1
|
Lewis AM, Fallon T, Dittemore GA, Sheppard K. Evolution and variation in amide aminoacyl-tRNA synthesis. IUBMB Life 2024. [PMID: 38391119 DOI: 10.1002/iub.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
The amide proteogenic amino acids, asparagine and glutamine, are two of the twenty amino acids used in translation by all known life. The aminoacyl-tRNA synthetases for asparagine and glutamine, asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase, evolved after the split in the last universal common ancestor of modern organisms. Before that split, life used two-step indirect pathways to synthesize asparagine and glutamine on their cognate tRNAs to form the aminoacyl-tRNA used in translation. These two-step pathways were retained throughout much of the bacterial and archaeal domains of life and eukaryotic organelles. The indirect routes use non-discriminating aminoacyl-tRNA synthetases (non-discriminating aspartyl-tRNA synthetase and non-discriminating glutamyl-tRNA synthetase) to misaminoacylate the tRNA. The misaminoacylated tRNA formed is then transamidated into the amide aminoacyl-tRNA used in protein synthesis by tRNA-dependent amidotransferases (GatCAB and GatDE). The enzymes and tRNAs involved assemble into complexes known as transamidosomes to help maintain translational fidelity. These pathways have evolved to meet the varied cellular needs across a diverse set of organisms, leading to significant variation. In certain bacteria, the indirect pathways may provide a means to adapt to cellular stress by reducing the fidelity of protein synthesis. The retention of these indirect pathways versus acquisition of asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase in lineages likely involves a complex interplay of the competing uses of glutamine and asparagine beyond translation, energetic costs, co-evolution between enzymes and tRNA, and involvement in stress response that await further investigation.
Collapse
Affiliation(s)
- Alexander M Lewis
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | - Trevor Fallon
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | | | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| |
Collapse
|
2
|
Songsiriritthigul C, Suebka S, Chen CJ, Fuengfuloy P, Chuawong P. Crystal structure of the N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori. Acta Crystallogr F Struct Biol Commun 2017; 73:62-69. [PMID: 28177315 PMCID: PMC5297925 DOI: 10.1107/s2053230x16020586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/28/2016] [Indexed: 01/25/2023] Open
Abstract
The N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase (ND-AspRS) plays a crucial role in the recognition of both tRNAAsp and tRNAAsn. Here, the first X-ray crystal structure of the N-terminal domain of this enzyme (ND-AspRS1-104) from the human-pathogenic bacterium Helicobacter pylori is reported at 2.0 Å resolution. The apo form of H. pylori ND-AspRS1-104 shares high structural similarity with the N-terminal anticodon-binding domains of the discriminating aspartyl-tRNA synthetase (D-AspRS) from Escherichia coli and ND-AspRS from Pseudomonas aeruginosa, allowing recognition elements to be proposed for tRNAAsp and tRNAAsn. It is proposed that a long loop (Arg77-Lys90) in this H. pylori domain influences its relaxed tRNA specificity, such that it is classified as nondiscriminating. A structural comparison between D-AspRS from E. coli and ND-AspRS from P. aeruginosa suggests that turns E and F (78GAGL81 and 83NPKL86) in H. pylori ND-AspRS play a crucial role in anticodon recognition. Accordingly, the conserved Pro84 in turn F facilitates the recognition of the anticodons of tRNAAsp (34GUC36) and tRNAAsn (34GUU36). The absence of the amide H atom allows both C and U bases to be accommodated in the tRNA-recognition site.
