1
|
Smith SS. The bisulfite reaction with cytosine and genomic DNA structure. Anal Biochem 2024; 691:115532. [PMID: 38609028 DOI: 10.1016/j.ab.2024.115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
The bisulfite reaction with native DNA has been extensively employed in the detection of non-B DNA structures that can form spontaneously in DNA. These sequences are dynamic in that they can adopt both normal Watson-Crick paired B-DNA or unusual structures like the Triplex, G-Quadruplex, i-motif and Cruciform or Hairpin. Considerable evidence now suggests that these dynamic sequences play roles in both epigenetics and mutagenesis. The bisulfite reaction with native DNA offers a key approach to their detection. In this application whole cells, isolated nuclei or isolated DNA are treated with bisulfite under non-denaturing conditions in order to detect bisulfite accessible regions DNA that are associated with these structures. Here I review the stereochemistry of the bisulfite reaction, the electronic structure of its DNA cytosine substrates and its application in the detection of unusual structures in native DNA.
Collapse
Affiliation(s)
- Steven S Smith
- Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| |
Collapse
|
2
|
Peixoto ML, Madan E. Unraveling the complexity: Advanced methods in analyzing DNA, RNA, and protein interactions. Adv Cancer Res 2024; 163:251-302. [PMID: 39271265 DOI: 10.1016/bs.acr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Exploring the intricate interplay within and between nucleic acids, as well as their interactions with proteins, holds pivotal significance in unraveling the molecular complexities steering cancer initiation and progression. To investigate these interactions, a diverse array of highly specific and sensitive molecular techniques has been developed. The selection of a particular technique depends on the specific nature of the interactions. Typically, researchers employ an amalgamation of these different techniques to obtain a comprehensive and holistic understanding of inter- and intramolecular interactions involving DNA-DNA, RNA-RNA, DNA-RNA, or protein-DNA/RNA. Examining nucleic acid conformation reveals alternative secondary structures beyond conventional ones that have implications for cancer pathways. Mutational hotspots in cancer often lie within sequences prone to adopting these alternative structures, highlighting the importance of investigating intra-genomic and intra-transcriptomic interactions, especially in the context of mutations, to deepen our understanding of oncology. Beyond these intramolecular interactions, the interplay between DNA and RNA leads to formations like DNA:RNA hybrids (known as R-loops) or even DNA:DNA:RNA triplex structures, both influencing biological processes that ultimately impact cancer. Protein-nucleic acid interactions are intrinsic cellular phenomena crucial in both normal and pathological conditions. In particular, genetic mutations or single amino acid variations can alter a protein's structure, function, and binding affinity, thus influencing cancer progression. It is thus, imperative to understand the differences between wild-type (WT) and mutated (MT) genes, transcripts, and proteins. The review aims to summarize the frequently employed methods and techniques for investigating interactions involving nucleic acids and proteins, highlighting recent advancements and diverse adaptations of each technique.
Collapse
Affiliation(s)
- Maria Leonor Peixoto
- Champalimaud Center for the Unknown, Lisbon, Portugal; Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Esha Madan
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
3
|
Duardo RC, Guerra F, Pepe S, Capranico G. Non-B DNA structures as a booster of genome instability. Biochimie 2023; 214:176-192. [PMID: 37429410 DOI: 10.1016/j.biochi.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Non-canonical secondary structures (NCSs) are alternative nucleic acid structures that differ from the canonical B-DNA conformation. NCSs often occur in repetitive DNA sequences and can adopt different conformations depending on the sequence. The majority of these structures form in the context of physiological processes, such as transcription-associated R-loops, G4s, as well as hairpins and slipped-strand DNA, whose formation can be dependent on DNA replication. It is therefore not surprising that NCSs play important roles in the regulation of key biological processes. In the last years, increasing published data have supported their biological role thanks to genome-wide studies and the development of bioinformatic prediction tools. Data have also highlighted the pathological role of these secondary structures. Indeed, the alteration or stabilization of NCSs can cause the impairment of transcription and DNA replication, modification in chromatin structure and DNA damage. These events lead to a wide range of recombination events, deletions, mutations and chromosomal aberrations, well-known hallmarks of genome instability which are strongly associated with human diseases. In this review, we summarize molecular processes through which NCSs trigger genome instability, with a focus on G-quadruplex, i-motif, R-loop, Z-DNA, hairpin, cruciform and multi-stranded structures known as triplexes.
