1
|
Xiang Q, Li L, Ji W, Gawlitta D, Walboomers XF, van den Beucken JJJP. Beyond resorption: osteoclasts as drivers of bone formation. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:22. [PMID: 39392536 PMCID: PMC11469995 DOI: 10.1186/s13619-024-00205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Emerging evidence illustrates that osteoclasts (OCs) play diverse roles beyond bone resorption, contributing significantly to bone formation and regeneration. Despite this, OCs remain mysterious cells, with aspects of their lifespan-from origin, fusion, alterations in cellular characteristics, to functions-remaining incompletely understood. Recent studies have identified that embryonic osteoclastogenesis is primarily driven by osteoclast precursors (OCPs) derived from erythromyeloid progenitors (EMPs). These precursor cells subsequently fuse into OCs essential for normal bone development and repair. Postnatally, hematopoietic stem cells (HSCs) become the primary source of OCs, gradually replacing EMP-derived OCs and assuming functional roles in adulthood. The absence of OCs during bone development results in bone structure malformation, including abnormal bone marrow cavity formation and shorter long bones. Additionally, OCs are reported to have intimate interactions with blood vessels, influencing bone formation and repair through angiogenesis regulation. Upon biomaterial implantation, activation of the innate immune system ensues immediately. OCs, originating from macrophages, closely interact with the immune system. Furthermore, evidence from material-induced bone formation events suggests that OCs are pivotal in these de novo bone formation processes. Nevertheless, achieving a pure OC culture remains challenging, and interpreting OC functions in vivo faces difficulties due to the presence of other multinucleated cells around bone-forming biomaterials. We here describe the fusion characteristics of OCPs and summarize reliable markers and morphological changes in OCs during their fusion process, providing guidance for researchers in identifying OCs both in vitro and in vivo. This review focuses on OC formation, characterization, and the roles of OCs beyond resorption in various bone pathophysiological processes. Finally, therapeutic strategies targeting OCs are discussed.
Collapse
Affiliation(s)
- Qianfeng Xiang
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
| | - Lei Li
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, GA, 3508, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, CT, 3584, The Netherlands
| | - X Frank Walboomers
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, the Netherlands
| | - Jeroen J J P van den Beucken
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands.
| |
Collapse
|
2
|
Ivanova MM, Dao J, Loynab N, Noor S, Kasaci N, Friedman A, Goker-Alpan O. The Expression and Secretion Profile of TRAP5 Isoforms in Gaucher Disease. Cells 2024; 13:716. [PMID: 38667330 PMCID: PMC11049511 DOI: 10.3390/cells13080716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Gaucher disease (GD) is caused by glucocerebrosidase (GCase) enzyme deficiency, leading to glycosylceramide (Gb-1) and glucosylsphingosine (Lyso-Gb-1) accumulation. The pathological hallmark for GD is an accumulation of large macrophages called Gaucher cells (GCs) in the liver, spleen, and bone marrow, which are associated with chronic organ enlargement, bone manifestations, and inflammation. Tartrate-resistant acid phosphatase type 5 (TRAP5 protein, ACP5 gene) has long been a nonspecific biomarker of macrophage/GCs activation; however, the discovery of two isoforms of TRAP5 has expanded its significance. The discovery of TRAP5's two isoforms revealed that it is more than just a biomarker of macrophage activity. While TRAP5a is highly expressed in macrophages, TRAP5b is secreted by osteoclasts. Recently, we have shown that the elevation of TRAP5b in plasma is associated with osteoporosis in GD. However, the role of TRAP isoforms in GD and how the accumulation of Gb-1 and Lyso-Gb-1 affects TRAP expression is unknown. METHODS 39 patients with GD were categorized into cohorts based on bone mineral density (BMD). TRAP5a and TRAP5b plasma levels were quantified by ELISA. ACP5 mRNA was estimated using RT-PCR. RESULTS An increase in TRAP5b was associated with reduced BMD and correlated with Lyso-Gb-1 and immune activator chemokine ligand 18 (CCL18). In contrast, the elevation of TRAP5a correlated with chitotriosidase activity in GD. Lyso-Gb-1 and plasma seemed to influence the expression of ACP5 in macrophages. CONCLUSIONS As an early indicator of BMD alteration, measurement of circulating TRAP5b is a valuable tool for assessing osteopenia-osteoporosis in GD, while TRAP5a serves as a biomarker of macrophage activation in GD. Understanding the distinct expression pattern of TRAP5 isoforms offers valuable insight into both bone disease and the broader implications for immune system activation in GD.
Collapse
Affiliation(s)
- Margarita M. Ivanova
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA 22030, USA; (J.D.); (N.K.); (O.G.-A.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Daponte V, Henke K, Drissi H. Current perspectives on the multiple roles of osteoclasts: Mechanisms of osteoclast-osteoblast communication and potential clinical implications. eLife 2024; 13:e95083. [PMID: 38591777 PMCID: PMC11003748 DOI: 10.7554/elife.95083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Bone remodeling is a complex process involving the coordinated actions of osteoblasts and osteoclasts to maintain bone homeostasis. While the influence of osteoblasts on osteoclast differentiation is well established, the reciprocal regulation of osteoblasts by osteoclasts has long remained enigmatic. In the past few years, a fascinating new role for osteoclasts has been unveiled in promoting bone formation and facilitating osteoblast migration to the remodeling sites through a number of different mechanisms, including the release of factors from the bone matrix following bone resorption and direct cell-cell interactions. Additionally, considerable evidence has shown that osteoclasts can secrete coupling factors known as clastokines, emphasizing the crucial role of these cells in maintaining bone homeostasis. Due to their osteoprotective function, clastokines hold great promise as potential therapeutic targets for bone diseases. However, despite long-standing work to uncover new clastokines and their effect in vivo, more substantial efforts are still required to decipher the mechanisms and pathways behind their activity in order to translate them into therapies. This comprehensive review provides insights into our evolving understanding of the osteoclast function, highlights the significance of clastokines in bone remodeling, and explores their potential as treatments for bone diseases suggesting future directions for the field.
Collapse
Affiliation(s)
- Valentina Daponte
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
- VA Medical CenterAtlantaUnited States
| | - Katrin Henke
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
- VA Medical CenterAtlantaUnited States
| |
Collapse
|
4
|
Bergwik J, Bhongir RKV, Padra M, Adler A, Olm F, Lång P, Lindstedt S, Andersson G, Egesten A, Tanner L. Macrophage expressed tartrate-resistant acid phosphatase 5 promotes pulmonary fibrosis progression. Immunology 2024; 171:583-594. [PMID: 38178705 DOI: 10.1111/imm.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disorder involving scarring of pulmonary tissue and a subsequent decrease in respiratory capacity, ultimately resulting in death. Tartrate resistant acid phosphatase 5 (ACP5) plays a role in IPF but the exact mechanisms are yet to be elucidated. In this study, we have utilized various perturbations of the bleomycin mouse model of IPF including genetic knockout, RANKL inhibition, and macrophage adoptive transfer to further understand ACP5's role in pulmonary fibrosis. Genetic ablation of Acp5 decreased immune cell recruitment to the lungs and reduced the levels of hydroxyproline (reflecting extracellular matrix-production) as well as histological damage. Additionally, gene expression profiling of murine lung tissue revealed downregulation of genes including Ccl13, Mmp13, and Il-1α that encodes proteins specifically related to immune cell recruitment and macrophage/fibroblast interactions. Furthermore, antibody-based neutralization of RANKL, an important inducer of Acp5 expression, reduced immune cell recruitment but did not decrease fibrotic lung development. Adoptive transfer of Acp5-/- bone marrow-derived monocyte (BMDM) macrophages 7 or 14 days after bleomycin administration resulted in reductions of cytokine production and decreased levels of lung damage, compared to adoptive transfer of WT control macrophages. Taken together, the data presented in this study suggest that macrophage derived ACP5 plays an important role in development of pulmonary fibrosis and could present a tractable target for therapeutic intervention in IPF.
Collapse
Affiliation(s)
- Jesper Bergwik
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ravi Kiran Varma Bhongir
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Médea Padra
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Anna Adler
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Franziska Olm
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Cardiothoracic Surgery, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Pernilla Lång
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Lindstedt
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Cardiothoracic Surgery, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arne Egesten
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Lloyd Tanner
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
5
|
Jin C, Zheng J, Yang Q, Jia Y, Li H, Liu X, Xu Y, Chen Z, He L. Morusin Inhibits RANKL-induced Osteoclastogenesis and Ovariectomized Osteoporosis. Comb Chem High Throughput Screen 2024; 27:1358-1370. [PMID: 37807416 DOI: 10.2174/0113862073252310230925062415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a classic type of osteoporosis that has gradually become a significant health problem worldwide. There is an urgent need for a safe alternative therapeutic agent considering the poor therapeutic strategies currently available for this disease. The roots and bark of the Morus australis tree (Moraceae) are used to make a traditional Chinese medicine known as "Morusin", and accumulating evidence has demonstrated its multiple activities, such as anti-inflammatory and anti-tumor effects. OBJECTIVE In this study, we aim to explore the effect of Morusin on mouse osteoclasts and its mechanism. METHODS In this study, we explored the inhibitory effects of Morusin on murine osteoclasts in vitro and its mechanism, and the protective effect of Morusin on an ovariectomy (OVX)-induced osteoporosis model in vivo. RESULTS The results showed that Morusin prevented OVX-induced bone loss and dramatically decreased RANKL-induced osteoclastogenesis. Morusin interfered with RANKL-activated NF- κB, MAPK, and PI3K/AKT signaling pathways. The expression of three master factors that control osteoclast differentiation, c-Fos, NFATc1, and c-Jun, was reduced by Morusin treatment. Collectively, in vitro results indicated that Morusin has a protective effect on OVX-induced bone loss in a mouse model. CONCLUSION Our data provide encouraging evidence that Morusin may be an effective treatment for PMOP.
Collapse
Affiliation(s)
- Cong Jin
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Jiewen Zheng
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- Shaoxing University School of Medicine, Shaoxing, Zhejiang, 312000, China
| | - Qichang Yang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yewei Jia
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Haibo Li
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Xuewen Liu
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yangjun Xu
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- Shaoxing University School of Medicine, Shaoxing, Zhejiang, 312000, China
| | - Zhuolin Chen
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Lei He
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| |
Collapse
|
6
|
Demeuse J, Massonnet P, Schoumacher M, Grifnée E, Huyghebaert L, Dubrowski T, Peeters S, Le Goff C, Cavalier E. Innovative workflow for the identification of cathepsin K cleavage sites in type I collagen. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123864. [PMID: 37634391 DOI: 10.1016/j.jchromb.2023.123864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
Since the late 1990s, cathepsin K cleavage sites in type I collagen have been extensively studied due to its ability to release bone resorption biomarkers such as CTX and NTX. However, gel-based methods and N-sequencing used in these studies lack sensitivity, especially for small to medium peptides. In this work, we propose a degradomics mass spectrometry-based workflow that combines protein digestion, Nano-LC-UDMSE, and several software tools to identify cathepsin K cleavage sites. This workflow not only identified previously known cleavage sites, but also discovered new ones. Multiple cleavage hotspots were found and described in type I α1 and type I α2 collagen, many of which coincided with pyridinoline crosslinks, known to stabilize the triple helix. Our results allowed us to establish a chronology of digestion and conclude that cathepsin K preferentially cleaves the extremities of type I collagen before the helical part. We also found that cathepsin K preferentially cleaves amino acid residues with long and hydrophobic lateral chains at the beginning of digestion, whereas no preferred amino acid residues were identified later in the digestion. In conclusion, our workflow successfully identified new cleavage sites and can be easily applied to other proteins or proteases.