Collapse
MESH Headings
- Amino Acid Sequence
- Anticodon/chemistry
- Anticodon/metabolism
- Apoproteins/chemistry
- Apoproteins/genetics
- Apoproteins/metabolism
- Aspartate-tRNA Ligase/chemistry
- Aspartate-tRNA Ligase/genetics
- Aspartate-tRNA Ligase/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding Sites
- Cloning, Molecular
- Crystallography, X-Ray
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Gene Expression
- Helicobacter pylori/chemistry
- Helicobacter pylori/enzymology
- Models, Molecular
- Plasmids/chemistry
- Plasmids/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Pseudomonas aeruginosa/enzymology
- Pseudomonas aeruginosa/genetics
- RNA, Transfer, Asn/chemistry
- RNA, Transfer, Asn/genetics
- RNA, Transfer, Asn/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/genetics
- RNA, Transfer, Asp/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Structural Homology, Protein
Collapse
Affiliation(s)
- Chomphunuch Songsiriritthigul
- Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Nakhon Ratchasima 30000, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Suwimon Suebka
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, and Special Research Unit for Advanced Magnetic Resonance, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Pitchayada Fuengfuloy
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, and Special Research Unit for Advanced Magnetic Resonance, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| | - Pitak Chuawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, and Special Research Unit for Advanced Magnetic Resonance, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
4
|
Highlights on trypanosomatid aminoacyl-tRNA synthesis. Subcell Biochem 2013; 74:271-304. [PMID: 24264250 DOI: 10.1007/978-94-007-7305-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Aminoacyl-tRNA synthetases aaRSs are responsible for the aminoacylation of tRNAs in the first step of protein synthesis. They comprise a group of enzymes that catalyze the formation of each possible aminoacyl-tRNA necessary for messenger RNA decoding in a cell. These enzymes have been divided into two classes according to structural features of their active sites and, although each class shares a common active site core, they present an assorted array of appended domains that makes them sufficiently diverse among the different living organisms. Here we will explore what is known about the diversity encountered among trypanosomatids' aaRSs that has helped us not only to understand better the biology of these parasites but can be used rationally for the design of drugs against these protozoa.
Collapse
|
5
|
Fuengfuloy P, Chuawong P, Suebka S, Wattana-amorn P, Williams C, Crump MP, Songsiriritthigul C. Overproduction of the N-terminal anticodon-binding domain of the non-discriminating aspartyl-tRNA synthetase from Helicobacter pylori for crystallization and NMR measurements. Protein Expr Purif 2013; 89:25-32. [DOI: 10.1016/j.pep.2013.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/06/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
|
6
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
7
|
Yu T, Li J, Yang Y, Qi L, Chen B, Zhao F, Bao Q, Wu J. Codon usage patterns and adaptive evolution of marine unicellular cyanobacteria Synechococcus and Prochlorococcus. Mol Phylogenet Evol 2012; 62:206-13. [DOI: 10.1016/j.ympev.2011.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 09/03/2011] [Accepted: 09/23/2011] [Indexed: 10/16/2022]
|
8
|
Rational design of an evolutionary precursor of glutaminyl-tRNA synthetase. Proc Natl Acad Sci U S A 2011; 108:20485-90. [PMID: 22158897 DOI: 10.1073/pnas.1117294108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The specificity of most aminoacyl-tRNA synthetases for an amino acid and cognate tRNA pair evolved before the divergence of the three domains of life. Glutaminyl-tRNA synthetase (GlnRS) evolved later and is derived from the archaeal-type nondiscriminating glutamyl-tRNA synthetase (GluRS), an enzyme with relaxed tRNA specificity capable of forming both Glu-tRNA(Glu) and Glu-tRNA(Gln). The archaea lack GlnRS and use a specialized amidotransferase to convert Glu-tRNA(Gln) to Gln-tRNA(Gln) needed for protein synthesis. We show that the Methanothermobacter thermautotrophicus GluRS is active toward tRNA(Glu) and the two tRNA(Gln) isoacceptors the organism encodes, but with a significant catalytic preference for tRNA(Gln2)(CUG). The less active tRNA(Gln1)(UUG) responds to the less common CAA codon for Gln. From a biochemical characterization of M. thermautotrophicus GluRS variants, we found that the evolution of tRNA specificity in GlnRS could be recapitulated by converting the M. thermautotrophicus GluRS to a tRNA(Gln) specific enzyme, solely through the addition of an acceptor stem loop present in bacterial GlnRS. One designed GluRS variant is also highly specific for the tRNA(Gln2)(CUG) isoacceptor, which responds to the CAG codon, and shows no activity toward tRNA(Gln1)(UUG). Because it is now possible to eliminate particular codons from the genome of Escherichia coli, additional codons will become available for genetic code engineering. Isoacceptor-specific aminoacyl-tRNA synthetases will enable the reassignment of more open codons while preserving accurate encoding of the 20 canonical amino acids.