Collapse
Affiliation(s)
- Renée C Duardo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Federico Guerra
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Simona Pepe
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
4
|
Rider SD, Damewood FJ, Gadgil RY, Hitch DC, Alhawach V, Shrestha R, Shanahan M, Zavada N, Leffak M. Suppressors of Break-Induced Replication in Human Cells. Genes (Basel) 2023; 14:genes14020398. [PMID: 36833325 PMCID: PMC9956954 DOI: 10.3390/genes14020398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Short tandem DNA repeats are drivers of genome instability. To identify suppressors of break-induced mutagenesis human cells, unbiased genetic screens were conducted using a lentiviral shRNA library. The recipient cells possessed fragile non-B DNA that could induce DNA double-strand breaks (DSBs), integrated at an ectopic chromosomal site adjacent to a thymidine kinase marker gene. Mutagenesis of the thymidine kinase gene rendered cells resistant to the nucleoside analog ganciclovir (GCV). The screen identified genes that have established roles in DNA replication and repair, chromatin modification, responses to ionizing radiation, and genes encoding proteins enriched at replication forks. Novel loci implicated in BIR included olfactory receptors, the G0S2 oncogene/tumor suppressor axis, the EIF3H-METTL3 translational regulator, and the SUDS3 subunit of the Sin3A corepressor. Consistent with a role in suppressing BIR, siRNA knockdown of selected candidates increased the frequency of the GCVr phenotype and increased DNA rearrangements near the ectopic non-B DNA. Inverse PCR and DNA sequence analyses showed that hits identified in the screen increased genome instability. Further analysis quantitated repeat-induced hypermutagenesis at the ectopic site and showed that knockdown of a primary hit, COPS2, induced mutagenic hotspots, remodeled the replication fork, and increased nonallelic chromosome template switches.
Collapse
|
5
|
Dahal S, Siddiqua H, Sharma S, Babu RK, Rathore D, Sharma S, Raghavan SC. Unleashing a novel function of Endonuclease G in mitochondrial genome instability. eLife 2022; 11:e69916. [PMID: 36394256 PMCID: PMC9711528 DOI: 10.7554/elife.69916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
Having its genome makes the mitochondrion a unique and semiautonomous organelle within cells. Mammalian mitochondrial DNA (mtDNA) is a double-stranded closed circular molecule of about 16 kb coding for 37 genes. Mutations, including deletions in the mitochondrial genome, can culminate in different human diseases. Mapping the deletion junctions suggests that the breakpoints are generally seen at hotspots. '9 bp deletion' (8271-8281), seen in the intergenic region of cytochrome c oxidase II/tRNALys, is the most common mitochondrial deletion. While it is associated with several diseases like myopathy, dystonia, and hepatocellular carcinoma, it has also been used as an evolutionary marker. However, the mechanism responsible for its fragility is unclear. In the current study, we show that Endonuclease G, a mitochondrial nuclease responsible for nonspecific cleavage of nuclear DNA during apoptosis, can induce breaks at sequences associated with '9 bp deletion' when it is present on a plasmid or in the mitochondrial genome. Through a series of in vitro and intracellular studies, we show that Endonuclease G binds to G-quadruplex structures formed at the hotspot and induces DNA breaks. Therefore, we uncover a new role for Endonuclease G in generating mtDNA deletions, which depends on the formation of G4 DNA within the mitochondrial genome. In summary, we identify a novel property of Endonuclease G, besides its role in apoptosis and the recently described 'elimination of paternal mitochondria during fertilisation.
Collapse
Affiliation(s)
- Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Humaira Siddiqua
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Ravi K Babu
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Diksha Rathore
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Sheetal Sharma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| |
Collapse
|
6
|
Bansal A, Kaushik S, Kukreti S. Non-canonical DNA structures: Diversity and disease association. Front Genet 2022; 13:959258. [PMID: 36134025 PMCID: PMC9483843 DOI: 10.3389/fgene.2022.959258] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
A complete understanding of DNA double-helical structure discovered by James Watson and Francis Crick in 1953, unveil the importance and significance of DNA. For the last seven decades, this has been a leading light in the course of the development of modern biology and biomedical science. Apart from the predominant B-form, experimental shreds of evidence have revealed the existence of a sequence-dependent structural diversity, unusual non-canonical structures like hairpin, cruciform, Z-DNA, multistranded structures such as DNA triplex, G-quadruplex, i-motif forms, etc. The diversity in the DNA structure depends on various factors such as base sequence, ions, superhelical stress, and ligands. In response to these various factors, the polymorphism of DNA regulates various genes via different processes like replication, transcription, translation, and recombination. However, altered levels of gene expression are associated with many human genetic diseases including neurological disorders and cancer. These non-B-DNA structures are expected to play a key role in determining genetic stability, DNA damage and repair etc. The present review is a modest attempt to summarize the available literature, illustrating the occurrence of non-canonical structures at the molecular level in response to the environment and interaction with ligands and proteins. This would provide an insight to understand the biological functions of these unusual DNA structures and their recognition as potential therapeutic targets for diverse genetic diseases.
