1
|
Liang S, He Z, Liang Z, Wang K, Du B, Guo R, Li P. Prunus persica (L.) Batsch blossom soluble dietary fiber synergia polyphenol improving loperamide-induced constipation in mice via regulating stem cell factor/C-kit, NF-κB signaling pathway and gut microbiota. Food Res Int 2024; 192:114761. [PMID: 39147543 DOI: 10.1016/j.foodres.2024.114761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
This study aimed to investigate the ameliorating effects of peach blossom soluble dietary fiber (PBSDF) and polyphenol (PBP) combinations on loperamide (Lop)-induced constipation in mice, together with the possible mechanism of action. The results demonstrated that the combined use of PBSDF and PBP could synergistically accelerate the gastrointestinal transit rate and gastric emptying rate, shorten first red fecal defecation time, accelerate the frequency of defecation, regulate the abnormal secretion of gastrointestinal neurotransmitters and pro-inflammatory cytokines, and down-regulate the expressions of AQP3 and AQP8. Western blotting and RT-qPCR analysis confirmed that PBSDF + PBP up-regulated the protein and mRNA expressions of SCF and C-kit in SCF/C-kit signaling pathway, and down-regulated pro-inflammatory mediator expressions in NF-κB signaling pathway. 16S rRNA sequencing showed that the diversity of gut microbiota and the relative abundance of specific strains, including Akkermansia, Bacteroides, Ruminococcus, Lachnospiraceae_NK4A136_group, and Turicibacter, rehabilitated after PBSDF + PBP intervention. These findings suggested that the combination of a certain dose of PBSDF and PBP had a synergistic effect on attenuating Lop-induced constipation, and the synergistic mechanism in improving constipation might associated with the regulating NF-κB and SCF/C-kit signaling pathway, and modulating the specific gut strains on constipation-related systemic types. The present study provided a novel strategy via dietary fiber and polyphenol interactions for the treatment of constipation.
Collapse
Affiliation(s)
- Shan Liang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhipeng He
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ziping Liang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kun Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Rongxiang Guo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Wang M, Xu J, Lei XW, Zhang C, Liu SY, Jin LN, Zhang C. Selective Interactions of Mouse Melanocortin Receptor Accessory Proteins with Somatostatin Receptors. Cells 2022; 11:cells11020267. [PMID: 35053382 PMCID: PMC8773839 DOI: 10.3390/cells11020267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
Somatostatin receptors (SSTRs) are G protein-coupled receptors (GPCRs) known to regulate exocrine secretion, neurotransmission, and inhibit endogenous cell proliferation. SSTR subtypes (SSTR1-SSTR5) exhibit homo- or heterodimerization with unique signaling characteristics. Melanocortin receptor accessory protein 1 (MRAP1) functions as an allosteric modulator of melanocortin receptors and some other GPCRs. In this study, we investigated the differential interaction of MRAP1 and SSTRs and examined the pharmacological modulation of MRAP1 on mouse SSTR2/SSTR3 and SSTR2/SSTR5 heterodimerization in vitro. Our results show that the mouse SSTR2 forms heterodimers with SSTR3 and SSTR5 and that MRAP1 selectively interacts with SSTR3 and SSTR5 but not SSTR2. The interactive binding sites of SSTR2/SSTR3 or SSTR2/SSTR5 with MRAP1 locate on SSTR3 and SSTR5 but not SSTR2. The binding sites of MRAP1 to SSTR3 are extensive, while the ones of SSTR5 are restricted on transmembrane region six and seven. The heterodimerization of mouse SSTR2, SSTR3, and SSTR5 can be modulated by binding protein in addition to an agonist. Upregulation of extracellular signal-regulated kinases phosphorylation, p27Kip1, and increased cell growth inhibition with the co-expression of SSTR2/SSTR3 or SSTR2/SSTR5 with MRAP1 suggest a regulatory effect of MRAP1 on anti-proliferative response of two SSTR heterodimers. Taken together, these results provide a new insight of MRAP1 on the maintenance and regulation of mouse SSTR dimers which might be helpful to better understand the molecular mechanism involving SSTRs in tumor biology or other human disorders.
Collapse
Affiliation(s)
- Meng Wang
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 201619, China; (M.W.); (J.X.); (X.-W.L.)
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China;
| | - Jing Xu
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 201619, China; (M.W.); (J.X.); (X.-W.L.)
| | - Xiao-Wei Lei
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 201619, China; (M.W.); (J.X.); (X.-W.L.)
| | - Cong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China;
| | - Shang-Yun Liu
- Department of Hematology, Changzheng Hospital, Naval Medical University, Shanghai 200041, China;
| | - Li-Na Jin
- Department of Hematology, Changzheng Hospital, Naval Medical University, Shanghai 200041, China;
- Correspondence: (L.-N.J.); (C.Z.)
| | - Chao Zhang
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 201619, China; (M.W.); (J.X.); (X.-W.L.)
- Correspondence: (L.-N.J.); (C.Z.)
| |
Collapse
|
3
|
Treppiedi D, Marra G, Di Muro G, Catalano R, Mangili F, Esposito E, Calebiro D, Arosio M, Peverelli E, Mantovani G. Dimerization of GPCRs: Novel insight into the role of FLNA and SSAs regulating SST 2 and SST 5 homo- and hetero-dimer formation. Front Endocrinol (Lausanne) 2022; 13:892668. [PMID: 35992099 PMCID: PMC9389162 DOI: 10.3389/fendo.2022.892668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The process of GPCR dimerization can have profound effects on GPCR activation, signaling, and intracellular trafficking. Somatostatin receptors (SSTs) are class A GPCRs abundantly expressed in pituitary tumors where they represent the main pharmacological targets of somatostatin analogs (SSAs), thanks to their antisecretory and antiproliferative actions. The cytoskeletal protein filamin A (FLNA) directly interacts with both somatostatin receptor type 2 (SST2) and 5 (SST5) and regulates their expression and signaling in pituitary tumoral cells. So far, the existence and physiological relevance of SSTs homo- and hetero-dimerization in the pituitary have not been explored. Moreover, whether octreotide or pasireotide may play modulatory effects and whether FLNA may participate to this level of receptor organization have remained elusive. Here, we used a proximity ligation assay (PLA)-based approach for the in situ visualization and quantification of SST2/SST5 dimerization in rat GH3 as well as in human melanoma cells either expressing (A7) or lacking (M2) FLNA. First, we observed the formation of endogenous SST5 homo-dimers in GH3, A7, and M2 cells. Using the PLA approach combined with epitope tagging, we detected homo-dimers of human SST2 in GH3, A7, and M2 cells transiently co-expressing HA- and SNAP-tagged SST2. SST2 and SST5 can also form endogenous hetero-dimers in these cells. Interestingly, FLNA absence reduced the basal number of hetero-dimers (-36.8 ± 6.3% reduction of PLA events in M2, P < 0.05 vs. A7), and octreotide but not pasireotide promoted hetero-dimerization in both A7 and M2 (+20.0 ± 11.8% and +44.1 ± 16.3% increase of PLA events in A7 and M2, respectively, P < 0.05 vs. basal). Finally, immunofluorescence data showed that SST2 and SST5 recruitment at the plasma membrane and internalization are similarly induced by octreotide and pasireotide in GH3 and A7 cells. On the contrary, in M2 cells, octreotide failed to internalize both receptors whereas pasireotide promoted robust receptor internalization at shorter times than in A7 cells. In conclusion, we demonstrated that in GH3 cells SST2 and SST5 can form both homo- and hetero-dimers and that FLNA plays a role in the formation of SST2/SST5 hetero-dimers. Moreover, we showed that FLNA regulates SST2 and SST5 intracellular trafficking induced by octreotide and pasireotide.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giusy Marra
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Genesio Di Muro
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- University Sapienza of Rome, Rome, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Emanuela Esposito
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- *Correspondence: Erika Peverelli,
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
4
|
Does Differential Receptor Distribution Underlie Variable Responses to a Neuropeptide in the Lobster Cardiac System? Int J Mol Sci 2021; 22:ijms22168703. [PMID: 34445418 PMCID: PMC8395929 DOI: 10.3390/ijms22168703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 08/07/2021] [Indexed: 11/17/2022] Open
Abstract
Central pattern generators produce rhythmic behaviors independently of sensory input; however, their outputs can be modulated by neuropeptides, thereby allowing for functional flexibility. We investigated the effects of C-type allatostatins (AST-C) on the cardiac ganglion (CG), which is the central pattern generator that controls the heart of the American lobster, Homarus americanus, to identify the biological mechanism underlying the significant variability in individual responses to AST-C. We proposed that the presence of multiple receptors, and thus differential receptor distribution, was at least partly responsible for this observed variability. Using transcriptome mining and PCR-based cloning, we identified four AST-C receptors (ASTCRs) in the CG; we then characterized their cellular localization, binding potential, and functional activation. Only two of the four receptors, ASTCR1 and ASTCR2, were fully functional GPCRs that targeted to the cell surface and were activated by AST-C peptides in our insect cell expression system. All four, however, were amplified from CG cDNAs. Following the confirmation of ASTCR expression, we used physiological and bioinformatic techniques to correlate receptor expression with cardiac responses to AST-C across individuals. Expression of ASTCR1 in the CG showed a negative correlation with increasing contraction amplitude in response to AST-C perfusion through the lobster heart, suggesting that the differential expression of ASTCRs within the CG is partly responsible for the specific physiological response to AST-C exhibited by a given individual lobster.
