1
|
Vlašić I, Horvat A, Tadijan A, Slade N. p53 Family in Resistance to Targeted Therapy of Melanoma. Int J Mol Sci 2022; 24:ijms24010065. [PMID: 36613518 PMCID: PMC9820688 DOI: 10.3390/ijms24010065] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Metastatic melanoma is one of the most aggressive tumors, with frequent mutations affecting components of the MAPK pathway, mainly protein kinase BRAF. Despite promising initial response to BRAF inhibitors, melanoma progresses due to development of resistance. In addition to frequent reactivation of MAPK or activation of PI3K/AKT signaling pathways, recently, the p53 pathway has been shown to contribute to acquired resistance to targeted MAPK inhibitor therapy. Canonical tumor suppressor p53 is inactivated in melanoma by diverse mechanisms. The TP53 gene and two other family members, TP63 and TP73, encode numerous protein isoforms that exhibit diverse functions during tumorigenesis. The p53 family isoforms can be produced by usage of alternative promoters and/or splicing on the C- and N-terminus. Various p53 family isoforms are expressed in melanoma cell lines and tumor samples, and several of them have already shown to have specific functions in melanoma, affecting proliferation, survival, metastatic potential, invasion, migration, and response to therapy. Of special interest are p53 family isoforms with increased expression and direct involvement in acquired resistance to MAPK inhibitors in melanoma cells, implying that modulating their expression or targeting their functional pathways could be a potential therapeutic strategy to overcome resistance to MAPK inhibitors in melanoma.
Collapse
|
2
|
Dansonka-Mieszkowska A, Szafron LA, Kulesza M, Stachurska A, Leszczynski P, Tomczyk-Szatkowska A, Sobiczewski P, Parada J, Kulinczak M, Moes-Sosnowska J, Pienkowska-Grela B, Kupryjanczyk J, Chechlinska M, Szafron LM. PROM1, CXCL8, RUNX1, NAV1 and TP73 genes as independent markers predictive of prognosis or response to treatment in two cohorts of high-grade serous ovarian cancer patients. PLoS One 2022; 17:e0271539. [PMID: 35867729 PMCID: PMC9307210 DOI: 10.1371/journal.pone.0271539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2021] [Accepted: 07/02/2022] [Indexed: 11/18/2022] Open
Abstract
Considering the vast biological diversity and high mortality rate in high-grade ovarian cancers, identification of novel biomarkers, enabling precise diagnosis and effective, less aggravating treatment, is of paramount importance. Based on scientific literature data, we selected 80 cancer-related genes and evaluated their mRNA expression in 70 high-grade serous ovarian cancer (HGSOC) samples by Real-Time qPCR. The results were validated in an independent Northern American cohort of 85 HGSOC patients with publicly available NGS RNA-seq data. Detailed statistical analyses of our cohort with multivariate Cox and logistic regression models considering clinico-pathological data and different TP53 mutation statuses, revealed an altered expression of 49 genes to affect the prognosis and/or treatment response. Next, these genes were investigated in the validation cohort, to confirm the clinical significance of their expression alterations, and to identify genetic variants with an expected high or moderate impact on their products. The expression changes of five genes, PROM1, CXCL8, RUNX1, NAV1, TP73, were found to predict prognosis or response to treatment in both cohorts, depending on the TP53 mutation status. In addition, we revealed novel and confirmed known SNPs in these genes, and showed that SNPs in the PROM1 gene correlated with its elevated expression.
Collapse
Affiliation(s)
- Agnieszka Dansonka-Mieszkowska
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Laura Aleksandra Szafron
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Kulesza
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Stachurska
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Pawel Leszczynski
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Agnieszka Tomczyk-Szatkowska
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Sobiczewski
- Department of Gynecological Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Parada
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mariusz Kulinczak
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Moes-Sosnowska
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Barbara Pienkowska-Grela
- Cytogenetics Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jolanta Kupryjanczyk
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Chechlinska
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Lukasz Michal Szafron
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- * E-mail:
| |
Collapse
|
3
|
Widden H, Kaczmarczyk A, Subedi A, Whitaker RH, Placzek WJ. MCL1 binds and negatively regulates the transcriptional function of tumor suppressor p73. Cell Death Dis 2020; 11:946. [PMID: 33144577 PMCID: PMC7641127 DOI: 10.1038/s41419-020-03068-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
MCL1, an anti-apoptotic protein that controls chemosensitivity and cell fate through its regulation of intrinsic apoptosis, has been identified as a high-impact target in anti-cancer therapeutic development. With MCL1-specific inhibitors currently in clinical trials, it is imperative that we understand the roles that MCL1 plays in cells, especially when targeting the Bcl-2 homology 3 (BH3) pocket, the central region of MCL1 that mediates apoptotic regulation. Here, we establish that MCL1 has a direct role in controlling p73 transcriptional activity, which modulates target genes associated with DNA damage response, apoptosis, and cell cycle progression. This interaction is mediated through the reverse BH3 (rBH3) motif in the p73 tetramerization domain, which restricts p73 assembly on DNA. Here, we provide a novel mechanism for protein-level regulation of p73 transcriptional activity by MCL1, while also framing a foundation for studying MCL1 inhibitors in combination with platinum-based chemotherapeutics. More broadly, this work expands the role of Bcl-2 family signaling beyond cell fate regulation.