Collapse
Affiliation(s)
- Aparna Bansal
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Shikha Kaushik
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Rajdhani College, University of Delhi, New Delhi, India
| | - Shrikant Kukreti
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- *Correspondence: Shrikant Kukreti,
| |
Collapse
|
7
|
Ray U, Sharma S, Kapoor I, Kumari S, Gopalakrishnan V, Vartak SV, Kumari N, Varshney U, Raghavan SC. G4 DNA present at human telomeric DNA contributes toward reduced sensitivity to γ-radiation induced oxidative damage, but not bulky adduct formation. Int J Radiat Biol 2021; 97:1166-1180. [PMID: 34259614 DOI: 10.1080/09553002.2021.1955997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE DNA, the hereditary material of a human cell generally exists as Watson-Crick base paired double-stranded B-DNA. Studies suggest that DNA can also exist in non-B forms, such as four stranded G-quadruplexes (G4 DNA). Recently, our studies revealed that the regions of DNA that can fold into G-quadruplex structures are less sensitive to ionizing radiation (IR) compared to B-DNA. Importantly, we reported that the planar G-quartet of a G4 structure is shielded from radiation induced DNA breaks, while the single- and double-stranded DNA regions remained susceptible. Thus, in the present study, we investigate whether telomeric repeat DNA present at the end of telomere, known to fold into G4 DNA can protect from radiation induced damages including strand breaks, oxidation of purines and bulky adduct formation on DNA. MATERIALS AND METHODS For plasmid irradiation assay, plasmids containing human telomeric repeat DNA sequence TTAGGG (0.8 kb or 1.8 kb) were irradiated with increasing doses of IR along with appropriate control plasmids and products were resolved on 1% agarose gel. Radioprotection was evaluated based on extent of conversion of supercoiled to nicked or linear forms of the DNA following irradiation. Formation of G-quadruplex structure on supercoiled DNA was evaluated based on circular dichroism (CD) spectroscopy studies. Cleavage of radiation induced oxidative damage and extent of formation of nicks was further evaluated using base and nucleotide excision repair proteins. RESULTS Results from CD studies showed that the plasmid DNA harboring human telomeric repeats (TTAGGG) can fold into G-quadruplex DNA structures. Further, results showed that human telomeric repeat sequence when present on a plasmid can protect the plasmid DNA against IR induced DNA strand breaks, unlike control plasmids bearing random DNA sequence. CONCLUSIONS Human telomeric repeat sequence when present on plasmids can fold into G-quadruplex DNA structures, and can protect the DNA against IR induced DNA strand breaks and oxidative damage. These results in conjunction with our previous studies suggest that telomeric repeat sequence imparts less sensitivity to IR and thus telomeres of chromosomes are protected from radiation.
Collapse
Affiliation(s)
- Ujjayinee Ray
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Indu Kapoor
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Susmita Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
- Department of Zoology, St. Joseph's College, Irinjalakuda, India
| | - Supriya V Vartak
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
8
|
Pandya N, Bhagwat SR, Kumar A. Regulatory role of Non-canonical DNA Polymorphisms in human genome and their relevance in Cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188594. [PMID: 34303788 DOI: 10.1016/j.bbcan.2021.188594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
DNA has the ability to form polymorphic structures like canonical duplex DNA and non-canonical triplex DNA, Cruciform, Z-DNA, G-quadruplex (G4), i-motifs, and hairpin structures. The alteration in the form of DNA polymorphism in the response to environmental changes influences the gene expression. Non-canonical structures are engaged in various biological functions, including chromatin epigenetic and gene expression regulation via transcription and translation, as well as DNA repair and recombination. The presence of non-canonical structures in the regulatory region of the gene alters the gene expression and affects the cellular machinery. Formation of non-canonical structure in the regulatory site of cancer-related genes either inhibits or dysregulate the gene function and promote tumour formation. In the current article, we review the influence of non-canonical structure on the regulatory mechanisms in human genome. Moreover, we have also discussed the relevance of non-canonical structures in cancer and provided information on the drugs used for their treatment by targeting these structures.