Collapse
|
5
|
Wang J, Liang Q, Zhao Q, Tang Q, Ahmed AF, Zhang Y, Kang W. The effect of microbial composition and proteomic on improvement of functional constipation by Chrysanthemum morifolium polysaccharide. Food Chem Toxicol 2021; 153:112305. [PMID: 34033886 DOI: 10.1016/j.fct.2021.112305] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
In this paper, SD rat constipation model was established with loperamide hydrochloride to study the effect of Chrysanthemum morifolium polysaccharide on the improvement of functional constipation, and the mechanism of improving constipation was investigated with the proteomics and intestinal flora. The results showed that the HD group of C. morifolium polysaccharide could significantly increase the levels of water content of stool pellets, small intestine propulsion rate, gastrin (MTL), gastrin (GAS) and substance P (SP), decrease the level of growth inhibitor (SS) and improved gastrointestinal motility in rats. Gut microbial studies showed that C. morifolium polysaccharide could significantly increase species abundance and flora diversity and improve flora structure. The relative abundance of Lactobacillus and Romboutsia increased, while the relative abundance of Lachnospiraceae_NK4A136_group and Roseburia decreased compared with the MC group. Proteomics studies suggested that C. morifolium polysaccharides could reduce intestinal lesions, enhance intestinal homeostasis, increase amino acid uptake, promote intestinal motility and relieve constipation by regulating the expression of RAS, FABP1 and SLC1A5 proteins.
Collapse
Affiliation(s)
- Jinmei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Functional Food Engineering Technology Research Center, Kaifeng, 475004, China
| | - Qiongxin Liang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Functional Food Engineering Technology Research Center, Kaifeng, 475004, China
| | - Qingchun Zhao
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Qi Tang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Adel F Ahmed
- Medicinal and Aromatic Plants Researches Department, Horticulture Research Institute, Agricultural Research Center, Giza, 71625, Egypt.
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Shijiazhuang, 050227, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, 050227, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Functional Food Engineering Technology Research Center, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Alshafie W, Pan YE, Kreienkamp HJ, Stroh T. Characterization of agonist-dependent somatostatin receptor subtype 2 trafficking in neuroendocrine cells. Endocrine 2020; 69:655-669. [PMID: 32383089 DOI: 10.1007/s12020-020-02329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Somatostatin (SOM) receptor subtype 2 (SSTR2) is the major receptor subtype mediating SOM effects throughout the neuraxis. We previously demonstrated that the non-selective agonist [D-Trp8]-SOM induces intracellular sequestration of SSTR2, whereas this receptor is maintained at the cell surface after treatment with the SSTR2-selective agonist L-779,976 in cells co-expressing SSTR2 and SSTR5. METHODS AND RESULTS In this study, we knocked-out SSTR5 in AtT20 cells endogenously expressing both SSTR2 and SSTR5 and used immuno-labeling and confocal microscopy to investigate the effect of SSTR5 on regulation of SSTR2 trafficking. Our results indicate that unlike [D-Trp8]-SOM-induced intracellular sequestration, L-779,976 stimulation results in the maintenance of SSTR2 at the cell surface regardless of whether SSTR5 is present or not. We then examined the trafficking pathways of SSTR2 upon stimulation by either agonist. We found that both [D-Trp8]-SOM and L-779,976 induce SSTR2 internalization via transferrin-positive vesicles. However, SSTR2 internalized upon L-779,976 treatment undergoes rapid recycling to the plasma membrane, whereas receptors internalized by [D-Trp8]-SOM recycle slowly after washout of the agonist. Furthermore, [D-Trp8]-SOM stimulation induces degradation of a fraction of internalized SSTR2 whereas L-779,976-dependent, rapid SSTR2 recycling appears to protect internalized SSTR2 from degradation. In addition, Octreotide which has preferential SSTR2 affinity, induced differential effects on both SSTR2 trafficking and degradation. CONCLUSION Our results indicate that the biased agonistic property of L-779,976 protects against SSTR2 surface depletion by rapidly initiating SSTR2 recycling while SSTR5 does not regulate L-779-976-dependent SSTR2 trafficking.
Collapse
Affiliation(s)
- Walaa Alshafie
- Department of Neurology and Neurosurgery, McGill University, and the Montreal Neurological Institute, Montreal, QC, Canada.
| | - Yingzhou Edward Pan
- Department of Neurology and Neurosurgery, McGill University, and the Montreal Neurological Institute, Montreal, QC, Canada
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Stroh
- Department of Neurology and Neurosurgery, McGill University, and the Montreal Neurological Institute, Montreal, QC, Canada.
| |
Collapse
|
7
|
Jiang H, Dong J, Jiang S, Liang Q, Zhang Y, Liu Z, Ma C, Wang J, Kang W. Effect of Durio zibethinus rind polysaccharide on functional constipation and intestinal microbiota in rats. Food Res Int 2020; 136:109316. [PMID: 32846524 DOI: 10.1016/j.foodres.2020.109316] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 01/03/2023]
Abstract
The prevalence of constipation increases rapidly with the increased pressure of some people's life, which seriously affects the quality of life in related patients. In this study, the improvement of functional constipation by Durio zibethinus Murr rind polysaccharide (DZMP) and the effects of DZMP on intestinal microbiota were investigated in a constipation model of Sprague-Dawley (SD) rats established by loperamide hydrochloride. Results showed that DZMP at 200 mg/kg could significantly (P < 0.05) increase the intestinal transit rate, motilin, gastrin, substance P levels and concentration of short-chain fatty acids (SCFAs), reduce the somatostatin levels and improve the gastrointestinal peristalsis of rats. Sequencing showed that the Lachnospiraceae-NK4A136-group in the rats given 200 mg/kg DZMP (16.07%) was significantly higher than that of the model group (10.13%), while the Desulfovibrio was lower (2.99%) than that of the model group (4.19%). Principal co-ordinates analysis (PcoA) revealed a significant difference in intestinal microbiota composition between the model group and the high-dose DZMP group (200 mg/kg). The results demonstrated that DZMP has a regulatory effect of treating functional constipation and regulating intestinal flora in rats.
Collapse
Affiliation(s)
- Huimin Jiang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Jing Dong
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Shengjun Jiang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Qiongxin Liang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng 475004, China
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
| | - Zhenhua Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng 475004, China
| | - Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Jinmei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| |
Collapse
|
8
|
Civciristov S, Halls ML. Signalling in response to sub-picomolar concentrations of active compounds: Pushing the boundaries of GPCR sensitivity. Br J Pharmacol 2019; 176:2382-2401. [PMID: 30801691 DOI: 10.1111/bph.14636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
There is evidence for ultra-sensitive responses to active compounds at concentrations below picomolar levels by proteins and receptors found in species ranging from bacteria to mammals. We have recently shown that such ultra-sensitivity is also demonstrated by a wide range of prototypical GPCRs, and we have determined the molecular mechanisms behind these responses for three family A GPCRs: the relaxin receptor, RXFP1; the β2 -adrenoceptor; and the M3 muscarinic ACh receptor. Interestingly, there are reports of similar ultra-sensitivity by more than 15 human GPCR families, in addition to other human receptors and channels. These occur through a diverse range of signalling pathways and produce modulation of important physiological processes, including neuronal transmission, chemotaxis, gene transcription, protein/ion uptake and secretion, muscle contraction and relaxation, and phagocytosis. Here, we summarise the accumulating evidence of ultra-sensitive receptor signalling to show that this is a common, though currently underappreciated, property of GPCRs. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Srgjan Civciristov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castaño JP, Wester HJ, Culler M, Melmed S, Schulz S. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev 2019; 70:763-835. [PMID: 30232095 PMCID: PMC6148080 DOI: 10.1124/pr.117.015388] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Giovanni Tulipano
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Pascal Dournaud
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Corinne Bousquet
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Zsolt Csaba
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Kreienkamp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Márta Korbonits
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Justo P Castaño
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Wester
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Michael Culler
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Shlomo Melmed
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| |
Collapse
|
10
|
Yamamoto M, Ben-Shlomo A, Kameda H, Fukuoka H, Deng N, Ding Y, Melmed S. Somatostatin receptor subtype 5 modifies hypothalamic-pituitary-adrenal axis stress function. JCI Insight 2018; 3:122932. [PMID: 30282821 PMCID: PMC6237446 DOI: 10.1172/jci.insight.122932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/29/2018] [Indexed: 11/17/2022] Open
Abstract
Pituitary corticotroph somatostatin receptor subtype 5 (SSTR5) signals to inhibit adrenocorticotrophin (ACTH) secretion. As ACTH deficiency results in attenuated adrenal cortisol production and an impaired stress response, we sought to clarify the role of SSTR5 in modifying the hypothalamic/pituitary/adrenal (HPA) axis. We generated Tg HP5 mice overexpressing SSTR5 in pituitary corticotrophs that produce the ACTH precursor proopiomelanocortin (POMC). Basal ACTH and corticosterone were similar in HP5 and WT mice, while HP5 mice showed attenuated ACTH and corticosterone responses to corticotrophin releasing hormone (CRH). HP5 mice exhibited attenuated corticosterone responses upon a restraint stress test and inflammatory stress following LPS injection, as well as increased anxiety-like and depressive-like behavior on open field and forced swim tests. Pituitary corticotroph CRH receptor subtype 1 (CRHR1) mRNA expression and ACTH responses to CRH were also attenuated in HP5 mice. In AtT20 cells stably overexpressing SSTR5, CRHR1 expression and cAMP response to CRH were reduced, whereas both were increased after SSTR5 KO. In elucidating mechanisms for these observations, we show that SSTR5-induced miR-449c suppresses both CRHR1 expression and function. We conclude that corticotroph SSTR5 attenuates HPA axis responses via CRHR1 downregulation, suggesting a role for SSTR5 in the pathogenesis of secondary adrenal insufficiency.
