitro. In this review, we provide overview of experimental models of cardiomyopathies with a focus on revealed molecular and cellular pathogenic mechanisms and potential therapeutics.
Collapse
|
35
|
Parvatiyar MS, Pinto JR. Pathogenesis associated with a restrictive cardiomyopathy mutant in cardiac troponin T is due to reduced protein stability and greatly increased myofilament Ca2+ sensitivity. Biochim Biophys Acta Gen Subj 2014; 1850:365-72. [PMID: 25450489 DOI: 10.1016/j.bbagen.2014.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Dilated and hypertrophic cardiomyopathy mutations in troponin can blunt effects of protein kinase A (PKA) phosphorylation of cardiac troponin I (cTnI), decreasing myofilament Ca2+-sensitivity; however this effect has never been tested for restrictive cardiomyopathy (RCM) mutants. This study explores whether an RCM cardiac troponin T mutant (cTnT-ΔE96) interferes with convergent PKA regulation and if TnT instability contributes to greatly enhanced Ca2+-sensitivity in skinned fibers. METHODS Force of contraction in skinned cardiac porcine fiber and spectroscopic studies were performed. RESULTS A decrease of -0.26 and -0.25 pCa units in Ca2+-sensitivity of contraction after PKA incubation was observed for skinned fibers incorporated with WT or cTnT-ΔE96, respectively. To further assess whether cTnT-ΔE96 interferes solely with transmission of cTnI phosphorylation effects, skinned fibers were reconstituted with PKA pseudo-phosphorylated cTnI (cTnI-SS/DD.cTnC). Fibers displaced with cTnT-WT, reconstituted with cTnI-SS/DD.cTnC decreased Ca2+-sensitivity of force (pCa50=5.61) compared to control cTnI-WT.cTnC (pCa50=5.75), similarly affecting cTnT-ΔE96 (pCa50=6.03) compared to control \cTnI-WT.cTnC (pCa50=6.14). Fluorescence studies measuring cTnC(IAANS) Ca2+-affinity changes due to cTnT-ΔE96 indicated that higher complexity (thin filament) better recapitulates skinned fiber Ca2+ sensitive changes. Circular dichroism revealed reduced α-helicity and earlier thermal unfolding for cTnT-ΔE96 compared to WT. CONCLUSIONS Although ineffective in decreasing myofilament Ca2+-sensitivity to normal levels, cTnT-ΔE96 does not interfere with PKA cTnI phosphorylation mediated effects; 2) cTnT-ΔE96 requires actin to increase cTnC Ca2+-affinity; and 3) deletion of E96 reduces cTnT stability, likely disrupting crucial thin filament interactions. GENERAL SIGNIFICANCE The pathological effect of cTnT-ΔE96 is largely manifested by dramatic myofilament Ca2+-sensitization which still persists even after PKA phosphorylation mediated Ca2+-desensitization.
Collapse
Affiliation(s)
- Michelle S Parvatiyar
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
36
|
Sheng JJ, Jin JP. Gene regulation, alternative splicing, and posttranslational modification of troponin subunits in cardiac development and adaptation: a focused review. Front Physiol 2014; 5:165. [PMID: 24817852 PMCID: PMC4012202 DOI: 10.3389/fphys.2014.00165] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/10/2014] [Indexed: 12/19/2022] Open
Abstract
Troponin plays a central role in regulating the contraction and relaxation of vertebrate striated muscles. This review focuses on the isoform gene regulation, alternative RNA splicing, and posttranslational modifications of troponin subunits in cardiac development and adaptation. Transcriptional and posttranscriptional regulations such as phosphorylation and proteolysis modifications, and structure-function relationships of troponin subunit proteins are summarized. The physiological and pathophysiological significances are discussed for impacts on cardiac muscle contractility, heart function, and adaptations in health and diseases.