Collapse
Affiliation(s)
- Nirali Pandya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sonali R Bhagwat
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
9
|
Alternative DNA Structures In Vivo: Molecular Evidence and Remaining Questions. Microbiol Mol Biol Rev 2020; 85:85/1/e00110-20. [PMID: 33361270 DOI: 10.1128/mmbr.00110-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Duplex DNA naturally folds into a right-handed double helix in physiological conditions. Some sequences of unusual base composition may nevertheless form alternative structures, as was shown for many repeated sequences in vitro However, evidence for the formation of noncanonical structures in living cells is difficult to gather. It mainly relies on genetic assays demonstrating their function in vivo or through genetic instability reflecting particular properties of such structures. Efforts were made to reveal their existence directly in a living cell, mainly by generating antibodies specific to secondary structures or using chemical ligands selected for their affinity to these structures. Among secondary structure-forming DNAs are G-quadruplexes, human fragile sites containing minisatellites, AT-rich regions, inverted repeats able to form cruciform structures, hairpin-forming CAG/CTG triplet repeats, and triple helices formed by homopurine-homopyrimidine GAA/TTC trinucleotide repeats. Many of these alternative structures are involved in human pathologies, such as neurological or developmental disorders, as in the case of trinucleotide repeats, or cancers triggered by translocations linked to fragile sites. This review will discuss and highlight evidence supporting the formation of alternative DNA structures in vivo and will emphasize the role of the mismatch repair machinery in binding mispaired DNA duplexes, triggering genetic instability.
Collapse
|
10
|
Kaushal S, Freudenreich CH. The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer 2019; 58:270-283. [PMID: 30536896 DOI: 10.1002/gcc.22721] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Alternative non-B form DNA structures, also called secondary structures, can form in certain DNA sequences under conditions that produce single-stranded DNA, such as during replication, transcription, and repair. Direct links between secondary structure formation, replication fork stalling, and genomic instability have been found for many repeated DNA sequences that cause disease when they expand. Common fragile sites (CFSs) are known to be AT-rich and break under replication stress, yet the molecular basis for their fragility is still being investigated. Over the past several years, new evidence has linked both the formation of secondary structures and transcription to fork stalling and fragility of CFSs. How these two events may synergize to cause fragility and the role of nuclease cleavage at secondary structures in rare and CFSs are discussed here. We also highlight evidence for a new hypothesis that secondary structures at CFSs not only initiate fragility but also inhibit healing, resulting in their characteristic appearance.
Collapse
Affiliation(s)
- Simran Kaushal
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, Massachusetts.,Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| |
Collapse
|
11
|
Gorab E. Triple-Helical DNA in Drosophila Heterochromatin. Cells 2018; 7:cells7120227. [PMID: 30477098 PMCID: PMC6316130 DOI: 10.3390/cells7120227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022] Open
Abstract
Polynucleotide chains obeying Watson-Crick pairing are apt to form non-canonical complexes such as triple-helical nucleic acids. From early characterization in vitro, their occurrence in vivo has been strengthened by increasing evidence, although most remain circumstantial particularly for triplex DNA. Here, different approaches were employed to specify triple-stranded DNA sequences in the Drosophila melanogaster chromosomes. Antibodies to triplex nucleic acids, previously characterized, bind to centromeric regions of mitotic chromosomes and also to the polytene section 59E of mutant strains carrying the brown dominant allele, indicating that AAGAG tandem satellite repeats are triplex-forming sequences. The satellite probe hybridized to AAGAG-containing regions omitting chromosomal DNA denaturation, as expected, for the intra-molecular triplex DNA formation model in which single-stranded DNA coexists with triplexes. In addition, Thiazole Orange, previously described as capable of reproducing results obtained by antibodies to triple-helical DNA, binds to AAGAG repeats in situ thus validating both detection methods. Unusual phenotype and nuclear structure exhibited by Drosophila correlate with the non-canonical conformation of tandem satellite arrays. From the approaches that lead to the identification of triple-helical DNA in chromosomes, facilities particularly provided by Thiazole Orange use may broaden the investigation on the occurrence of triplex DNA in eukaryotic genomes.
Collapse
Affiliation(s)
- Eduardo Gorab
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil.
