1
|
Liu XL, Hou YY, Su SH, Wu X, Wang ZF. Investigating TIP30-Mediated regulation of mTORC1 signaling as a therapeutic strategy for coxsackievirus B3-Induced viral myocarditis. Virology 2024; 597:110156. [PMID: 38981316 DOI: 10.1016/j.virol.2024.110156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
This study aims to elucidate the role of TIP30 (30 KDa HIV-1 TAT-Interacting Protein) in the progression of coxsackievirus B3 (CVB3)-induced viral myocarditis. TIP30 knockout and wildtype mice were intraperitoneally infected with CVB3 and evaluated at day 7 post-infection. HeLa cells were transfected with TIP30 lentiviral particles and subsequently infected with CVB3 to evaluate viral replication, cellular pathogenesis, and mechanistic target of rapamycin complex 1 (mTORC1) signaling. Deletion of the TIP30 gene heightened heart virus titers and mortality rates in mice with CVB3-induced myocarditis, exacerbating cardiac damage and fibrosis, and elevating pro-inflammatory factors level. In vitro experiments demonstrated the modulation of mTORC1 signaling by TIP30 during CVB3 infection in HeLa cells. TIP30 overexpression mitigated CVB3-induced cellular pathogenesis and VP1 expression, with rapamycin, an mTOR1 inhibitor, reversing these effects. These findings suggest TIP30 plays a critical protective role against CVB3-induced myocarditis by regulating mTORC1 signaling.
Collapse
Affiliation(s)
- Xi-Lei Liu
- Cardiovascular Medicine, Xinxiang Central Hospital, Xinxiang, 453000, Henan, China
| | - Yu-Yan Hou
- Cardiovascular Medicine, Xinxiang Central Hospital, Xinxiang, 453000, Henan, China
| | - Shu-Hong Su
- Cardiovascular Medicine, Xinxiang Central Hospital, Xinxiang, 453000, Henan, China
| | - Xiao Wu
- Cardiovascular Medicine, Xinxiang Central Hospital, Xinxiang, 453000, Henan, China
| | - Zhi-Fang Wang
- Cardiovascular Medicine, Xinxiang Central Hospital, Xinxiang, 453000, Henan, China.
| |
Collapse
|
2
|
Singin Ö, Astapenka A, Costina V, Kühl S, Bonekamp N, Drews O, Islinger M. Analysis of the Mouse Hepatic Peroxisome Proteome-Identification of Novel Protein Constituents Using a Semi-Quantitative SWATH-MS Approach. Cells 2024; 13:176. [PMID: 38247867 PMCID: PMC10814758 DOI: 10.3390/cells13020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Ongoing technical and bioinformatics improvements in mass spectrometry (MS) allow for the identifying and quantifying of the enrichment of increasingly less-abundant proteins in individual fractions. Accordingly, this study reassessed the proteome of mouse liver peroxisomes by the parallel isolation of peroxisomes from a mitochondria- and a microsome-enriched prefraction, combining density-gradient centrifugation with a semi-quantitative SWATH-MS proteomics approach to unveil novel peroxisomal or peroxisome-associated proteins. In total, 1071 proteins were identified using MS and assessed in terms of their distribution in either high-density peroxisomal or low-density gradient fractions, containing the bulk of organelle material. Combining the data from both fractionation approaches allowed for the identification of specific protein profiles characteristic of mitochondria, the ER and peroxisomes. Among the proteins significantly enriched in the peroxisomal cluster were several novel peroxisomal candidates. Five of those were validated by colocalization in peroxisomes, using confocal microscopy. The peroxisomal import of HTATIP2 and PAFAH2, which contain a peroxisome-targeting sequence 1 (PTS1), could be confirmed by overexpression in HepG2 cells. The candidates SAR1B and PDCD6, which are known ER-exit-site proteins, did not directly colocalize with peroxisomes, but resided at ER sites, which frequently surrounded peroxisomes. Hence, both proteins might concentrate at presumably co-purified peroxisome-ER membrane contacts. Intriguingly, the fifth candidate, OCIA domain-containing protein 1, was previously described as decreasing mitochondrial network formation. In this work, we confirmed its peroxisomal localization and further observed a reduction in peroxisome numbers in response to OCIAD1 overexpression. Hence, OCIAD1 appears to be a novel protein, which has an impact on both mitochondrial and peroxisomal maintenance.
Collapse
Affiliation(s)
- Öznur Singin
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| | - Artur Astapenka
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| | - Victor Costina
- Institute of Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (V.C.); (O.D.)
| | - Sandra Kühl
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| | - Nina Bonekamp
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| | - Oliver Drews
- Institute of Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (V.C.); (O.D.)