Collapse
Affiliation(s)
- Justine Demeuse
- Department of Clinical Chemistry, CIRM, University of Liège, 4000 Liège, Belgium.
| | - Philippe Massonnet
- Department of Clinical Chemistry, University Hospital of Liège, 4000 Liège, Belgium
| | - Matthieu Schoumacher
- Department of Clinical Chemistry, CIRM, University of Liège, 4000 Liège, Belgium
| | - Elodie Grifnée
- Department of Clinical Chemistry, University Hospital of Liège, 4000 Liège, Belgium
| | - Loreen Huyghebaert
- Department of Clinical Chemistry, University Hospital of Liège, 4000 Liège, Belgium
| | - Thomas Dubrowski
- Department of Clinical Chemistry, University Hospital of Liège, 4000 Liège, Belgium
| | - Stéphanie Peeters
- Department of Clinical Chemistry, University Hospital of Liège, 4000 Liège, Belgium
| | - Caroline Le Goff
- Department of Clinical Chemistry, CIRM, University of Liège, 4000 Liège, Belgium; Department of Clinical Chemistry, University Hospital of Liège, 4000 Liège, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, CIRM, University of Liège, 4000 Liège, Belgium; Department of Clinical Chemistry, University Hospital of Liège, 4000 Liège, Belgium
| |
Collapse
|
7
|
Tanner L, Bergwik J, Bhongir RKV, Puthia M, Lång P, Ali MN, Welinder C, Önnerfjord P, Erjefält JS, Palmberg L, Andersson G, Egesten A. Tartrate resistant acid phosphatase 5 (TRAP5) mediates immune cell recruitment in a murine model of pulmonary bacterial infection. Front Immunol 2022; 13:1079775. [PMID: 36569898 PMCID: PMC9779928 DOI: 10.3389/fimmu.2022.1079775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction During airway infection, upregulation of proinflammatory cytokines and subsequent immune cell recruitment is essential to mitigate bacterial infection. Conversely, during prolonged and non-resolving airway inflammation, neutrophils contribute to tissue damage and remodeling. This occurs during diseases including cystic fibrosis (CF) and COPD where bacterial pathogens, not least Pseudomonas aeruginosa, contribute to disease progression through long-lasting infections. Tartrate-resistant acid phosphatase (TRAP) 5 is a metalloenzyme expressed by alveolar macrophages and one of its target substrates is the phosphoglycoprotein osteopontin (OPN). Methods We used a knockout mouse strain (Trap5-/-) and BALB/c-Tg (Rela-luc)31Xen mice paired with siRNA administration or functional protein add-back to elucidate the role of Trap5 during bacterial infection. In a series of experiments, Trap5-/- and wild-type control mice received intratracheal administration of P.aerugniosa (Xen41) or LPS, with mice monitored using intravital imaging (IVIS). In addition, multiplex cytokine immunoassays, flow cytometry, multispectral analyses, histological staining were performed. Results In this study, we found that Trap5-/- mice had impaired clearance of P. aeruginosa airway infection and reduced recruitment of immune cells (i.e. neutrophils and inflammatory macrophages). Trap5 knockdown using siRNA resulted in a decreased activation of the proinflammatory transcription factor NF-κB in reporter mice and a subsequent decrease of proinflammatory gene expression. Add-back experiments of enzymatically active TRAP5 to Trap5-/- mice restored immune cell recruitment and bacterial killing. In human CF lung tissue, TRAP5 of alveolar macrophages was detected in proximity to OPN to a higher degree than in normal lung tissue, indicating possible interactions. Discussion Taken together, the findings of this study suggest a key role for TRAP5 in modulating airway inflammation. This could have bearing in diseases such as CF and COPD where excessive neutrophilic inflammation could be targeted by pharmacological inhibitors of TRAP5.
Collapse
Affiliation(s)
- Lloyd Tanner
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jesper Bergwik
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ravi K. V. Bhongir
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Manoj Puthia
- Department of Dermatology and Venereology, Lund University and Skåne University Hospital, Lund, Sweden,Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Pernilla Lång
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mohamad N. Ali
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Charlotte Welinder
- Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, Lund, Sweden
| | - Patrik Önnerfjord
- Molecular Skeletal Biology, Section for Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jonas S. Erjefält
- Unit of Airway Inflammation, Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Lena Palmberg
- Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arne Egesten
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden,*Correspondence: Arne Egesten,
| |
Collapse
|
8
|
Zhang Y, Jiang B, Zhang P, Chiu SK, Lee MH. Complete abrogation of key osteoclast markers with a membrane-anchored tissue inhibitor of metalloproteinase. Bone Joint Res 2022; 11:763-776. [DOI: 10.1302/2046-3758.1111.bjr-2022-0147.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aims Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the zinc-dependent matrix metalloproteinases (MMP) and A disintegrin and metalloproteinases (ADAM) involved in extracellular matrix modulation. The present study aims to develop the TIMPs as biologics for osteoclast-related disorders. Methods We examine the inhibitory effect of a high affinity, glycosyl-phosphatidylinositol-anchored TIMP variant named ‘T1PrαTACE’ on receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced osteoclast differentiation. Results Osteoclast progenitor cells transduced with T1PrαTACE failed to form tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts or exhibit bone-resorbing activity following treatment with RANKL. At the messenger RNA level, T1PrαTACE strongly attenuated expression of key osteoclast marker genes that included TRAP, cathepsin K, osteoclast stimulatory transmembrane protein ( OC-STAMP), dendritic cell-specific transmembrane protein ( DC-STAMP), osteoclast-associated receptor ( OSCAR) , and ATPase H+-transporting V0 subunit d2 ( ATP6V0D2) by blocking autoamplification of nuclear factor of activated T cells 1 (NFATc1), the osteoclastogenic transcription factor. T1PrαTACE selectively extended p44/42 mitogen-activated protein kinase activation, an action that may have interrupted terminal differentiation of osteoclasts. Inhibition studies with broad-spectrum hydroxamate inhibitors confirmed that the anti-resorptive activity of T1PrαTACE was not reliant on its metalloproteinase-inhibitory activity. Conclusion T1PrαTACE disrupts the RANKL-NFATc1 signalling pathway, which leads to osteoclast dysfunction. As a novel candidate in the prevention of osteoclastogenesis, the TIMP could potentially be developed for the treatment of osteoclast-related disorders such as osteoporosis. Cite this article: Bone Joint Res 2022;11(11):763–776.
Collapse
Affiliation(s)
- Yihe Zhang
- Department of Biological Sciences/Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Bingjie Jiang
- Department of Biological Sciences/Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Pengyuan Zhang
- Department of Biological Sciences/Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | | | - Meng H. Lee
- Department of Biological Sciences/Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
9
|
Vitale M, Ligorio C, McAvan B, Hodson NW, Allan C, Richardson SM, Hoyland JA, Bella J. Hydroxyapatite-decorated Fmoc-hydrogel as a bone-mimicking substrate for osteoclast differentiation and culture. Acta Biomater 2022; 138:144-154. [PMID: 34781025 PMCID: PMC8756142 DOI: 10.1016/j.actbio.2021.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 12/25/2022]
Abstract
Hydrogels are water-swollen networks with great potential for tissue engineering applications. However, their use in bone regeneration is often hampered due to a lack of materials' mineralization and poor mechanical properties. Moreover, most studies are focused on osteoblasts (OBs) for bone formation, while osteoclasts (OCs), cells involved in bone resorption, are often overlooked. Yet, the role of OCs is pivotal for bone homeostasis and aberrant OC activity has been reported in several pathological diseases, such as osteoporosis and bone cancer. For these reasons, the aim of this work is to develop customised, reinforced hydrogels to be used as material platform to study cell function, cell-material interactions and ultimately to provide a substrate for OC differentiation and culture. Here, Fmoc-based RGD-functionalised peptide hydrogels have been modified with hydroxyapatite nanopowder (Hap) as nanofiller, to create nanocomposite hydrogels. Atomic force microscopy showed that Hap nanoparticles decorate the peptide nanofibres with a repeating pattern, resulting in stiffer hydrogels with improved mechanical properties compared to Hap- and RGD-free controls. Furthermore, these nanocomposites supported adhesion of Raw 264.7 macrophages and their differentiation in 2D to mature OCs, as defined by the adoption of a typical OC morphology (presence of an actin ring, multinucleation, and ruffled plasma membrane). Finally, after 7 days of culture OCs showed an increased expression of TRAP, a typical OC differentiation marker. Collectively, the results suggest that the Hap/Fmoc-RGD hydrogel has a potential for bone tissue engineering, as a 2D model to study impairment or upregulation of OC differentiation. STATEMENT OF SIGNIFICANCE: Altered osteoclasts (OC) function is one of the major cause of bone fracture in the most commonly skeletal disorders (e.g. osteoporosis). Peptide hydrogels can be used as a platform to mimic the bone microenvironment and provide a tool to assess OC differentiation and function. Moreover, hydrogels can incorporate different nanofillers to yield hybrid biomaterials with enhanced mechanical properties and improved cytocompatibility. Herein, Fmoc-based RGD-functionalised peptide hydrogels were decorated with hydroxyapatite (Hap) nanoparticles to generate a hydrogel with improved rheological properties. Furthermore, they are able to support osteoclastogenesis of Raw264.7 cells in vitro as confirmed by morphology changes and expression of OC-markers. Therefore, this Hap-decorated hydrogel can be used as a template to successfully differentiate OC and potentially study OC dysfunction.
Collapse
Affiliation(s)
- Mattia Vitale
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Cosimo Ligorio
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Bethan McAvan
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Nigel W Hodson
- BioAFM Facility, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Chris Allan
- Biogelx Ltd-BioCity Scotland, Bo'Ness Rd, Newhouse, Chapelhall, Motherwell ML1 5UH, United Kingdom
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Jordi Bella
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
10
|
Hu Y, Wang Q, Yu J, Zhou Q, Deng Y, Liu J, Zhang L, Xu Y, Xiong W, Wang Y. Tartrate-resistant acid phosphatase 5 promotes pulmonary fibrosis by modulating β-catenin signaling. Nat Commun 2022; 13:114. [PMID: 35013220 PMCID: PMC8748833 DOI: 10.1038/s41467-021-27684-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease with limited therapeutic options. Tartrate-resistant acid phosphatase 5 (ACP5) performs a variety of functions. However, its role in IPF remains unclear. Here, we demonstrate that the levels of ACP5 are increased in IPF patient samples and mice with bleomycin (BLM)-induced pulmonary fibrosis. In particular, higher levels of ACP5 are present in the sera of IPF patients with a diffusing capacity of the lungs for carbonmonoxide (DLCO) less than 40% of the predicted value. Additionally, Acp5 deficiency protects mice from BLM-induced lung injury and fibrosis coupled with a significant reduction of fibroblast differentiation and proliferation. Mechanistic studies reveal that Acp5 is upregulated by transforming growth factor-β1 (TGF-β1) in a TGF-β receptor 1 (TGFβR1)/Smad family member 3 (Smad3)-dependent manner, after which Acp5 dephosphorylates p-β-catenin at serine 33 and threonine 41, inhibiting the degradation of β-catenin and subsequently enhancing β-catenin signaling in the nucleus, which promotes the differentiation, proliferation and migration of fibroblast. More importantly, the treatment of mice with Acp5 siRNA-loaded liposomes or Acp5 inhibitor reverses established lung fibrosis. In conclusions, Acp5 is involved in the initiation and progression of pulmonary fibrosis and strategies aimed at silencing or suppressing Acp5 could be considered as potential therapeutic approaches against pulmonary fibrosis. Idiopathic pulmonary fibrosis is a fatal lung disease with limited treatment options. Here the authors show that tartrate-resistant acid phosphatase 5 (Acp5) promotes lung fibrosis by enhancing beta-catenin signaling and that inhibition of Acp5 can reverse stablished pulmonary fibrosis.
Collapse
Affiliation(s)
- Yinan Hu
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, 100029, Beijing, China
| | - Qi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Qing Zhou
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yanhan Deng
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Juan Liu
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Lei Zhang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Weining Xiong
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China. .,Department of Pulmonary and Critical Care Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, Shanghai, 200011, China.
| | - Yi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
11
|
Yeom J, Yim DJ, Ma S, Lim YH. Propionibacterium freudenreichii Inhibits RANKL-Induced Osteoclast Differentiation and Ameliorates Rheumatoid Arthritis in Collagen-Induced Arthritis Mice. Microorganisms 2021; 10:microorganisms10010048. [PMID: 35056497 PMCID: PMC8780394 DOI: 10.3390/microorganisms10010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Osteoclast differentiation is crucial for bone absorption, and osteoclasts are involved in bone destruction in rheumatoid arthritis (RA). Dairy Propionibacterium freudenreichii is used as a cheese starter and possesses prebiotic and postbiotic properties. It is known to stimulate the growth of bifidobacteria and produces valuable metabolites, such as vitamin B12 and propionic acid. However, limited information is available on the beneficial effects of P. freudenreichii on human disease. Herein, we aimed to investigate the inhibitory effect of P. freudenreichii MJ2 (MJ2) isolated from raw milk on osteoclast differentiation and evaluate the improvement in RA. The murine macrophage cell line, RAW 264.7, and a collagen-induced arthritis (CIA) mouse model were used to perform in vitro and in vivo studies, respectively. Heat-killed P. freudenreichii MJ2 (hkMJ2)-treated cells significantly inhibited RANKL-induced osteoclast differentiation and TRAP activity. HkMJ2-treated cells exhibited significantly decreased expression of genes and proteins related to RANKL-induced osteoclast differentiation. MJ2 administration decreased the arthritic score in the CIA mouse model. Live and dead MJ2 inhibited bone loss and afforded protection against bone erosion and joint damage in CIA mice. MJ2 decreased the levels of collagen-specific antibodies and inflammatory cytokines and the expression of osteoclast differentiation-related genes and proteins in CIA mice. Interestingly, live and dead MJ2 showed similar RA improvement effects in CIA mice. In conclusion, P. freudenreichii MJ2 inhibited osteoclast differentiation by inhibiting the NF-κB signaling pathway and ameliorated CIA.
Collapse
Affiliation(s)
- Jiah Yeom
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea; (J.Y.); (D.J.Y.); (S.M.)
| | - Dong Joon Yim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea; (J.Y.); (D.J.Y.); (S.M.)
| | - Seongho Ma
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea; (J.Y.); (D.J.Y.); (S.M.)
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea; (J.Y.); (D.J.Y.); (S.M.)