| |
Collapse
|
12
|
Carr CE, Ganugula R, Shikiya R, Soto AM, Marky LA. Effect of dC → d(m 5C) substitutions on the folding of intramolecular triplexes with mixed TAT and C +GC base triplets. Biochimie 2018; 146:156-165. [PMID: 29277568 PMCID: PMC5811340 DOI: 10.1016/j.biochi.2017.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022]
Abstract
Oligonucleotide-directed triple helix formation has been recognized as a potential tool for targeting genes with high specificity. Cystosine methylation in the 5' position is both ubiquitous and a stable regulatory modification, which could potentially stabilize triple helix formation. In this work, we have used a combination of calorimetric and spectroscopic techniques to study the intramolecular unfolding of four triplexes and two duplexes. We used the following triplex control sequence, named Control Tri, d(AGAGAC5TCTCTC5TCTCT), where C5 are loops of five cytosines. From this sequence, we studied three other sequences with dC → d(m5C) substitutions on the Hoogsteen strand (2MeH), Crick strand (2MeC) and both strands (4MeHC). Calorimetric studies determined that methylation does increase the thermal and enthalpic stability, leading to an overall favorable free energy, and that this increased stability is cumulative, i.e. methylation on both the Hoogsteen and Crick strands yields the largest favorable free energy. The differential uptake of protons, counterions and water was determined. It was found that methylation increases cytosine protonation by shifting the apparent pKa value to a higher pH; this increase in proton uptake coincides with a release of counterions during folding of the triplex, likely due to repulsion from the increased positive charge from the protonated cytosines. The immobilization of water was not affected for triplexes with methylated cytosines on their Hoogsteen or Crick strands, but was seen for the triplex where both strands are methylated. This may be due to the alignment in the major groove of the methyl groups on the cytosines with the methyl groups on the thymines which causes an increase in structural water along the spine of the triplex.
Collapse
Affiliation(s)
- Carolyn E Carr
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, 68198-6025, USA
| | - Rajkumar Ganugula
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, 68198-6025, USA
| | - Ronald Shikiya
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, 68198-6025, USA
| | - Ana Maria Soto
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, 68198-6025, USA
| | - Luis A Marky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, 68198-6025, USA.
| |
Collapse
|
13
|
Javadekar SM, Yadav R, Raghavan SC. DNA structural basis for fragility at peak III of BCL2 major breakpoint region associated with t(14;18) translocation. Biochim Biophys Acta Gen Subj 2017; 1862:649-659. [PMID: 29246583 DOI: 10.1016/j.bbagen.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 12/23/2022]
Abstract
Maintaining genome integrity is crucial for normal cellular functions. DNA double-strand breaks (DSBs), when unrepaired, can potentiate chromosomal translocations. t(14;18) translocation involving BCL2 gene on chromosome 18 and IgH loci at chromosome 14, could lead to follicular lymphoma. Molecular basis for fragility of translocation breakpoint regions is an active area of investigation. Previously, formation of non-B DNA structures like G-quadruplex, triplex, B/A transition were investigated at peak I of BCL2 major breakpoint region (MBR); however, it is less understood at peak III. In vitro gel shift assays show faster mobility for MBR peak III sequences, unlike controls. CD studies of peak III sequences reveal a spectral pattern different from B-DNA. Although complementary C-rich stretches exhibit single-strandedness, corresponding guanine-rich sequences do not show DMS protection, ruling out G-quadruplex and triplex DNA. Extrachromosomal assay indicates that peak III halts transcription, unlike its mutated version. Taken together, multiple lines of evidence suggest formation of potential cruciform DNA structure at MBR peak III, which was also supported by in silico studies. Thus, our study reveals formation of non-B DNA structure which could be a basis for fragility at BCL2 breakpoint regions, eventually leading to chromosomal translocations.
Collapse
Affiliation(s)
- Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Rakhee Yadav
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
14
|
Effects of Replication and Transcription on DNA Structure-Related Genetic Instability. Genes (Basel) 2017; 8:genes8010017. [PMID: 28067787 PMCID: PMC5295012 DOI: 10.3390/genes8010017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022] Open
Abstract
Many repetitive sequences in the human genome can adopt conformations that differ from the canonical B-DNA double helix (i.e., non-B DNA), and can impact important biological processes such as DNA replication, transcription, recombination, telomere maintenance, viral integration, transposome activation, DNA damage and repair. Thus, non-B DNA-forming sequences have been implicated in genetic instability and disease development. In this article, we discuss the interactions of non-B DNA with the replication and/or transcription machinery, particularly in disease states (e.g., tumors) that can lead to an abnormal cellular environment, and how such interactions may alter DNA replication and transcription, leading to potential conflicts at non-B DNA regions, and eventually result in genetic stability and human disease.