Collapse
Affiliation(s)
| | | | | | | | - Nan Deng
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yan Ding
- Pituitary Center, Department of Medicine, and
| | | |
Collapse
|
11
|
Abstract
The somatostatin (SRIF) system, which includes the SRIF ligand and receptors, regulates anterior pituitary gland function, mainly inhibiting hormone secretion and to some extent pituitary tumor cell growth. SRIF-14 via its cognate G-protein-coupled receptors (subtypes 1-5) activates multiple cellular signaling pathways including adenylate cyclase/cAMP, MAPK, ion channel-dependent pathways, and others. In addition, recent data have suggested SRIF-independent constitutive SRIF receptor activity responsible for GH and ACTH inhibition in vitro. This review summarizes current knowledge on ligand-dependent and independent SRIF receptor molecular and functional effects on hormone-secreting cells in the anterior pituitary gland.
Collapse
Affiliation(s)
- Tamar Eigler
- Division of EndocrinologyDiabetes and Metabolism, Department of Medicine, Pituitary Center, Cedars Sinai Medical Center, Davis Building, Room 3066, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Anat Ben-Shlomo
- Division of EndocrinologyDiabetes and Metabolism, Department of Medicine, Pituitary Center, Cedars Sinai Medical Center, Davis Building, Room 3066, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| |
Collapse
|
12
|
Ferone D, Pivonello C, Vitale G, Zatelli MC, Colao A, Pivonello R. Molecular basis of pharmacological therapy in Cushing's disease. Endocrine 2014; 46:181-98. [PMID: 24272603 DOI: 10.1007/s12020-013-0098-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/19/2013] [Indexed: 01/16/2023]
Abstract
Cushing's disease (CD) is a severe endocrine condition caused by an adrenocorticotropin (ACTH)-producing pituitary adenoma that chronically stimulates adrenocortical cortisol production and with potentially serious complications if not or inadequately treated. Active CD may produce a fourfold increase in mortality and is associated with significant morbidities. Moreover, excess mortality risk may persist even after CD treatment. Although predictors of risk in treated CD are not fully understood, the importance of early recognition and adequate treatment is well established. Surgery with resection of a pituitary adenoma is still the first line therapy, being successful in about 60-70 % of patients; however, recurrence within 2-4 years may often occur. When surgery fails, medical treatment can reduce cortisol production and ameliorate clinical manifestations while more definitive therapy becomes effective. Compounds that target hypothalamic-pituitary axis, glucocorticoid synthesis or adrenocortical function are currently used to control the deleterious effects of chronic glucocorticoid excess. In this review we describe and analyze the molecular basis of the drugs targeting the disease at central level, suppressing ACTH secretion, as well as at peripheral level, acting as adrenal inhibitors, or glucocorticoid receptor antagonists. Understanding of the underlying molecular mechanisms in CD and of glucocorticoid biology should promote the development of new targeted and more successful therapies in the future. Indeed, most of the drugs discussed have been tested in limited clinical trials, but there is potential therapeutic benefit in compounds with better specificity for the class of receptors expressed by ACTH-secreting tumors. However, long-term follow-up with management of persistent comorbidities is needed even after successful treatment of CD.
Collapse
Affiliation(s)
- Diego Ferone
- Endocrinology, Department of Internal Medicine and Medical Specialties & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, University of Genova, Viale Benedetto XV, 6, 16132, Genoa, Italy,
| | | | | | | | | | | |
Collapse
|
13
|
Ruscica M, Magni P, Steffani L, Gatto F, Albertelli M, Rametta R, Valenti L, Ameri P, Magnaghi V, Culler MD, Minuto F, Ferone D, Arvigo M. Characterization and sub-cellular localization of SS1R, SS2R, and SS5R in human late-stage prostate cancer cells: effect of mono- and bi-specific somatostatin analogs on cell growth. Mol Cell Endocrinol 2014; 382:860-70. [PMID: 24211300 DOI: 10.1016/j.mce.2013.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 01/10/2023]
Abstract
Somatostatin (SST) and SST receptors (SS1R, SS2R, SS3R, SS4R and SS5R) appear to play a significant role in the progression of human prostate cancer (PCa), which is associated with heterogeneity of SSRs expression and specific cell localization as we already demonstrated in the LNCaP cell line, an in vitro model of human androgen-dependent PCa. In this study, PC-3 and DU-145 human castration-resistant PCa cells were found to express all SSRs, while LNCaP expressed all but SS4R. A 48-h treatment with BIM-23244 (SS2R/SS5R) or BIM-23926 (SS1R) SST analogs was more effective in inhibiting cell proliferation, compared to BIM-23120 (SS2R), BIM-23206 (SS5R) and BIM-23704 (SS1R/SS2R). BIM-23926 (SS1R) treatment increased the amount of p21 and decreased phosphorylated (p) ERK1/2. BIM-23244 (SS2R/SS5R) led to p21 increment only in PC-3 cells, and to pERK1/2 reduction in both cell lines. SS1R/SS2R and SS2R/SS5R receptor dimers were natively present on cell membrane and their amount was increased by BIM-23704 (SS1R/SS2R) or BIM-23244 (SS2R/SS5R) treatment, respectively. SS1R, SS2R and SS5R were differently distributed among nuclear, lysosomal and microsomal compartment, according to their different recycling dynamics. These results show that, in PC-3, DU-145 and LNCaP cells, activation of SS1R and SS2R/SS5R leads to relevant antiproliferative effects.
Collapse
Affiliation(s)
- M Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - P Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - L Steffani
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - F Gatto
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy
| | - M Albertelli
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy
| | - R Rametta
- Pathophysiology and Transplantation, Università degli Studi di Milano, UO Medicina Interna 1B, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy
| | - L Valenti
- Pathophysiology and Transplantation, Università degli Studi di Milano, UO Medicina Interna 1B, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy
| | - P Ameri
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy
| | - V Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - M D Culler
- Biomeasure Incorporated/IPSEN, Milford, MA, USA
| | - F Minuto
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy
| | - D Ferone
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy.
| | - M Arvigo
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy
| |
Collapse
|
14
|
Ben-Shlomo A, Pichurin O, Khalafi R, Zhou C, Chesnokova V, Ren SG, Liu NA, Melmed S. Constitutive somatostatin receptor subtype 2 activity attenuates GH synthesis. Endocrinology 2013; 154:2399-409. [PMID: 23696564 PMCID: PMC3689284 DOI: 10.1210/en.2013-1132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Somatostatin signals predominantly through somatostatin receptor (SSTR) subtype 2 to attenuate GH release. However, the independent role of the receptor in regulating GH synthesis is unclear. Because we had previously demonstrated constitutive SSTR2 activity in mouse corticotrophs, we now analyzed GH regulation in rat pituitary somatotroph (GC) tumor cells, which express SSTR2 exclusively and are devoid of endogenous somatostatin ligand. We demonstrate that moderately stable SSTR2 overexpression (GpSSTR2(WT) cells) was associated with decreased GH promoter activity, GH mRNA, and hormone levels compared with those of control transfectants (GpCon cells). In contrast, levels of GH mRNA and peptide and GH promoter activity were unchanged in GpSSTR2(DRY) stable transfectants moderately expressing DRY motif mutated SSTR2 (R140A). GpSSTR(2DRY) did not exhibit an enhanced octreotide response as did GpSSTR2(WT) cells; however, both SSTR2(WT)-enhanced yellow fluorescent protein (eYFP) and SSTR2(DRY)-eYFP internalized on octreotide treatment. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, increased GH synthesis in wild-type GC cells and primary pituitary cultures. GpSSTR2(WT) cells induced GH synthesis more strongly on SAHA treatment, evident by both higher GH peptide and mRNA levels compared with the moderate but similar GH increase observed in GpCon and GpSSTR2(DRY) cells. In vivo SAHA also increased GH release from GpSSTR2(WT) but not from control xenografts. Endogenous rat GH promoter chromatin immunoprecipitation showed decreased baseline acetylation of the GH promoter with exacerbated acetylation after SAHA treatment in GpSSTR2(WT) compared with that of either GpSSTR(2DRY) or control cells, the latter 2 transfectants exhibiting similar GH promoter acetylation levels. In conclusion, modestly increased SSTR2 expression constitutively decreases GH synthesis, an effect partially mediated by GH promoter histone deacetylation.