- Biomedical Mass Spectrometry, Center for Medical Research, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Markus Islinger
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| |
Collapse
|
3
|
Nguyen TT, Rajakannu P, Pham MDT, Weman L, Jucht A, Buri MC, Van Dommelen K, Hegi ME. Epigenetic silencing of HTATIP2 in glioblastoma contributes to treatment resistance by enhancing nuclear translocation of the DNA repair protein MPG. Mol Oncol 2023; 17:1744-1762. [PMID: 37491696 PMCID: PMC10483604 DOI: 10.1002/1878-0261.13494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
Glioblastoma, the most malignant brain tumor in adults, exhibits characteristic patterns of epigenetic alterations that await elucidation. The DNA methylome of glioblastoma revealed recurrent epigenetic silencing of HTATIP2, which encodes a negative regulator of importin β-mediated cytoplasmic-nuclear protein translocation. Its deregulation may thus alter the functionality of cancer-relevant nuclear proteins, such as the base excision repair (BER) enzyme N-methylpurine DNA glycosylase (MPG), which has been associated with treatment resistance in GBM. We found that induction of HTATIP2 expression in GBM cells leads to a significant shift of predominantly nuclear to cytoplasmic MPG, whereas depletion of endogenous HTATIP2 results in enhanced nuclear MPG localization. Reduced nuclear MPG localization, prompted by HTATIP2 expression or by depletion of MPG, yielded less phosphorylated-H2AX-positive cells upon treatment with an alkylating agent. This suggested reduced MPG-mediated formation of apurinic/apyrimidinic sites, leaving behind unrepaired DNA lesions, reflecting a reduced capacity of BER in response to the alkylating agent. Epigenetic silencing of HTATIP2 may thus increase nuclear localization of MPG, thereby enhancing the capacity of the glioblastoma cells to repair treatment-related lesions and contributing to treatment resistance.
Collapse
Affiliation(s)
- Thi Tham Nguyen
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Premnath Rajakannu
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Minh Diêu Thanh Pham
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Leo Weman
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Alexander Jucht
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Michelle C. Buri
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Kristof Van Dommelen
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Monika E. Hegi
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
- Lundin Family Brain Tumor CenterLausanne University Hospital (CHUV) and University of LausanneSwitzerland
| |
Collapse
|
4
|
Grund A, Szaroszyk M, Korf-Klingebiel M, Malek Mohammadi M, Trogisch FA, Schrameck U, Gigina A, Tiedje C, Gaestel M, Kraft T, Hegermann J, Batkai S, Thum T, Perrot A, Remedios CD, Riechert E, Völkers M, Doroudgar S, Jungmann A, Bauer R, Yin X, Mayr M, Wollert KC, Pich A, Xiao H, Katus HA, Bauersachs J, Müller OJ, Heineke J. TIP30 counteracts cardiac hypertrophy and failure by inhibiting translational elongation. EMBO Mol Med 2019; 11:e10018. [PMID: 31468715 PMCID: PMC6783653 DOI: 10.15252/emmm.201810018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Pathological cardiac overload induces myocardial protein synthesis and hypertrophy, which predisposes to heart failure. To inhibit hypertrophy therapeutically, the identification of negative regulators of cardiomyocyte protein synthesis is needed. Here, we identified the tumor suppressor protein TIP30 as novel inhibitor of cardiac hypertrophy and dysfunction. Reduced TIP30 levels in mice entailed exaggerated cardiac growth during experimental pressure overload, which was associated with cardiomyocyte cellular hypertrophy, increased myocardial protein synthesis, reduced capillary density, and left ventricular dysfunction. Pharmacological inhibition of protein synthesis improved these defects. Our results are relevant for human disease, since we found diminished cardiac TIP30 levels in samples from patients suffering from end‐stage heart failure or hypertrophic cardiomyopathy. Importantly, therapeutic overexpression of TIP30 in mouse hearts inhibited cardiac hypertrophy and improved left ventricular function during pressure overload and in cardiomyopathic mdx mice. Mechanistically, we identified a previously unknown anti‐hypertrophic mechanism, whereby TIP30 binds the eukaryotic elongation factor 1A (eEF1A) to prevent the interaction with its essential co‐factor eEF1B2 and translational elongation. Therefore, TIP30 could be a therapeutic target to counteract cardiac hypertrophy.
Collapse
Affiliation(s)
- Andrea Grund
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Malgorzata Szaroszyk
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | | - Mona Malek Mohammadi
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Felix A Trogisch
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ulrike Schrameck
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Anna Gigina
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Christopher Tiedje
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute for Molecular and Cellphysiology, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Sandor Batkai
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Andreas Perrot
- Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Eva Riechert
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Shirin Doroudgar
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Andreas Jungmann
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Ralf Bauer
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Xiaoke Yin
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Kai C Wollert
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Core Unit Proteomics, Hannover Medical School, Hannover, Germany
| | - Hua Xiao
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Johann Bauersachs
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Oliver J Müller
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Joerg Heineke
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
5
|
Liu YP, Chen CH, Yen CH, Tung CW, Chen CJ, Chen YMA, Huang MS. Human immunodeficiency virus Tat-TIP30 interaction promotes metastasis by enhancing the nuclear translocation of Snail in lung cancer cell lines. Cancer Sci 2018; 109:3105-3114. [PMID: 30099830 PMCID: PMC6172071 DOI: 10.1111/cas.13768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/02/2023] Open
Abstract
Lung cancer patients with human immunodeficiency virus (HIV) have a poorer prognosis than do patients without HIV infection. HIV1 Tat is a secreted viral protein that penetrates the plasma membrane and interacts with a number of proteins in non‐HIV‐infected cells. The loss of function of Tat‐interacting protein 30 (TIP30) has been linked to metastasis in non‐small cell lung cancer (NSCLC). However, it is unknown how the interaction of HIV1 Tat with TIP30 regulates the metastasis of NSCLC cells. In this study, the overexpression of TIP30 decreased tumor growth factor‐β‐induced epithelial‐to‐mesenchymal transition (EMT) and invasion of NSCLC cells, whereas the knockdown of TIP30 promoted EMT, invasion and stemness. Exposure to recombinant HIV1 Tat proteins promoted EMT and invasion. A mechanistic study showed that the interaction of HIV1 Tat with TIP30 blocked the binding of TIP30 to importin‐β, which is required for the nuclear translocation of Snail. Indeed, the loss of TIP30 promoted the nuclear translocation of Snail. In vivo studies demonstrated that the overexpression of TIP30 inhibited the metastasis of NSCLC cells. In contrast, the coexpression of HIV1 Tat and TIP30 diminished the inhibitory effect of TIP30 on metastasis. Immunohistochemistry confirmed that TIP30 overexpression reduced the nuclear localization of Snail, whereas the coexpression of HIV1 Tat and TIP30 increased nuclear Snail in metastatic tumors. In conclusion, the binding of HIV1 Tat to TIP30 enhanced EMT and metastasis by regulating the nuclear translocation of Snail. Targeting Tat‐interacting proteins may be a potential therapeutic strategy to prevent metastasis in NSCLC patients with HIV infection.