Collapse
|
9
|
Bour T, Akaddar A, Lorber B, Blais S, Balg C, Candolfi E, Frugier M. Plasmodial aspartyl-tRNA synthetases and peculiarities in Plasmodium falciparum. J Biol Chem 2009; 284:18893-903. [PMID: 19443655 DOI: 10.1074/jbc.m109.015297] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Distinctive features of aspartyl-transfer RNA (tRNA) synthetases (AspRS) from the protozoan Plasmodium genus are described. These apicomplexan AspRSs contain 29-31 amino acid insertions in their anticodon binding domains, a remarkably long N-terminal appendix that varies in size from 110 to 165 amino acids and two potential initiation codons. This article focuses on the atypical functional and structural properties of Plasmodium falciparum cytosolic AspRS, the causative parasite of human malaria. This species encodes a 626 or 577 amino acids AspRS depending on whether initiation starts on the first or second in-frame initiation codon. The longer protein has poor solubility and a propensity to aggregate. Production of the short version was favored as shown by the comparison of the recombinant protein with endogenous AspRS. Comparison of the tRNA aminoacylation activity of wild-type and mutant parasite AspRSs with those of yeast and human AspRSs revealed unique properties. The N-terminal extension contains a motif that provides unexpectedly strong RNA binding to plasmodial AspRS. Furthermore, experiments demonstrated the requirement of the plasmodial insertion for AspRS dimerization and, therefore, tRNA aminoacylation and other putative functions. Implications for the parasite biology are proposed. These data provide a robust background for unraveling the precise functional properties of the parasite AspRS and for developing novel lead compounds against malaria, targeting its idiosyncratic domains.
Collapse
Affiliation(s)
- Tania Bour
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Suzuki K, Sato Y, Maeda Y, Shimizu S, Hossain MT, Ubukata S, Sekiguchi T, Takénaka A. Crystallization and preliminary X-ray crystallographic study of a putative aspartyl-tRNA synthetase from the crenarchaeon Sulfolobus tokodaii strain 7. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:608-12. [PMID: 17620724 PMCID: PMC2335148 DOI: 10.1107/s1744309107026905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 06/01/2007] [Indexed: 11/10/2022]
Abstract
Genome analysis suggests that the aspartyl-tRNA synthetase of the crenarchaeon Sulfolobus tokodaii strain 7 belongs to the nondiscriminating type that is believed to catalyze aspartylation of tRNA(Asp) and tRNA(Asn). This protein has been overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method from 100 mM sodium HEPES buffer pH 7.5 containing 100 mM NaCl and 1.6 M (NH4)2SO4 as the crystallizing reagent. Diffraction data were collected to 2.3 A resolution using synchrotron radiation. The crystal belongs to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 116.0, b = 139.3, c = 75.3 A. The estimated Matthews coefficient (3.10 A3 Da(-1); 60.3% solvent content) suggests the presence of two subunits in the asymmetric unit. The structure has been successfully solved by the molecular-replacement method. Full refinement of the structure may reveal it to be the original ancestor of the nondiscriminating AspRS.