Collapse
Affiliation(s)
- Anat Ben-Shlomo
- The Pituitary Center, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Recent evidence supports the notion that the incidence of Cushing disease is higher than previously thought. Transphenoidal surgery, in the hands of experienced neurosurgeons, is currently considered the first-line treatment of choice. However, an examination of remission and recurrence rates in long-term follow-up studies reveals that potentially up to 40% to 50% of patients could require additional treatment. If left untreated, the resultant morbidity and mortality are high. Successful clinical management of patients with Cushing disease remains a challenge. The development of new therapeutic agents has been eagerly anticipated. This article discusses the results of currently available and promising new therapeutic agents used to treat this challenging disease.
Collapse
|
16
|
Fusco A, Giampietro A, Bianchi A, Cimino V, Lugli F, Piacentini S, Lorusso M, Tofani A, Perotti G, Lauriola L, Anile C, Maira G, Pontecorvi A, De Marinis L. Treatment with octreotide LAR in clinically non-functioning pituitary adenoma: results from a case-control study. Pituitary 2012; 15:571-8. [PMID: 22207350 DOI: 10.1007/s11102-011-0370-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Surgical cure cannot be achieved in most patients with invasive non-functioning pituitary macroadenoma (NFPA). Short-term residual tumor treatment with somatostatin analogs has produced disappointing results. This prospective case-control study assessed the efficacy of chronic treatment with long acting octreotide (octreotide LAR) on tumor volume in patients harboring post-surgical NFPA residue. The study population comprised 39 patients with NFPAs not cured by surgery. All patients underwent somatostatin receptor scintigraphy at least 6 months after the last surgery. Patients with a positive pituitary level octreoscan at (n = 26) received octreotide LAR (20 mg every 28 days) for ≥ 12 months (mean follow-up 37 ± 18 months) (Treated group). Moreover, a fragment of tumor tissue from patients in the treated group was retrospectively collected to assess the immunohistochemical expression of somatostatin receptor subtypes (SSTRs). The patients with a negative octreoscan (n = 13) formed the control group (mean follow-up 37 ± 16 months). Hormonal, radiological and visual field parameters were periodically assessed. In the treated group, all tumors expressed at least one SSTR subtype. The SSTR5 subtype was the most abundant, followed by SSTR3. The tumor residue increased in five of 26 patients (19%) in the treated group and in seven of 13 controls (53%). Visual field and pituitary function did not change in any patient. This study indicates that SSTR5 and SSTR3 are the most frequently expressed SSTR subtypes in NFPAs and supports a potential role of SSTR subtypes in stabilization of tumor remnant from NFPAs.
Collapse
Affiliation(s)
- Alessandra Fusco
- Division of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 8, 00168 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shimon I, Rot L, Inbar E. Pituitary-directed medical therapy with pasireotide for a corticotroph macroadenoma: pituitary volume reduction and literature review. Pituitary 2012; 15:608-13. [PMID: 22918543 DOI: 10.1007/s11102-012-0427-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Hypercortisolism due to an ACTH-secreting pituitary adenoma (Cushing's disease) is a chronic condition associated with high morbidity and mortality if inadequately managed. Pasireotide is a multireceptor-targeted somatostatin analogue and is the only approved medical therapy for Cushing's disease that treats the underlying cause of the disorder. This paper reviews the available literature for medical-therapy-induced adenoma volume reduction in patients with Cushing's disease and reports the experience of a 53-year-old surgically, radiologically and medically naïve (de novo) female with a pituitary macroadenoma who declined surgery. This patient was treated with pasireotide as first-line therapy as part of the largest randomized Phase III study evaluating a medical therapy in patients with Cushing's disease (SOM230B2305 trial). Subcutaneous pasireotide significantly decreased tumor volume, suppressed cortisol secretion, and improved clinical signs and symptoms of Cushing's disease in this patient. Based on this experience, first-line pasireotide has the potential to achieve substantial tumor volume reduction in addition to significant improvements in cortisol levels and signs and symptoms in patients with Cushing's disease for whom surgery is not an option.
Collapse
Affiliation(s)
- Ilan Shimon
- Institute of Endocrinology, Rabin Medical Center, Beilinson Hospital, 49100 Petah Tiqva, Israel.
| | | | | |
Collapse
|
18
|
Shpakov AO. Somatostatin receptors and signaling cascades coupled to them. J EVOL BIOCHEM PHYS+ 2012. [DOI: 10.1134/s0022093012040020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Córdoba-Chacón J, Gahete MD, Durán-Prado M, Luque RM, Castaño JP. Truncated somatostatin receptors as new players in somatostatin-cortistatin pathophysiology. Ann N Y Acad Sci 2011; 1220:6-15. [PMID: 21388399 DOI: 10.1111/j.1749-6632.2011.05985.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Somatostatin (SST) and cortistatin (CORT) act through a family of seven transmembrane domain (TMD) receptors (sst1-5) to govern multiple functions, from growth hormone (GH) secretion to neurotransmission, metabolic homeostasis, gastrointestinal and immune function, and tumor cell growth. Thus, SST analogs are used to treat endocrine/tumoral pathologies. Yet, some SST/CORT actions cannot be explained by their interaction with known ssts. We recently identified novel sst5 variants in human, pig, mouse, and rat that lack one or more TMDs and display unique molecular/functional features: they exhibit distinct tissue distribution, divergent responses to SST/CORT, and intracellular localization as opposed to the typical plasma-membrane distribution of full-length ssts. When coexpressed in the same cell, truncated sst5 variants colocalize and physically interact with full-length ssts, providing a molecular basis to disrupt normal sst2/sst5 functioning. This may explain the inverse correlation between hsst5TMD4 expression in pituitary tumors and octreotide responsiveness in acromegaly. Discovery of these new truncated sst5 variants provides novel insights on SST/CORT/sst pathophysiology and suggests new research avenues for the therapeutic potential of this system.
Collapse
Affiliation(s)
- José Córdoba-Chacón
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Abstract
The five somatostatin receptors (SSTR1-5) are G-protein-coupled receptors, coupling to G(αi/0) subunits to regulate pathways including inhibiting adenylate cyclase activity and reduce intracellular cAMP levels and decrease intracellular calcium levels. In the pituitary gland, somatostatin actions, mediated through SSTR1, 2, 3, and 5, are inhibition of growth hormone, thyrotropin hormone, and adrenocorticotropin hormone release and to a lesser extent, inhibition of cell growth. Establishment of constitutive SSTRs action suggests that abundant pituitary SSTR expression contributes to pituitary function in maintaining homeostasis, aside from the SSTR response to episodic hypothalamic somatostatin release. In this chapter, we describe an experimental approach to directly and indirectly demonstrate constitutive SSTR activity by altering receptor density in AtT20 mouse pituitary corticotroph tumor cells, utilizing small interference RNA to knock receptor expression down or stable SSTRs transfection to overexpress selective receptor levels. We describe methodical validation for each of the approaches and the use of a sensitive cAMP assay to analyze consequences of changing membrane receptor number in the absence of an added ligand.
Collapse
|
22
|
Khattak MNK, Buchfelder M, Kleindienst A, Schöfl C, Kremenevskaja N. CRH and SRIF have opposite effects on the Wnt/β-catenin signalling pathway through PKA/GSK-3β in corticotroph pituitary cells. Cancer Invest 2010; 28:797-805. [PMID: 20690801 DOI: 10.3109/07357907.2010.494318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Wnt/ß-catenin signalling pathway is involved in tumorigenesis including endocrine tumors. We investigated the Wnt/ß-catenin pathway's modulation by corticotropin-releasing hormone (CRH) and somatostatin or somatotropin release-inhibiting factor (SRIF) in mouse pituitary AtT-20 corticotroph cells. The Wnt/β-catenin signalling pathway was activated by CRH and inhibited by SRIF. We provide evidence that cAMP/PKA signalling is involved affecting the GSK-3β phosphorylation status at phospho-GSK-3β (Ser9), thereby altering β-catenin degradation downstream. Furthermore, CRH and SRIF showed concordant effects on cell proliferation. Our data demonstrate an important role of the Wnt/β-catenin pathway in the proliferative control of pituitary corticotroph cells and describe a mechanism for its regulation by CRH and SRIF.