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Korea
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Korea
- Correspondence: ; Tel.: +82-2-3290-5635
| |
Collapse
|
12
|
The Neuropeptide VIP Limits Human Osteoclastogenesis: Clinical Associations with Bone Metabolism Markers in Patients with Early Arthritis. Biomedicines 2021; 9:biomedicines9121880. [PMID: 34944693 PMCID: PMC8698638 DOI: 10.3390/biomedicines9121880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
We aimed to evaluate the direct action of VIP on crucial molecules involved in human osteoclast differentiation and function. We also investigated the relationship between VIP serum levels and bone remodeling mediators in early arthritis patients. The expression of VIP receptors and osteoclast gene markers in monocytes and in vitro differentiated osteoclasts was studied by real-time PCR. NFATc1 activity was measured using a TransAM® kit. Osteoclastogenesis was confirmed by quantification of tartrate-resistant acid phosphatase positive multinucleated cells. OsteoAssay® Surface Multiple Well Plate was used to evaluate bone-resorbing activity. The ring-shaped actin cytoskeleton and the VPAC1 and VPAC2 expression were analyzed by immunofluorescence. We described the presence of VIP receptors in monocytes and mature osteoclasts. Osteoclasts that formed in the presence of VIP showed a decreased expression of osteoclast differentiation gene markers and proteolytic enzymes involved in bone resorption. VIP reduced the resorption activity and decreased both β3 integrin expression and actin ring formation. Elevated serum VIP levels in early arthritis patients were associated with lower BMD loss and higher serum OPG concentration. These results demonstrate that VIP exerts an anti-osteoclastogenic action impairing both differentiation and resorption activity mainly through the negative regulation of NFATc1, evidencing its bone-protective effects in humans.
Collapse
|
13
|
Chen YH, Grigelioniene G, Newton PT, Gullander J, Elfving M, Hammarsjö A, Batkovskyte D, Alsaif HS, Kurdi WIY, Abdulwahab F, Shanmugasundaram V, Devey L, Bacrot S, Brodszki J, Huber C, Hamel B, Gisselsson D, Papadogiannakis N, Jedrycha K, Gürtl-Lackner B, Chagin AS, Nishimura G, Aschenbrenner D, Alkuraya FS, Laurence A, Cormier-Daire V, Uhlig HH. Absence of GP130 cytokine receptor signaling causes extended Stüve-Wiedemann syndrome. J Exp Med 2020; 217:133568. [PMID: 31914175 PMCID: PMC7062520 DOI: 10.1084/jem.20191306] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/07/2019] [Accepted: 11/14/2019] [Indexed: 01/25/2023] Open
Abstract
The gene IL6ST encodes GP130, the common signal transducer of the IL-6 cytokine family consisting of 10 cytokines. Previous studies have identified cytokine-selective IL6ST defects that preserve LIF signaling. We describe three unrelated families with at least five affected individuals who presented with lethal Stüve-Wiedemann–like syndrome characterized by skeletal dysplasia and neonatal lung dysfunction with additional features such as congenital thrombocytopenia, eczematoid dermatitis, renal abnormalities, and defective acute-phase response. We identified essential loss-of-function variants in IL6ST (a homozygous nonsense variant and a homozygous intronic splice variant with exon skipping). Functional tests showed absent cellular responses to GP130-dependent cytokines including IL-6, IL-11, IL-27, oncostatin M (OSM), and leukemia inhibitory factor (LIF). Genetic reconstitution of GP130 by lentiviral transduction in patient-derived cells reversed the signaling defect. This study identifies a new genetic syndrome caused by the complete lack of signaling of a whole family of GP130-dependent cytokines in humans and highlights the importance of the LIF signaling pathway in pre- and perinatal development.
Collapse
Affiliation(s)
- Yin-Huai Chen
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Phillip T Newton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jacob Gullander
- University and Regional Laboratories Department of Clinical Genetics, Lund, Sweden
| | - Maria Elfving
- Department of Clinical Sciences, Pediatrics, Skåne University Hospital Lund, Lund University, Lund, Sweden
| | - Anna Hammarsjö
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Dominyka Batkovskyte
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Wesam I Y Kurdi
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | | | - Séverine Bacrot
- Department of Clinical Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris cité, Institut Imagine, Hôpital Necker Enfants Malades, Paris, France
| | - Jana Brodszki
- Department of Obstetrics and Gynecology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Celine Huber
- Department of Clinical Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris cité, Institut Imagine, Hôpital Necker Enfants Malades, Paris, France
| | - Ben Hamel
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - David Gisselsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Sweden
| | - Nikos Papadogiannakis
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Sweden
| | - Katarina Jedrycha
- Department of Clinical Sciences, Pediatrics, Skåne University Hospital Lund, Lund University, Lund, Sweden
| | - Barbara Gürtl-Lackner
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Sweden
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russian Federation
| | - Gen Nishimura
- Center for Intractable Diseases, Saitama University Hospital, Saitama, Japan
| | | | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Arian Laurence
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Valérie Cormier-Daire
- Department of Clinical Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris cité, Institut Imagine, Hôpital Necker Enfants Malades, Paris, France
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK.,Oxford National Institute for Health Research Biomedical Research Centre, Oxford, UK
| |
Collapse
|
14
|
Ramesh J, Parthasarathy LK, Janckila AJ, Begum F, Murugan R, Murthy BPSS, El-Mallakh RS, Parthasarathy RN, Venugopal B. Characterisation of ACP5 missense mutations encoding tartrate-resistant acid phosphatase associated with spondyloenchondrodysplasia. PLoS One 2020; 15:e0230052. [PMID: 32214327 PMCID: PMC7098635 DOI: 10.1371/journal.pone.0230052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/20/2020] [Indexed: 11/21/2022] Open
Abstract
Biallelic mutations in ACP5, encoding tartrate-resistant acid phosphatase (TRACP), have recently been identified to cause the inherited immuno-osseous disorder, spondyloenchondrodysplasia (SPENCD). This study was undertaken to characterize the eight reported missense mutations in ACP5 associated with SPENCD on TRACP expression. ACP5 mutant genes were synthesized, transfected into human embryonic kidney (HEK-293) cells and stably expressing cell lines were established. TRACP expression was assessed by cytochemical and immuno-cytochemical staining with a panel of monoclonal antibodies. Analysis of wild (WT) type and eight mutant stable cell lines indicated that all mutants lacked stainable enzyme activity. All ACP5 mutant constructs were translated into intact proteins by HEK-293 cells. The mutant TRACP proteins displayed variable immune reactivity patterns, and all drastically reduced enzymatic activity, revealing that there is no gross inhibition of TRACP biosynthesis by the mutations. But they likely interfere with folding thereby impairing enzyme function. TRACP exists as two isoforms. TRACP 5a is a less active monomeric enzyme (35kD), with the intact loop peptide and TRACP 5b is proteolytically cleaved highly active enzyme encompassing two subunits (23 kD and 16 kD) held together by disulfide bonds. None of the mutant proteins were proteolytically processed into isoform 5b intracellularly, and only three mutants were secreted in significant amounts into the culture medium as intact isoform 5a-like proteins. Analysis of antibody reactivity patterns revealed that T89I and M264K mutant proteins retained some native conformation, whereas all others were in “denatured” or “unfolded” forms. Western blot analysis with intracellular and secreted TRACP proteins also revealed similar observations indicating that mutant T89I is amply secreted as inactive protein. All mutant proteins were attacked by Endo-H sensitive glycans and none could be activated by proteolytic cleavage in vitro. In conclusion, determining the structure-function relationship of the SPENCD mutations in TRACP will expand our understanding of basic mechanisms underlying immune responsiveness and its involvement in dysregulated bone metabolism.
Collapse
Affiliation(s)
- Janani Ramesh
- Department of Medical Biochemistry, Dr. ALM-PGIBMS, University of Madras, Madras, India
| | - Latha K. Parthasarathy
- Department of Psychiatry, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Anthony J. Janckila
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, United States of America
| | - Farhana Begum
- Department of Medical Biochemistry, Dr. ALM-PGIBMS, University of Madras, Madras, India
| | - Ramya Murugan
- Department of Medical Biochemistry, Dr. ALM-PGIBMS, University of Madras, Madras, India
| | - Balakumar P. S. S. Murthy
- Department of Vascular and Endovascular Sciences, Tamilnadu Government Multi Super Speciality Hospital, Chennai, India
| | - Rif S. El-Mallakh
- Department of Psychiatry, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Ranga N. Parthasarathy
- Department of Medical Biochemistry, Dr. ALM-PGIBMS, University of Madras, Madras, India
- Department of Psychiatry, University of Louisville School of Medicine, Louisville, KY, United States of America
- Department of Psychiatry, Molecular Biology and Biochemistry, University of Louisville School of Medicine, Louisville, KY, United States of America
| | | |
Collapse
|
15
|
Reithmeier A, Norgård M, Ek-Rylander B, Näreoja T, Andersson G. Cathepsin K regulates localization and secretion of Tartrate-Resistant Acid Phosphatase (TRAP) in TRAP-overexpressing MDA-MB-231 breast cancer cells. BMC Mol Cell Biol 2020; 21:15. [PMID: 32188406 PMCID: PMC7081696 DOI: 10.1186/s12860-020-00253-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/17/2020] [Indexed: 11/30/2022] Open
Abstract
Background Tartrate–resistant acid phosphatase (TRAP/ ACP5) belongs to the binuclear metallophosphatase family and is present in two isoforms. The primary translation product is an uncleaved TRAP 5a isoform with low phosphatase activity. TRAP 5a can be post-translationally processed to a cleaved TRAP 5b isoform with high phosphatase activity by e.g. cysteine proteinases, such as Cathepsin K (CtsK). The relevance of the phosphatase activity of TRAP 5b has been demonstrated for proliferation, migration and invasion of cancer cells. TRAP-overexpressing MDA-MB-231 breast cancer cells displayed higher levels of TRAP 5a and efficient processing of TRAP 5a to TRAP 5b protein, but no changes in levels of CtsK when compared to mock-transfected cells. In TRAP-overexpressing cells colocalization of TRAP 5a and proCtsK was augmented, providing a plausible mechanism for generation of TRAP 5b. CtsK expression has been associated with cancer progression and has been pharmacologically targeted in several clinical studies. Results In the current study, CtsK inhibition with MK-0822/Odanacatib did not abrogate the formation of TRAP 5b, but reversibly increased the intracellular levels of a N-terminal fragment of TRAP 5b and reduced secretion of TRAP 5a reversibly. However, MK-0822 treatment neither altered intracellular TRAP activity nor TRAP-dependent cell migration, suggesting involvement of additional proteases in proteolytic processing of TRAP 5a. Notwithstanding, CtsK was shown to be colocalized with TRAP and to be involved in the regulation of secretion of TRAP 5a in a breast cancer cell line, while it still was not essential for processing of TRAP 5a to TRAP 5b isoform. Conclusion In cancer cells multiple proteases are involved in cleaving TRAP 5a to high-activity phosphatase TRAP 5b. However, CtsK-inhibiting treatment was able to reduce secretion TRAP 5a from TRAP-overexpressing cancer cells.
Collapse
Affiliation(s)
- Anja Reithmeier
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52, Stockholm, Sweden. .,Present Address: Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Tomtebodavägen 23A, 171 65, Solna, Sweden.
| | - Maria Norgård
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52, Stockholm, Sweden
| | - Barbro Ek-Rylander
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52, Stockholm, Sweden
| | - Tuomas Näreoja
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52, Stockholm, Sweden.
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52, Stockholm, Sweden
| |
Collapse
|
16
|
Abstract
Hox genes are indispensable for the proper patterning of the skeletal morphology of the axial and appendicular skeleton during embryonic development. Recently, it has been demonstrated that Hox expression continues from embryonic stages through postnatal and adult stages exclusively in a skeletal stem cell population. However, whether Hox genes continue to function after development has not been rigorously investigated. We generated a Hoxd11 conditional allele and induced genetic deletion at adult stages to show that Hox11 genes play critical roles in skeletal homeostasis of the forelimb zeugopod (radius and ulna). Conditional loss of Hox11 function at adult stages leads to replacement of normal lamellar bone with an abnormal woven bone-like matrix of highly disorganized collagen fibers. Examining the lineage from the Hox-expressing mutant cells demonstrates no loss of stem cell population. Differentiation in the osteoblast lineage initiates with Runx2 expression, which is observed similarly in mutants and controls. With loss of Hox11 function, however, osteoblasts fail to mature, with no progression to osteopontin or osteocalcin expression. Osteocyte-like cells become embedded within the abnormal bony matrix, but they completely lack dendrites, as well as the characteristic lacuno-canalicular network, and do not express SOST. Together, our studies show that Hox11 genes continuously function in the adult skeleton in a region-specific manner by regulating differentiation of Hox-expressing skeletal stem cells into the osteolineage.