Collapse
Affiliation(s)
- Yu-Peng Liu
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Hsiung Chen
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Natural Products & Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Wei Tung
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Ju Chen
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ming A Chen
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, E-DA Cancer Hospital, Kaohsiung, Taiwan.,School of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Abstract
TIP30/CC3 was first identified and characterized as a "candidate" tumor-suppressor gene in 1997. Recently, the TIP30 tumor-suppressor status has been fully established since several studies have described that TIP30 protein expression is frequently downregulated in diverse types of human tumors, and the downregulation is often associated with tumor progression. TIP30 is involved in the control of cell apoptosis, growth, metastasis, angiogenesis, DNA repair, and tumor cell metabolism. Moreover, TIP30(-/-) mice spontaneously develop hepatocellular carcinoma and other tumors at a higher incidence than that of wild-type mice. In this review, we provide an overview of current knowledge concerning the role of TIP30 in tumor development and progression. To our knowledge, this is the first review about the role of novel tumor-suppressor gene TIP30 in tumor development and progression.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | |
Collapse
|
7
|
Intracellular Protein Shuttling: A Mechanism Relevant for Myelin Repair in Multiple Sclerosis? Int J Mol Sci 2015; 16:15057-85. [PMID: 26151843 PMCID: PMC4519887 DOI: 10.3390/ijms160715057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/15/2022] Open
Abstract
A prominent feature of demyelinating diseases such as multiple sclerosis (MS) is the degeneration and loss of previously established functional myelin sheaths, which results in impaired signal propagation and axonal damage. However, at least in early disease stages, partial replacement of lost oligodendrocytes and thus remyelination occur as a result of resident oligodendroglial precursor cell (OPC) activation. These cells represent a widespread cell population within the adult central nervous system (CNS) that can differentiate into functional myelinating glial cells to restore axonal functions. Nevertheless, the spontaneous remyelination capacity in the adult CNS is inefficient because OPCs often fail to generate new oligodendrocytes due to the lack of stimulatory cues and the presence of inhibitory factors. Recent studies have provided evidence that regulated intracellular protein shuttling is functionally involved in oligodendroglial differentiation and remyelination activities. In this review we shed light on the role of the subcellular localization of differentiation-associated factors within oligodendroglial cells and show that regulation of intracellular localization of regulatory factors represents a crucial process to modulate oligodendroglial maturation and myelin repair in the CNS.
Collapse
|
8
|
Link S, Engelmann K, Meierhoff K, Westhoff P. The atypical short-chain dehydrogenases HCF173 and HCF244 are jointly involved in translational initiation of the psbA mRNA of Arabidopsis. PLANT PHYSIOLOGY 2012; 160:2202-18. [PMID: 23027666 PMCID: PMC3510141 DOI: 10.1104/pp.112.205104] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The related proteins D1 and D2 together build up the photosystem II reaction center. Synthesis of D1 (PsbA) is highly regulated in all photosynthetic organisms. The mechanisms and specific protein factors involved in controlled expression of the psbA gene in higher plants are highly elusive. Here, we report on the identification of a chloroplast-located protein, HCF244 (for high chlorophyll fluorescence244), which is essentially required for translational initiation of the psbA messenger RNA in Arabidopsis (Arabidopsis thaliana). The factor is highly conserved between land plants, algae, and cyanobacteria. HCF244 was identified by coexpression analysis of HCF173, which encodes a protein that is also necessary for psbA translational initiation and in addition for stabilization of this messenger RNA. Phenotypic characterization of the mutants hcf244 and hcf173 suggests that the corresponding proteins operate cooperatively during psbA translation. Immunolocalization studies detected the majority of the two proteins at the thylakoid membrane. Both HCF244 and HCF173 are members of the atypical short-chain dehydrogenase/reductase superfamily, a modified group, which has lost enzyme activity but acquires new functions in the metabolism of the cell.