Collapse
|
15
|
Gadgil R, Barthelemy J, Lewis T, Leffak M. Replication stalling and DNA microsatellite instability. Biophys Chem 2016; 225:38-48. [PMID: 27914716 DOI: 10.1016/j.bpc.2016.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/05/2016] [Accepted: 11/05/2016] [Indexed: 01/08/2023]
Abstract
Microsatellites are short, tandemly repeated DNA motifs of 1-6 nucleotides, also termed simple sequence repeats (SRSs) or short tandem repeats (STRs). Collectively, these repeats comprise approximately 3% of the human genome Subramanian et al. (2003), Lander and Lander (2001) [1,2], and represent a large reservoir of loci highly prone to mutations Sun et al. (2012), Ellegren (2004) [3,4] that contribute to human evolution and disease. Microsatellites are known to stall and reverse replication forks in model systems Pelletier et al. (2003), Samadashwily et al. (1997), Kerrest et al. (2009) [5-7], and are hotspots of chromosomal double strand breaks (DSBs). We briefly review the relationship of these repeated sequences to replication stalling and genome instability, and present recent data on the impact of replication stress on DNA fragility at microsatellites in vivo.
Collapse
Affiliation(s)
- R Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - J Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - T Lewis
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - M Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
16
|
Sanguinaria canadensis: Traditional Medicine, Phytochemical Composition, Biological Activities and Current Uses. Int J Mol Sci 2016; 17:ijms17091414. [PMID: 27618894 PMCID: PMC5037693 DOI: 10.3390/ijms17091414] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/26/2022] Open
Abstract
Sanguinaria canadensis, also known as bloodroot, is a traditional medicine used by Native Americans to treat a diverse range of clinical conditions. The plants rhizome contains several alkaloids that individually target multiple molecular processes. These bioactive compounds, mechanistically correlate with the plant’s history of ethnobotanical use. Despite their identification over 50 years ago, the alkaloids of S. canadensis have not been developed into successful therapeutic agents. Instead, they have been associated with clinical toxicities ranging from mouthwash induced leukoplakia to cancer salve necrosis and treatment failure. This review explores the historical use of S. canadensis, the molecular actions of the benzophenanthridine and protopin alkaloids it contains, and explores natural alkaloid variation as a possible rationale for the inconsistent efficacy and toxicities encountered by S.canadensis therapies. Current veterinary and medicinal uses of the plant are studied with an assessment of obstacles to the pharmaceutical development of S. canadensis alkaloid based therapeutics.
Collapse
|
17
|
Das K, Srivastava M, Raghavan SC. GNG Motifs Can Replace a GGG Stretch during G-Quadruplex Formation in a Context Dependent Manner. PLoS One 2016; 11:e0158794. [PMID: 27414642 PMCID: PMC4945072 DOI: 10.1371/journal.pone.0158794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/22/2016] [Indexed: 12/13/2022] Open
Abstract
G-quadruplexes are one of the most commonly studied non-B DNA structures. Generally, these structures are formed using a minimum of 4, three guanine tracts, with connecting loops ranging from one to seven. Recent studies have reported deviation from this general convention. One such deviation is the involvement of bulges in the guanine tracts. In this study, guanines along with bulges, also referred to as GNG motifs have been extensively studied using recently reported HOX11 breakpoint fragile region I as a model template. By strategic mutagenesis approach we show that the contribution from continuous G-tracts may be dispensible during G-quadruplex formation when such motifs are flanked by GNGs. Importantly, the positioning and number of GNG/GNGNG can also influence the formation of G-quadruplexes. Further, we assessed three genomic regions from HIF1 alpha, VEGF and SHOX gene for G-quadruplex formation using GNG motifs. We show that HIF1 alpha sequence harbouring GNG motifs can fold into intramolecular G-quadruplex. In contrast, GNG motifs in mutant VEGF sequence could not participate in structure formation, suggesting that the usage of GNG is context dependent. Importantly, we show that when two continuous stretches of guanines are flanked by two independent GNG motifs in a naturally occurring sequence (SHOX), it can fold into an intramolecular G-quadruplex. Finally, we show the specific binding of G-quadruplex binding protein, Nucleolin and G-quadruplex antibody, BG4 to SHOX G-quadruplex. Overall, our study provides novel insights into the role of GNG motifs in G-quadruplex structure formation which may have both physiological and pathological implications.
Collapse
Affiliation(s)
- Kohal Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mrinal Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
- * E-mail:
| |
Collapse
|
18
|
Abstract
Since the first description of the canonical B-form DNA double helix, it has been suggested that alternative DNA, DNA–RNA, and RNA structures exist and act as functional genomic elements. Indeed, over the past few years it has become clear that, in addition to serving as a repository for genetic information, genomic DNA elicits biological responses by adopting conformations that differ from the canonical right-handed double helix, and by interacting with RNA molecules to form complex secondary structures. This review focuses on recent advances on three-stranded (triplex) nucleic acids, with an emphasis on DNA–RNA and RNA–RNA interactions. Emerging work reveals that triplex interactions between noncoding RNAs and duplex DNA serve as platforms for delivering site-specific epigenetic marks critical for the regulation of gene expression. Additionally, an increasing body of genetic and structural studies demonstrates that triplex RNA–RNA interactions are essential for performing catalytic and regulatory functions in cellular nucleoprotein complexes, including spliceosomes and telomerases, and for enabling protein recoding during programmed ribosomal frameshifting. Thus, evidence is mounting that DNA and RNA triplex interactions are implemented to perform a range of diverse biological activities in the cell, some of which will be discussed in this review.