Collapse
|
17
|
Hu Y, Yu J, Wang Q, Zhang L, Chen X, Cao Y, Zhao J, Xu Y, Jiang D, Wang Y, Xiong W. Tartrate-Resistant Acid Phosphatase 5/ACP5 Interacts with p53 to Control the Expression of SMAD3 in Lung Adenocarcinoma. MOLECULAR THERAPY-ONCOLYTICS 2020; 16:272-288. [PMID: 32181328 PMCID: PMC7066063 DOI: 10.1016/j.omto.2020.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
Tartrate-resistant acid phosphatase 5 (TRAP/ACP5) has been shown to involve the development and prognosis of multiple tumors in previous studies; however, the mechanism in lung cancer is still unclear, and thus this study investigated the role of ACP5 in the progression of lung adenocarcinoma. After a series of in vitro and in vivo experiments, we observed that ACP5 expression was increased in lung adenocarcinomas (40/69, 57.97%); importantly, an increased ACP5 level was associated with patient age (p = 0.044) and lymph node metastasis (p = 0.0385). ACP5 overexpression significantly enhanced A549 and NCI-H1975 cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) and reduced cell apoptosis. Knocking down the expression of ACP5 could rescue the above cell phenotypes. Furthermore, enhancing ACP5 expression promoted lung adenocarcinoma cell hyperplasia and intrapulmonary metastasis in a mouse model. Additionally, mechanistic studies revealed that ACP5 might regulate p53 phosphorylation at Ser392, thereby enhancing the ubiquitination of p53, which then underwent degradation. Reducing the levels of p53 intensified the transcription of SMAD3, which promotes EMT in lung adenocarcinoma cells. In summary, the present study provides a theoretical basis and important scientific evidence on the key role of ACP5 in lung adenocarcinoma progression by inducing EMT via the regulation of p53/SMAD3 signaling.
Collapse
Affiliation(s)
- Yinan Hu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Qi Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xueying Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yong Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Dingsheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
- Corresponding author: Yi Wang, Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
- Department of Respiratory Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, Shanghai 200011, China
- Corresponding author: Weining Xiong, Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
18
|
Mira-Pascual L, Patlaka C, Desai S, Paulie S, Näreoja T, Lång P, Andersson G. A Novel Sandwich ELISA for Tartrate-Resistant Acid Phosphatase 5a and 5b Protein Reveals that Both Isoforms are Secreted by Differentiating Osteoclasts and Correlate to the Type I Collagen Degradation Marker CTX-I In Vivo and In Vitro. Calcif Tissue Int 2020; 106:194-207. [PMID: 31654098 DOI: 10.1007/s00223-019-00618-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022]
Abstract
Tartrate-resistant acid phosphatase type 5 (TRAP) exists as two isoforms, 5a and 5b. 5b is a marker of osteoclast number and 5a of chronic inflammation; however, its association with bone resorption is unknown. In this study, a double-TRAP 5a/5b sandwich ELISA measuring 5a and 5b protein in the same sample was developed. TRAP 5a and 5b protein levels were evaluated as osteoclast differentiation/activity markers in serum and in culture, and their correlation to the resorption marker CTX-I was examined. Serum TRAP 5a and 5b concentrations in healthy men were 4.4 ± 0.6 ng/ml and 1.3 ± 0.2 ng/ml, respectively, and they correlated moderately to each other suggesting that their secretion is coupled under healthy conditions. A correlation was also observed between serum TRAP 5a and 5b with CTX-I, suggesting that both TRAP isoforms associate with osteoclast number. During osteoclast differentiation on plastic/bone, predominantly 5b increased in media/lysate from M-CSF/RANKL-stimulated CD14+ PBMCs. However, substantial levels of 5a were detected at later stages suggesting that both isoforms are secreted from differentiating OCs. More TRAP 5b was released on bone indicating a connection to osteoclast resorptive activity, and a peak in TRAP 5b/5a-ratio coincided with rapid CTX-I release. At the end of the culture period of M-CSF + RANKL-stimulated CD14+ PBMCs, there was a correlation between the secretion of TRAP 5a and 5b proteins with CTX-I. The correlation of not only 5b but also 5a with collagen degradation, both in serum and osteoclast cultures indicates that a considerable proportion of the TRAP 5a originates from osteoclasts and may reflect a hitherto undisclosed regulatory mechanism during bone resorption and bone remodeling.
Collapse
Affiliation(s)
- Laia Mira-Pascual
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden
| | - Christina Patlaka
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden
| | - Suchita Desai
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden
| | | | - Tuomas Näreoja
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden.
| | - Pernilla Lång
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden.
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden
| |
Collapse
|
19
|
Han Y, Nakayama J, Hayashi Y, Jeong S, Futakuchi M, Ito E, Watanabe S, Semba K. Establishment and characterization of highly osteolytic luminal breast cancer cell lines by intracaudal arterial injection. Genes Cells 2020; 25:111-123. [PMID: 31849141 DOI: 10.1111/gtc.12743] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 01/01/2023]
Abstract
Bone is one of the most common metastatic sites of breast cancer, and bone metastasis profoundly affects the quality of life of breast cancer patients. Bone metastasis is commonly observed among all the subtypes of breast cancer; however, its molecular mechanism has been analyzed only in triple-negative subtype of breast cancer (TNBC). To characterize the molecular mechanisms of bone metastasis of luminal breast cancer, we established a bone-metastatic model of the MCF7, luminal breast cancer cell line, with enhanced osteolytic activity by intracaudal arterial injection (CAI). Pathological analysis of the established cell lines revealed that they exhibited fierce osteolytic ability by promoting osteoclast differentiation and activity. The signature genes extracted from highly osteolytic MCF7 cell lines were differed from those of bone-metastatic TNBC cell lines. Our results suggest that unique mechanisms of osteolysis in bone-metastatic lesions of luminal breast cancer. In addition, several up-regulated genes in MCF7-BM (Bone Metastasis) 02 cell lines correlated with poor prognosis with luminal breast cancer patients. Our findings support further study on the bone-metastatic mechanisms of luminal breast cancer.
Collapse
Affiliation(s)
- Yuxuan Han
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Computational Bio-Big Data Open Innovation Lab. (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Yusuke Hayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Seongmoon Jeong
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mitsuru Futakuchi
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Emi Ito
- Department of Biomolecular Profiling, Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Shinya Watanabe
- Department of Biomolecular Profiling, Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Department of Cell Factory, Translational Research Center, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
20
|
Synovium-derived stromal cell-induced osteoclastogenesis: a potential osteoarthritis trigger. Clin Sci (Lond) 2019; 133:1813-1824. [DOI: 10.1042/cs20190169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022]
Abstract
Abstract
Purpose: To shed light on the idea that mesenchymal stem/stromal cells (MSCs) recruited in synovium (SM) (i.e. Synovium-Derived Stromal Cells, SDSCs) could be involved in Osteoarthritis (OA) pathophysiology. Attention was also paid to a further stromal cell type with a peculiar ultrastructure called telocytes (TCs), whose role is far from clarified. Methods: In the present in vitro study, we compared SDSCs isolated from healthy and OA subjects in terms of phenotype, morphology and differentiation potential as well as in their capability to activate normal Peripheral Blood Mononuclear Cells (PBMCs). Histological, immunohistochemical and ultrastructural analyses were integrated by qRT-PCR and functional resorbing assays. Results: Our data demonstrated that both SDSC populations stimulated the formation of osteoclasts from PBMCs: the osteoclast-like cells generated by healthy-SDSCs via transwell co-cultures were inactive, while OA-derived SDSCs have a much greater effectiveness. Moreover, the presence of TCs was more evident in cultures obtained from OA subjects and suggests a possible involvement of these cells in OA. Conclusions: Osteoclastogenic differentiation capability of PBMCs from OA subjects, also induced by B synoviocytes has been already documented. Here we hypothesized that SDSCs, generally considered for their regenerative potential in cartilage lesions, have also a role in the onset/maintenance of OA. Clinical relevance: Our observations may represent an interesting opportunity for the development of a holistic approach for OA treatment, that considers the multifaceted capability of MSCs in relation to the environment.
Collapse
|
21
|
Progress and Applications of Polyphosphate in Bone and Cartilage Regeneration. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5141204. [PMID: 31346519 PMCID: PMC6620837 DOI: 10.1155/2019/5141204] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/29/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Patients with bone and cartilage defects due to infection, tumors, and trauma are quite common. Repairing bone and cartilage defects is thus a major problem for clinicians. Autologous and artificial bone transplantations are associated with many challenges, such as limited materials and immune rejection. Bone and cartilage regeneration has become a popular research topic. Inorganic polyphosphate (polyP) is a widely occurring biopolymer with high-energy phosphoanhydride bonds that exists in organisms from bacteria to mammals. Much data indicate that polyP acts as a regulator of gene expression in bone and cartilage tissues and exerts morphogenetic effects on cells involved in bone and cartilage formation. Exposure of these cells to polyP leads to the increase of cytokines that promote the differentiation of mesenchymal stem cells into osteoblasts, accelerates the osteoblast mineralization process, and inhibits the differentiation of osteoclast precursors to functionally active osteoclasts. PolyP-based materials have been widely reported in in vivo and in vitro studies. This paper reviews the current cellular mechanisms and material applications of polyP in bone and cartilage regeneration.
Collapse
|
22
|
Li J, Guo X, Li M, Xiao Y, Bao C. [Research progress in the mechanism of protein factors in regulating bone remodeling]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:115-123. [PMID: 30644271 DOI: 10.7507/1002-1892.201808059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the role and mechanism of protein factors in bone remodeling, and provides theoretical basis for further elucidating the pathogenesis and clinical treatment of bone-related diseases. Methods The relevant research results at home and abroad in recent years were extensively consulted, analyzed, and summarized. Results Bone remodeling is an important physiological process to maintain bone homeostasis. Protein, as an important stimulator in bone remodeling, regulates the balance between bone resorption and bone formation. Conclusion At present, the research on the mechanism of protein in bone remodeling is insufficient. Therefore, it is necessary to further study the specific time, process, and interaction network of protein in bone remodeling, and to confirm its mechanism in bone remodeling, so as to reveal and treat the pathogenesis of bone-related diseases.
Collapse
Affiliation(s)
- Ju Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041, P.R.China;National Clinical Research Center of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xiaodong Guo
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041, P.R.China;National Clinical Research Center of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Mingzheng Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041, P.R.China;National Clinical Research Center of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yu Xiao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041, P.R.China;National Clinical Research Center of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041,
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
23
|
Mohamed AAR, Ahmed MM, Gomaa M, Ebraheim LLM. Bone health consequence of adjuvant Anastrozole in monotherapy or associated with biochanin-A in ovariectomized rat model. Life Sci 2018; 212:159-167. [PMID: 30290186 DOI: 10.1016/j.lfs.2018.09.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/01/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023]
Abstract
AIMS We investigate the consequence of adjuvant anastrozole (ANA) in monotherapy or associated with biochanin A (BCA) in ovariectomized (OVX) rat model and the degree of developing bone loss in both conditions. MATERIALS AND METHODS Sixty female rats were assigned to six groups. Five groups were bilaterally OVX, and one was sham operated. The five groups were; ANA group (0.5 mg/kg b.wt orally), BCA (5 mg/kg b.wt intraperitoneally (I/P), co-treated group (BCA + ANA), two control groups receiving even distilled water orally or DMSO I/P for twenty weeks. Bone turnover biomarkers BALP, OC, PTH, TRAP and TNFα were determined in serum. Bone mineral content, histological and morphometric measurements on rat femurs were performed. BMD by X-ray technique on tibias of rats and CT analysis of lumbar vertebrae of all treated and sham groups were applied. KEY FINDINGS There was marked elevation in bone turnover biomarkers with high serum Ca and P content in the ANA-treated rats. Moreover marked elevation of TNFα, PTH, TC and TG, ANA caused severe changes in the BMD detected by X-ray in tibial bones and CT analysis of lumbar vertebrae of OVX rats. While I/P injection of BCA ameliorated the adverse bone health decrements caused by ANA. SIGNIFICANCE The study highlights the importance of the BCA supplementation in accordance with the ANA therapy in case of ovariectomized rat model of osteoporosis which is clinically presented in Postmenopausal women with breast cancer during which considerable risk of developing osteoporosis is predicted during treatment.
Collapse
Affiliation(s)
| | - Mona M Ahmed
- Dept. of Forensic Medicine and Toxicology, Zagazig University, Zagazig, Egypt
| | - Mohamed Gomaa
- Dept. of Surgery, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
24
|
Kim SM, Lee HS, Jung JI, Lim SM, Lim JH, Ha WH, Jeon CL, Lee JY, Kim EJ. Effect of isoflavone-enriched whole soy milk powder supplementation on bone metabolism in ovariectomized mice. Nutr Res Pract 2018; 12:275-282. [PMID: 30090164 PMCID: PMC6078863 DOI: 10.4162/nrp.2018.12.4.275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/03/2018] [Accepted: 05/02/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/OBJECTIVE There is intense interest in soy isoflavone as a hormone replacement therapy for the prevention of postmenopausal osteoporosis. A new kind of isoflavone-enriched whole soy milk powder (I-WSM) containing more isoflavones than conventional whole soy milk powder was recently developed. The aim of this study was to investigate the effects of I-WSM on bone metabolism in ovariectomized mice. MATERIALS/METHODS Sixty female ICR mice individually underwent ovariectomy (OVX) or a sham operation, and were randomized into six groups of 10 animals each as follows: Sham, OVX, OVX with 2% I-WSM diet, OVX with 10% I-WSM diet, OVX with 20% I-WSM diet, and OVX with 20% WSM diet. After an 8-week treatment period, bone mineral density (BMD), calcium, alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) 5b, osteocalcin (OC), procollagen 1 N-terminal propeptide (P1NP), and osteoprotegenin (OPG) were analyzed. RESULTS BMD was significantly lower in the OVX group compared to the Sham group but was significantly higher in OVX + 10% I-WSM and OVX + 20% I-WSM groups compared to the OVX group (P < 0.05). Serum calcium concentration significantly increased in the OVX + 10% and 20% I-WSM groups. Serum ALP levels were significantly lower in the OVX + 10% and 20% I-WSM groups compared to the other experimental groups (P < 0.05). OC was significantly reduced in the OVX group compared to the Sham group (P < 0.05), but a dose-dependent increase was observed in the OVX groups supplemented with I-WSM. P1NP and OPG levels were significantly reduced, while TRAP 5b level was significantly elevated in the OVX group compared with the Sham group, which was not affected by I-WSM (P < 0.05). CONCLUSIONS This study suggests that I-WSM supplementation in OVX mice has the effect of preventing BMD reduction and promoting bone formation. Therefore, I-WSM can be used as an effective alternative to postmenopausal osteoporosis prevention.