Collapse
Affiliation(s)
- Hayley Widden
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aneta Kaczmarczyk
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashok Subedi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert H Whitaker
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Yoon MK, Kim BY, Lee JY, Ha JH, Kim SA, Lee DH, Lee MS, Lee MK, Choi JS, Cho JH, Kim JH, Kim S, Song J, Park SG, Park BC, Bae KH, Choi SU, Chi SW. Cytoplasmic pro-apoptotic function of the tumor suppressor p73 is mediated through a modified mode of recognition of the anti-apoptotic regulator Bcl-X L. J Biol Chem 2018; 293:19546-19558. [PMID: 30429221 DOI: 10.1074/jbc.ra118.003061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2018] [Revised: 10/26/2018] [Indexed: 12/15/2022] Open
Abstract
In response to genotoxic stress, the tumor suppressor protein p73 induces apoptosis and cell cycle arrest. Despite extensive studies on p73-mediated apoptosis, little is known about the cytoplasmic apoptotic function of p73. Here, using H1299 lung cancer cells and diverse biochemical approaches, including colony formation, DNA fragmentation, GST pulldown, and apoptosis assays along with NMR spectroscopy, we show that p73 induces transcription-independent apoptosis via its transactivation domain (TAD) through a mitochondrial pathway and that this apoptosis is mediated by the interaction between p73-TAD and the anti-apoptotic protein B-cell lymphoma-extra large (Bcl-XL or BCL2L1). This binding disrupted an interaction between Bcl-XL and the pro-apoptotic protein BH3-interacting domain death agonist (Bid). In particular, we found that a 16-mer p73-TAD peptide motif (p73-TAD16) mediates transcription-independent apoptosis, accompanied by cytochrome c release from the mitochondria, by interacting with Bcl-XL Interestingly, the structure of the Bcl-XL-p73-TAD16 peptide complex revealed a novel mechanism of Bcl-XL recognition by p73-TAD. We observed that the α-helical p73-TAD16 peptide binds to a noncanonical site in Bcl-XL, comprising the BH1, BH2, and BH3 domains in an orientation opposite to those of pro-apoptotic BH3 peptides. Taken together, our results indicate that the cytoplasmic apoptotic function of p73 is mediated through a noncanonical mode of Bcl-XL recognition. This finding sheds light on a critical transcription-independent, p73-mediated mechanism for apoptosis induction, which has potential implications for anticancer therapy.
Collapse
Affiliation(s)
- Mi-Kyung Yoon
- From the Disease Target Structure Research Center and
| | - Bu-Yeon Kim
- the Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea, and
| | - Ji-Young Lee
- the Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea, and
| | - Ji-Hyang Ha
- From the Disease Target Structure Research Center and
| | - Sung Ah Kim
- From the Disease Target Structure Research Center and.,the KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Dong-Hwa Lee
- From the Disease Target Structure Research Center and
| | - Min-Sung Lee
- From the Disease Target Structure Research Center and.,the KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Mi-Kyung Lee
- From the Disease Target Structure Research Center and
| | - Jin Sun Choi
- From the Disease Target Structure Research Center and
| | - Jin Hwa Cho
- From the Disease Target Structure Research Center and
| | - Jeong-Hoon Kim
- From the Disease Target Structure Research Center and.,the KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sunhong Kim
- From the Disease Target Structure Research Center and.,the KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jaewhan Song
- the Department of Biochemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sung Goo Park
- From the Disease Target Structure Research Center and.,the KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Byoung Chul Park
- From the Disease Target Structure Research Center and.,the KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kwang-Hee Bae
- the KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.,the Metabolic Regulation Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Sang Un Choi
- the Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea, and
| | - Seung-Wook Chi
- From the Disease Target Structure Research Center and .,the KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
5
|
Makino E, Gutmann V, Kosnopfel C, Niessner H, Forschner A, Garbe C, Sinnberg T, Schittek B. Melanoma cells resistant towards MAPK inhibitors exhibit reduced TAp73 expression mediating enhanced sensitivity to platinum-based drugs. Cell Death Dis 2018; 9:930. [PMID: 30206212 PMCID: PMC6133963 DOI: 10.1038/s41419-018-0952-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2018] [Revised: 08/01/2018] [Accepted: 08/20/2018] [Indexed: 11/23/2022]
Abstract
The efficacy of targeted MAPK signalling pathway inhibitors (MAPKi) in metastatic melanoma therapy is limited by the development of resistance mechanisms that results in disease relapse. This situation still requires treatment alternatives for melanoma patients with acquired resistance to targeted therapy. We found that melanoma cells, which developed resistance towards MAPKi show an enhanced susceptibility to platinum-based drugs, such as cisplatin and carboplatin. We found that this enhanced susceptibility inversely correlates with the expression level of the p53 family member TAp73. We show that the lower expression of the TAp73 isoform in MAPKi-resistant melanoma cells enhances accumulation of DNA double-strand breaks upon cisplatin and carboplatin treatment by reducing the efficiency of nucleotide excision repair. These data suggest that a subgroup of melanoma patients with acquired resistance to MAPKi treatment and low TAp73 expression can benefit from chemotherapy with platinum-based drugs as a second-line therapy.
Collapse
Affiliation(s)
- Elena Makino
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Vanessa Gutmann
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Corinna Kosnopfel
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Heike Niessner
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Andrea Forschner
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Claus Garbe
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Abstract
p53 plays a key role in regulating DNA damage response by suppressing cell cycle progression or inducing apoptosis depending on extent of DNA damage. However, it is not clear why mild genotoxic stress favors growth arrest, whereas excessive lesions signal cells to die. Here we showed that TAp73, a p53 homologue thought to have a similar function as p53, restrains the transcriptional activity of p53 and prevents excessive activation of its downstream targets upon low levels of DNA damage, which results in cell cycle arrest. Extensive DNA damage triggers TAp73 depletion through ubiquitin/proteasome-mediated degradation of E2F1, leading to enhanced transcriptional activation by p53 and subsequent induction of apoptosis. These findings provide novel insights into the regulation of p53 function and suggest that TAp73 keeps p53 activity in check in regulating cell fate decisions upon genotoxic stress.