Collapse
|
23
|
Arnaldi G, Boscaro M. Pasireotide for the treatment of Cushing's disease. Expert Opin Investig Drugs 2010; 19:889-98. [DOI: 10.1517/13543784.2010.495943] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | | |
Collapse
|
25
|
van der Hoek J, Lamberts SWJ, Hofland LJ. The somatostatin receptor subtype 5 in neuroendocrine tumours. Expert Opin Investig Drugs 2010; 19:385-99. [PMID: 20151855 DOI: 10.1517/13543781003604710] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD In recent years, scientific work has been intensified to unravel new (patho-) physiological insights, particularly regarding the functional role of somatostatin (SRIF) receptor subtype 5 (sst) and the development of novel sst(5)-targeted SRIF analogues, in order to broaden medical therapeutic opportunities in patients suffering from neuroendocrine diseases. AREAS COVERED IN THIS REVIEW The scope of this review is primarily focused upon recent insights in sst(5)-receptor physiology, novel sst(5)-targeted treatment options predominantly directed towards pituitary adenomas, and gastroenteropancreatic neuroendocrine tumours. WHAT THE READER WILL GAIN An understanding of the potential that novel sst(5)-targeted SRIF analogues might have in the medical treatment of Cushing's disease and acromegaly, as demonstrated by translational research, based on pathophysiological data combined with results from clinical trials. TAKE HOME MESSAGE The role of targeting sst(5) in gastroenteropancreatic neuroendocrine tumours remains to be established. The sst(5) subtype might function as sst(2) modulator in terms of receptor internalization and desensitization, and seems less important compared with sst(2)-preferring SRIF analogues in the regulation of human insulin secretion by the pancreas. Finally, absence of sst(5) in corticotroph adenomas could be related to tumour aggressiveness in Cushing's disease.
Collapse
Affiliation(s)
- Joost van der Hoek
- Department of Internal Medicine, Division of Endocrinology, Room Ee530b, Erasmus MC, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| | | | | |
Collapse
|
26
|
Córdoba-Chacón J, Gahete MD, Duran-Prado M, Pozo-Salas AI, Malagón MM, Gracia-Navarro F, Kineman RD, Luque RM, Castaño JP. Identification and characterization of new functional truncated variants of somatostatin receptor subtype 5 in rodents. Cell Mol Life Sci 2010; 67:1147-63. [PMID: 20063038 PMCID: PMC11115927 DOI: 10.1007/s00018-009-0240-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/08/2009] [Accepted: 12/18/2009] [Indexed: 12/11/2022]
Abstract
Somatostatin and cortistatin exert multiple biological actions through five receptors (sst1-5); however, not all their effects can be explained by activation of sst1-5. Indeed, we recently identified novel truncated but functional human sst5-variants, present in normal and tumoral tissues. In this study, we identified and characterized three novel truncated sst5 variants in mice and one in rats displaying different numbers of transmembrane-domains [TMD; sst5TMD4, sst5TMD2, sst5TMD1 (mouse-variants) and sst5TMD1 (rat-variant)]. These sst5 variants: (1) are functional to mediate ligand-selective-induced variations in [Ca(2+)]i and cAMP despite being truncated; (2) display preferential intracellular distribution; (3) mostly share full-length sst5 tissue distribution, but exhibit unique differences; (4) are differentially regulated by changes in hormonal/metabolic environment in a tissue- (e.g., central vs. systemic) and ligand-dependent manner. Altogether, our results demonstrate the existence of new truncated sst5-variants with unique ligand-selective signaling properties, which could contribute to further understanding the complex, distinct pathophysiological roles of somatostatin and cortistatin.
Collapse
Affiliation(s)
- Jose Córdoba-Chacón
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Manuel D. Gahete
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Mario Duran-Prado
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Ana I. Pozo-Salas
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - María M. Malagón
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - F. Gracia-Navarro
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Rhonda D. Kineman
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL USA
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Raul M. Luque
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Justo P. Castaño
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| |
Collapse
|
27
|
Ben-Shlomo A, Melmed S. Pituitary somatostatin receptor signaling. Trends Endocrinol Metab 2010; 21:123-33. [PMID: 20149677 PMCID: PMC2834886 DOI: 10.1016/j.tem.2009.12.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/09/2009] [Accepted: 12/10/2009] [Indexed: 12/27/2022]
Abstract
Somatotropin-release inhibitory factor (SRIF) is a major regulator of pituitary function, mostly inhibiting hormone secretion and to a lesser extent pituitary cell growth. Five SRIF receptor subtypes (SSTR1-5) are ubiquitously expressed G-protein coupled receptors. In the pituitary, SSTR1, 2, 3 and 5 are expressed, with SSTR2 and SSTR5 predominating. As new SRIF analogs have recently been introduced for treatment of pituitary disease, we evaluate the current knowledge of cell-specific pituitary SRIF receptor signaling and highlight areas of future research for comprehensive understanding of these mechanisms. Elucidating pituitary SRIF receptor signaling enables understanding of pituitary hormone secretion and cell growth, and also encourages future therapeutic development for pituitary disorders.
Collapse
Affiliation(s)
- Anat Ben-Shlomo
- Pituitary Center, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California 90048, USA
| | | |
Collapse
|
28
|
Sprecher U, Mohr P, Martin RE, Maerki HP, Sanchez RA, Binggeli A, Künnecke B, Christ AD. Novel, non-peptidic somatostatin receptor subtype 5 antagonists improve glucose tolerance in rodents. ACTA ACUST UNITED AC 2010; 159:19-27. [PMID: 19761802 DOI: 10.1016/j.regpep.2009.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 09/01/2009] [Accepted: 09/08/2009] [Indexed: 11/26/2022]
Abstract
BACKGROUND Somatostatin regulates numerous endocrine processes, including glucose homeostasis. The contribution and effects of the 5 somatostatin receptors are still unclear, in part due to the lack of suitable subtype specific receptor antagonists. We explored the effects of two novel, non-peptidic, orally bioavailable somatostatin receptor subtype 5 antagonists named Compound A and Compound B on glycemia in animal models of type 2 diabetes after an initial in vitro characterization. METHODS AND RESULTS Compound A led to a dose-dependent decrease in glucose and insulin excursions during an OGTT in Zucker (fa/fa) rats after single treatment by up to 17% and 49%, respectively. Diet-induced obese mice showed after three weeks treatment with compounds A and B a dose-dependent decrease of the glucose excursion of up to 45% and 37%, respectively. In contrast to the acute effect observed in Zucker rats, Compound A showed a dose-dependent insulin increase by up to 72%, whereas body weight, liver triglycerides, ALT and AST were dose-dependently decreased. CONCLUSIONS SSTR5 antagonists have the potential for short- and long-term improvements of the glucose homeostasis in rodent models of type 2 diabetes. Further work on the mechanism and the relevance for human disease is warranted.