Collapse
Affiliation(s)
- So Mi Kim
- Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Hyun Sook Lee
- Department of Food Science & Nutrition, Dongseo University, Busan 47011, Korea
| | - Jae In Jung
- Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Su-Min Lim
- Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Ji Hoon Lim
- Institute of Food Processing Technology, Uwell Bio Co. Ltd., Gangwon 25451, Korea
| | - Wang-Hyun Ha
- Institute of Food Processing Technology, Uwell Bio Co. Ltd., Gangwon 25451, Korea
| | - Chang Lae Jeon
- Institute of Food Processing Technology, Uwell Bio Co. Ltd., Gangwon 25451, Korea
| | - Jae-Yong Lee
- Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea.,Department of Biochemistry, College of Medicine, Hallym University, Gangwon 24252, Korea
| | - Eun Ji Kim
- Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| |
Collapse
|
25
|
Early sclerostin expression explains bone formation inhibition before arthritis onset in the rat adjuvant-induced arthritis model. Sci Rep 2018; 8:3492. [PMID: 29472591 PMCID: PMC5823923 DOI: 10.1038/s41598-018-21886-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Periarticular bone loss in rheumatoid arthritis (RA) is considered to be mainly related to synovial inflammation. However, strong bone loss has also described at the time of arthritis onset. Recently, a paradoxical exacerbation of joint damage was described when blocking sclerostin in various arthritis models. Thus, we aimed to determine kinetics of bone loss and its mechanisms in the adjuvant induced arthritis (AIA) rat model of RA. AIA was induced (n = 35) or not (n = 35) at day 0. In addition to well-known arthritis at day 12, we showed with 3D-imaging and histomorphometry that bone microstructural alterations occurred early from day 8 post-induction, characterized by cortical porosity and trabecular bone loss. Active osteoclastic surfaces were increased from day 8 with RANKL upregulation. More surprisingly SOST and DKK1 were overexpressed from day 6 and followed by a dramatic decrease in bone formation from day 8. At the time of arthritis onset, SOST and DKK1 returned to control values, but frizzled related protein 1 (SFRP1), proinflammatory cytokines, and MMPs started to increase. Bone alterations before arthritis onset reinforce the hypothesis of an early bone involvement in arthritis. Kinetics of osteocyte markers expression should be considered to refine Wnt inhibitor treatment strategies.
Collapse
|
26
|
Boorsma CE, van der Veen TA, Putri KSS, de Almeida A, Draijer C, Mauad T, Fejer G, Brandsma CA, van den Berge M, Bossé Y, Sin D, Hao K, Reithmeier A, Andersson G, Olinga P, Timens W, Casini A, Melgert BN. A Potent Tartrate Resistant Acid Phosphatase Inhibitor to Study the Function of TRAP in Alveolar Macrophages. Sci Rep 2017; 7:12570. [PMID: 28974738 PMCID: PMC5626781 DOI: 10.1038/s41598-017-12623-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 09/13/2017] [Indexed: 12/03/2022] Open
Abstract
The enzyme tartrate resistant acid phosphatase (TRAP, two isoforms 5a and 5b) is highly expressed in alveolar macrophages, but its function there is unclear and potent selective inhibitors of TRAP are required to assess functional aspects of the protein. We found higher TRAP activity/expression in lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma compared to controls and more TRAP activity in lungs of mice with experimental COPD or asthma. Stimuli related to asthma and/or COPD were tested for their capacity to induce TRAP. Receptor activator of NF-κb ligand (RANKL) and Xanthine/Xanthine Oxidase induced TRAP mRNA expression in mouse macrophages, but only RANKL also induced TRAP activity in mouse lung slices. Several Au(III) coordination compounds were tested for their ability to inhibit TRAP activity and [Au(4,4′-dimethoxy-2,2′-bipyridine)Cl2][PF6] (AubipyOMe) was found to be the most potent inhibitor of TRAP5a and 5b activity reported to date (IC50 1.3 and 1.8 μM respectively). AubipyOMe also inhibited TRAP activity in murine macrophage and human lung tissue extracts. In a functional assay with physiological TRAP substrate osteopontin, AubipyOMe inhibited mouse macrophage migration over osteopontin-coated membranes. In conclusion, higher TRAP expression/activity are associated with COPD and asthma and TRAP is involved in regulating macrophage migration.
Collapse
Affiliation(s)
- Carian E Boorsma
- University of Groningen, Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - T Anienke van der Veen
- University of Groningen, Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Kurnia S S Putri
- University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | | | - Christina Draijer
- University of Groningen, Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Thais Mauad
- São Paulo University, Department of Pathology, São Paulo, Brazil
| | - Gyorgy Fejer
- University of Plymouth, School of Biomedical and Healthcare Sciences, Peninsula Schools of Medicine and Dentistry, Plymouth, United Kingdom
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Yohan Bossé
- Laval University, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Molecular Medicine, Québec, Canada
| | - Don Sin
- University of British Columbia, James Hogg Research Center, Providence Heart+Lung Institute, St. Paul's Hospital, Vancouver, British Columbia, Canada.,University of British Columbia, Respiratory Division, Department of Medicine, Vancouver, British Columbia, Canada
| | - Ke Hao
- Merck Research Laboratories, Boston, Massachusetts, United States of America
| | - Anja Reithmeier
- Karolinska Institute, Department of Laboratory Medicine (LABMED), H5, Division of Pathology, F46, Karolinska University hospital, Huddinge, Stockholm, Sweden
| | - Göran Andersson
- Karolinska Institute, Department of Laboratory Medicine (LABMED), H5, Division of Pathology, F46, Karolinska University hospital, Huddinge, Stockholm, Sweden
| | - Peter Olinga
- University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Angela Casini
- University of Groningen, Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, Groningen, The Netherlands. .,School of Chemistry, Cardiff University, Cardiff, United Kingdom.
| | - Barbro N Melgert
- University of Groningen, Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, Groningen, The Netherlands. .,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands.
| |
Collapse
|
27
|
虞 佳, 汪 静. 抗酒石酸酸性磷酸酶在恶性肿瘤中的研究进展. Shijie Huaren Xiaohua Zazhi 2017; 25:2133-2138. [DOI: 10.11569/wcjd.v25.i23.2133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
抗酒石酸酸性磷酸酶(type 5 acid phosphatase/tartrate-resistant acid phosphatase, ACP5/TRACP/TRAP)是酸性磷酸酶家族中的金属蛋白酶, 是骨吸收和破骨细胞活性的良好标志物. 近来发现ACP5在多种肿瘤中的表达比配对正常组织中的表达显著上调, 该现象提示, ACP5可能肿瘤的发生发展中起到一定的作用.
Collapse
|
28
|
Increased amount of phosphorylated proinflammatory osteopontin in rheumatoid arthritis synovia is associated to decreased tartrate-resistant acid phosphatase 5B/5A ratio. PLoS One 2017; 12:e0182904. [PMID: 28792533 PMCID: PMC5549736 DOI: 10.1371/journal.pone.0182904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/26/2017] [Indexed: 11/28/2022] Open
Abstract
Background Osteopontin (OPN) is an immunoregulatory protein which production increases in both rheumatoid arthritis (RA) and osteoarthritis (OA). Phosphorylated osteopontin (Phospho-OPN) is known to increase macrophage and osteoclast activation, this process is controlled by extracellular tartrate-resistant acid phosphatase (TRAcP), also a biomarker for RA. Here, we evaluated the phosphorylation status of OPN in RA and OA synovia, as well as its correlation with TRAcP isoforms. Methods Synovial tissue and fluid were obtained from 24 RA (14 seropositive and 10 seronegative) and 24 OA patients. Western blotting was used to analyze the extent of OPN phosphorylation. TRAcP isoforms were measured in synovial fluid using ELISA; immunohistochemistry assessed the distribution of OPN and TRAcP expressing cells in the synovial tissue, especially distinguishing between the TRAcP isoforms. Results Full-length OPN was more phosphorylated in RA than in OA (p<0.05). The thrombin cleaved C-terminal end of OPN was also more phosphorylated in RA (p<0.05). RA patients had a lower concentration of TRAcP 5B and higher concentration of less active 5A in their synovial fluid compared to OA patients. The TRAcP 5B/5A ratio was decreased in RA and correlated negatively with the amount of phospho-OPN (p<0.05). TRAcP positive cells for both isoforms were found all along the synovial lining; OPN antibody staining was localized in the extracellular matrix. Conclusion Our data suggests that in RA the synovial fluid contains insufficient amounts of TRAcP 5B which increase levels of the proinflammatory phospho-OPN. This may lead to increased macrophage and osteoclast activation, resulting in the increased local inflammation and bone resorption present in RA joints.
Collapse
|
29
|
ACE-2/Ang1-7/Mas cascade mediates ACE inhibitor, captopril, protective effects in estrogen-deficient osteoporotic rats. Biomed Pharmacother 2017; 92:58-68. [DOI: 10.1016/j.biopha.2017.05.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/25/2017] [Accepted: 05/12/2017] [Indexed: 12/30/2022] Open
|
30
|
Halling Linder C, Ek-Rylander B, Krumpel M, Norgård M, Narisawa S, Millán JL, Andersson G, Magnusson P. Bone Alkaline Phosphatase and Tartrate-Resistant Acid Phosphatase: Potential Co-regulators of Bone Mineralization. Calcif Tissue Int 2017; 101:92-101. [PMID: 28303318 PMCID: PMC5486932 DOI: 10.1007/s00223-017-0259-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/17/2017] [Indexed: 12/18/2022]
Abstract
Phosphorylated osteopontin (OPN) inhibits hydroxyapatite crystal formation and growth, and bone alkaline phosphatase (BALP) promotes extracellular mineralization via the release of inorganic phosphate from the mineralization inhibitor inorganic pyrophosphate (PPi). Tartrate-resistant acid phosphatase (TRAP), produced by osteoclasts, osteoblasts, and osteocytes, exhibits potent phosphatase activity towards OPN; however, its potential capacity as a regulator of mineralization has not previously been addressed. We compared the efficiency of BALP and TRAP towards the endogenous substrates for BALP, i.e., PPi and pyridoxal 5'-phosphate (PLP), and their impact on mineralization in vitro via dephosphorylation of bovine milk OPN. TRAP showed higher phosphatase activity towards phosphorylated OPN and PPi compared to BALP, whereas the activity of TRAP and BALP towards PLP was comparable. Bovine milk OPN could be completely dephosphorylated by TRAP, liberating all its 28 phosphates, whereas BALP dephosphorylated at most 10 phosphates. OPN, dephosphorylated by either BALP or TRAP, showed a partially or completely attenuated phosphorylation-dependent inhibitory capacity, respectively, compared to native OPN on the formation of mineralized nodules. Thus, there are phosphorylations in OPN important for inhibition of mineralization that are removed by TRAP but not by BALP. In conclusion, our data indicate that both BALP and TRAP can alleviate the inhibitory effect of OPN on mineralization, suggesting a potential role for TRAP in skeletal mineralization. Further studies are warranted to explore the possible physiological relevance of TRAP in bone mineralization.
Collapse
Affiliation(s)
- Cecilia Halling Linder
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, 581 85, Linköping, Sweden
| | - Barbro Ek-Rylander
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, 141 86, Huddinge, Sweden
| | - Michael Krumpel
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, 141 86, Huddinge, Sweden
| | - Maria Norgård
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, 141 86, Huddinge, Sweden
| | - Sonoko Narisawa
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, 141 86, Huddinge, Sweden
| | - Per Magnusson
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, 581 85, Linköping, Sweden.
| |
Collapse
|
31
|
Abuohashish HM, Ahmed MM, Sabry D, Khattab MM, Al-Rejaie SS. Angiotensin (1-7) ameliorates the structural and biochemical alterations of ovariectomy-induced osteoporosis in rats via activation of ACE-2/Mas receptor axis. Sci Rep 2017; 7:2293. [PMID: 28536469 PMCID: PMC5442122 DOI: 10.1038/s41598-017-02570-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/12/2017] [Indexed: 12/19/2022] Open
Abstract
The local and systemic renin angiotensin system (RAS) influences the skeletal system micro-structure and metabolism. Studies suggested angiotensin 1-7 (Ang(1-7)) as the beneficial RAS molecule via Mas receptor activation. This study examines the function of Ang(1-7) in bone micro-architecture and metabolism in an ovariectomized (OVX) rodent model of osteoporosis. OVX rats showed structural and bone metabolic degeneration in parallel with suppressed expressions of the angiotensin converting enzyme-2 (ACE-2)/Ang(1-7)/Mas components. The infusion of Ang(1-7) markedly alleviated the altered bone metabolism and significantly enhanced both trabecular (metaphyseal) and cortical (metaphyseal-diaphyseal) morphometry. Urinary and bones minerals were also improved in OVX rats by Ang(1-7). The infusion of the heptapeptide enhanced ACE-2/Mas receptor expressions, while down-regulated AngII, ACE, and AngII type-1 receptor (AT1R) in OVX animals. Moreover, Ang(1-7) markedly improved osteoprotegerin (OPG) and lowered receptor activator NF-κB ligand (RANKL) expressions. The defensive properties of Ang(1-7) on bone metabolism, structure and minerals were considerably eradicated after blockage of Mas receptor with A-779. Ang(1-7)-induced up-regulated ACE-2/Ang(1-7)/Mas cascade and OPG expressions were abolished and the expressions of ACE/AngII/AT1R and RANKL were provoked by A-779. These findings shows for the first time the novel valuable therapeutic role of Ang(1-7) on bone health and metabolism through the ACE-2/Mas cascade.