Collapse
|
7
|
Wang SS, Zhu XQ, Yang SDI, Dong LL, Li W, Tang J. Association of p73 G4C14-to-A4T14 polymorphism with non-small cell lung cancer risk. Oncol Lett 2015; 10:995-999. [PMID: 26622612 DOI: 10.3892/ol.2015.3322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2014] [Accepted: 04/29/2015] [Indexed: 11/06/2022] Open
Abstract
The p73 gene is a structural and functional homolog of the p53 gene, which has a crucial role in mediating cell cycle arrest and apoptosis. Numerous previous studies have investigated the polymorphism of p73 G4C14-to-A4T14 at exon 2, as it was suggested to affect gene expression and result in functional significance. However, the correlation of this polymorphism with clinicopathological variables of patients with non-small cell lung cancer (NSCLC) remains to be elucidated. The aim of the present study was to examine the association between the gene polymorphism of p73 G4C14-to-A4T14 and the risk of developing NSCLC. The single-nucleotide polymorphisms of p73 G4C14-to-A4T14 were genotyped using polymerase chain reaction with confronting two-pair primers and direct DNA sequencing in 186 NSCLC patients and 196 cancer-free controls. χ2-tests and logistic regression analysis were used to analyze the experimental data, including the determination of odds ratio (OR), 95% confidence intervals (95% CIs) and P-values. The results demonstrated that the AT/AT genotype was associated with a significantly decreased risk of NSCLC (P=0.010; OR=0.370; 95% CI=0.170-0.806) compared with the GC allele genotypes including GC/GC and GC/AT. In addition, carriers of the AT allele exhibited a significantly reduced risk of NSCLC (P=0.038; OR=0.713; 95% CI=0.517-0.983) compared with non-carriers. In conclusion, these results indicated that the p73 G4C14-to-A4T14 polymorphism was a potential marker of NSCLC genetic susceptibility. However, further studies with a larger population are required in order to confirm these results.
Collapse
Affiliation(s)
- Shuang Shuang Wang
- Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, Hunan 412008, P.R. China
| | - Xiang Qin Zhu
- Department of Pathology, Hunan Provincial Tumor Hospital, Changsha, Hunan 410113, P.R. China
| | - Shao DI Yang
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410006, P.R. China
| | - Lin Li Dong
- Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, Hunan 412008, P.R. China
| | - Wen Li
- Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, Hunan 412008, P.R. China
| | - Jianxin Tang
- Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, Hunan 412008, P.R. China
| |
Collapse
|
8
|
Lai J, Nie W, Zhang W, Wang Y, Xie R, Wang Y, Gu J, Xu J, Song W, Yang F, Huang G, Cao P, Guan X. Transcriptional regulation of the p73 gene by Nrf-2 and promoter CpG methylation in human breast cancer. Oncotarget 2015; 5:6909-22. [PMID: 25071010 PMCID: PMC4196172 DOI: 10.18632/oncotarget.2230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022] Open
Abstract
To understand the transcriptional regulation of p73 by promoter methylation and Nrf-2 in breast carcinogenesis, ChIP assay indicated that Nrf-2 can bind to both promoters and can activate the transcription of TAp73 and ΔΝp73 in MCF-7 cell line, knockdown of Nrf-2 gene resulted in an abrogation of TAp73 and ΔΝp73 expression in the cells transfected with sh-Nrf-2 as well as Nrf-2 knock out mouse model. However, we found Nrf-2 induced ΔΝp73 expression was abolished with 5-aza-dC treatment, thus lead to a down-regulated ΔΝp73 and an up-regulated TAp73 expression in breast cancer cells lines. Consistent with this model, we detected decreased TAp73 and increased ΔNp73 expression in breast cancer tissue, along with increased TAp73 but decreased ΔNp73 expression in corresponding surrounding noncancerous tissues (NCTs) in a breast cancer tissue assay. A significant inverse correlation was found between TAp73 and ΔNp73 expression in the above tissue-array (P = 0.047) and validated in another set consisting of 128 breast cancer tumor tissue (P = 0.034). Taken together, our findings suggest that Nrf-2 and promoter methylation cooperatively govern the transcriptional regulation of p73, and unbalanced expression of TAp73 and ΔNp73 expression plays a critical role in breast cancer development.
Collapse
Affiliation(s)
- Jing Lai
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou, China; These authors contributed equally to this work
| | - Weiwei Nie
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou, China; These authors contributed equally to this work
| | - Wenwen Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China; These authors contributed equally to this work
| | - Yucai Wang
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Ruilian Xie
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou, China
| | - Yanru Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou, China
| | - Jun Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jing Xu
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Song
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou, China
| | - Fang Yang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guichun Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peng Cao
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Chinese Medicine, Nanjing, China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou, China; Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Logotheti S, Pavlopoulou A, Galtsidis S, Vojtesek B, Zoumpourlis V. Functions, divergence and clinical value of TAp73 isoforms in cancer. Cancer Metastasis Rev 2014; 32:511-34. [PMID: 23592418 DOI: 10.1007/s10555-013-9424-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
The p73 gene encodes the tumour suppressive full-length TAp73 and N-terminal-truncated DNp73 isoforms that act as dominant negative inhibitors of TAp73. The overall effect of p73 in oncogenesis is thought to depend on the TAp73 to DNp73 isoforms' ratio. TAp73 isoforms include a number of C-terminal variants as a result of alternative splicing in 3'-end. TAp73 isoforms protect cells from oncogenic alterations in a multifaceted way since they are implicated in the suppression of all demonstrated hallmarks and enabling characteristics of cancer. Their best established role is in apoptosis, a process which seems to be differently affected by each TAp73 C-terminal variant. Based on previous findings and our thorough bioinformatics analysis, we highlight that TAp73 variants are functionally non-equivalent, since they present major differences in their transactivation efficiencies, protein interactions, response to DNA damage and apoptotic effects that are attributable to the primary structure of their C terminus. In this review, we summarise these differences and we unveil the link between crucial C-terminal motifs/residues and the oncosuppressive potential of TAp73 isoforms, emphasising on the importance of considering C terminus during the development of p73-based anticancer biologics.