Collapse
|
9
|
Lee SH, Ju SK, Lee TY, Huh SH, Han KH. TIP30 directly binds p53 tumor suppressor protein in vitro. Mol Cells 2012; 34:495-500. [PMID: 23178973 PMCID: PMC3887794 DOI: 10.1007/s10059-012-0232-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 01/03/2023] Open
Abstract
TIP30 (30 kDa HIV-1 TAT-interacting protein), also called HTATIP2 or CC3, is a tumor suppressor protein that acts as an angiogenesis inhibitor. TIP30 blocks nuclear import of the mRNA-binding protein HuR, and thereby promotes the cytoplasmic accumulation of HuR by binding to importin-β, which is known to facilitate the cytoplasm-tonuclear transport of HuR. Accumulation of HuR in the cytoplasm, in turn, enhances the expression of the transcription factor p53, a tumor suppressor that plays an essential role in preserving genome stability and inhibiting cancer growth. In addition to such a post-transcriptional mechanism via which TIP30 increases the p53 level, it has been proposed that TIP30 may regulate p53 protein at the protein level by directly binding to it. In order to investigate the possibility of direct interaction between p53 and TIP30, we have used on three functional regions in p53 and examined their interactions with TIP30 using GST pull-down assay and surface plasmon resonance technique. The results show that that TIP30 binds to the DNA-binding domain and the C-terminal domain of p53.
Collapse
Affiliation(s)
- Si-Hyung Lee
- Biomedical Translational Research Center, Division of Convergent Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
- Department of Biochemistry, Graduate School, Chungnam National University, Daejeon 305-764,
Korea
| | - Sung-Kyu Ju
- Department of Bioscience and Biotechnology, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Tae-Young Lee
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Sung-Ho Huh
- Department of Biochemistry, Graduate School, Chungnam National University, Daejeon 305-764,
Korea
| | - Kyou-Hoon Han
- Biomedical Translational Research Center, Division of Convergent Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
- Department of Bioinformatics, University of Science and Technology, Daejeon 305-333,
Korea
| |
Collapse
|
10
|
Kim MK, Yim HS, Kang SO. Crystallization and preliminary X-ray crystallographic analysis of the short-chain dehydrogenase/reductase-type DDB_G0291732 protein from Dictyostelium discoideum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:98-100. [PMID: 21206035 DOI: 10.1107/s1744309110046932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/12/2010] [Indexed: 11/10/2022]
Abstract
The DDB_G0291732 gene product from Dictyostelium discoideum, which is a NmrA-like protein that belongs to the short-chain dehydrogenase/reductase superfamily but shows deviations in conserved sequence regions, has been crystallized by the hanging-drop vapour-diffusion method at 295 K. A 1.65 Å resolution data set was collected using synchrotron radiation. The crystals of DDB_G0291732 protein belonged to space group P2(1), with unit-cell parameters a=38.5, b=63.7, c=56.0 Å, β=91.7°. Assuming the presence of one molecule in the asymmetric unit, the solvent content was estimated to be about 38.1%.
Collapse
Affiliation(s)
- Min Kyu Kim
- Laboratory of Biophysics, School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
11
|
Chen V, Shtivelman E. CC3/TIP30 regulates metabolic adaptation of tumor cells to glucose limitation. Cell Cycle 2010; 9:4941-53. [PMID: 21150275 DOI: 10.4161/cc.9.24.14230] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CC3/TIP30 is a metastasis and tumor suppressor, with reduced or absent expression in a variety of aggressive tumors. Overexpression of CC3 in tumor cells predisposes them to apoptosis in response to different death signals. We found that silencing of CC3 expression does not increase apoptotic resistance of cells. However, it strongly improves survival of tumor cells in response to glucose limitation. HeLa cells with silenced CC3 survive long-term in low glucose, and, in comparison to control HeLa cells, show superior metabolic adaptation to glucose limitation. First, unlike the parental HeLa cells, HeLa with silenced CC3 activate and maintain high levels of mitochondrial respiration that is critical for their ability to thrive in low glucose. Second, silencing of CC3 leads to higher expression levels of mitochondrial proteins in respiration complexes when cells are continuously cultured in limiting glucose. Third, HeLa cells with silenced CC3 maintain higher levels of c-MYC and the M2 isoform of pyruvate kinase in low glucose, contributing to more efficient glycolysis. Fourth, HeLa cells with silenced CC3 fail to fully activate AMPK in response to glucose limitation. Inhibition of AMPK, either pharmacologic or via siRNA, protects control HeLa cells from death in low glucose. The metabolic flexibility acquired by cells after silencing of CC3 could be directly relevant to the development of metastatic and aggressive human tumors that frequently have low or absent expression of CC3.
Collapse
|
12
|
Fong S, King F, Shtivelman E. CC3/TIP30 affects DNA damage repair. BMC Cell Biol 2010; 11:23. [PMID: 20374651 PMCID: PMC2867790 DOI: 10.1186/1471-2121-11-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 04/07/2010] [Indexed: 12/22/2022] Open
Abstract
Background The pro-apoptotic protein CC3/TIP30 has an unusual cellular function as an inhibitor of nucleocytoplasmic transport. This function is likely to be activated under conditions of stress. A number of studies support the notion that CC3 acts as a tumor and metastasis suppressor in various types of cancer. The yeast homolog of CC3 is likely to be involved in responses to DNA damage. Here we examined the potential role of CC3 in regulation of cellular responses to genotoxic stress. Results We found that forced expression of CC3 in CC3-negative cells strongly delays the repair of UV-induced DNA damage. Exogenously introduced CC3 negatively affects expression levels of DDB2/XPE and p21CIP1, and inhibits induction of c-FOS after UV exposure. In addition, exogenous CC3 prevents the nuclear accumulation of P21CIP in response to UV. These changes in the levels/localization of relevant proteins resulting from the enforced expression of CC3 are likely to contribute to the observed delay in DNA damage repair. Silencing of CC3 in CC3-positive cells has a modest delaying effect on repair of the UV induced damage, but has a much more significant negative affect on the translesion DNA synthesis after UV exposure. This could be related to the higher expression levels and increased nuclear localization of p21CIP1 in cells where expression of CC3 is silenced. Expression of CC3 also inhibits repair of oxidative DNA damage and leads to a decrease in levels of nucleoredoxin, that could contribute to the reduced viability of CC3 expressing cells after oxidative insult. Conclusions Manipulation of the cellular levels of CC3 alters expression levels and/or subcellular localization of proteins that exhibit nucleocytoplasmic shuttling. This results in altered responses to genotoxic stress and adversely affects DNA damage repair by affecting the recruitment of adequate amounts of required proteins to proper cellular compartments. Excess of cellular CC3 has a significant negative effect on DNA repair after UV and oxidant exposure, while silencing of endogenous CC3 slightly delays repair of UV-induced damage.