Collapse
Affiliation(s)
- Juan-Juan Sheng
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
37
|
Lehrer SS, Geeves MA. The myosin-activated thin filament regulatory state, M − -open: a link to hypertrophic cardiomyopathy (HCM). J Muscle Res Cell Motil 2014; 35:153-60. [DOI: 10.1007/s10974-014-9383-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/03/2014] [Indexed: 01/31/2023]
|
38
|
Bai F, Caster HM, Pinto JR, Kawai M. Analysis of the molecular pathogenesis of cardiomyopathy-causing cTnT mutants I79N, ΔE96, and ΔK210. Biophys J 2013; 104:1979-88. [PMID: 23663841 DOI: 10.1016/j.bpj.2013.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/27/2013] [Accepted: 04/02/2013] [Indexed: 11/19/2022] Open
Abstract
Three troponin T (TnT) mutants that cause hypertrophic, restrictive, and dilated cardiomyopathy (I79N, ΔE96, and ΔK210, respectively), were examined using the thin-filament extraction/reconstitution technique. Effects of Ca(2+), ATP, phosphate, and ADP concentrations on force and its transients were studied at 25°C. Maximal Ca(2+) tension (THC) and Ca(2+)-activatable tension (Tact), respectively, were similar among I79N, ΔE96, and WT, whereas ΔK210 led to a significantly lower THC (∼20% less) and Tact (∼25% less) than did WT. In pCa solution containing 8 mM Pi and ionic strength adjusted to 200 mM, the Ca(2+) sensitivity (pCa50) of I79N (5.63 ± 0.02) and ΔE96 (5.60 ± 0.03) was significantly greater than that of WT (5.45 ± 0.04), but the pCa50 of ΔK210 (5.54 ± 0.04) remained similar to that of WT. Five equilibrium constants were deduced using sinusoidal analysis. All three mutants showed significantly lower K0 (ADP association constant) and larger K4 (equilibrium constant of force generation step) relative to the corresponding values for WT. I79N and ΔK210 were associated with a K2 (equilibrium constant of cross-bridge detachment step) significantly lower than that of ΔE96 and WT. These results demonstrated that at pCa 4.66, the force/cross-bridge is ∼18% less in I79N and ∼41% less in ΔK210 than that in WT. These results indicate that the molecular pathogenesis of the cardiac TnT mutation-related cardiomyopathies is different for each mutation.
Collapse
Affiliation(s)
- Fan Bai
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | |
Collapse
|
39
|
Kekenes-Huskey PM, Lindert S, McCammon JA. Molecular basis of calcium-sensitizing and desensitizing mutations of the human cardiac troponin C regulatory domain: a multi-scale simulation study. PLoS Comput Biol 2012; 8:e1002777. [PMID: 23209387 PMCID: PMC3510055 DOI: 10.1371/journal.pcbi.1002777] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022] Open
Abstract
Troponin C (TnC) is implicated in the initiation of myocyte contraction via binding of cytosolic Ca²⁺ and subsequent recognition of the Troponin I switch peptide. Mutations of the cardiac TnC N-terminal regulatory domain have been shown to alter both calcium binding and myofilament force generation. We have performed molecular dynamics simulations of engineered TnC variants that increase or decrease Ca²⁺ sensitivity, in order to understand the structural basis of their impact on TnC function. We will use the distinction for mutants that are associated with increased Ca²⁺ affinity and for those mutants with reduced affinity. Our studies demonstrate that for GOF mutants V44Q and L48Q, the structure of the physiologically-active site II Ca²⁺ binding site in the Ca²⁺-free (apo) state closely resembled the Ca²⁺-bound (holo) state. In contrast, site II is very labile for LOF mutants E40A and V79Q in the apo form and bears little resemblance with the holo conformation. We hypothesize that these phenomena contribute to the increased association rate, k(on), for the GOF mutants relative to LOF. Furthermore, we observe significant positive and negative positional correlations between helices in the GOF holo mutants that are not found in the LOF mutants. We anticipate these correlations may contribute either directly to Ca²⁺ affinity or indirectly through TnI association. Our observations based on the structure and dynamics of mutant TnC provide rationale for binding trends observed in GOF and LOF mutants and will guide the development of inotropic drugs that target TnC.