Collapse
Affiliation(s)
- Stella Logotheti
- Unit of Biomedical Applications, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave, 11635, Athens, Greece
| | | | | | | | | |
Collapse
|
10
|
Song G, Valdez BC, Li Y, Dominguez JR, Corn P, Champlin RE, Andersson BS. The histone deacetylase inhibitor SAHA sensitizes acute myeloid leukemia cells to a combination of nucleoside analogs and the DNA-alkylating agent busulfan. Leuk Lymphoma 2014; 55:1625-34. [PMID: 24144307 DOI: 10.3109/10428194.2013.856007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023]
Abstract
Fludarabine (Flu), clofarabine (Clo) and busulfan (Bu) are used in allogeneic hematopoietic stem cell transplant (allo-HSCT). We reported that combining [Flu + Clo + Bu] had a synergistic cytotoxicity in AML cells. We hypothesized that combining [Flu + Clo + Bu] with the histone deacetylase inhibitor SAHA will further enhance cytotoxicity. We exposed the acute myeloid leukemia (AML) cell lines KBM3/Bu250(6) and OCI-AML3 to Flu, Clo, Bu and SAHA alone and in various combinations. [Flu + Clo + Bu + SAHA] resulted in synergistic cytotoxicity, which can be attributed to (1) activated DNA-damage response and cell cycle checkpoint activation through the ATM-CHK2-P53 (or P73) pathway or ATM-CHK2-cdc25-cdc2 pathway, (2) histone modifications and (3) activated apoptosis pathway. The [Flu + Clo + Bu + SAHA] combination causes mitochondrial outer membrane permeabilization, leakage of cytochrome c and Smac/Diablo into the cytosol with caspase activation, and release of apoptosis-inducing factor (AIF) into the nucleus resulting in nuclear fragmentation and cell death. These results provide a mechanistic basis for using SAHA in future clinical trials with double nucleoside analog-busulfan combinations in pretransplant conditioning therapy.
Collapse
Affiliation(s)
- Guiyun Song
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M. D. Anderson Cancer Center , Houston, TX , USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Rodhe J, Kavanagh E, Joseph B. TAp73β-mediated suppression of cell migration requires p57Kip2 control of actin cytoskeleton dynamics. Oncotarget 2014; 4:289-97. [PMID: 23470527 PMCID: PMC3712574 DOI: 10.18632/oncotarget.833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/02/2022] Open
Abstract
The TP73 gene, a member of the p53 family, due to the use of different promoters and alternative splicing, is transcribed into different isoforms with contrasting attributes and which contribute to its functional diversity. Considerable efforts are made to identify the functional diversity of the p73 splicing variants during tumorigenesis.TAp73α and TAp73β isoforms have been shown to differentially regulate cell cycle progression, differentiation and apoptosis. Interestingly, a particular increase in expression of the TAp73 isoform, in favor of the α splicing variant, has been reported in multiple tumour types. Here, we report a distinctive role for TAp73β isoform in the control of cell migration and invasion. In fact, TAp73β-dependent induction of p57Kip2 expression accounted for inhibitory effects on the actin cytoskeleton dynamics and thereby cancer cell motility. In contrast, TAp73α is not able to induce p57Kip2 expression, and exhibits a positive effect on actin cytoskeleton dynamics as well as cell migration and invasion. In conclusion, the inhibitory effect on cell migration and invasion of TAp73β would qualify this distinct p73 isoform as tumor suppressor gene. In contrast, the promoting effect of TAp73α on cell motility and invasion strengthens the potential oncogenic activities of this p73 isoform.
Collapse
Affiliation(s)
- Johanna Rodhe
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | | | |
Collapse
|
12
|
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene 2013; 514:1-30. [PMID: 22909801 PMCID: PMC5632952 DOI: 10.1016/j.gene.2012.07.083] [Citation(s) in RCA: 534] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
Abstract
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in 'splicing programs', which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed.
Collapse
Affiliation(s)
- Olga Kelemen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuan Wen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
13
|
Abstract
For most of our 25,000 genes, the removal of introns by pre-messenger RNA (pre-mRNA) splicing represents an essential step toward the production of functional messenger RNAs (mRNAs). Alternative splicing of a single pre-mRNA results in the production of different mRNAs. Although complex organisms use alternative splicing to expand protein function and phenotypic diversity, patterns of alternative splicing are often altered in cancer cells. Alternative splicing contributes to tumorigenesis by producing splice isoforms that can stimulate cell proliferation and cell migration or induce resistance to apoptosis and anticancer agents. Cancer-specific changes in splicing profiles can occur through mutations that are affecting splice sites and splicing control elements, and also by alterations in the expression of proteins that control splicing decisions. Recent progress in global approaches that interrogate splicing diversity should help to obtain specific splicing signatures for cancer types. The development of innovative approaches for annotating and reprogramming splicing events will more fully establish the essential contribution of alternative splicing to the biology of cancer and will hopefully provide novel targets and anticancer strategies. Metazoan genes are usually made up of several exons interrupted by introns. The introns are removed from the pre-mRNA by RNA splicing. In conjunction with other maturation steps, such as capping and polyadenylation, the spliced mRNA is then transported to the cytoplasm to be translated into a functional protein. The basic mechanism of splicing requires accurate recognition of each extremity of each intron by the spliceosome. Introns are identified by the binding of U1 snRNP to the 5' splice site and the U2AF65/U2AF35 complex to the 3' splice site. Following these interactions, other proteins and snRNPs are recruited to generate the complete spliceosomal complex needed to excise the intron. While many introns are constitutively removed by the spliceosome, other splice junctions are not used systematically, generating the phenomenon of alternative splicing. Alternative splicing is therefore the process by which a single species of pre-mRNA can be matured to produce different mRNA molecules (Fig. 1). Depending on the number and types of alternative splicing events, a pre-mRNA can generate from two to several thousands different mRNAs leading to the production of a corresponding number of proteins. It is now believed that the expression of at least 70 % of human genes is subjected to alternative splicing, implying an enormous contribution to proteomic diversity, and by extension, to the development and the evolution of complex animals. Defects in splicing have been associated with human diseases (Caceres and Kornblihtt, Trends Genet 18(4):186-93, 2002, Cartegni et al., Nat Rev Genet 3(4):285-98, 2002, Pagani and Baralle, Nat Rev Genet 5(5):389-96, 2004), including cancer (Brinkman, Clin Biochem 37(7):584-94, 2004, Venables, Bioessays 28(4):378-86, 2006, Srebrow and Kornblihtt, J Cell Sci 119(Pt 13):2635-2641, 2006, Revil et al., Bull Cancer 93(9):909-919, 2006, Venables, Transworld Res Network, 2006, Pajares et al., Lancet Oncol 8(4):349-57, 2007, Skotheim and Nees, Int J Biochem Cell Biol 39:1432-1449, 2007). Numerous studies have now confirmed the existence of specific differences in the alternative splicing profiles between normal and cancer tissues. Although there are a few cases where specific mutations are the primary cause for these changes, global alterations in alternative splicing in cancer cells may be primarily derived from changes in the expression of RNA-binding proteins that control splice site selection. Overall, these cancer-specific differences in alternative splicing offer an immense potential to improve the diagnosis and the prognosis of cancer. This review will focus on the functional impact of cancer-associated alternative splicing variants, the molecular determinants that alter the splicing decisions in cancer cells, and future therapeutic strategies.