Collapse
Affiliation(s)
- Urs Sprecher
- Discovery Research, Chemistry and Non-Clinical Safety, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ruscica M, Arvigo M, Gatto F, Dozio E, Feltrin D, Culler MD, Minuto F, Motta M, Ferone D, Magni P. Regulation of prostate cancer cell proliferation by somatostatin receptor activation. Mol Cell Endocrinol 2010; 315:254-62. [PMID: 19932151 DOI: 10.1016/j.mce.2009.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/05/2009] [Accepted: 11/15/2009] [Indexed: 01/24/2023]
Abstract
Although some evidence supports the antitumoral effects of somatostatin (SRIF) and related agonists, the available data in prostate cancer (PCa) model systems and clinical studies are few, conflicting and not conclusive. This study investigated the effects of lanreotide and new mono- and bi-specific SRIF agonists on proliferation, ligand-driven SRIF receptor (sst) dimerization and secretory pattern of the IGF system in LNCaP cells, a model of androgen-dependent PCa. LNCaP expressed all sst(s), but sst(4). Among them, sst(1) and sst(3) were inversely regulated by serum concentration. sst(1)/sst(2) and sst(2)/sst(5) dimers were constitutively present and further stabilized by treatment with BIM-23704 (sst(1)/sst(2)) and BIM-23244 (sst(2)/sst(5)), respectively. Dose-response studies showed that lanreotide and BIM-23244 were significantly more potent in inhibiting LNCaP cell proliferation than BIM-23120 (sst(2)) and BIM-23206 (sst(5)) alone or in combination. Treatment with BIM-23926 [corrected] (sst(1)) markedly reduced cell proliferation, whereas exposure to BIM-23704 resulted in a lower cell growth inhibition. The antiproliferative effects of BIM-23244, lanreotide and BIM-23704 were unchanged, reduced and abolished by the sst(2) antagonist BIM-23627, respectively. All SRIF analogs caused a significant induction in p27(KipI) and p21 and down-regulation of protein expression of cyclin E, as well as reduced IGF-I and IGF-II secretion. In particular, the administration of exogenous IGF-I, at variance to IGF-II, counteracted the inhibitory effect on cell proliferation of these compounds. Moreover, SRIF agonists reduced endogenous IGFBP-3 proteolysis. These results show that, in LNCaP cells, activation of sst(1) and sst(2)/sst(5) results in relevant antiproliferative/antisecretive actions.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Department of Endocrinology, Pathophysiology and Applied Biology, Università degli Studi di Milano, via G. Balzaretti 9, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Grant M, Kumar U. The role of G-proteins in the dimerisation of human somatostatin receptor types 2 and 5. ACTA ACUST UNITED AC 2010; 159:3-8. [DOI: 10.1016/j.regpep.2009.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/13/2009] [Accepted: 08/16/2009] [Indexed: 01/15/2023]
|
31
|
Abstract
Dysregulated growth hormone (GH) hypersecretion is usually caused by a GH-secreting pituitary adenoma and leads to acromegaly - a disorder of disproportionate skeletal, tissue, and organ growth. High GH and IGF1 levels lead to comorbidities including arthritis, facial changes, prognathism, and glucose intolerance. If the condition is untreated, enhanced mortality due to cardiovascular, cerebrovascular, and pulmonary dysfunction is associated with a 30% decrease in life span. This Review discusses acromegaly pathogenesis and management options. The latter include surgery, radiation, and use of novel medications. Somatostatin receptor (SSTR) ligands inhibit GH release, control tumor growth, and attenuate peripheral GH action, while GH receptor antagonists block GH action and effectively lower IGF1 levels. Novel peptides, including SSTR ligands, exhibiting polyreceptor subtype affinities and chimeric dopaminergic-somatostatinergic properties are currently in clinical trials. Effective control of GH and IGF1 hypersecretion and ablation or stabilization of the pituitary tumor mass lead to improved comorbidities and lowering of mortality rates for this hormonal disorder.
Collapse
Affiliation(s)
- Shlomo Melmed
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA.
| |
Collapse
|
32
|
Ben-Shlomo A, Schmid H, Wawrowsky K, Pichurin O, Hubina E, Chesnokova V, Liu NA, Culler M, Melmed S. Differential ligand-mediated pituitary somatostatin receptor subtype signaling: implications for corticotroph tumor therapy. J Clin Endocrinol Metab 2009; 94:4342-50. [PMID: 19820006 DOI: 10.1210/jc.2009-1311] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Pituitary targeted pharmacotherapy for Cushing's disease is challenging and ineffective. Unlike octreotide and lanreotide, the multisomatostatin receptor (SST) analog pasireotide that exhibits SST5 greater than SST2 binding affinity offers potential for treating Cushing's disease. Because corticotroph cells express SST5 more abundantly than SST2, pasireotide likely exerts superior corticotroph action mainly through SST5. However, there is no direct evidence for this assumption, and moreover, the ligand effect on corticotroph SST2 is not known. RESULTS We used AtT20 mouse pituitary corticotroph tumor cells stably overexpressing SST2 or SST5 and TtT/GF mouse pituitary folliculostellate cells stably or transiently expressing SST receptors to examine ligand-receptor activation by SST2- and SST5-selective agonists. We show that pasireotide was more potent than either octreotide or somatostatin-14 in mouse corticotroph cells. Pasireotide potency is not affected by SST2 abundance, SST2 antagonist treatment, or octreotide cotreatment in SST2-overexpressing cells. Pasireotide also does not induce SST2 internalization and attenuates octreotide or SRIF14-induced SST2 internalization only at superphysiological dose ranges. In contrast, octreotide attenuates pasireotide potency in SST5-overexpressing cells. Moreover, short exposure to pasireotide causes prolonged inhibition of forskolin or CRH-induced cAMP accumulation, in contrast to somatostatin-14- and SST2-selective agonists that induced postwithdrawal cAMP rebound. Long-term pasireotide signaling effects are enhanced by SST5 overexpression. CONCLUSION The results indicate that SST5 determines short- and long-term enhanced pasireotide action in corticotroph cells, whereas the ligand action on SST2 is negligible.
Collapse
Affiliation(s)
- Anat Ben-Shlomo
- Department of Medicine, Pituitary Center, Cedars SinaiMedical Center, Los Angeles, California 90048, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gertych A, Wawrowsky KA, Lindsley E, Vishnevsky E, Farkas DL, Tajbakhsh J. Automated quantification of DNA demethylation effects in cells via 3D mapping of nuclear signatures and population homogeneity assessment. Cytometry A 2009; 75:569-83. [PMID: 19459215 DOI: 10.1002/cyto.a.20740] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Today's advanced microscopic imaging applies to the preclinical stages of drug discovery that employ high-throughput and high-content three-dimensional (3D) analysis of cells to more efficiently screen candidate compounds. Drug efficacy can be assessed by measuring response homogeneity to treatment within a cell population. In this study, topologically quantified nuclear patterns of methylated cytosine and global nuclear DNA are utilized as signatures of cellular response to the treatment of cultured cells with the demethylating anti-cancer agents: 5-azacytidine (5-AZA) and octreotide (OCT). Mouse pituitary folliculostellate TtT-GF cells treated with 5-AZA and OCT for 48 hours, and untreated populations, were studied by immunofluorescence with a specific antibody against 5-methylcytosine (MeC), and 4,6-diamidino-2-phenylindole (DAPI) for delineation of methylated sites and global DNA in nuclei (n = 163). Cell images were processed utilizing an automated 3D analysis software that we developed by combining seeded watershed segmentation to extract nuclear shells with measurements of Kullback-Leibler's (K-L) divergence to analyze cell population homogeneity in the relative nuclear distribution patterns of MeC versus DAPI stained sites. Each cell was assigned to one of the four classes: similar, likely similar, unlikely similar, and dissimilar. Evaluation of the different cell groups revealed a significantly higher number of cells with similar or likely similar MeC/DAPI patterns among untreated cells (approximately 100%), 5-AZA-treated cells (90%), and a lower degree of same type of cells (64%) in the OCT-treated population. The latter group contained (28%) of unlikely similar or dissimilar (7%) cells. Our approach was successful in the assessment of cellular behavior relevant to the biological impact of the applied drugs, i.e., the reorganization of MeC/DAPI distribution by demethylation. In a comparison with other metrics, K-L divergence has proven to be a more valuable and robust tool for categorization of individual cells within a population, with potential applications in epigenetic drug screening.
Collapse
Affiliation(s)
- Arkadiusz Gertych
- Minimally Invasive Surgical Technologies Institute, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Çelebi B, Elçin YM. Proteome Analysis of Rat Bone Marrow Mesenchymal Stem Cell Subcultures. J Proteome Res 2009; 8:2164-72. [DOI: 10.1021/pr800590g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Betül Çelebi
- Ankara University, Faculty of Science and Biotechnology Institute, AU-TEBNL, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
| | - Y. Murat Elçin
- Ankara University, Faculty of Science and Biotechnology Institute, AU-TEBNL, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
| |
Collapse
|
35
|
Ben-Shlomo A, Zhou C, Pichurin O, Chesnokova V, Liu NA, Culler MD, Melmed S. Constitutive somatostatin receptor activity determines tonic pituitary cell response. Mol Endocrinol 2009; 23:337-48. [PMID: 19131507 DOI: 10.1210/me.2008-0361] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Somatostatin (SRIF) binds G protein-coupled SRIF receptor subtypes (SST1, -2, -3, -4, and -5) to regulate cell secretion and proliferation. Hypothalamic SRIF inhibits pituitary growth hormone, thyroid stimulating hormone, and ACTH secretion. We tested SRIF-independent constitutive SST activity in AtT20 mouse pituitary corticotroph cells in which ACTH secretion is highly sensitive to SRIF action. Stable transfectants expressing SST2 or SST5 were sensitized to selective agonist action, and constitutive SST receptor activity was demonstrated by forskolin and pertussis toxin cAMP cell responses. Persistent constitutive SST activity decreased cell ACTH responses to CRH through decreased expression of CRH receptor subtype 1. Decreased dopamine receptor type 1 expression was associated with attenuated dopamine agonist action, whereas responses to isoproterenol were enhanced through increased beta2-adrenoreceptor expression. Thus, integrated pituitary cell ACTH regulation is determined both by phasic SRIF action, as well as by tonic constitutive SST activity, independently of SRIF.