Collapse
Affiliation(s)
- Kaoru Suzuki
- College of Science and Engineering, Iwaki-Meisei University, Chuou-dai-Iino, Iwaki, Fukushima 970-8551, Japan
| | - Yoshiteru Sato
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda, Midori-ku, Yokohama 226-8501, Japan
| | - Yohei Maeda
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda, Midori-ku, Yokohama 226-8501, Japan
| | - Satoru Shimizu
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda, Midori-ku, Yokohama 226-8501, Japan
| | - Md Tofazzal Hossain
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda, Midori-ku, Yokohama 226-8501, Japan
| | - Souichirou Ubukata
- College of Science and Engineering, Iwaki-Meisei University, Chuou-dai-Iino, Iwaki, Fukushima 970-8551, Japan
| | - Takeshi Sekiguchi
- College of Science and Engineering, Iwaki-Meisei University, Chuou-dai-Iino, Iwaki, Fukushima 970-8551, Japan
| | - Akio Takénaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
11
|
Bernard D, Akochy PM, Bernier S, Fisette O, Brousseau OC, Chênevert R, Roy PH, Lapointe J. Inhibition by L-aspartol adenylate of a nondiscriminating aspartyl-tRNA synthetase reveals differences between the interactions of its active site with tRNA(Asp) and tRNA(Asn). J Enzyme Inhib Med Chem 2007; 22:77-82. [PMID: 17373551 DOI: 10.1080/14756360600952316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Asparaginyl-tRNA formation in Pseudomonas aeruginosa PAO1 involves a nondiscriminating aspartyl-tRNA synthetase (ND-AspRS) which forms Asp-tRNA(Asp) and Asp-tRNA(Asn), and a tRNA-dependent amidotransferase which transamidates the latter into Asn-tRNA(Asn). We report here that the inhibition of this ND-AspRS by L-aspartol adenylate (Asp-ol-AMP), a stable analog of the natural reaction intermediate L-aspartyl adenylate, is biphasic because the aspartylation of the two tRNA substrates of ND-AspRS, tRNA(Asp) and tRNA(Asn), are inhibited with different Ki values (41 microM and 215 microM, respectively). These results reveal that the two tRNA substrates of ND-AspRS interact differently with its active site. Yeast tRNA(Asp) transcripts with some identity elements replaced by those of tRNA(Asn) have their aspartylation inhibited with Ki values different from that for the wild-type transcript. Therefore, aminoacyl adenylate analogs, which are competitive inhibitors of their cognate aminoacyl-tRNA synthetase, can be used to probe rapidly the role of various structural elements in positioning the tRNA acceptor end in the active site.
Collapse
Affiliation(s)
- Dominic Bernard
- Centre de Recherche en Infectiologie, CHUL, 2705 Boul. Laurier RC-709, Québec, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cathopoulis T, Chuawong P, Hendrickson TL. Novel tRNA aminoacylation mechanisms. MOLECULAR BIOSYSTEMS 2007; 3:408-18. [PMID: 17533454 DOI: 10.1039/b618899k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In nature, ribosomally synthesized proteins can contain at least 22 different amino acids: the 20 common amino acids as well as selenocysteine and pyrrolysine. Each of these amino acids is inserted into proteins codon-specifically via an aminoacyl-transfer RNA (aa-tRNA). In most cases, these aa-tRNAs are biosynthesized directly by a set of highly specific and accurate aminoacyl-tRNA synthetases (aaRSs). However, in some cases aaRSs with relaxed or novel substrate specificities cooperate with other enzymes to generate specific canonical and non-canonical aminoacyl-tRNAs.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Aspartate-tRNA Ligase/metabolism
- Bacteria/enzymology
- RNA, Transfer, Amino Acyl/biosynthesis
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Asn/biosynthesis
- RNA, Transfer, Asn/chemistry
- RNA, Transfer, Cys/biosynthesis
- RNA, Transfer, Cys/chemistry
- RNA, Transfer, Gln/biosynthesis
- RNA, Transfer, Gln/chemistry
- Transfer RNA Aminoacylation
Collapse
Affiliation(s)
- Terry Cathopoulis
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | |
Collapse
|
13
|
Polycarpo CR, Herring S, Bérubé A, Wood JL, Söll D, Ambrogelly A. Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase. FEBS Lett 2006; 580:6695-700. [PMID: 17126325 PMCID: PMC1817836 DOI: 10.1016/j.febslet.2006.11.028] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 11/08/2006] [Indexed: 11/24/2022]
Abstract
In certain methanogenic archaea a new amino acid, pyrrolysine (Pyl), is inserted at in-frame UAG codons in the mRNAs of some methyltransferases. Pyl is directly acylated onto a suppressor tRNA(Pyl) by pyrrolysyl-tRNA synthetase (PylRS). Due to the lack of a readily available Pyl source, we looked for structural analogues that could be aminoacylated by PylRS onto tRNA(Pyl). We report here the in vitro aminoacylation of tRNA(Pyl) by PylRS with two Pyl analogues: N-epsilon-d-prolyl-l-lysine (d-prolyl-lysine) and N-epsilon-cyclopentyloxycarbonyl-l-lysine (Cyc). Escherichia coli, transformed with the tRNA(Pyl) and PylRS genes, suppressed a lacZ amber mutant dependent on the presence of d-prolyl-lysine or Cyc in the medium, implying that the E. coli translation machinery is able to use Cyc-tRNA(Pyl) and d-prolyl-lysine-tRNA(Pyl) as substrates during protein synthesis. Furthermore, the formation of active beta-galactosidase shows that a specialized mRNA motif is not essential for stop-codon recoding, unlike for selenocysteine incorporation.