Collapse
Affiliation(s)
- Sylvia Fong
- BioNovo Inc, 5858 Horton Street, Emeryville 94608, CA, USA
| | | | | |
Collapse
|
13
|
Nakahara J, Aiso S, Suzuki N. Factors that retard remyelination in multiple sclerosis with a focus on TIP30: a novel therapeutic target. Expert Opin Ther Targets 2009; 13:1375-86. [DOI: 10.1517/14728220903307491] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Lian M, Zheng X. HSCARG regulates NF-kappaB activation by promoting the ubiquitination of RelA or COMMD1. J Biol Chem 2009; 284:17998-8006. [PMID: 19433587 DOI: 10.1074/jbc.m809752200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The redox sensor protein HSCARG translocates from the cytoplasm to the nucleus in response to decreased cellular NADPH or increased nitric oxide, and is involved in protein regulation. However, the regulatory mechanism of HSCARG has remained elusive. In this report, through a yeast two-hybrid screen, HSCARG was found to associate with the copper metabolism gene MURR1 domain containing protein 1 (COMMD1), an inhibitor of NF-kappaB, and negatively regulate COMMD1 by accelerating its ubiquitination and proteasome-dependent degradation. Interestingly, we observed that HSCARG also blocked basal and stimulus-coupled NF-kappaB activation by promoting ubiquitination and degradation of the NF-kappaB subunit RelA. Further analyses showed that in cells under normal conditions, HSCARG localized mainly in the cytoplasm and acted as a negative regulator of COMMD1, and was distributed in the nucleus in small quantities to inhibit NF-kappaB. Although in response to intracellular redox changes by dehydroepiandrosterone or S-nitroso-N-acetylpenicillamine treatment, a large amount of HSCARG translocated to the nucleus, which terminated NF-kappaB activation. Meanwhile, COMMD1 was restored due to decreased cytoplasmic HSCARG levels and negatively regulated NF-kappaB as well. Thus, NF-kappaB activation was terminated efficiently. Our results indicate that HSCARG plays critical roles in regulation of NF-kappaB in response to cellular redox changes by promoting ubiquitination and proteolysis of RelA or COMMD1.
Collapse
Affiliation(s)
- Min Lian
- Department of Biochemistry and Molecular Biology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
15
|
Brosnan CF, John GR. Revisiting Notch in remyelination of multiple sclerosis lesions. J Clin Invest 2009; 119:10-3. [PMID: 19104146 DOI: 10.1172/jci37786] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MS results from destruction of the protective myelin sheath surrounding axons, which prevents the transmission of nerve impulses. Precursors of oligodendrocytes, the cells capable of myelinating axons, are preserved in demyelinating lesions; however, why these precursors do not differentiate into mature oligodendrocytes and remyelinate axons is unknown. Contactin is a noncanonical Notch receptor ligand that mediates oligodendrocyte differentiation. In this issue of the JCI, Nakahara et al. show that Contactin is abundantly expressed on demyelinated axons in human chronic MS lesions and that Notch1 is activated in oligodendrocyte precursor cells (see the related article beginning on page 169). However, Notch1 intracellular domain coassociates with the nuclear transporter Importin beta but fails to show evidence of nuclear translocation. These cytoplasmic aggregates also contain TAT-interacting protein 30 kDa (TIP30), a proapoptotic factor, which inhibits nuclear transport and, consequently, Notch1-mediated oligodendrocyte differentiation and remyelination. These data target TIP30 as a new pathogenic factor in MS.
Collapse
Affiliation(s)
- Celia F Brosnan
- Department of Pathology, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | | |
Collapse
|
16
|
Bray JE, Marsden BD, Oppermann U. The human short-chain dehydrogenase/reductase (SDR) superfamily: A bioinformatics summary. Chem Biol Interact 2009; 178:99-109. [DOI: 10.1016/j.cbi.2008.10.058] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 10/24/2008] [Accepted: 10/28/2008] [Indexed: 11/29/2022]
|
17
|
Dai X, Li Y, Meng G, Yao S, Zhao Y, Yu Q, Zhang J, Luo M, Zheng X. NADPH is an allosteric regulator of HSCARG. J Mol Biol 2009; 387:1277-85. [PMID: 19254724 DOI: 10.1016/j.jmb.2009.02.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/15/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
NADP(H) is an important cofactor that controls many fundamental cellular processes. We have determined the crystal structure of HSCARG, a novel NADPH sensor, and found that it forms an asymmetrical dimer with only one subunit occupied by an NADPH molecule, and the two subunits have dramatically different conformations. To study the role of NADPH in affecting the structure and function of HSCARG, here, we constructed a series of HSCARG mutants to abolish NADPH binding ability. Protein structures of two mutants, R37A and Y81A, were solved by X-ray crystallography. The dimerization of wild-type and mutant HSCARG was studied by dynamic light scattering. Differences between the function of wild-type and mutant HSCARG were also compared. Our results show that binding of NADPH is necessary for HSCARG to form a stable asymmetric dimer. The conformation of the monomeric mutants was similar to that of NADPH-bound Molecule I in wild-type HSCARG, although some conformational changes were found in the NADPH binding site. Furthermore, we also noticed that abolition of NADPH binding ability changes the distribution of HSCARG in the cell and that these mutants without NADPH are more strongly associated with argininosuccinate synthetase as compared with wild-type HSCARG. These data suggest that NADPH functions as an allosteric regulator of the structure and function of HSCARG. In response to the changes in the NADPH/NADP(+) ratio within cells, HSCARG, as a redox sensor, associates and dissociates with NADPH to form a new dynamic equilibrium. This equilibrium, in turn, will tip the dimerization balance of the protein molecule and consequently controls the regulatory function of HSCARG.