Collapse
Affiliation(s)
- Peter Michael Kekenes-Huskey
- Department of Pharmacology, Center for Theoretical Biological Physics, National Computational Biomedical Resource and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, United States of America.
| | | | | |
Collapse
|
40
|
Insights into restrictive cardiomyopathy from clinical and animal studies. J Geriatr Cardiol 2012; 8:168-83. [PMID: 22783303 PMCID: PMC3390071 DOI: 10.3724/sp.j.1263.2011.00168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/24/2011] [Accepted: 08/31/2011] [Indexed: 01/13/2023] Open
Abstract
Cardiomyopathies are diseases that primarily affect the myocardium, leading to serious cardiac dysfunction and heart failure. Out of the three major categories of cardiomyopathies (hypertrophic, dilated and restrictive), restrictive cardiomyopathy (RCM) is less common and also the least studied. However, the prognosis for RCM is poor as some patients dying in their childhood. The molecular mechanisms behind the disease development and progression are not very clear and the treatment of RCM is very difficult and often ineffective. In this article, we reviewed the recent progress in RCM research from the clinical studies and the translational studies done on diseased transgenic animal models. This will help for a better understanding of the mechanisms underlying the etiology and development of RCM and for the design of better treatments for the disease.
Collapse
|
41
|
Davis J, Yasuda S, Palpant NJ, Martindale J, Stevenson T, Converso K, Metzger JM. Diastolic dysfunction and thin filament dysregulation resulting from excitation-contraction uncoupling in a mouse model of restrictive cardiomyopathy. J Mol Cell Cardiol 2012; 53:446-57. [PMID: 22683325 DOI: 10.1016/j.yjmcc.2012.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/22/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
Abstract
Restrictive cardiomyopathy (RCM) has been linked to mutations in the thin filament regulatory protein cardiac troponin I (cTnI). As the pathogenesis of RCM from genotype to clinical phenotype is not fully understood, transgenic (Tg) mice were generated with cardiac specific expression of an RCM-linked missense mutation (R193H) in cTnI. R193H Tg mouse hearts with 15% stoichiometric replacement had smaller hearts and significantly elevated end diastolic pressures (EDP) in vivo. Using a unique carbon microfiber-based assay, membrane intact R193H adult cardiac myocytes generated higher passive tensions across a range of physiologic sarcomere lengths resulting in significant Ca(2+) independent cellular diastolic tone that was manifest in vivo as elevated organ-level EDP. Sarcomere relaxation and Ca(2+) decay was uncoupled in isolated R193H Tg adult myocytes due to the increase in myofilament Ca(2+) sensitivity of tension, decreased passive compliance of the sarcomere, and adaptive in vivo changes in which phospholamban (PLN) content was decreased. Further evidence of Ca(2+) and mechanical uncoupling in R193H Tg myocytes was demonstrated by the biphasic response of relaxation to increased pacing frequency versus the negative staircase seen with Ca(2+) decay. In comparison, non-transgenic myocyte relaxation closely paralleled the accelerated Ca(2+) decay. Ca(2+) transient amplitude was also significantly blunted in R193H Tg myocytes despite normal mechanical shortening resulting in myocyte hypercontractility when compared to non-transgenics. These results identify for the first time that a single point mutation in cTnI, R193H, directly causes elevated EDP due to a myocyte intrinsic loss of compliance independent of Ca(2+) cycling or altered cardiac morphology. The compound influence of impaired relaxation and elevated EDP represents a clinically severe form of diastolic dysfunction similar to the hemodynamic state documented in RCM patients.