Collapse
Affiliation(s)
- Anat Ben-Shlomo
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Academic Affairs, Room 2015, Los Angeles, California 90048, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Tateno T, Kato M, Tani Y, Oyama K, Yamada S, Hirata Y. Differential expression of somatostatin and dopamine receptor subtype genes in adrenocorticotropin (ACTH)-secreting pituitary tumors and silent corticotroph adenomas. Endocr J 2009; 56:579-84. [PMID: 19318729 DOI: 10.1507/endocrj.k08e-186] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Somatostatin analogs and dopamine agonists are clinically used for medical therapy of functioning pituitary tumors, such as growth hormone- and prolactin-secreting tumors, however, their effects on ACTH-secreting tumors are controversial. This study was aimed to determine whether somatostatin receptor (SSTR) subtype (1-5) and dopamine receptor type 2 (D2R) are differentially expressed in pituitary tumors causing Cushing's disease (CD), silent corticotroph adenoma (SCA), and non-functioning pituitary tumor (NFT). Tissue specimens were obtained from 35 pituitary tumors during transsphenoidal surgery. The steady-state mRNA levels of SSTR1-5 and D2R genes were determined by real-time reverse-transcription polymerase chain reaction. Both SSTR1 and 2 mRNA levels in SCA were greater than CD, while SSTR1 mRNA levels, but not SSTR2, in SCA were also greater than NFT. SSTR5 mRNA levels in CD were greater than SCA, but did not differ between NFT and SCA. SSTR4 mRNA expression was undetectable. D2R mRNA levels were markedly lower in CD and SCA than in NFT. The present study suggests that somatostatin analogs more selective for SSTR5 and for SSTR1 and/or 2may have the therapeutic potential for medical treatment of CD and SCA, respectively, whereas clinical application of dopamine agonists selective for D2R is very limited in either CD or SCA.
Collapse
Affiliation(s)
- Toru Tateno
- Department of Clinical and Molecular Endocrinology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Giraldi FP, Cavagnini F. Advances in the medical management of Cushing's syndrome. Expert Opin Pharmacother 2008; 9:2423-33. [DOI: 10.1517/14656566.9.14.2423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Barbieri F, Pattarozzi A, Gatti M, Porcile C, Bajetto A, Ferrari A, Culler MD, Florio T. Somatostatin receptors 1, 2, and 5 cooperate in the somatostatin inhibition of C6 glioma cell proliferation in vitro via a phosphotyrosine phosphatase-eta-dependent inhibition of extracellularly regulated kinase-1/2. Endocrinology 2008; 149:4736-46. [PMID: 18566118 DOI: 10.1210/en.2007-1762] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Somatostatin inhibits cell proliferation through the activation of five receptors (SSTR1-5) expressed in normal and cancer cells. We analyzed the role of individual SSTRs in the antiproliferative activity of somatostatin in C6 rat glioma cells. Somatostatin dose-dependently inhibited C6 proliferation, an effect mimicked, with different efficacy or potency, by BIM-23745, BIM-23120, BIM-23206 (agonists for SSTR1, -2, and -5) and octreotide. The activation of SSTR3 was ineffective, although all SSTRs are functionally active, as demonstrated by the inhibition of cAMP production. All SSTRs induced cytostatic effects through the activation of the phosphotyrosine phosphatase PTPeta and the inhibition of ERK1/2. For possible synergism between SSTR subtypes, we tested the effects of the combined treatment with two agonists (SSTR1+2 or SSTR2+5) or bifunctional compounds. The simultaneous activation of SSTR1 and SSTR2 slightly increased the efficacy of the individual compounds with an IC50 in between the single receptor activation. SSTR2+5 activation displayed a pattern of response superimposable to that of the SSTR5 agonist alone (low potency and higher efficacy, as compared with BIM-23120). The simultaneous activation of SSTR1, -2, and -5 resulted in a response similar to somatostatin. In conclusion, the cytostatic effects of somatostatin in C6 cells are mediated by the SSTR1, -2, and -5 through the same intracellular pathway: activation of PTPeta and inhibition of ERK1/2 activity. Somatostatin is more effective than the individual agonists. The combined activation of SSTR1 and -2 shows a partial synergism as far as antiproliferative activity, whereas SSTR2 and -5 activation results in a response resembling the SSTR5 effects.
Collapse
Affiliation(s)
- Federica Barbieri
- Laboratory pf Pharmacology, Department of Oncology, Biology, and Genetics, University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Murray RD, Melmed S. A critical analysis of clinically available somatostatin analog formulations for therapy of acromegaly. J Clin Endocrinol Metab 2008; 93:2957-68. [PMID: 18477663 DOI: 10.1210/jc.2008-0027] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Short and long-acting somatostatin (SRIF) analogs are approved for clinical use in acromegaly. Recent analysis of the relative efficacy of octreotide LAR and lanreotide SR on the GH-IGF-I axis in acromegaly favored octreotide LAR in the secondary treatment of patients not preselected by SRIF responsiveness. A novel aqueous formulation of lanreotide, lanreotide Autogel (ATG), has recently been approved and is the predominant (and only in the United States) formulation of lanreotide used clinically. OBJECTIVE We performed a critical review of SRIF analog treatment to establish the relative efficacy of three clinically available SRIF analog preparations, octreotide LAR, lanreotide SR, and lanreotide ATG (Somatuline depot in the United States) in control of the GH-IGF-I axis in acromegaly. DATA SOURCES Data were drawn from MEDLINE and the bibliography of analyses of long-acting SRIF analogs. DATA COLLECTION We reviewed the largest studies of sc octreotide, octreotide LAR, and lanreotide SR, all that included biochemical end-point data for lanreotide ATG, and studies that directly compared the efficacy of octreotide LAR and lanreotide SR. DATA SYNTHESIS Caveats considered included differences in baseline GH and IGF-I values, patient selection, and interassay and intraassay variability, confounding the analysis. Studies comparing patients treated contiguously with lanreotide SR and octreotide LAR are fraught with methodological problems, however, are suggestive of marginally greater efficacy in control of the GH-IGF-I axis for octreotide LAR. Lanreotide ATG shows noninferiority to lanreotide SR. Five small studies directly comparing octreotide LAR and lanreotide ATG suggest no significant differences between these preparations in control of biochemical end-points. CONCLUSION Lanreotide ATG and octreotide LAR are equivalent in the control of symptoms and biochemical markers in patients with acromegaly.
Collapse
Affiliation(s)
- Robert D Murray
- Department of Endocrinology, Leeds Teaching Hospitals National Health Service Trust, Leeds, UK
| | | |
Collapse
|
40
|
Grant M, Alturaihi H, Jaquet P, Collier B, Kumar U. Cell growth inhibition and functioning of human somatostatin receptor type 2 are modulated by receptor heterodimerization. Mol Endocrinol 2008; 22:2278-92. [PMID: 18653781 DOI: 10.1210/me.2007-0334] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Somatostatin (SST) analogs have been successfully used in the medical treatment of acromegaly, caused by GH hypersecreting pituitary adenomas. Patients on SST analogs rarely develop tachyphylaxis despite years of continuous administration. It has been recently proposed that a functional association between SST receptor (SSTR) subtypes 2 and 5 exists to account for this behavior; however, a physical interaction has yet to be identified. Using both coimmunoprecipitation and photobleaching fluorescence resonance energy transfer microscopy techniques, we determined that SSTR2 and SSTR5 heterodimerize. Surprisingly, selective activation of SSTR2 and not SSTR5, or their costimulation, modulates the association. The SSTR2-selective agonist L-779,976 is more efficacious at inhibiting adenylate cyclase, activating ERK1/2, and inducing the cyclin-dependent kinase inhibitor p27(Kip1) in cells expressing both SSTR2 and SSTR5 compared with SSTR2 alone. Furthermore, cell growth inhibition by L-779,976 treatment was markedly extended in coexpressing cells. Trafficking of SSTR2 is also affected upon heterodimerization, an attribute corresponding to modifications in beta-arrestin association kinetics. Activation of SSTR2 results in the recruitment and stable association of beta-arrestin, followed by receptor internalization and intracellular receptor pooling. In contrast, heterodimerization increases the recycling rate of internalized SSTR2 by destabilizing its interaction with beta-arrestin. Given that SST analogs show preferential binding to SSTR2, these data provide a mechanism for their effectiveness in controlling pituitary tumors and the absence of tolerance seen in patients undergoing long-term administration.
Collapse
Affiliation(s)
- Michael Grant
- Fraser Laboratories For Diabetes Research, Department of Medicine, Royal Victoria Hospital, Montreal, Quebec, Canada H3A 1A1
| | | | | | | | | |
Collapse
|
41
|
Zatelli MC, Ambrosio MR, Bondanelli M, degli Uberti EC. In vitro testing of new somatostatin analogs on pituitary tumor cells. Mol Cell Endocrinol 2008; 286:187-91. [PMID: 18243520 DOI: 10.1016/j.mce.2007.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 12/03/2007] [Accepted: 12/17/2007] [Indexed: 12/16/2022]
Abstract
Somatostatin has been discovered as a somatotroph release inhibitory factor (SRIF), and, indeed, it has been demonstrated that SRIF and its analogs can inhibit pituitary tumor hormone secretion and control neoplastic bulk. Several in vitro studies have contributed to the current knowledge of the mechanisms by which SRIF and its analogs may influence pituitary adenomas, opening the way to new possible therapeutic strategies. This review focuses on the results obtained by testing several SRIF analogs in vitro on pituitary adenomas, concerning both secretory activity and cell viability. These studies provide the basis for further investigations, both at basic and clinical level, of the application of SRIF analogs in the pituitary field.