Collapse
Affiliation(s)
- Xueyu Dai
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Medium- and short-chain dehydrogenase/reductase gene and protein families : the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 2009; 65:3895-906. [PMID: 19011750 PMCID: PMC2792337 DOI: 10.1007/s00018-008-8588-y] [Citation(s) in RCA: 638] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Short-chain dehydrogenases/reductases (SDRs) constitute a large family of NAD(P)(H)-dependent oxidoreductases, sharing sequence motifs and displaying similar mechanisms. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, cofactor, hormone and xenobiotic metabolism as well as in redox sensor mechanisms. Sequence identities are low, and the most conserved feature is an α/β folding pattern with a central beta sheet flanked by 2–3 α-helices from each side, thus a classical Rossmannfold motif for nucleotide binding. The conservation of this element and an active site, often with an Asn-Ser-Tyr-Lys tetrad, provides a platform for enzymatic activities encompassing several EC classes, including oxidoreductases, epimerases and lyases. The common mechanism is an underlying hydride and proton transfer involving the nicotinamide and typically an active site tyrosine residue, whereas substrate specificity is determined by a variable C-terminal segment. Relationships exist with bacterial haloalcohol dehalogenases, which lack cofactor binding but have the active site architecture, emphasizing the versatility of the basic fold in also generating hydride transfer-independent lyases. The conserved fold and nucleotide binding emphasize the role of SDRs as scaffolds for an NAD(P)(H) redox sensor system, of importance to control metabolic routes, transcription and signalling.
Collapse
|
19
|
Scherbak N, Brosché M, Ala-Häivälä A, Strid H, Ohrfelt A, Nilsson F, Strid A. Expression of Pisum sativum SAD polypeptides in production hosts and in planta: tetrameric organization of the protein. Protein Expr Purif 2009; 63:18-25. [PMID: 18814850 DOI: 10.1016/j.pep.2008.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 08/24/2008] [Accepted: 09/04/2008] [Indexed: 11/25/2022]
Abstract
In Pisum sativum, the short-chain alcohol dehydrogenase-like protein (SAD) gene family consists of at least three members (SAD-A, -B, and -C). Expression of two of these genes (SAD-A and -C) in Escherichia coli or Pichia pastoris resulted in full-length soluble proteins. Purified SAD-A was used as antigen for antibody production in rabbits. With these antibodies the recombinant SAD-C protein (which was most highly expressed of the two isoforms) was shown to be a tetramer consisting of a dimer of dimers. The SAD genes are transiently expressed in plants by short exposures to ultraviolet-B radiation (UV-B), as judged by northern blotting. In turn, mRNA accumulation leads to formation of SAD protein in leaf and stem tissue upon prolonged UV-B irradiation.
Collapse
MESH Headings
- Alcohol Dehydrogenase/chemistry
- Alcohol Dehydrogenase/genetics
- Alcohol Dehydrogenase/isolation & purification
- Alcohol Dehydrogenase/metabolism
- Blotting, Northern
- Blotting, Western
- Chromatography, Liquid
- Cloning, Molecular
- Gene Expression
- Genes, Plant
- Pisum sativum/genetics
- Pisum sativum/metabolism
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/isolation & purification
- Plant Proteins/metabolism
- Protein Structure, Quaternary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Ultraviolet Rays
Collapse
Affiliation(s)
- Nikolai Scherbak
- Department of Science and Orebro Life Science Center, Orebro University, SE-701 82 Orebro, Sweden
| | | | | | | | | | | | | |
Collapse
|
20
|
Nakahara J, Kanekura K, Nawa M, Aiso S, Suzuki N. Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple sclerosis. J Clin Invest 2009; 119:169-81. [PMID: 19104151 PMCID: PMC2613458 DOI: 10.1172/jci35440] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 10/15/2008] [Indexed: 12/18/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) persist near the demyelinated axons arising in MS but inefficiently differentiate into oligodendrocytes and remyelinate these axons. The pathogenesis of differentiation failure remains elusive. We initially hypothesized that injured axons fail to present Contactin, a positive ligand for the oligodendroglial Notch1 receptor to induce myelination, and thus tracked axoglial Contactin/Notch1 signaling in situ, using immunohistochemistry in brain tissue from MS patients containing chronic demyelinated lesions. Instead, we found that Contactin was saturated on demyelinated axons, Notch1-positive OPCs accumulated in Contactin-positive lesions, and the receptor was engaged, as demonstrated by cleavage to Notch1-intracellular domain (NICD). However, nuclear translocalization of NICD, required for myelinogenesis, was virtually absent in these cells. NICD and related proteins carrying nuclear localization signals were associated with the nuclear transporter Importin but were trapped in the cytoplasm. Abnormal expression of TIP30, a direct inhibitor of Importin, was observed in these OPCs. Overexpression of TIP30 in a rat OPC cell line resulted in cytoplasmic entrapment of NICD and arrest of differentiation upon stimulation with Contactin-Fc. Our results suggest that extracellular inhibitory factors as well as an intrinsic nucleocytoplasmic transport blockade within OPCs may be involved in the pathogenesis of remyelination failure in MS.