Collapse
Affiliation(s)
- Jennifer Davis
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Disease-related cardiac troponins alter thin filament Ca2+ association and dissociation rates. PLoS One 2012; 7:e38259. [PMID: 22675533 PMCID: PMC3366952 DOI: 10.1371/journal.pone.0038259] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/04/2012] [Indexed: 11/19/2022] Open
Abstract
The contractile response of the heart can be altered by disease-related protein modifications to numerous contractile proteins. By utilizing an IAANS labeled fluorescent troponin C, [Formula: see text], we examined the effects of ten disease-related troponin modifications on the Ca(2+) binding properties of the troponin complex and the reconstituted thin filament. The selected modifications are associated with a broad range of cardiac diseases: three subtypes of familial cardiomyopathies (dilated, hypertrophic and restrictive) and ischemia-reperfusion injury. Consistent with previous studies, the majority of the protein modifications had no effect on the Ca(2+) binding properties of the isolated troponin complex. However, when incorporated into the thin filament, dilated cardiomyopathy mutations desensitized (up to 3.3-fold), while hypertrophic and restrictive cardiomyopathy mutations, and ischemia-induced truncation of troponin I, sensitized the thin filament to Ca(2+) (up to 6.3-fold). Kinetically, the dilated cardiomyopathy mutations increased the rate of Ca(2+) dissociation from the thin filament (up to 2.5-fold), while the hypertrophic and restrictive cardiomyopathy mutations, and the ischemia-induced truncation of troponin I decreased the rate (up to 2-fold). The protein modifications also increased (up to 5.4-fold) or decreased (up to 2.5-fold) the apparent rate of Ca(2+) association to the thin filament. Thus, the disease-related protein modifications alter Ca(2+) binding by influencing both the association and dissociation rates of thin filament Ca(2+) exchange. These alterations in Ca(2+) exchange kinetics influenced the response of the thin filament to artificial Ca(2+) transients generated in a stopped-flow apparatus. Troponin C may act as a hub, sensing physiological and pathological stimuli to modulate the Ca(2+)-binding properties of the thin filament and influence the contractile performance of the heart.
Collapse
|
43
|
Mesoscopic analysis of motion and conformation of cross-bridges. Biophys Rev 2012; 4:299-311. [PMID: 28510208 DOI: 10.1007/s12551-012-0074-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/15/2012] [Indexed: 01/03/2023] Open
Abstract
The orientation of a cross-bridge is widely used as a parameter in determining the state of muscle. The conventional measurements of orientation, such as that made by wide-field fluorescence microscopy, electron paramagnetic resonance (EPR) or X-ray diffraction or scattering, report the average orientation of 1012-109 myosin cross-bridges. Under conditions where all the cross-bridges are immobile and assume the same orientation, for example in normal skeletal muscle in rigor, it is possible to determine the average orientation from such global measurements. But in actively contracting muscle, where a parameter indicating orientation fluctuates in time, the measurements of the average value provide no information about cross-bridge kinetics. To avoid problems associated with averaging information from trillions of cross-bridges, it is necessary to decrease the number of observed cross-bridges to a mesoscopic value (i.e. the value affected by fluctuations around the average). In such mesoscopic regimes, the averaging of the signal is minimal and dynamic behavior can be examined in great detail. Examples of mesoscopic analysis on skeletal and cardiac muscle are provided.
Collapse
|
44
|
Liu B, Lee RS, Biesiadecki BJ, Tikunova SB, Davis JP. Engineered troponin C constructs correct disease-related cardiac myofilament calcium sensitivity. J Biol Chem 2012; 287:20027-36. [PMID: 22511780 DOI: 10.1074/jbc.m111.334953] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aberrant myofilament Ca(2+) sensitivity is commonly observed with multiple cardiac diseases, especially familial cardiomyopathies. Although the etiology of the cardiomyopathies remains unclear, improving cardiac muscle Ca(2+) sensitivity through either pharmacological or genetic approaches shows promise of alleviating the disease-related symptoms. Due to its central role as the Ca(2+) sensor for cardiac muscle contraction, troponin C (TnC) stands out as an obvious and versatile target to reset disease-associated myofilament Ca(2+) sensitivity back to normal. To test the hypothesis that aberrant myofilament Ca(2+) sensitivity