Collapse
|
14
|
Muppani N, Nyman U, Joseph B. TAp73alpha protects small cell lung carcinoma cells from caspase-2 induced mitochondrial mediated apoptotic cell death. Oncotarget 2012; 2:1145-54. [PMID: 22201672 PMCID: PMC3282073 DOI: 10.18632/oncotarget.391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022] Open
Abstract
Caspase-2 is ubiquitously expressed and the most evolutionarily conserved mammalian caspase. It can be activated by a range of death stimuli prior to Bax activation and the occurrence of apoptotic mitochondrial dysfunctions. Caspase-2 has also been reported to exert tumour suppressor function in vivo. The full length TAp73alpha isoform is found up-regulated in various tumour types, and is reported in a cell-type specific manner to repress drug-induced apoptosis. Here, we report that TAp73alpha represses caspase-2 enzymatic activity and by this means reduce caspase-2 induced Bax activation, loss of mitochondrial transmembrane potential and resulting apoptosis. The inhibitory effect on caspase-2 requires the presence of the DNA binding domain and SAM domain region of TAp73alpha. In conclusion, the ability of TAp73alpha to act as an inhibitor of caspase-2-induced cell death together with its up-regulation in certain tumour types strengthen the potential oncogenic activities for this protein.
Collapse
Affiliation(s)
- Naveen Muppani
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | | | |
Collapse
|
15
|
Nyman U, Muppani NR, Zhivotovsky B, Joseph B. Hsp72 mediates TAp73α anti-apoptotic effects in small cell lung carcinoma cells. J Cell Mol Med 2012; 15:1757-68. [PMID: 20807285 PMCID: PMC4373366 DOI: 10.1111/j.1582-4934.2010.01166.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022] Open
Abstract
The transcription factor p73, a member of the p53 family of proteins, is involved in the regulation of cell cycle progression and apoptosis. Due to alternative promoters and carboxy-terminal splicing, the P73 gene gives rise to a range of different isoforms. Interestingly, a particular increase in expression of the TAp73α isoform has been reported in various tumours. In addition, TAp73α has been shown to inhibit Bax activation and mitochondrial dysfunctions and thereby to confer small cell lung carcinoma (SCLC) cells resistance to drug-induced apoptosis. However, the precise mechanism by which TAp73α exerts its pro-survival effect is yet unclear. Here we report that TAp73α, but not TAp73β, regulates the expression of inducible Hsp72/HSPA1A. Hsp72 proved to be required for the survival effects of TAp73α as antisense knockdown of Hsp72 resulted in an abolishment of the anti-apoptotic effect of TAp73α in SCLC cells upon Etoposide treatment. Importantly, depletion of Hsp72 allowed activation of Bax, loss of mitochondrial membrane potential and lysosomal membrane permeabilization in SCLC cells even in the presence of TAp73α. Finally, we revealed that TAp73β counteracts the anti-apoptotic effect of TAp73α by preventing Hsp72 induction. Our results thus provide additional evidence for the potential oncogenic role of TAp73α, and extend the understanding of the mechanism for its anti-apoptotic effect.
Collapse
Affiliation(s)
- Ulrika Nyman
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
16
|
Zhang X, Li X, Wu Z, Lin F, Zhou H. The p73 G4C14-to-A4T14 polymorphism is associated with risk of lung cancer in the Han nationality of North China. Mol Carcinog 2012; 52:387-91. [PMID: 22228141 DOI: 10.1002/mc.21869] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2011] [Revised: 11/18/2011] [Accepted: 12/08/2011] [Indexed: 11/09/2022]
Abstract
p73, a structural and functional homolog of p53, plays an important role in tumor carcinogenesis. Previous studies have suggested that the association between the p73 G4C14-to-A4T14 polymorphism and the risk of lung cancer, but the results have not been entirely consistent. We examined whether the p73 G4C14-to-A4T14 polymorphism was related to the risk of developing lung cancer in a Chinese population. The p73 G4C14-to-A4T14 polymorphism was genotyped in 293 lung cancer patients and 380 cancer-free controls of Han nationality in North China using PCR-RFLP. Multivariate logistic regression analysis was used to calculate adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs). We observed that compared with the GC/GC genotype, the genotypes containing AT allele (GC/AT + AT/AT genotypes) were associated with significantly increased susceptibility to lung cancer (OR, 1.48; 95% CI, 1.08-2.02; P = 0.014). In addition, compared with the GC/GC genotype, the GC/AT genotype was also significantly associated with increased susceptibility to lung cancer (OR, 1.46; 95% CI, 1.06-2.02; P = 0.046). Our findings suggest that the p73 G4C14-to-A4T14 polymorphism contributes to the risk of developing lung cancer in Chinese population.