Collapse
Affiliation(s)
- Albino Bacolla
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas, United States of America
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas, United States of America
| | - Karen M. Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Javadekar SM, Raghavan SC. Snaps and mends: DNA breaks and chromosomal translocations. FEBS J 2015; 282:2627-45. [PMID: 25913527 DOI: 10.1111/febs.13311] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/29/2015] [Accepted: 04/23/2015] [Indexed: 01/11/2023]
Abstract
Integrity in entirety is the preferred state of any organism. The temporal and spatial integrity of the genome ensures continued survival of a cell. DNA breakage is the first step towards creation of chromosomal translocations. In this review, we highlight the factors contributing towards the breakage of chromosomal DNA. It has been well-established that the structure and sequence of DNA play a critical role in selective fragility of the genome. Several non-B-DNA structures such as Z-DNA, cruciform DNA, G-quadruplexes, R loops and triplexes have been implicated in generation of genomic fragility leading to translocations. Similarly, specific sequences targeted by proteins such as Recombination Activating Genes and Activation Induced Cytidine Deaminase are involved in translocations. Processes that ensure the integrity of the genome through repair may lead to persistence of breakage and eventually translocations if their actions are anomalous. An insufficient supply of nucleotides and chromatin architecture may also play a critical role. This review focuses on a range of events with the potential to threaten the genomic integrity of a cell, leading to cancer.
Collapse
Affiliation(s)
- Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
20
|
Thys RG, Lehman CE, Pierce LCT, Wang YH. DNA secondary structure at chromosomal fragile sites in human disease. Curr Genomics 2015; 16:60-70. [PMID: 25937814 PMCID: PMC4412965 DOI: 10.2174/1389202916666150114223205] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease.
Collapse
Affiliation(s)
- Ryan G Thys
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Christine E Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
21
|
Guo M, Hundseth K, Ding H, Vidhyasagar V, Inoue A, Nguyen CH, Zain R, Lee JS, Wu Y. A distinct triplex DNA unwinding activity of ChlR1 helicase. J Biol Chem 2015; 290:5174-5189. [PMID: 25561740 DOI: 10.1074/jbc.m114.634923] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw breakage syndrome characterized by cellular defects in genome maintenance. The DNA triplex helix structures that form by Hoogsteen or reverse Hoogsteen hydrogen bonding are examples of alternate DNA structures that can be a source of genomic instability. In this study, we have examined the ability of human ChlR1 helicase to destabilize DNA triplexes. Biochemical studies demonstrated that ChlR1 efficiently melted both intermolecular and intramolecular DNA triplex substrates in an ATP-dependent manner. Compared with other substrates such as replication fork and G-quadruplex DNA, triplex DNA was a preferred substrate for ChlR1. Also, compared with FANCJ, a helicase of the same family, the triplex resolving activity of ChlR1 is unique. On the other hand, the mutant protein from a Warsaw breakage syndrome patient failed to unwind these triplexes. A previously characterized triplex DNA-specific antibody (Jel 466) bound triplex DNA structures and inhibited ChlR1 unwinding activity. Moreover, cellular assays demonstrated that there were increased triplex DNA content and double-stranded breaks in ChlR1-depleted cells, but not in FANCJ(-/-) cells, when cells were treated with a triplex stabilizing compound benzoquinoquinoxaline, suggesting that ChlR1 melting of triple-helix structures is distinctive and physiologically important to defend genome integrity. On the basis of our results, we conclude that the abundance of ChlR1 known to exist in vivo is likely to be a strong deterrent to the stability of triplexes that can potentially form in the human genome.