and its related function can be corrected through rationally engineered TnC constructs, three thin filament protein modifications representing different proteins (troponin I or troponin T), modifications (missense mutation, deletion, or truncation), and disease subtypes (familial or acquired) were studied. A fluorescent TnC was utilized to measure Ca(2+) binding to TnC in the physiologically relevant biochemical model system of reconstituted thin filaments. Consistent with the pathophysiology, the restrictive cardiomyopathy mutation, troponin I R192H, and ischemia-induced truncation of troponin I (residues 1-192) increased the Ca(2+) sensitivity of TnC on the thin filament, whereas the dilated cardiomyopathy mutation, troponin T ΔK210, decreased the Ca(2+) sensitivity of TnC on the thin filament. Rationally engineered TnC constructs corrected the abnormal Ca(2+) sensitivities of the thin filament, reconstituted actomyosin ATPase activity, and force generation in skinned trabeculae. Thus, the present study provides a novel and versatile therapeutic strategy to restore diseased cardiac muscle Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Bin Liu
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
45
|
Wu B, Wang L, Liu Q, Luo Q. Myocardial contractile and metabolic properties of familial hypertrophic cardiomyopathy caused by cardiac troponin I gene mutations: a simulation study. Exp Physiol 2011; 97:155-69. [PMID: 21967901 DOI: 10.1113/expphysiol.2011.059956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Familial hypertrophic cardiomyopathy (FHC) is an inherited disease that is caused by sarcomeric protein gene mutations. The mechanism by which these mutant proteins cause disease is uncertain. Experimentally, cardiac troponin I (CTnI) gene mutations mainly alter myocardial performance via increases in the Ca(2+) sensitivity of cardiac contractility. In this study, we used an integrated simulation that links electrophysiology, contractile activity and energy metabolism of the myocardium to investigate alterations in myocardial contractile function and energy metabolism regulation as a result of increased Ca(2+) sensitivity in CTnI mutations. Simulation results reproduced the following typical features of FHC: (1) slower relaxation (diastolic dysfunction) caused by prolonged [Ca(2+)](i) and force transients; (2) higher energy consumption with the increase in Ca(2+) sensitivity; and (3) reduced fatty acid oxidation and enhanced glucose utilization in hypertrophied heart metabolism. Furthermore, the simulation indicated that in conditions of high energy consumption (that is, more than an 18.3% increase in total energy consumption), the myocardial energetic metabolic network switched from a net consumer to a net producer of lactate, resulting in a low coupling of glucose oxidation to glycolysis, which is a common feature of hypertrophied hearts. This study provides a novel systematic myocardial contractile and metabolic analysis to help elucidate the pathogenesis of FHC and suggests that the alterations in resting heart energy supply and demand could contribute to disease progression.
Collapse
Affiliation(s)
- Bo Wu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | |
Collapse
|
46
|
Abstract
During the past two decades, numerous disease-causing genes for different cardiomyopathies have been identified. These discoveries have led to better understanding of disease pathogenesis and initial steps in the application of mutation analysis in the evaluation of affected individuals and their family members. As knowledge of the genetic abnormalities, and insight into cellular and organ biology has grown, so has appreciation of the level of complexity of interaction between genotype and phenotype across disease states. What were initially thought to be one-to-one gene-disease correlates have turned out to display important relational plasticity dependent in large part on the genetic and environmental backgrounds into which the genes of interest express. The current state of knowledge with regard to genetics of cardiomyopathy represents a starting point to address the biology of disease, but is not yet developed sufficiently to supplant clinically based classification systems or, in most cases, to guide therapy to any significant extent. Future work will of necessity be directed towards elucidation of the biological mechanisms of both rare and common gene variants and environmental determinants of plasticity in the genotype-phenotype relationship with the ultimate goal of furthering our ability to identify, diagnose, risk stratify, and treat this group of disorders which cause heart failure and sudden death in the young.