Collapse
Affiliation(s)
- Hatem M Abuohashish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. .,Department of Biomedical Dental Sciences, College of Dentistry, University of Dammam, Dammam, Saudi Arabia.
| | - Mohammed M Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Dutra EH, O’ Brien MH, Lima A, Kalajzic Z, Tadinada A, Nanda R, Yadav S. Cellular and Matrix Response of the Mandibular Condylar Cartilage to Botulinum Toxin. PLoS One 2016; 11:e0164599. [PMID: 27723812 PMCID: PMC5056741 DOI: 10.1371/journal.pone.0164599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES To evaluate the cellular and matrix effects of botulinum toxin type A (Botox) on mandibular condylar cartilage (MCC) and subchondral bone. MATERIALS AND METHODS Botox (0.3 unit) was injected into the right masseter of 5-week-old transgenic mice (Col10a1-RFPcherry) at day 1. Left side masseter was used as intra-animal control. The following bone labels were intraperitoneally injected: calcein at day 7, alizarin red at day 14 and calcein at day 21. In addition, EdU was injected 48 and 24 hours before sacrifice. Mice were sacrificed 30 days after Botox injection. Experimental and control side mandibles were dissected and examined by x-ray imaging and micro-CT. Subsequently, MCC along with the subchondral bone was sectioned and stained with tartrate resistant acid phosphatase (TRAP), EdU, TUNEL, alkaline phosphatase, toluidine blue and safranin O. In addition, we performed immunohistochemistry for pSMAD and VEGF. RESULTS Bone volume fraction, tissue density and trabecular thickness were significantly decreased on the right side of the subchondral bone and mineralized cartilage (Botox was injected) when compared to the left side. There was no significant difference in the mandibular length and condylar head length; however, the condylar width was significantly decreased after Botox injection. Our histology showed decreased numbers of Col10a1 expressing cells, decreased cell proliferation and increased cell apoptosis in the subchondral bone and mandibular condylar cartilage, decreased TRAP activity and mineralization of Botox injected side cartilage and subchondral bone. Furthermore, we observed reduced proteoglycan and glycosaminoglycan distribution and decreased expression of pSMAD 1/5/8 and VEGF in the MCC of the Botox injected side in comparison to control side. CONCLUSION Injection of Botox in masseter muscle leads to decreased mineralization and matrix deposition, reduced chondrocyte proliferation and differentiation and increased cell apoptosis in the MCC and subchondral bone.
Collapse
Affiliation(s)
- Eliane H. Dutra
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Mara H. O’ Brien
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Alexandro Lima
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Zana Kalajzic
- Department of Oral and Maxillofacial Diagnostic Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Aditya Tadinada
- Department of Oral and Maxillofacial Radiology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Ravindra Nanda
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Sumit Yadav
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
33
|
Rein S, Hanisch U, Schaller HE, Zwipp H, Rammelt S, Weindel S. Evaluation of bone remodeling in regard to the age of scaphoid non-unions. World J Orthop 2016; 7:418-425. [PMID: 27458552 PMCID: PMC4945508 DOI: 10.5312/wjo.v7.i7.418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/26/2016] [Accepted: 05/11/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyse bone remodeling in regard to the age of scaphoid non-unions (SNU) with immunohistochemistry.
METHODS: Thirty-six patients with symptomatic SNU underwent surgery with resection of the pseudarthrosis. The resected material was evaluated histologically after staining with hematoxylin-eosin (HE), tartrate resistant acid phosphatase (TRAP), CD 68, osteocalcin (OC) and osteopontin (OP). Histological examination was performed in a blinded fashion.
RESULTS: The number of multinuclear osteoclasts in the TRAP-staining correlated with the age of the SNU and was significantly higher in younger SNU (P = 0.034; r = 0.75). A higher number of OP-immunoreactive osteoblasts significantly correlated with a higher number of OC-immunoreactive osteoblasts (P = 0.001; r = 0.55). Furthermore, a greater number of OP-immunoreactive osteoblasts correlated significantly with a higher number of OP-immunoreactive multinuclear osteoclasts (P = 0.008; r = 0.43). SNU older than 6 mo showed a significant decrease of the number of fibroblasts (P = 0.04). Smoking and the age of the patients had no influence on bone remodeling in SNU.
CONCLUSION: Multinuclear osteoclasts showed a significant decrease in relation to the age of SNU. However, most of the immunhistochemical findings of bone remodeling do not correlate with the age of the SNU. This indicates a permanent imbalance of bone formation and resorption as indicated by a concurrent increase in both osteoblast and osteoclast numbers. A clear histological differentiation into phases of bone remodeling in SNU is not possible.
Collapse
|
34
|
Brömme D, Panwar P, Turan S. Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: Commonalities and differences. Expert Opin Drug Discov 2016; 11:457-72. [DOI: 10.1517/17460441.2016.1160884] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Preety Panwar
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Serap Turan
- Department of Pediatric Endocrinology, Marmara University, Istanbul, Turkey
| |
Collapse
|
35
|
The Regulatory Roles of MicroRNAs in Bone Remodeling and Perspectives as Biomarkers in Osteoporosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1652417. [PMID: 27073801 PMCID: PMC4814634 DOI: 10.1155/2016/1652417] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 02/05/2023]
Abstract
MicroRNAs are involved in many cellular and molecular activities and played important roles in many biological and pathological processes, such as tissue formation, cancer development, diabetes, neurodegenerative diseases, and cardiovascular diseases. Recently, it has been reported that microRNAs can modulate the differentiation and activities of osteoblasts and osteoclasts, the key cells that are involved in bone remodeling process. Meanwhile, the results from our and other research groups showed that the expression profiles of microRNAs in the serum and bone tissues are significantly different in postmenopausal women with or without fractures compared to the control. Therefore, it can be postulated that microRNAs might play important roles in bone remodeling and that they are very likely to be involved in the pathological process of postmenopausal osteoporosis. In this review, we will present the updated research on the regulatory roles of microRNAs in osteoblasts and osteoclasts and the expression profiles of microRNAs in osteoporosis and osteoporotic fracture patients. The perspective of serum microRNAs as novel biomarkers in bone loss disorders such as osteoporosis has also been discussed.
Collapse
|
36
|
Kats A, Norgård M, Wondimu Z, Koro C, Concha Quezada H, Andersson G, Yucel-Lindberg T. Aminothiazoles inhibit RANKL- and LPS-mediated osteoclastogenesis and PGE2 production in RAW 264.7 cells. J Cell Mol Med 2016; 20:1128-38. [PMID: 26987561 PMCID: PMC4882984 DOI: 10.1111/jcmm.12814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/13/2016] [Indexed: 01/09/2023] Open
Abstract
Periodontitis is characterized by chronic inflammation and osteoclast‐mediated bone loss regulated by the receptor activator of nuclear factor‐κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG). The aim of this study was to investigate the effect of aminothiazoles targeting prostaglandin E synthase‐1 (mPGES‐1) on RANKL‐ and lipopolysaccharide (LPS)‐mediated osteoclastogenesis and prostaglandin E2 (PGE2) production in vitro using the osteoclast precursor RAW 264.7 cells. RAW 264.7 cells were treated with RANKL or LPS alone or in combination with the aminothiazoles 4‐([4‐(2‐naphthyl)‐1,3‐thiazol‐2‐yl]amino)phenol (TH‐848) or 4‐(3‐fluoro‐4‐methoxyphenyl)‐N‐(4‐phenoxyphenyl)‐1,3‐thiazol‐2‐amine (TH‐644). Aminothiazoles significantly decreased the number of multinucleated tartrate‐resistant acid phosphatase (TRAP)‐positive osteoclast‐like cells in cultures of RANKL‐ and LPS‐stimulated RAW 264.7 cells, as well as reduced the production of PGE2 in culture supernatants. LPS‐treatment induced mPGES‐1 mRNA expression at 16 hrs and the subsequent PGE2 production at 72 hrs. Conversely, RANKL did not affect PGE2 secretion but markedly reduced mPGES‐1 at mRNA level. Furthermore, mRNA expression of TRAP and cathepsin K (CTSK) was reduced by aminothiazoles in RAW 264.7 cells activated by LPS, whereas RANK, OPG or tumour necrosis factor α mRNA expression was not significantly affected. In RANKL‐activated RAW 264.7 cells, TH‐848 and TH‐644 down‐regulated CTSK but not TRAP mRNA expression. Moreover, the inhibitory effect of aminothiazoles on PGE2 production was also confirmed in LPS‐stimulated human peripheral blood mononuclear cell cultures. In conclusion, the aminothiazoles reduced both LPS‐ and RANKL‐mediated osteoclastogenesis and PGE2 production in RAW 264.7 cells, suggesting these compounds as potential inhibitors for treatment of chronic inflammatory bone resorption, such as periodontitis.
Collapse
Affiliation(s)
- Anna Kats
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Norgård
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Zenebech Wondimu
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Catalin Koro
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Hernán Concha Quezada
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Tülay Yucel-Lindberg
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
37
|
Law YY, Chiu HF, Lee HH, Shen YC, Venkatakrishnan K, Wang CK. Consumption of onion juice modulates oxidative stress and attenuates the risk of bone disorders in middle-aged and post-menopausal healthy subjects. Food Funct 2016; 7:902-12. [DOI: 10.1039/c5fo01251a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Osteoporosis is a chronic inflammatory condition that is characterized by the loss of bone mineral density (BMD).
Collapse
Affiliation(s)
- Yat-Yin Law
- Department of Orthopedics
- Chung Shan Medical University Hospital
- Institute of Medicine
- Chung Shan Medical University
- Taichung City
| | - Hui-Fang Chiu
- Department of Chinese Medicine
- Taichung Hospital Ministry of Health and Well-being
- Taichung
- Republic of China
| | - Hui-Hsin Lee
- School of Nutrition
- Chung Shan Medical University
- Taichung City
- Republic of China
| | - You-Cheng Shen
- School of Health Diet and Industry Management
- Chung Shan Medical University
- Taichung City
- Republic of China
| | | | - Chin-Kun Wang
- School of Nutrition
- Chung Shan Medical University
- Taichung City
- Republic of China
| |
Collapse
|
38
|
Naghsh N, Razavi SM, Minaiyan M, Shahabooei M, Birang R, Behfarnia P, Hajisadeghi S. Evaluation of the effects of two different bone resorption inhibitors on osteoclast numbers and activity: An animal study. Dent Res J (Isfahan) 2016; 13:500-507. [PMID: 28182072 PMCID: PMC5256013 DOI: 10.4103/1735-3327.197034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background: The aim of this study was to evaluate the effects of bone resorption inhibitors, doxycycline (DOX) and erythromycin (EM), on osseous wound healing in rat alveolar socket. Materials and Methods: In this randomized controlled trial, 45 8–10-week-old male Wistar rats had their maxillary right molar extracted. They were divided into three groups of 15. In Group 1 normal saline, Group 2 DOX, and Group 3 EM were administered at the doses of 5 ml/kg/day, 5 mg/kg/day, and 2 mg/kg/day, respectively, for 7 consecutive days. The rats were sacrificed 7, 14, and 21 days after surgery. Real-time polymerase chain reaction was employed to evaluate the mRNA expression of receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG) and immunohistochemical staining for tartrate-resistant acid phosphatase (TRAP) to determine osteoclasts. The data were analyzed by one-way analysis of variance followed by Tukey's post hoc test using SPSS version 20. Significant level was set at 0.05. Results: The results showed that when drug-treated groups compared to control groups, RANKL gene expression significantly decreased, TRAP+ cells decreased on day 7. The RANKL/OPG ratios in the first two weeks in the test groups were significantly lower than the control group. There was no significant difference in the studied indices between DOX and EM groups. Conclusion: Following administration of DOX and EM, the number of osteoclasts and RANKL/OPG ratio decreased suggesting their anti-osteoclastogenesis activity. These two drugs have no advantage over each other in increasing the bone formation.