Collapse
Affiliation(s)
- Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
21
|
Zhao J, Chen J, Lu B, Dong L, Wang H, Bi C, Wu G, Guo H, Wu M, Guo Y. TIP30 induces apoptosis under oxidative stress through stabilization of p53 messenger RNA in human hepatocellular carcinoma. Cancer Res 2008; 68:4133-41. [PMID: 18519672 DOI: 10.1158/0008-5472.can-08-0432] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species (ROS) and cellular oxidant stress have long been associated with cancer. Here, we show that TIP30, also called CC3, regulates p53 mRNA stability and induces apoptosis by sensing of intracellular oxidative stress in human hepatocellular carcinoma (HCC) cells. Introduction of TIP30 induced more cell death in HepG2 cells with a high level of intracellular ROS than that in normal liver cell line, HL7702, which had low level of intracellular ROS. Treatment with an antioxidant agent attenuated TIP30-induced cell death in HepG2 cells, whereas oxidant H(2)O(2) augmented TIP30-induced cell death in HL7702 cells. The conformation of TIP30 was altered with the formation of an intermolecular disulfide bridge under oxidative stress. TIP30 greatly enhanced p53 expression and its transcriptional activity under oxidative stress, which was probably through stabilization of p53 mRNA. TIP30 induced apoptosis and mitochondrial dysfunction were blocked by silencing of p53 expression. The nuclear import of mRNA-binding protein HuR was blocked upon TIP30 introduction, which might be due to the interruption of the association of HuR with importin beta2. The elevated cytoplasmic HuR bound to p53 mRNA 3'-untranslated region, resulting in prolonged half-life of p53 mRNA. Our results suggest that TIP30 is involved in cellular oxidative stress surveillance and induces apoptosis through stabilization of p53 mRNA in HCC cells.
Collapse
Affiliation(s)
- Jian Zhao
- International Joint Cancer Institute and Eastern Hospital of Hepatobiliary Surgery, The Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhao Y, Zhang J, Li H, Li Y, Ren J, Luo M, Zheng X. An NADPH sensor protein (HSCARG) down-regulates nitric oxide synthesis by association with argininosuccinate synthetase and is essential for epithelial cell viability. J Biol Chem 2008; 283:11004-13. [PMID: 18263583 DOI: 10.1074/jbc.m708697200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NADPH is an important cofactor in many biosynthesis pathways that control fundamental cellular processes. We recently determined the crystal structure of HSCARG, with functions previously unknown, and demonstrated it is an NADPH sensor, which undergoes restructuring and redistribution in response to changes of intracellular NADPH/NADP levels. In this study, we identified argininosuccinate synthetase (AS), a rate-limiting enzyme in nitric oxide synthesis, as capable of associating with HSCARG and demonstrated further that HSCARG decreased nitric oxide synthesis by down-regulating AS activity, whereas AS overexpression up-regulated hscarg mRNA transcription, suggesting a negative feedback mechanism. A decrease in the NADPH/NADP(+) ratio, induced by dehydroepiandrosterone treatment, enhanced the interaction between HSCARG and AS, which resulted in stronger inhibition of AS activity and nitric oxide production. The dimerization region of HSCARG, amino acids 153-189, was identified to undergo critical interactions with AS. Furthermore, the viability of HSCARG RNA interference-treated epithelial cells decreased significantly, accompanied by an increase of the activity of caspase-3, which suggested that the loss of viability was because of apoptosis. These results indicate that HSCARG regulation of AS activity is crucial for maintaining the intracellular balance between redox state and nitric oxide levels.
Collapse
Affiliation(s)
- Yanmei Zhao
- National Laboratory of Protein Engineering and Plant Genetic Engineering and Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Cloning, expression, purification, and characterization of AmphiTip30, a member of short-chain dehydrogenases/reductases family from the amphioxus Branchiostoma belcheri tsingtauense. Protein Expr Purif 2007; 57:63-71. [PMID: 17950618 DOI: 10.1016/j.pep.2007.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 08/10/2007] [Accepted: 08/21/2007] [Indexed: 11/23/2022]
Abstract
In this paper we describe the cloning, expression and identification study of the TIP30 gene from amphioxus (Branchiostoma belcheri). The amphioxus TIP30 cDNA is comprised of 1499 bp and is translated in one open-reading frame to give a protein of 237 amino acids, with a predicted 23 amino acids signal peptide, a 147 bp 5'-UTR and a 638 bp 3'-UTR. A multiple alignment of TIP30 from amphioxus with other known TIP30 sequences shows the conservation of most amino acid residues involved in the peculiar structural domains found within TIP30's. Phylogenetic analysis places AmphiTIP30 at the base of the phylogenetic tree, suggesting that AmphiTIP30 is the archetype of the vertebrate TIP30 genes. We express the amphioxus TIP30 gene in Escherichia coli. driven by T7 promoter. The recombinant amphioxus TIP30 protein was purified by HisTrap affinity column. Subsequently, the binding constant and enzyme activity was mensurated. Western blot and immunohistochemistry analysis confirmed that amphioxus has a native molecular mass of approximately 26 kDa, and TIP30 was strongly expressed in ovary. Finally, the initial function of TIP30 is discussed.