Collapse
Affiliation(s)
- Xiaoai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | | | | | | | | |
Collapse
|
17
|
Abstract
P73 is important in drug-induced apoptosis in some cancer cells, yet its role in the regulation of chemosensitivity in ovarian cancer (OVCA) is poorly understood. Furthermore, if and how the deregulation of p73-mediated apoptosis confers resistance to cisplatin (CDDP) treatment is unclear. Here we demonstrate that TAp73α over-expression enhanced CDDP-induced PARP cleavage and apoptosis in both chemosensitive (OV2008 and A2780s) and their resistant counterparts (C13* and A2780cp) and another chemoresistant OVCA cells (Hey); in contrast, the effect of ΔNp73α over-expression was variable. P73α downregulation attenuated CDDP-induced PUMA and NOXA upregulation and apoptosis in OV2008 cells. CDDP decreased p73α steady-state protein levels in OV2008, but not in C13*, although the mRNA expression was identical. CDDP-induced p73α downregulation was mediated by a calpain-dependent pathway. CDDP induced calpain activation and enhanced its cytoplasmic interaction and co-localization with p73α in OV2008, but not C13* cells. CDDP increased the intracellular calcium concentration ([Ca(2+)](i)) in OV2008 but not C13* whereas cyclopiazonic acid (CPA), a Ca(2+)-ATPase inhibitor, caused this response and calpain activation, p73α processing and apoptosis in both cell types. CDDP-induced [Ca(2+)](i) increase in OV2008 cells was not effected by the elimination of extracellular Ca(2+), but this was attenuated by the depletion of internal Ca(2+) store, indicating that mobilization of intracellular Ca(2+]) stores was potentially involved. These findings demonstrate that p73α and its regulation by the Ca(2+)-mediated calpain pathway are involved in CDDP-induced apoptosis in OVCA cells and that dysregulation of Ca(2+)/calpain/p73 signaling may in part be the pathophysiology of CDDP resistance. Understanding the cellular and molecular mechanisms of chemoresistance will direct the development of effective strategies for the treatment of chemoresistant OVCA.
Collapse
|
18
|
Koeppel M, van Heeringen SJ, Kramer D, Smeenk L, Janssen-Megens E, Hartmann M, Stunnenberg HG, Lohrum M. Crosstalk between c-Jun and TAp73alpha/beta contributes to the apoptosis-survival balance. Nucleic Acids Res 2011; 39:6069-85. [PMID: 21459846 PMCID: PMC3152320 DOI: 10.1093/nar/gkr028] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022] Open
Abstract
The p53-family member p73 plays a role in various cellular signaling pathways during development and growth control and it can have tumor suppressor properties. Several isoforms of p73 exist with considerable differences in their function. Whereas the functions of the N-terminal isoforms (TA and ΔNp73) and their opposing pro- and antiapoptotic roles have become evident, the functional differences of the distinct C-terminal splice forms of TAp73 have remained unclear. Here, we characterized the global genomic binding sites for TAp73α and TAp73β by chromatin immunoprecipitation sequencing as well as the transcriptional responses by performing RNA sequencing. We identified a specific p73 consensus binding motif and found a strong enrichment of AP1 motifs in close proximity to binding sites for TAp73α. These AP1 motif-containing target genes are selectively upregulated by TAp73α, while their mRNA expression is repressed upon TAp73β induction. We show that their expression is dependent on endogenous c-Jun and that recruitment of c-Jun to the respective AP1 sites was impaired upon TAp73β expression, in part due to downregulation of c-Jun. Several of these AP1-site containing TAp73α-induced genes impinge on apoptosis induction, suggesting an underlying molecular mechanism for the observed functional differences between TAp73α and TAp73β.
Collapse
Affiliation(s)
- Max Koeppel
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tebbi A, Guittet O, Cottet MH, Vesin MF, Lepoivre M. TAp73 induction by nitric oxide: regulation by checkpoint kinase 1 (CHK1) and protection against apoptosis. J Biol Chem 2011; 286:7873-7884. [PMID: 21212274 DOI: 10.1074/jbc.m110.184879] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO) is a potent activator of the p53 tumor suppressor protein, thereby inducing cell cycle arrest and apoptosis. However, little is known about the regulation of the two other p53-family members, p63 and p73, by nitrogen oxides. We report here an up-regulation of p73 by NO in p53-null K-562 leukemia cells. Chemical NO prodrugs or macrophage iNOS activity induced an accumulation of the TAp73α isoform in these cells, whereas macrophages from iNOS(-/-) mice did not. NO also up-regulated TAp73 mRNA expression, suggesting a transcriptional regulation. The checkpoint kinases Chk1 and Chk2 can regulate TAp73 induction after DNA damage. We show that these kinases were rapidly phosphorylated upon NO treatment. Genetic silencing or pharmacological inhibition of Chk1 impaired NO-mediated accumulation of TAp73α. Because NO is known to block DNA synthesis through ribonucleotide reductase inhibition, the up-regulation of TAp73α might be caused by DNA damage induced by an arrest of DNA replication forks. In support of this hypothesis, DNA replication inhibitors such as hydroxyurea and aphidicolin similarly enhanced TAp73α expression and Chk1 phosphorylation. Moreover, inhibition of Chk1 also prevented TAp73α accumulation in response to replication inhibitors. The knockdown of TAp73 with siRNA sensitized K-562 cells to apoptosis induced by a nitrosative (NO) or oxidative (H(2)O(2)) injury. Therefore, TAp73α has an unusual cytoprotective role in K-562 cells, contrasting with its pro-apoptotic functions in many other cell models. In conclusion, NO up-regulates several p53 family members displaying pro- and anti-apoptotic effects, suggesting a complex network of interactions and cross-regulations between NO production and p53-related proteins.