Collapse
Affiliation(s)
- Daniel Jacoby
- Division of Cardiology, Yale School of Medicine, New Haven, CT 06519, USA
| | | |
Collapse
|
47
|
Zhang J, Guy MJ, Norman HS, Chen YC, Xu Q, Dong X, Guner H, Wang S, Kohmoto T, Young KH, Moss RL, Ge Y. Top-down quantitative proteomics identified phosphorylation of cardiac troponin I as a candidate biomarker for chronic heart failure. J Proteome Res 2011; 10:4054-65. [PMID: 21751783 DOI: 10.1021/pr200258m] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rapid increase in the prevalence of chronic heart failure (CHF) worldwide underscores an urgent need to identify biomarkers for the early detection of CHF. Post-translational modifications (PTMs) are associated with many critical signaling events during disease progression and thus offer a plethora of candidate biomarkers. We have employed a top-down quantitative proteomics methodology for comprehensive assessment of PTMs in whole proteins extracted from normal and diseased tissues. We systematically analyzed 36 clinical human heart tissue samples and identified phosphorylation of cardiac troponin I (cTnI) as a candidate biomarker for CHF. The relative percentages of the total phosphorylated cTnI forms over the entire cTnI populations (%P(total)) were 56.4 ± 3.5%, 36.9 ± 1.6%, 6.1 ± 2.4%, and 1.0 ± 0.6% for postmortem hearts with normal cardiac function (n = 7), early stage of mild hypertrophy (n = 5), severe hypertrophy/dilation (n = 4), and end-stage CHF (n = 6), respectively. In fresh transplant samples, the %P(total) of cTnI from nonfailing donor (n = 4), and end-stage failing hearts (n = 10) were 49.5 ± 5.9% and 18.8 ± 2.9%, respectively. Top-down MS with electron capture dissociation unequivocally localized the altered phosphorylation sites to Ser22/23 and determined the order of phosphorylation/dephosphorylation. This study represents the first clinical application of top-down MS-based quantitative proteomics for biomarker discovery from tissues, highlighting the potential of PTMs as disease biomarkers.
Collapse
Affiliation(s)
- Jiang Zhang
- School of Medicine and Public Health and School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pinto JR, Yang SW, Hitz MP, Parvatiyar MS, Jones MA, Liang J, Kokta V, Talajic M, Tremblay N, Jaeggi M, Andelfinger G, Potter JD. Fetal cardiac troponin isoforms rescue the increased Ca2+ sensitivity produced by a novel double deletion in cardiac troponin T linked to restrictive cardiomyopathy: a clinical, genetic, and functional approach. J Biol Chem 2011; 286:20901-12. [PMID: 21502316 DOI: 10.1074/jbc.m111.234336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel double deletion in cardiac troponin T (cTnT) of two highly conserved amino acids (Asn-100 and Glu-101) was found in a restrictive cardiomyopathic (RCM) pediatric patient. Clinical evaluation revealed the presence of left atrial enlargement and marked left ventricle diastolic dysfunction. The explanted heart examined by electron microscopy revealed myofibrillar disarray and mild fibrosis. Pedigree analysis established that this mutation arose de novo. The patient tested negative for six other sarcomeric genes. The single and double recombinant cTnT mutants were generated, and their functional consequences were analyzed in porcine skinned cardiac muscle. In the adult Tn environment (cTnT3 + cardiac troponin I), the single cTnT3-ΔN100 and cTnT3-ΔE101 mutations had opposing effects on the Ca(2+) sensitivity of force development compared with WT, whereas the double deletion cTnT3-ΔN100/ΔE101 increased the Ca(2+) sensitivity + 0.19 pCa units. In addition, cTnT3-ΔN100/ΔE101 decreased the cooperativity of force development, suggesting alterations in intrafilament protein-protein interactions. In the fetal Tn environment, (cTnT1 + slow skeletal troponin I), the single (cTnT1-ΔN110) and double (cTnT1-ΔN110/ΔE111) deletions did not change the Ca(2+) sensitivity compared with control. To recreate the patient's heterozygous genotype, we performed a reconstituted ATPase activity assay. Thin filaments containing 50:50 cTnT3-ΔN100/ΔE101:cTnT3-WT also increased the myofilament Ca(2+) sensitivity compared with WT. Co-sedimentation of thin filament proteins indicated that no significant changes occurred in the binding of Tn containing the RCM cTnT mutation to actin-Tm. This report reveals the protective role of Tn fetal isoforms as they rescue the increased Ca(2+) sensitivity produced by a cTnT-RCM mutation and may account for the lack of lethality during gestation.