Collapse
Affiliation(s)
- Narges Naghsh
- Department of Periodontology, Dental Implants Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sayed Mohammad Razavi
- Department of Oral and Maxillofacial Pathology, Dental Implants Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Shahabooei
- Department of Periodontology, Dental Implants Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Birang
- Department of Periodontology, Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parichehr Behfarnia
- Department of Periodontology, Dental Implants Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samira Hajisadeghi
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
39
|
Krumpel M, Reithmeier A, Senge T, Baeumler TA, Frank M, Nyholm PG, Ek-Rylander B, Andersson G. The small chemical enzyme inhibitor 5-phenylnicotinic acid/CD13 inhibits cell migration and invasion of tartrate-resistant acid phosphatase/ACP5-overexpressing MDA-MB-231 breast cancer cells. Exp Cell Res 2015; 339:154-62. [PMID: 26428664 DOI: 10.1016/j.yexcr.2015.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/22/2015] [Accepted: 09/26/2015] [Indexed: 01/17/2023]
Abstract
Tartrate-resistant acid phosphatase (TRAP/ACP5/uteroferrin/purple acid phosphatase/PP5) has received considerable attention as a newly discovered proinvasion metastasis driver associated with different malignancies. This renders TRAP an interesting target for novel anti-cancer therapy approaches. TRAP exists as two isoforms, 5a and 5b, where the 5a isoform represents an enzymatically less active monomeric precursor to the more enzymatically active 5b isoform generated by proteolytic excision of a repressive loop domain. Recently, three novel lead compounds were identified by fragment-based screening and demonstrated to be efficient TRAP enzyme inhibitors in vitro. We conclude that one of the three compounds i.e. 5-phenylnicotinic acid (CD13) was efficient as a TRAP inhibitor with Kic values in the low micromolar range towards the TRAP 5b isoform, but was not able to inhibit the TRAP 5a isoform. Structure-based docking revealed similar interactions of CD13 with the active site in both TRAP isoforms. In stably TRAP-overexpressing MDA-MB-231 breast cancer cells, CD13 inhibited intracellular TRAP activity and showed no cytotoxicity at 200 µM. Furthermore, CD13 selectively blocked the TRAP 5b isoform compared to the TRAP 5a in cultured cells, indicating the usefulness of CD13 for assessing the different biological functions of the two TRAP isoforms 5a and 5b in cell systems. Moreover, inhibition of cell migration and invasion of stably TRAP-overexpressing MDA-MB-231 by CD13 was observed. These data establish a proof of principle that a small chemical inhibitor of the TRAP enzyme can block TRAP-dependent functions in cancer cells.
Collapse
Affiliation(s)
- Michael Krumpel
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Anja Reithmeier
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Teresa Senge
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Toni Andreas Baeumler
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Martin Frank
- Biognos AB, PO Box 8963, SE-402 74 Gothenburg, Sweden.
| | | | - Barbro Ek-Rylander
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Göran Andersson
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
40
|
Kauschke V, Kneffel M, Floel W, Hartmann S, Kampschulte M, Dürselen L, Ignatius A, Schnettler R, Heiss C, Lips KS. Bone status of acetylcholinesterase-knockout mice. Int Immunopharmacol 2015; 29:222-30. [PMID: 26250336 DOI: 10.1016/j.intimp.2015.07.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 12/19/2022]
Abstract
Acetylcholinesterase (AChE) hydrolyzes acetylcholine (ACh) to acetate and choline and thereby terminates nerve impulse transmission. ACh is also expressed in bone tissue and enhances here proliferation and differentiation of osteoblasts, which makes it interesting to investigate effects of AChE deficiency on bone. To our knowledge, this is the first study that analyzed bone of heterozygous acetylcholinesterase-knockout (AChE-KO) mice. Tibia, femur, thoracic and lumbar vertebrae of 16-week-old female heterozygous AChE-KO mice and their corresponding wildtypes (WT) were analyzed using real-time RT-PCR, dual-energy X-ray absorptiometry, biomechanics, micro-computed tomography, histology and histomorphometry. Our data revealed that heterozygous AChE-KO did not cause negative effects upon bone parameters analyzed. In contrast, the number of osteoclasts per perimeter was significantly reduced in lumbar vertebrae. In addition, we found a significant decrease in trabecular perimeter of lumbar vertebrae and cortical area fraction (Ct.Ar/Tt.Ar) in the mid-diaphysis of femurs of AChE-KO mice compared to their WT. Therefore, presumably a local homozygous knockout of AChE or AChE-inhibitor administration might be beneficial for bone formation due to ACh accumulation. However, many other bone parameters analyzed did not differ statistically significantly between AChE-KO and WT mice. That might be reasoned by the compensating effect of butyrylcholinesterase (BChE).
Collapse
Affiliation(s)
- Vivien Kauschke
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University Giessen, Schubertstr. 81, 35392 Giessen, Germany.
| | - Mathias Kneffel
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Wolfgang Floel
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Sonja Hartmann
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Marian Kampschulte
- Department of Radiology, University Hospital of Giessen-Marburg, Klinikstr. 33, 35392 Giessen, Germany
| | - Lutz Dürselen
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Medical Faculty, Helmholtzstr. 14, 89081 Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Medical Faculty, Helmholtzstr. 14, 89081 Ulm, Germany
| | - Reinhard Schnettler
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University Giessen, Schubertstr. 81, 35392 Giessen, Germany; Department of Trauma Surgery, University Hospital of Giessen-Marburg, Rudolph-Buchheimstr. 7, 35392 Giessen, Germany
| | - Christian Heiss
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University Giessen, Schubertstr. 81, 35392 Giessen, Germany; Department of Trauma Surgery, University Hospital of Giessen-Marburg, Rudolph-Buchheimstr. 7, 35392 Giessen, Germany
| | - Katrin Susanne Lips
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University Giessen, Schubertstr. 81, 35392 Giessen, Germany
| |
Collapse
|
41
|
Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:421746. [PMID: 26247020 PMCID: PMC4515490 DOI: 10.1155/2015/421746] [Citation(s) in RCA: 946] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023]
Abstract
Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.
Collapse
|
42
|
Witwicka H, Jia H, Kutikov A, Reyes-Gutierrez P, Li X, Odgren PR. TRAFD1 (FLN29) Interacts with Plekhm1 and Regulates Osteoclast Acidification and Resorption. PLoS One 2015; 10:e0127537. [PMID: 25992615 PMCID: PMC4438057 DOI: 10.1371/journal.pone.0127537] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023] Open
Abstract
Plekhm1 is a large, multi-modular, adapter protein implicated in osteoclast vesicle trafficking and bone resorption. In patients, inactivating mutations cause osteopetrosis, and gain-of-function mutations cause osteopenia. Investigations of potential Plekhm1 interaction partners by mass spectrometry identified TRAFD1 (FLN29), a protein previously shown to suppress toll-like receptor signaling in monocytes/macrophages, thereby dampening inflammatory responses to innate immunity. We mapped the binding domains to the TRAFD1 zinc finger (aa 37-60), and to the region of Plekhm1 between its second pleckstrin homology domain and its C1 domain (aa 784-986). RANKL slightly increased TRAFD1 levels, particularly in primary osteoclasts, and the co-localization of TRAFD1 with Plekhm1 also increased with RANKL treatment. Stable knockdown of TRAFD1 in RAW 264.7 cells inhibited resorption activity proportionally to the degree of knockdown, and inhibited acidification. The lack of acidification occurred despite the presence of osteoclast acidification factors including carbonic anhydrase II, a3-V-ATPase, and the ClC7 chloride channel. Secretion of TRAP and cathepsin K were also markedly inhibited in knockdown cells. Truncated Plekhm1 in ia/ia osteopetrotic rat cells prevented vesicle localization of Plekhm1 and TRAFD1. We conclude that TRAFD1, in association with Plekhm1/Rab7-positive late endosomes-early lysosomes, has a previously unknown role in vesicle trafficking, acidification, and resorption in osteoclasts.
Collapse
Affiliation(s)
- Hanna Witwicka
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655 United States of America
| | - Hong Jia
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655 United States of America
| | - Artem Kutikov
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655 United States of America
| | - Pablo Reyes-Gutierrez
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655 United States of America
| | - Xiangdong Li
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655 United States of America
| | - Paul R. Odgren
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655 United States of America
- * E-mail:
| |
Collapse
|
43
|
The antidepressant bupropion exerts alleviating properties in an ovariectomized osteoporotic rat model. Acta Pharmacol Sin 2015; 36:209-20. [PMID: 25544359 DOI: 10.1038/aps.2014.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/20/2014] [Indexed: 02/06/2023] Open
Abstract
AIM Depression is a risk factor for impaired bone mass and micro-architecture, but several antidepressants were found to increase the incidence of osteoporotic fractures. In the present study we used ovariectomized (OVX) rats as a model of osteoporosis to investigate the effects of the antidepressant bupropion on the femoral bones. METHODS OVX animals were treated with bupropion (30, 60 mg·kg(-1)·d(-1)) for six weeks. Bone turnover biomarkers (urinary DPD/Cr ratio, serum BALP, OC, TRAcP 5b, CTX and sRANKL levels) and inflammatory cytokines (TNF-α, IL-1β and IL-6) were determined using ELISA. Inductively coupled plasma mass spectroscopy (ICP-MS) was used to determine the femoral bone mineral concentrations. The cortical and trabecular morphometric parameters of femoral bones were determined using micro-CT scan and histopathology. RESULTS In OVX rats, the levels of bone turnover biomarkers and inflammatory cytokines were significantly elevated and femoral bone Ca(2+) and PO4(3-) concentrations were significantly reduced. Moreover, cortical and trabecular morphometric parameters and histopathology of femoral bones were severely altered by ovariectomy. Bupropion dose-dependently inhibited the increases in bone turnover biomarkers and inflammatory cytokines. OVX rats treated with the high dose of bupropion showed normal mineral concentrations in femoral bones. The altered morphometric parameters and histopathology of femoral bones were markedly attenuated by the treatment. CONCLUSION Bupropion exerts osteo-protective action in OVX rats through suppressing osteoclastogenesis-inducing factors and inflammation, which stabilize the osteoclasts and decrease bone matrix degradation or resorption.
Collapse
|
44
|
Patlaka C, Mai HA, Lång P, Andersson G. The growth factor-like adipokine tartrate-resistant acid phosphatase 5a interacts with the rod G3 domain of adipocyte-produced nidogen-2. Biochem Biophys Res Commun 2014; 454:446-52. [PMID: 25450682 DOI: 10.1016/j.bbrc.2014.10.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 12/28/2022]
Abstract
The adipokine tartrate resistant acid phosphatase (TRAP) 5a isoform exerts a growth factor-effect on pre-adipocytes. This study aimed to identify potential TRAP 5a interacting proteins in pre-adipocytes using pull down assays in combination with mass spectrometry. Nidogen-2, a protein shown to be expressed intracellularly and for secretion by pre-adipocytes, was shown to interact, through its globular G3 domain, with TRAP 5a in vitro. In vivo, TRAP 5a interacted with nidogen-2 in cultured 3T3-L1 mouse pre-adipocytes, as well as with transforming growth factor-β (TGF-β) interacting protein (TRIP-1), which is a protein that has previously been suggested to interact with TRAP in bone. In addition, TRAP 5a and nidogen-2 co-localized in adipose tissue cells in situ. These results indicate that TRAP 5a interacts with nidogen-2 and TRIP-1 in pre-adipocytic cells.
Collapse
Affiliation(s)
- Christina Patlaka
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Hong Anh Mai
- Linköping University, Institute of Technology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden.
| | - Pernilla Lång
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Göran Andersson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
45
|
Zhuo Y, Gauthier JY, Black WC, Percival MD, Duong LT. Inhibition of bone resorption by the cathepsin K inhibitor odanacatib is fully reversible. Bone 2014; 67:269-80. [PMID: 25038310 DOI: 10.1016/j.bone.2014.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/10/2014] [Accepted: 07/08/2014] [Indexed: 12/22/2022]
Abstract
The cathepsin K (CatK) inhibitor odanacatib (ODN) is currently being developed for the treatment of osteoporosis. In clinical trials, efficacy and resolution of effect of ODN treatment on bone turnover biomarkers and accrued bone mass have been demonstrated. Here, we examine the effects of continuing treatment and discontinuation of ODN versus alendronate (ALN) on osteoclast (OC) function. First, accessibility and reversible engagement of active CatK in intracellular vesicles and resorption lacunae of actively resorbing OCs were demonstrated by the selective and reversible CatK inhibitors, BODIPY-L-226 (IC50=39nM) and L-873,724 (IC50=0.5nM). Next, mature human OCs on bone slices were treated with vehicle, ODN, or ALN for 2days, followed by either continuing with the same treatment, or replacement of the inhibitors by vehicle for additional times as specified per experimental conditions. Maintaining OCs on ODN or ALN significantly reduced CTx-I release compared to vehicle controls. However, only the treatment of OCs with ODN resulted in the formation of small shallow discrete resorption pits, retention of intracellular vesicles enriched with CatK and other lysosomal enzymes, increase in 1-CTP release and number of TRAP(+) OCs. Upon discontinuation of ODN treatment, OCs rapidly resumed bone resorption activity, as demonstrated by a return of OC functional markers (CTx-I, 1-CTP), cell number and size, morphology and number of resorption pits, and vesicular secretion of CatK toward the respective vehicle levels. As expected, discontinuation of ALN did not reverse the treatment-related inhibition of OC activity in the time frame of the experiment. In summary, this study demonstrated rapid kinetics of inhibition and reversibility of the effects of ODN on OC bone resorption, that differentiated the cellular mechanism of CatK inhibition from that of the bisphosphate antiresorptive ALN.