Collapse
Affiliation(s)
- Ali Tebbi
- From the Université Paris-Sud, Institute of Molecular and Cellular Biochemistry and Biophysics, UMR 8619, F-91405 Orsay, France,; CNRS, F-91405 Orsay, France, and; the Division of Endocrinology, Diabetes, and Metabolism, Department of Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Olivier Guittet
- From the Université Paris-Sud, Institute of Molecular and Cellular Biochemistry and Biophysics, UMR 8619, F-91405 Orsay, France,; CNRS, F-91405 Orsay, France, and
| | - Marie-Hélène Cottet
- From the Université Paris-Sud, Institute of Molecular and Cellular Biochemistry and Biophysics, UMR 8619, F-91405 Orsay, France,; CNRS, F-91405 Orsay, France, and
| | - Marie-Françoise Vesin
- From the Université Paris-Sud, Institute of Molecular and Cellular Biochemistry and Biophysics, UMR 8619, F-91405 Orsay, France,; CNRS, F-91405 Orsay, France, and
| | - Michel Lepoivre
- From the Université Paris-Sud, Institute of Molecular and Cellular Biochemistry and Biophysics, UMR 8619, F-91405 Orsay, France,; CNRS, F-91405 Orsay, France, and.
| |
Collapse
|
20
|
Logotheti S, Michalopoulos I, Sideridou M, Daskalos A, Kossida S, Spandidos DA, Field JK, Vojtesek B, Liloglou T, Gorgoulis V, Zoumpourlis V. Sp1 binds to the external promoter of the p73 gene and induces the expression of TAp73gamma in lung cancer. FEBS J 2010; 277:3014-27. [PMID: 20528922 DOI: 10.1111/j.1742-4658.2010.07710.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Abstract
The p73 gene possesses an extrinsic P1 promoter and an intrinsic P2 promoter, resulting in TAp73 and DeltaNup73 isoforms, respectively. The ultimate effect of p73 in oncogenesis is thought to depend on the apoptotic TA to antiapoptotic DeltaN isoforms' ratio. This study was aimed at identifying novel transcription factors that affect TA isoform synthesis. With the use of bioinformatics tools, in vitro binding assays, and chromatin immunoprecipitation analysis, a region extending -233 to -204 bp upstream of the transcription start site of the human p73 P1 promoter, containing conserved Sp1-binding sites, was characterized. Treatment of cells with Sp1 RNAi and Sp1 inhibitor functionally suppress TAp73 expression, indicating positive regulation of P1 by the Sp1 protein. Notably Sp1 inhibition or knockdown also reduces DeltaNup73 protein levels. Therefore, Sp1 directly regulates TAp73 transcription and affects DeltaNup73 levels in lung cancer. TAp73gamma was shown to be the only TA isoform overexpressed in several lung cancer cell lines and in 26 non-small cell lung cancers, consistent with Sp1 overexpression, thereby questioning the apoptotic role of this specific p73 isoform in lung cancer.
Collapse
Affiliation(s)
- Stella Logotheti
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
PUMA (p53 upregulated modulator of apoptosis) is a Bcl-2 homology 3 (BH3)-only Bcl-2 family member and a critical mediator of p53-dependent and -independent apoptosis induced by a wide variety of stimuli, including genotoxic stress, deregulated oncogene expression, toxins, altered redox status, growth factor/cytokine withdrawal and infection. It serves as a proximal signaling molecule whose expression is regulated by transcription factors in response to these stimuli. PUMA transduces death signals primarily to the mitochondria, where it acts indirectly on the Bcl-2 family members Bax and/or Bak by relieving the inhibition imposed by antiapoptotic members. It directly binds and antagonizes all known antiapoptotic Bcl-2 family members to induce mitochondrial dysfunction and caspase activation. PUMA ablation or inhibition leads to apoptosis deficiency underlying increased risks for cancer development and therapeutic resistance. Although elevated PUMA expression elicits profound chemo- and radiosensitization in cancer cells, inhibition of PUMA expression may be useful for curbing excessive cell death associated with tissue injury and degenerative diseases. Therefore, PUMA is a general sensor of cell death stimuli and a promising drug target for cancer therapy and tissue damage.
Collapse
Affiliation(s)
- J Yu
- Department of Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
22
|
Toyota M, Suzuki H, Yamashita T, Hirata K, Imai K, Tokino T, Shinomura Y. Cancer epigenomics: implications of DNA methylation in personalized cancer therapy. Cancer Sci 2009; 100:787-91. [PMID: 19236379 PMCID: PMC11159488 DOI: 10.1111/j.1349-7006.2009.01095.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022] Open
Abstract
Genetic alterations in cancer can provide information for predicting a tumor's sensitivity to chemotherapeutic drugs. But although such information is certainly useful, the relatively low frequency of mutations seen in many cancers limits the utility of pharmacogenomics in large numbers of cancer patients, necessitating consideration of other approaches. Epigenetic changes such as DNA methylation are a hallmark of human cancers. Methylation of genes involved in DNA repair and maintaining genome integrity (e.g. MGMT, hMLH1, WRN, and FANCF), and cell-cycle checkpoint genes (e.g. CHFR and 14-3-3 sigma, CDK10, and p73), all reportedly influence the sensitivity to chemotherapeutic drugs, suggesting that DNA methylation could serve as a molecular marker for predicting the responsiveness of tumors to chemotherapy. However, the comprehensive study of pharmacoepigenomics awaits the advent of genome-wide analysis of DNA methylation using microarrays and next-generation sequencers.
Collapse
Affiliation(s)
- Minoru Toyota
- Department of Biochemistry, Cancer Research Institute, Sapporo Medical University, Sapporo 060-8556, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Protein kinase C-dependent phosphorylation regulates the cell cycle-inhibitory function of the p73 carboxy terminus transactivation domain. Mol Cell Biol 2009; 29:1814-25. [PMID: 19158275 DOI: 10.1128/mcb.00585-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023] Open
Abstract
The transcription factor p73, a member of the p53 family of proteins, is involved in the regulation of cell cycle progression and apoptosis. However, the regulatory mechanisms controlling the distinct roles for p73 in these two processes have remained unclear. Here, we report that p73 is able to induce cell cycle arrest independently of its amino-terminal transactivation domain, whereas this domain is crucial for p73 proapoptotic functions. We also characterized a second transactivation domain in the carboxy terminus of p73 within amino acid residues 381 to 399. This carboxy terminus transactivation domain was found to preferentially regulate genes involved in cell cycle progression. Moreover, its activity is regulated throughout the cell cycle and modified by protein kinase C-dependent phosphorylation at serine residue 388. Our results suggest that this novel posttranslational modification within the p73 carboxy terminus transactivation domain is involved in the context-specific guidance of p73 toward the selective induction of cell cycle arrest.