Collapse
Affiliation(s)
- Maria Chiara Zatelli
- Department of Biomedical Sciences and Advanced Therapies, University of Ferrara, Ferrara, Italy.
| | | | | | | |
Collapse
|
42
|
Hofland LJ. Somatostatin and somatostatin receptors in Cushing's disease. Mol Cell Endocrinol 2008; 286:199-205. [PMID: 18221833 DOI: 10.1016/j.mce.2007.10.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/04/2007] [Accepted: 10/24/2007] [Indexed: 11/15/2022]
Abstract
Cushing's disease is caused by an ACTH secreting pituitary adenoma. Surgery is the treatment of choice and cure rates between 60 and 90% are reported. For patients in which surgery fails, effective medical treatment options are needed. Somatostatin (SS) receptors (sst) are expressed on normal and tumoral corticotroph cells. However, the role of somatostatin and in particular the current clinically available sst(2)-preferring SS analogs in the regulation of normal ACTH secretion, as well as in lowering ACTH and cortisol hypersecretion in patients with Cushing's disease, has been shown to be limited. Recent studies have provided renewed insights into the expression of sst subtypes, as well as into the functional role of SS-analogs in the regulation of ACTH secretion by corticotroph tumors. Sst(2) and sst(5) seem the predominantly expressed sst in corticotroph adenoma cells and targeting both these receptors with a new generation of multiligand SS analogs showed promising effects in terms of lowering ACTH release and urinary free cortisol (UFC) levels in patients with Cushing's disease. In this review an overview of the current insights into the role of SS and sst in the regulation of normal and pathological ACTH secretion is provided.
Collapse
Affiliation(s)
- Leo J Hofland
- Department of Internal Medicine, Division Endocrinology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
43
|
Ben-Shlomo A, Pichurin O, Barshop NJ, Wawrowsky KA, Taylor J, Culler MD, Chesnokova V, Liu NA, Melmed S. Selective regulation of somatostatin receptor subtype signaling: evidence for constitutive receptor activation. Mol Endocrinol 2007; 21:2565-78. [PMID: 17609435 DOI: 10.1210/me.2007-0081] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Anterior pituitary hormone secretion is under tonic suppression by hypothalamic somatostatin signaling through somatostatin receptor subtypes (SSTs). Because some hormonal axes are known to be abnormally regulated by ligand-independent constitutively active G protein-coupled receptors, we tested pituitary SSTs for selective constitutive signaling. We therefore differentially silenced endogenous SST2, SST3, and SST5 in somatostatin-sensitive ACTH-secreting mouse AtT-20 pituitary corticotroph cells using small inhibitory RNA (siRNA) and analyzed downstream SSTs-regulated pathways. Transfection with siRNA reduced specific receptor subtype mRNA expression up to 82%. Specificity of receptor silencing was validated against negative controls with different gene-selective siRNAs, concordance of mRNA and cAMP changes, reduced potency of receptor-selective agonists, and phenotype rescue by overexpression of the silenced receptor. Mouse SST3 > SST5 > SST2 knockdown increased basal cAMP accumulation (up to 200%) and ACTH secretion (up to 60%). SST2- and SST5-selective agonist potencies were reduced by SST3- and SST5-silencing, respectively. SST5 > SST2 = SST3 silencing also increased basal levels of ERK1/2 phosphorylation. SST3- and SST5-knockdown increased cAMP was only partially blocked by pertussis toxin. The results show that SST2, SST3, and SST5 exhibit constitutive activity in mouse pituitary corticotroph cells, restraining adenylate cyclase and MAPK activation and ACTH secretion. SST3 mainly inhibits cAMP accumulation and ACTH secretion, whereas SST5 predominantly suppresses MAPK pathway activation. Therefore, SST receptor subtypes control pituitary cell function not only through somatostatin binding to variably expressed cell membrane receptor subtypes, but also by differential ligand-independent receptor-selective constitutive action.
Collapse
Affiliation(s)
- Anat Ben-Shlomo
- Department of Medicine, Cedars Sinai Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90048, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sharif N, Gendron L, Wowchuk J, Sarret P, Mazella J, Beaudet A, Stroh T. Coexpression of somatostatin receptor subtype 5 affects internalization and trafficking of somatostatin receptor subtype 2. Endocrinology 2007; 148:2095-105. [PMID: 17272399 DOI: 10.1210/en.2006-1266] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The somatostatin [somatotropin release-inhibiting factor (SRIF)] receptor subtypes sst(2A) and sst(5) are frequently coexpressed in SRIF-responsive cells, including endocrine pituitary cells. We previously demonstrated that sst(2A) and sst(5) exhibit different subcellular localizations and regulation of cell surface expression, although they have similar signaling properties. We investigated here whether sst(2A) and sst(5) functionally interact in cells coexpressing the two receptor subtypes. We stimulated both transfected cells stably expressing sst(2A) alone (CHO-sst(2A)) or together with sst(5) (CHO-sst(2A+5)) and the pituitary cell line AtT20, which endogenously expresses the two receptor subtypes, with either the nonselective agonist [D-Trp(8)]-SRIF-14 or the sst(2)-selective agonist L-779,976. In CHO-sst(2A) cells, stimulation with either ligand resulted in the loss of approximately 75% of cell surface SRIF binding sites and massive internalization of sst(2A) receptors. The cells were desensitized to subsequent stimulation with [D-Trp(8)]-SRIF-14, which failed to inhibit forskolin-evoked cAMP accumulation. Similarly, in CHO-sst(2A+5) and AtT20 cells, [D-Trp(8)]-SRIF-14 induced the loss of 60-70% of SRIF binding sites as well as massive sst(2A) endocytosis. By contrast, in cells expressing both sst(2A) and sst(5), selective stimulation of sst(2A) with L-779,976 resulted in only 20-40% loss of cell surface binding and markedly reduced sst(2A) internalization. Consequently, whereas CHO-sst(2A+5) and AtT20 cells stimulated with [D-Trp(8)]-SRIF-14 were desensitized to a second stimulation with the same agonist, cells prestimulated with L-779,976 were not desensitized to subsequent [D-Trp(8)]-SRIF-14 stimulation. These findings indicate that the presence of sst(5) in the same cells modulates trafficking and cell surface regulation of sst(2A) and cellular desensitization to the effects of SRIF.
Collapse
Affiliation(s)
- Nadder Sharif
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada H3A 2B6
| | | | | | | | | | | | | |
Collapse
|
45
|
Strowski MZ, Cashen DE, Birzin ET, Yang L, Singh V, Jacks TM, Nowak KW, Rohrer SP, Patchett AA, Smith RG, Schaeffer JM. Antidiabetic activity of a highly potent and selective nonpeptide somatostatin receptor subtype-2 agonist. Endocrinology 2006; 147:4664-73. [PMID: 16857751 DOI: 10.1210/en.2006-0274] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Somatostatin inhibits both glucagon and insulin secretion. Glucagon significantly contributes to hyperglycemia in type 2 diabetes. Despite its function in the inhibition of glucagon secretion, somatostatin fails to reduce hyperglycemia in type 2 diabetes, due to a parallel suppression of insulin secretion. Five pharmacologically distinct somatostatin receptor subtypes (sst(1)-sst(5)) mediate the effects of somatostatin on a cellular level. Pancreatic A cells express sst(2), whereas B cells express sst(5). In this study, we describe a novel approach to the treatment of type 2 diabetes using a highly sst(2)-selective, nonpeptide agonist (compound 1). Compound 1 effectively inhibited glucagon secretion from pancreatic islets isolated from wild-type mice, whereas glucagon secretion from sst(2)-deficient islets was not suppressed. Compound 1 did not influence nonfasted insulin concentration. In sst(2)-deficient mice, compound 1 did not have any effects on glucagon or glucose levels, confirming its sst(2) selectivity. In animal models of type 2 diabetes in the nonfasted state, circulating glucagon and glucose levels were decreased after treatment with compound 1. In the fasting state, compound 1 lowered blood glucose by approximately 25%. In summary, small-molecule sst(2)-selective agonists that suppress glucagon secretion offer a novel approach toward the development of orally bioavailable drugs for treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Mathias Z Strowski
- Medizinische Klinik m. S. Hepatologie, Gastroenterologie, Endokrinologie und Stoffwechsel, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|