Collapse
|
24
|
Thoden JB, Sellick CA, Reece RJ, Holden HM. Understanding a transcriptional paradigm at the molecular level. The structure of yeast Gal80p. J Biol Chem 2006; 282:1534-8. [PMID: 17121853 DOI: 10.1074/jbc.c600285200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In yeast, the GAL genes encode the enzymes required for normal galactose metabolism. Regulation of these genes in response to the organism being challenged with galactose has served as a paradigm for eukaryotic transcriptional control over the last 50 years. Three proteins, the activator Gal4p, the repressor Gal80p, and the ligand sensor Gal3p, control the switch between inert and active gene expression. Gal80p, the focus of this investigation, plays a pivotal role both in terms of repressing the activity of Gal4p and allowing the GAL switch to respond to galactose. Here we present the three-dimensional structure of Gal80p from Kluyveromyces lactis and show that it is structurally homologous to glucose-fructose oxidoreductase, an enzyme in the sorbitol-gluconate pathway. Our results clearly define the overall tertiary and quaternary structure of Gal80p and suggest that Gal4p and Gal3p bind to Gal80p at distinct but overlapping sites. In addition to providing a molecular basis for previous biochemical and genetic studies, our structure demonstrates that much of the enzymatic scaffold of the oxidoreductase has been maintained in Gal80p, but it is utilized in a very different manner to facilitate transcriptional regulation.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
25
|
Abdrakhmanova A, Zwicker K, Kerscher S, Zickermann V, Brandt U. Tight binding of NADPH to the 39-kDa subunit of complex I is not required for catalytic activity but stabilizes the multiprotein complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1676-82. [PMID: 17046710 DOI: 10.1016/j.bbabio.2006.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/08/2006] [Accepted: 09/11/2006] [Indexed: 11/18/2022]
Abstract
In addition to the 14 central subunits, respiratory chain complex I from the aerobic yeast Yarrowia lipolytica contains at least 24 accessory subunits, most of which are poorly characterized. Here we investigated the role of the accessory 39-kDa subunit which belongs to the heterogeneous short-chain dehydrogenase/reductase (SDR) enzyme family and contains non-covalently bound NADPH. Deleting the chromosomal copy of the gene that codes for the 39-kDa subunit drastically impaired complex I assembly in Y. lipolytica. We introduced several site-directed mutations into the nucleotide binding motif that severely reduced NADPH binding. This effect was most pronounced when the arginine at the end of the second beta-strand of the NADPH binding Rossman fold was replaced by leucine or aspartate. Mutations affecting nucleotide binding had only minor or moderate effects on specific catalytic activity in mitochondrial membranes but clearly destabilized complex I. One mutant exhibited a temperature sensitive phenotype and significant amounts of three different subcomplexes were observed even at more permissive temperature. We concluded that the 39-kDa subunit of Y. lipolytica plays a critical role in complex I assembly and stability and that the bound NADPH serves to stabilize the subunit and complex I as a whole rather than serving a catalytic function.
Collapse
Affiliation(s)
- Albina Abdrakhmanova
- Universität Frankfurt, Zentrum der Biologischen Chemie, Molekulare Bioenergetik, Theodor-Stern-Kai 7, Haus 26, D-60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
26
|
Zhao J, Zhang X, Shi M, Xu H, Jin J, Ni H, Yang S, Dai J, Wu M, Guo Y. TIP30 inhibits growth of HCC cell lines and inhibits HCC xenografts in mice in combination with 5-FU. Hepatology 2006; 44:205-15. [PMID: 16799960 DOI: 10.1002/hep.21213] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive cancer with a poor prognosis. The specific cellular gene alterations responsible for hepatocarcinogenesis are not well known. Previous works showed that loss of TIP30, also called CC3, a putative tumor suppressor, increased the incidence of hepatocellular carcinoma in mice, and some clinical samples of human HCC tissues had aberrant expression of TIP30. Here, we report that the introduction of TIP30 by an adenovirus vector into HCC cell lines that had decreased expressions of TIP30 inhibited cell proliferation, decreased anchorage-dependent growth, suppressed invasion through the extracellular matrix, and inhibited tumorigenesis in nude mice. Moreover, exogenous expression of Tip30 sensitized HCC cells to cytotoxic drugs and to apoptosis induced by tumor necrosis factor-related ligands in vitro. Ectopic expression of TIP30 in HCC cells enhanced p53 expression and decreased Bcl-2/Bcl-xL expression. Treatment of nude mice bearing subcutaneously established HCC tumors with a combination of an adenovirus expressing TIP30 and the cytotoxic drug 5-fluorouracil completely suppressed tumor growth and prolonged survival. In conclusion, TIP30 may play an important role in the suppression of hepatocarcinogenesis by acting as a tumor suppressor. Overexpression of TIP30 might be a promising candidate as a treatment for HCC that would increase sensitivity to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jian Zhao
- International Joint Cancer Institute & Eastern Hospital of Hepatobiliary Surgery, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|