Collapse
Affiliation(s)
- Jose Renato Pinto
- University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Frazier AH, Ramirez-Correa GA, Murphy AM. Molecular mechanisms of sarcomere dysfunction in dilated and hypertrophic cardiomyopathy. PROGRESS IN PEDIATRIC CARDIOLOGY 2011; 31:29-33. [PMID: 21297871 PMCID: PMC3032173 DOI: 10.1016/j.ppedcard.2010.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The sarcomeres form the molecular motor of the cardiomyocyte and consist of a complex multi-protein of thick and thin filaments which are anchored to the cytoskeleton. The thick filament, composed of myosin and associated proteins, and the thin filament composed of actin, tropomyosin and the troponins develop actinmyosin crossbridges which cycle in response to calcium resulting in sliding of the filaments and contraction. The thin filament in fixed to the cardiomyocyte cytoskeleton at the Z-disc, a complex of structural and regulatory proteins. A giant protein, titin, provides an external scaffold and regulates passive force in diastole. Both genetic disorders and acquired conditions may affect proteins of the sarcomere. Genetic disorders of the thick and thin filament proteins are the predominant cause of hypertrophic cardiomyopathy. These mutations lead to abnormal sarcomere function, often an enhanced sensitivity to calcium, and impaired relaxation. This may result in secondary changes in calcium cycling and amplification of hypertrophic signaling cascades. Correcting the abnormal function of the sarcomere as well as intervening in later stages of the pathophysiologic cascades may ameliorate disease. In dilated cardiomyopathy genetic abnormalities in the sarcomere, Z-disc, calcium regulatory and cytoskeletal proteins as well as the dystrophin complex may be causal for disease. In dilated cardiomyopathy, disturbances in post-translational modifications of the sarcomere my also play a prominent role. Experimental models indicate that altered phosphorylation of sarcomeric proteins may impair systolic and diastolic function as well as the response to heart rate and afterload. Thus correcting these post-translational changes are legitimate targets for future therapeutic strategies for dilated cardiomyopathy.
Collapse
Affiliation(s)
- Aisha H Frazier
- Departments of Pediatrics, Division of Cardiology, Johns Hopkins University School of Medicine
| | | | | |
Collapse
|
50
|
Kozaili JM, Leek D, Tobacman LS. Dual regulatory functions of the thin filament revealed by replacement of the troponin I inhibitory peptide with a linker. J Biol Chem 2010; 285:38034-41. [PMID: 20889978 DOI: 10.1074/jbc.m110.165753] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Striated muscles are relaxed under low Ca(2+) concentration conditions due to actions of the thin filament protein troponin. To investigate this regulatory mechanism, an 11-residue segment of cardiac troponin I previously termed the inhibitory peptide region was studied by mutagenesis. Several mutant troponin complexes were characterized in which specific effects of the inhibitory peptide region were abrogated by replacements of 4-10 residues with Gly-Ala linkers. The mutations greatly impaired two of troponin's actions under low Ca(2+) concentration conditions: inhibition of myosin subfragment 1 (S1)-thin filament MgATPase activity and cooperative suppression of myosin S1-ADP binding to thin filaments with low myosin saturation. Inhibitory peptide replacement diminished but did not abolish the Ca(2+) dependence of the ATPase rate; ATPase rates were at least 2-fold greater when Ca(2+) rather than EGTA was present. This residual regulation was highly cooperative as a function of Ca(2+) concentration, similar to the degree of cooperativity observed with WT troponin present. Other effects of the mutations included 2-fold or less increases in the apparent affinity of the thin filament regulatory Ca(2+) sites, similar decreases in the affinity of troponin for actin-tropomyosin regardless of Ca(2+), and increases in myosin S1-thin filament ATPase rates in the presence of saturating Ca(2+). The overall results indicate that cooperative myosin binding to Ca(2+)-free thin filaments depends upon the inhibitory peptide region but that a cooperatively activating effect of Ca(2+) binding does not. The findings suggest that these two processes are separable and involve different conformational changes in the thin filament.
Collapse
|