Collapse
Affiliation(s)
- Y Zhuo
- Department of Bone Biology, Merck Research Laboratories, West Point, PA, USA.
| | - J-Y Gauthier
- Pharmascience, 6111 Avenue Royalmount, suite100, Montréal, QC H4P 2T4, Canada.
| | - W C Black
- Kaneq Pharma Inc., 110 Churchill, Baie d'Urfé, QC H9X 2Y6, Canada.
| | - M D Percival
- Inception Sciences Canada Inc., 887 Great Northern Way, Vancouver, BC V5T4T5, Canada.
| | - L T Duong
- Department of Bone Biology, Merck Research Laboratories, West Point, PA, USA.
| |
Collapse
|
46
|
Rafayelyan S, Meyer P, Radlanski RJ, Minden K, Jost-Brinkmann PG, Präger TM. Effect of methotrexate upon antigen-induced arthritis of the rabbit temporomandibular joint. J Oral Pathol Med 2014; 44:614-21. [PMID: 25243828 DOI: 10.1111/jop.12265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) of the temporomandibular joint (TMJ) can cause severe growth disturbances of the craniomandibular system. Antigen-induced arthritis (AIA) of the rabbit TMJ is simulating the inflammatory process of the TMJ in JIA. The aim of this study was to investigate the effect of a systemic administration of methotrexate (MTX) on AIA in rabbits by means of three different histological staining methods. METHODS After sensitization, a bilateral arthritis of the TMJ was induced by an intra-articular administration of ovalbumin in 12 New Zealand white rabbits aged 10 weeks. From the 13th week of age, six of the 12 rabbits received weekly intramuscular injections of MTX, and the other six animals remained without therapy. Another six animals served as controls, receiving no treatment or intra-articular injections at all. After euthanasia at the age of 22 weeks, all TMJs were retrieved en bloc. Sagittal sections were cut and stained with haematoxylin-eosin (H-E), Safranin-O for the evaluation of the Mankin score and tartrate-resistant acid phosphatase (TRAP). RESULTS In the arthritis group, a chronic inflammation with degeneration of the articular cartilage was visible. In the MTX group, the signs of cartilage degeneration were significantly reduced compared with the arthritis group. In contrast, the joints in the control group were inconspicuous. A correlation between the Mankin score and TRAP-positive cells could be found. CONCLUSIONS Systemic administration of MTX seems to have a positive effect upon the inflammatory process in the rabbit TMJ but fails to eliminate the sign of arthritis completely.
Collapse
Affiliation(s)
- Smbat Rafayelyan
- Department of Orthodontics, Dentofacial Orthopedics and Pedodontics, Center for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Meyer
- Department of Orthodontics, Dentofacial Orthopedics and Pedodontics, Center for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf J Radlanski
- Department of Oral Structural Biology, Center for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kirsten Minden
- German Rheumatism Research Centre Berlin, Berlin, Germany
| | - Paul-Georg Jost-Brinkmann
- Department of Orthodontics, Dentofacial Orthopedics and Pedodontics, Center for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas M Präger
- Department of Orthodontics, Dentofacial Orthopedics and Pedodontics, Center for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
47
|
Rossi F, Perrotta S, Bellini G, Luongo L, Tortora C, Siniscalco D, Francese M, Torella M, Nobili B, Di Marzo V, Maione S. Iron overload causes osteoporosis in thalassemia major patients through interaction with transient receptor potential vanilloid type 1 (TRPV1) channels. Haematologica 2014; 99:1876-84. [PMID: 25216685 DOI: 10.3324/haematol.2014.104463] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The pathogenesis of bone resorption in β-thalassemia major is multifactorial and our understanding of the underlying molecular and cellular mechanisms remains incomplete. Considering the emerging importance of the endocannabinoid/endovanilloid system in bone metabolism, it may be instructive to examine a potential role for this system in the development of osteoporosis in patients with β-thalassemia major and its relationship with iron overload and iron chelation therapy. This study demonstrates that, in thalassemic-derived osteoclasts, tartrate-resistant acid phosphatase expression inversely correlates with femoral and lumbar bone mineral density, and directly correlates with ferritin levels and liver iron concentration. The vanilloid agonist resiniferatoxin dramatically reduces cathepsin K levels and osteoclast numbers in vitro, without affecting tartrate-resistant acid phosphatase expression. The iron chelators deferoxamine, deferiprone and deferasirox decrease both tartrate-resistant acid phosphatase and cathepsin K expression, as well as osteoclast activity. Taken together, these data show that transient receptor potential vanilloid type 1 activation/desensitization influences tartrate-resistant acid phosphatase expression and activity, and this effect is dependent on iron, suggesting a pivotal role for iron overload in the dysregulation of bone metabolism in patients with thalassemia major. Our applied pharmacology provides evidence for the potential of iron chelators to abrogate these effects by reducing osteoclast activity. Whether iron chelation therapy is capable of restoring bone health in humans requires further study, but the potential to provide dual benefits for patients with β-thalassemia major -preventing iron-overload and alleviating associated osteoporotic changes - is exciting.
Collapse
Affiliation(s)
- Francesca Rossi
- Department of Woman, Child and of General and Specialist Surgery, Second University of Naples
| | - Silverio Perrotta
- Department of Woman, Child and of General and Specialist Surgery, Second University of Naples;
| | - Giulia Bellini
- Department of Experimental Medicine, Second University of Naples
| | - Livio Luongo
- Department of Experimental Medicine, Second University of Naples
| | - Chiara Tortora
- Department of Woman, Child and of General and Specialist Surgery, Second University of Naples; Department of Experimental Medicine, Second University of Naples
| | - Dario Siniscalco
- Department of Experimental Medicine, Second University of Naples
| | - Matteo Francese
- Department of Woman, Child and of General and Specialist Surgery, Second University of Naples
| | - Marco Torella
- Department of Woman, Child and of General and Specialist Surgery, Second University of Naples
| | - Bruno Nobili
- Department of Woman, Child and of General and Specialist Surgery, Second University of Naples
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry and Institute of Cybernetics, National Research Council, Pozzuoli; and The Endocannabinoid Research Group, Pozzuoli, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Second University of Naples; The Endocannabinoid Research Group, Pozzuoli, Italy
| |
Collapse
|
48
|
Kowalewski B, Lübke T, Kollmann K, Braulke T, Reinheckel T, Dierks T, Damme M. Molecular characterization of arylsulfatase G: expression, processing, glycosylation, transport, and activity. J Biol Chem 2014; 289:27992-8005. [PMID: 25135642 DOI: 10.1074/jbc.m114.584144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Arylsulfatase G (ARSG) is a recently identified lysosomal sulfatase that was shown to be responsible for the degradation of 3-O-sulfated N-sulfoglucosamine residues of heparan sulfate glycosaminoglycans. Deficiency of ARSG leads to a new type of mucopolysaccharidosis, as described in a mouse model. Here, we provide a detailed molecular characterization of the endogenous murine enzyme. ARSG is expressed and proteolytically processed in a tissue-specific manner. The 63-kDa single-chain precursor protein localizes to pre-lysosomal compartments and tightly associates with organelle membranes, most likely the endoplasmic reticulum. In contrast, proteolytically processed ARSG fragments of 34-, 18-, and 10-kDa were found in lysosomal fractions and lost their membrane association. The processing sites and a disulfide bridge between the 18- and 10-kDa chains could be roughly mapped. Proteases participating in the processing were identified as cathepsins B and L. Proteolytic processing is dispensable for hydrolytic sulfatase activity in vitro. Lysosomal transport of ARSG in the liver is independent of mannose 6-phosphate, sortilin, and Limp2. However, mutation of glycosylation site N-497 abrogates transport of ARSG to lysosomes in human fibrosarcoma cells, due to impaired mannose 6-phosphate modification.
Collapse
Affiliation(s)
- Björn Kowalewski
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld
| | - Torben Lübke
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld
| | - Katrin Kollmann
- the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg 20246, and
| | - Thomas Braulke
- the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg 20246, and
| | - Thomas Reinheckel
- the Institute of Molecular Medicine and Cell Research and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Thomas Dierks
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld,
| | - Markus Damme
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld,
| |
Collapse
|
49
|
Rafayelyan S, Radlanski RJ, Minden K, Pischon N, Jost-Brinkmann PG, Präger TM. Histomorphometry in antigen-induced arthritis of the rabbit temporomandibular joint. J Oral Pathol Med 2014; 44:67-74. [PMID: 24935724 DOI: 10.1111/jop.12201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) of the temporomandibular joint (TMJ) can cause severe growth disturbances of the craniomandibular system. Antigen-induced arthritis (AIA) of the rabbit TMJ is simulating the inflammatory process of the TMJ in JIA. The aim of this study was to investigate the effect of a systemic administration of the tumor necrosis factor-alpha (TNF-α) antagonist etanercept on AIA in rabbits by means of three different histological staining methods. METHODS After sensitization, a bilateral arthritis of the TMJ was induced and maintained by repeated intra-articular administrations of ovalbumin in 12 New Zealand white rabbits aged 10 weeks. From the 13th week of age, 6 of the 12 rabbits received weekly subcutaneous injections of etanercept, and the other 6 animals remained without therapy. Another 6 animals served as controls, receiving no treatment or intra-articular injections at all. After euthanasia at the age of 22 weeks, all TMJs were retrieved en bloc. Sagittal sections were cut and stained with hematoxylin-eosin (H-E), Safranin-O for the evaluation of the Mankin score, and tartrate-resistant acid phosphatase (TRAP). RESULTS In the arthritis group, a chronic inflammation with degeneration of the articular cartilage was visible. In the etanercept group, the signs of cartilage degeneration were significantly reduced but present. In contrast, the joints in the control group were inconspicuous. A strong correlation between the Mankin score and TRAP-positive cells could be found. CONCLUSIONS Antigen-induced arthritis causes severe damage in the TMJ of young rabbits. An improvement seems to be achievable by a systemic administration of etanercept.
Collapse
Affiliation(s)
- S Rafayelyan
- Department of Orthodontics, Dentofacial Orthopedics and Pedodontics, Center for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Apschner A, Huitema LFA, Ponsioen B, Peterson-Maduro J, Schulte-Merker S. Zebrafish enpp1 mutants exhibit pathological mineralization, mimicking features of generalized arterial calcification of infancy (GACI) and pseudoxanthoma elasticum (PXE). Dis Model Mech 2014; 7:811-22. [PMID: 24906371 PMCID: PMC4073271 DOI: 10.1242/dmm.015693] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years it has become clear that, mechanistically, biomineralization is a process that has to be actively inhibited as a default state. This inhibition must be released in a rigidly controlled manner in order for mineralization to occur in skeletal elements and teeth. A central aspect of this concept is the tightly controlled balance between phosphate, a constituent of the biomineral hydroxyapatite, and pyrophosphate, a physiochemical inhibitor of mineralization. Here, we provide a detailed analysis of a zebrafish mutant, dragonfish (dgf), which is mutant for ectonucleoside pyrophosphatase/phosphodiesterase 1 (Enpp1), a protein that is crucial for supplying extracellular pyrophosphate. Generalized arterial calcification of infancy (GACI) is a fatal human disease, and the majority of cases are thought to be caused by mutations in ENPP1. Furthermore, some cases of pseudoxanthoma elasticum (PXE) have recently been linked to ENPP1. Similar to humans, we show here that zebrafish enpp1 mutants can develop ectopic calcifications in a variety of soft tissues - most notably in the skin, cartilage elements, the heart, intracranial space and the notochord sheet. Using transgenic reporter lines, we demonstrate that ectopic mineralizations in these tissues occur independently of the expression of typical osteoblast or cartilage markers. Intriguingly, we detect cells expressing the osteoclast markers Trap and CathepsinK at sites of ectopic calcification at time points when osteoclasts are not yet present in wild-type siblings. Treatment with the bisphosphonate etidronate rescues aspects of the dgf phenotype, and we detected deregulated expression of genes that are involved in phosphate homeostasis and mineralization, such as fgf23, npt2a, entpd5 and spp1 (also known as osteopontin). Employing a UAS-GalFF approach, we show that forced expression of enpp1 in blood vessels or the floorplate of mutant embryos is sufficient to rescue the notochord mineralization phenotype. This indicates that enpp1 can exert its function in tissues that are remote from its site of expression.
Collapse
Affiliation(s)
- Alexander Apschner
- Hubrecht Institute - KNAW & UMC Utrecht, 3548CT Utrecht, The Netherlands
| | - Leonie F A Huitema
- Hubrecht Institute - KNAW & UMC Utrecht, 3548CT Utrecht, The Netherlands
| | - Bas Ponsioen
- Hubrecht Institute - KNAW & UMC Utrecht, 3548CT Utrecht, The Netherlands
| | | | - Stefan Schulte-Merker
- Hubrecht Institute - KNAW & UMC Utrecht, 3548CT Utrecht, The Netherlands. WUR, Experimental Zoology, 3700AH Wageningen, The Netherlands. Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, University of Münster, 48149 Münster, Germany.
| |
Collapse
|