Collapse
Affiliation(s)
- Carla R. Polycarpo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Stephanie Herring
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Amélie Bérubé
- Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - John L. Wood
- Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Alexandre Ambrogelly
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
14
|
Chuawong P, Hendrickson TL. The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity. Biochemistry 2006; 45:8079-87. [PMID: 16800632 PMCID: PMC2654173 DOI: 10.1021/bi060189c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Divergent tRNA substrate recognition patterns distinguish the two distinct forms of aspartyl-tRNA synthetase (AspRS) that exist in different bacteria. In some cases, a canonical, discriminating AspRS (D-AspRS) specifically generates Asp-tRNA(Asp) and usually coexists with asparaginyl-tRNA synthetase (AsnRS). In other bacteria, particularly those that lack AsnRS, AspRS is nondiscriminating (ND-AspRS) and generates both Asp-tRNA(Asp) and the noncanonical, misacylated Asp-tRNA(Asn); this misacylated tRNA is subsequently repaired by the glutamine-dependent Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase (Asp/Glu-Adt). The molecular features that distinguish the closely related bacterial D-AspRS and ND-AspRS are not well-understood. Here, we report the first characterization of the ND-AspRS from the human pathogen Helicobacter pylori (H. pylori or Hp). This enzyme is toxic when heterologously overexpressed in Escherichia coli. This toxicity is rescued upon coexpression of the Hp Asp/Glu-Adt, indicating that Hp Asp/Glu-Adt can utilize E. coli Asp-tRNA(Asn) as a substrate. Finally, mutations in the anticodon-binding domain of Hp ND-AspRS reduce this enzyme's ability to misacylate tRNA(Asn), in a manner that correlates with the toxicity of the enzyme in E. coli.
Collapse
|
15
|
Schulze JO, Masoumi A, Nickel D, Jahn M, Jahn D, Schubert WD, Heinz DW. Crystal structure of a non-discriminating glutamyl-tRNA synthetase. J Mol Biol 2006; 361:888-97. [PMID: 16876193 DOI: 10.1016/j.jmb.2006.06.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/20/2006] [Accepted: 06/21/2006] [Indexed: 11/22/2022]
Abstract
Error-free protein biosynthesis is dependent on the reliable charging of each tRNA with its cognate amino acid. Many bacteria, however, lack a glutaminyl-tRNA synthetase. In these organisms, tRNA(Gln) is initially mischarged with glutamate by a non-discriminating glutamyl-tRNA synthetase (ND-GluRS). This enzyme thus charges both tRNA(Glu) and tRNA(Gln) with glutamate. Discriminating GluRS (D-GluRS), found in some bacteria and all eukaryotes, exclusively generates Glu-tRNA(Glu). Here we present the first crystal structure of a non-discriminating GluRS from Thermosynechococcus elongatus (ND-GluRS(Tel)) in complex with glutamate at a resolution of 2.45 A. Structurally, the enzyme shares the overall architecture of the discriminating GluRS from Thermus thermophilus (D-GluRS(Tth)). We confirm experimentally that GluRS(Tel) is non-discriminating and present kinetic parameters for synthesis of Glu-tRNA(Glu) and of Glu-tRNA(Gln). Anticodons of tRNA(Glu) (34C/UUC36) and tRNA(Gln) (34C/UUG36) differ only in base 36. The pyrimidine base of C36 is specifically recognized in D-GluRS(Tth) by the residue Arg358. In ND-GluRS(Tel) this arginine residue is replaced by glycine (Gly366) presumably allowing both cytosine and the bulkier purine base G36 of tRNA(Gln) to be tolerated. Most other ND-GluRS share this structural feature, leading to relaxed substrate specificity.