Collapse
|
24
|
Li LS, Morales JC, Hwang A, Wagner MW, Boothman DA. DNA mismatch repair-dependent activation of c-Abl/p73alpha/GADD45alpha-mediated apoptosis. J Biol Chem 2008; 283:21394-403. [PMID: 18480060 DOI: 10.1074/jbc.m709954200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023] Open
Abstract
Cells with functional DNA mismatch repair (MMR) stimulate G(2) cell cycle checkpoint arrest and apoptosis in response to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). MMR-deficient cells fail to detect MNNG-induced DNA damage, resulting in the survival of "mutator" cells. The retrograde (nucleus-to-cytoplasm) signaling that initiates MMR-dependent G(2) arrest and cell death remains undefined. Since MMR-dependent phosphorylation and stabilization of p53 were noted, we investigated its role(s) in G(2) arrest and apoptosis. Loss of p53 function by E6 expression, dominant-negative p53, or stable p53 knockdown failed to prevent MMR-dependent G(2) arrest, apoptosis, or lethality. MMR-dependent c-Abl-mediated p73alpha and GADD45alpha protein up-regulation after MNNG exposure prompted us to examine c-Abl/p73alpha/GADD45alpha signaling in cell death responses. STI571 (Gleevec, a c-Abl tyrosine kinase inhibitor) and stable c-Abl, p73alpha, and GADD45alpha knockdown prevented MMR-dependent apoptosis. Interestingly, stable p73alpha knockdown blocked MMR-dependent apoptosis, but not G(2) arrest, thereby uncoupling G(2) arrest from lethality. Thus, MMR-dependent intrinsic apoptosis is p53-independent, but stimulated by hMLH1/c-Abl/p73alpha/GADD45alpha retrograde signaling.
Collapse
Affiliation(s)
- Long Shan Li
- Laboratory of Molecular Stress Responses, Department of Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
25
|
Gallego MA, Ballot C, Kluza J, Hajji N, Martoriati A, Castéra L, Cuevas C, Formstecher P, Joseph B, Kroemer G, Bailly C, Marchetti P. Overcoming chemoresistance of non-small cell lung carcinoma through restoration of an AIF-dependent apoptotic pathway. Oncogene 2007; 27:1981-92. [PMID: 17906690 DOI: 10.1038/sj.onc.1210833] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
Non-small cell lung carcinomas (NSCLCs) are typically resistant against apoptosis induced by standard chemotherapy. We evaluated the effects of the two potential antitumor agents of the lamellarin class on a highly apoptosis-resistant NSCLC cell line. Both the marine alkaloid lamellarin-D and its synthetic amino derivative PM031379 induced the activation of Bax, the mitochondrial release of cytochrome c and apoptosis-inducing factor (AIF), as well as the activation of caspase-3. However, only PM031379 triggered cell death and sign of nuclear apoptosis coupled to the nuclear translocation of AIF. Depletion of AIF with small interfering RNA or microinjection of a neutralizing anti-AIF antibody largely prevented PM031379-induced cytotoxicity, underscoring the essential contribution of AIF to NSCLC killing. Using NSCLC cells lacking mitochondrial DNA, we showed that the generation of mitochondrial reactive oxygen species (ROS) was crucial for the PM031379-induced translocation of AIF to the nucleus and subsequently cell death. Pretreatment of NSCLC cells with menadione, a mitochondrial ROS generator, was able to restore the deficient chemotherapy-induced apoptosis of NSCLC cells. Altogether, these data suggest that mitochondrial ROS generation is crucial for overriding the chemoresistance of NSCLC cells. Moreover, this study delineates the unique mechanism of action of lamellarins as potential anticancer agents.
Collapse
Affiliation(s)
- M-A Gallego
- INSERM U 837, Université Lille 2, Faculté de Médecine, Jean-Pierre Aubert Research Centre, Place de Verdun, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Marabese M, Vikhanskaya F, Broggini M. p73: a chiaroscuro gene in cancer. Eur J Cancer 2007; 43:1361-72. [PMID: 17428654 DOI: 10.1016/j.ejca.2007.01.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2006] [Revised: 01/19/2007] [Accepted: 01/25/2007] [Indexed: 11/24/2022]
Abstract
p73 is a member of the p53 family which is gaining increasing importance in the field of cancer. Its structural homology with p53 led to the assumption that it could act as a new tumour suppressor gene. Increasing knowledge of its function, however, has cast doubts on this role. A particularly interesting characteristic of p73 is that the cell contains different isoforms with distinct and sometimes opposite functions. Evidence in the last few years clearly indicates that p73 does share some activities with p53 but also that it has some distinct functions. This review focuses on p73's role in the development and progression of cancer, analysing the gene structure and regulation and discussing similarities with p53 and differences. Recent results obtained with specific detection methods on the levels and functions of the different isoforms in tumours are also discussed.
Collapse
Affiliation(s)
- Mirko Marabese
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Via Eritrea 62, 20157 Milan, Italy.
| | | | | |
Collapse
|
27
|
Abstract
Alternative pre-mRNA splicing leads to distinct products of gene expression in development and disease. Antagonistic splice variants of genes involved in differentiation, apoptosis, invasion and metastasis often exist in a delicate equilibrium that is found to be perturbed in tumours. In several recent examples, splice variants that are overexpressed in cancer are expressed as hyper-oncogenic proteins, which often correlate with poor prognosis, thus suggesting improved diagnosis and follow up treatment. Global gene expression technologies are just beginning to decipher the interplay between alternatively spliced isoforms and protein-splicing factors that will lead to identification of the mutations in these trans-acting factors responsible for pathogenic alternative splicing in cancer.
Collapse
Affiliation(s)
- Julian P Venables
- University of Newcastle-upon-Tyne, Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, UK.
| |
Collapse
|