Collapse
Affiliation(s)
- Jörg O Schulze
- Division of Structural Biology, German Research Centre for Biotechnology (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Jackman JE, Phizicky EM. tRNAHis guanylyltransferase adds G-1 to the 5' end of tRNAHis by recognition of the anticodon, one of several features unexpectedly shared with tRNA synthetases. RNA (NEW YORK, N.Y.) 2006; 12:1007-14. [PMID: 16625026 PMCID: PMC1464847 DOI: 10.1261/rna.54706] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All eukaryotic tRNA(His) molecules are unique among tRNA species because they require addition of a guanine nucleotide at the -1 position by tRNA(His) guanylyltransferase, encoded in yeast by THG1. This G(-1) residue is both necessary and sufficient for aminoacylation of tRNA by histidyl-tRNA synthetase in vitro and is required for aminoacylation in vivo. Although Thg1 is presumed to be highly specific for tRNA(His) to prevent misacylation of tRNAs, the source of this specificity is unknown. We show here that Thg1 is >10,000-fold more selective for its cognate substrate tRNA(His) than for the noncognate substrate tRNA(Phe). We also demonstrate that the GUG anticodon of tRNA(His) is a crucial Thg1 identity element, since alteration of this anticodon in tRNA(His) completely abrogates Thg1 activity, and the simple introduction of this GUG anticodon to any of three noncognate tRNAs results in significant Thg1 activity. For tRNA(Phe), k(cat)/K(M) is improved by at least 200-fold. Thg1 is the only protein other than aminoacyl-tRNA synthetases that is known to use the anticodon as an identity element to discriminate among tRNA species while acting at a remote site on the tRNA, an unexpected link given the lack of any identifiable sequence similarity between these two families of proteins. Moreover, Thg1 and tRNA synthetases share two other features: They act in close proximity to one another at the top of the tRNA aminoacyl-acceptor stem, and the chemistry of their respective reactions is strikingly similar.
Collapse
Affiliation(s)
- Jane E Jackman
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, New York 14642, USA
| | | |
Collapse
|
17
|
Bernard D, Akochy PM, Beaulieu D, Lapointe J, Roy PH. Two residues in the anticodon recognition domain of the aspartyl-tRNA synthetase from Pseudomonas aeruginosa are individually implicated in the recognition of tRNAAsn. J Bacteriol 2006; 188:269-74. [PMID: 16352843 PMCID: PMC1317590 DOI: 10.1128/jb.188.1.269-274.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many organisms, the formation of asparaginyl-tRNA is not done by direct aminoacylation of tRNA(Asn) but by specific tRNA-dependent transamidation of aspartyl-tRNA(Asn). This transamidation pathway involves a nondiscriminating aspartyl-tRNA synthetase (AspRS) that charges both tRNA(Asp) and tRNA(Asn) with aspartic acid. Recently, it has been shown for the first time in an organism (Pseudomonas aeruginosa PAO1) that the transamidation pathway is the only route of synthesis of Asn-tRNA(Asn) but does not participate in Gln-tRNA(Gln) formation. P. aeruginosa PAO1 has a nondiscriminating AspRS. We report here the identification of two residues in the anticodon recognition domain (H31 and G83) which are implicated in the recognition of tRNA(Asn). Sequence comparisons of putative discriminating and nondiscriminating AspRSs (based on the presence or absence of the AdT operon and of AsnRS) revealed that bacterial nondiscriminating AspRSs possess a histidine at position 31 and usually a glycine at position 83, whereas discriminating AspRSs possess a leucine at position 31 and a residue other than a glycine at position 83. Mutagenesis of these residues of P. aeruginosa AspRS from histidine to leucine and from glycine to lysine increased the specificity of tRNA(Asp) charging over that of tRNA(Asn) by 3.5-fold and 4.2-fold, respectively. Thus, we show these residues to be determinants of the relaxed specificity of this nondiscriminating AspRS. Using available crystallographic data, we found that the H31 residue could interact with the central bases of the anticodons of the tRNA(Asp) and tRNA(Asn). Therefore, these two determinants of specificity of P. aeruginosa AspRS could be important for all bacterial AspRSs.
Collapse
Affiliation(s)
- Dominic Bernard
- Centre de Recherche en Infectiologie, CHU Laval, 2705 Boulevard Laurier, RC-709, Sainte-Foy, Quebec, Canada G1V 4G2
| | | | | | | | | |
Collapse
|