Collapse
Affiliation(s)
- Manhong Guo
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kristian Hundseth
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Hao Ding
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | - Akira Inoue
- the Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Chi-Hung Nguyen
- UMR176 CNRS-Institut Curie, Laboratoire de Pharmacochimie, Centre Universitaire, 91405 Orsay, France, and
| | - Rula Zain
- the Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, 141 86 Huddinge, Stockholm, Sweden
| | - Jeremy S Lee
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Yuliang Wu
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada,.
| |
Collapse
|
22
|
Kumari R, Raghavan SC. Structure-specific nuclease activity of RAGs is modulated by sequence, length and phase position of flanking double-stranded DNA. FEBS J 2014; 282:4-18. [PMID: 25327637 DOI: 10.1111/febs.13121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 10/10/2014] [Accepted: 10/17/2014] [Indexed: 11/28/2022]
Abstract
RAGs (recombination activating genes) are responsible for the generation of antigen receptor diversity through the process of combinatorial joining of different V (variable), D (diversity) and J (joining) gene segments. In addition to its physiological property, wherein RAG functions as a sequence-specific nuclease, it can also act as a structure-specific nuclease leading to genomic instability and cancer. In the present study, we investigate the factors that regulate RAG cleavage on non-B DNA structures. We find that RAG binding and cleavage on heteroduplex DNA is dependent on the length of the double-stranded flanking region. Besides, the immediate flanking double-stranded region regulates RAG activity in a sequence-dependent manner. Interestingly, the cleavage efficiency of RAGs at the heteroduplex region is influenced by the phasing of DNA. Thus, our results suggest that sequence, length and phase positions of the DNA can affect the efficiency of RAG cleavage when it acts as a structure-specific nuclease. These findings provide novel insights on the regulation of the pathological functions of RAGs.
Collapse
Affiliation(s)
- Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
23
|
Hu Z, Leppla SH, Li B, Elkins CA. Antibodies specific for nucleic acids and applications in genomic detection and clinical diagnostics. Expert Rev Mol Diagn 2014; 14:895-916. [PMID: 25014728 DOI: 10.1586/14737159.2014.931810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Detection of nucleic acids using antibodies is uncommon. This is in part because nucleic acids are poor immunogens and it is difficult to elicit antibodies having high affinity to each type of nucleic acid while lacking cross-reactivity to others. We describe the origins and applications of a variety of anti-nucleic acid antibodies, including ones reacting with modified nucleosides and nucleotides, single-stranded DNA, double-stranded DNA, RNA, DNA:RNA hybrids, locked-nucleic acids or peptide nucleic acid:nucleic acid hybrids. Carefully selected antibodies can be excellent reagents for detecting bacteria, viruses, small RNAs, microRNAs, R-loops, cancer cells, stem cells, apoptotic cells and so on. The detection may be sensitive, simple, rapid, specific, reproducible, quantitative and cost-effective. Current microarray and diagnostic methods that depend on cDNA or cRNA can be replaced by using antibody detection of nucleic acids. Therefore, development should be encouraged to explore new utilities and create a robust arsenal of new anti-nucleic acid antibodies.
Collapse
Affiliation(s)
- Zonglin Hu
- Winchester Engineering & Analytical Center, Office of Regulatory Affairs, US Food and Drug Administration, 109 Holton Street, Winchester, MA 01890, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Repetitive genomic sequences can adopt a number of alternative DNA structures that differ from the canonical B-form duplex (i.e. non-B DNA). These non-B DNA-forming sequences have been shown to have many important biological functions related to DNA metabolic processes; for example, they may have regulatory roles in DNA transcription and replication. In addition to these regulatory functions, non-B DNA can stimulate genetic instability in the presence or absence of DNA damage, via replication-dependent and/or replication-independent pathways. This review focuses on the interactions of non-B DNA conformations with DNA repair proteins and how these interactions impact genetic instability.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| |
Collapse
|
25
|
Byrne M, Wray J, Reinert B, Wu Y, Nickoloff J, Lee SH, Hromas R, Williamson E. Mechanisms of oncogenic chromosomal translocations. Ann N Y Acad Sci 2014; 1310:89-97. [PMID: 24528169 DOI: 10.1111/nyas.12370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromosome translocations are caused by inappropriate religation of two DNA double-strand breaks (DSBs) in heterologous chromosomes. These DSBs can be generated by endogenous or exogenous sources. Endogenous sources of DSBs leading to translocations include inappropriate recombination activating gene (RAG) or activation-induced deaminase (AID) activity during immune receptor maturation. Endogenous DSBs can also occur at noncanonical DNA structures or at collapsed replication forks. Exogenous sources of DSBs leading to translocations include ionizing radiation (IR) and cancer chemotherapy. Spatial proximity of the heterologous chromosomes is also important for translocations. While three distinct pathways for DNA DSB repair exist, mounting evidence supports alternative nonhomologous end joining (aNHEJ) as the predominant pathway through which the majority of translocations occur. Initiated by poly (ADP-ribose) polymerase 1 (PARP1), aNHEJ is utilized less frequently in DNA DSB repair than other forms of DSB repair. We recently found that PARP1 is essential for chromosomal translocations to occur and that small molecule PARP1 inhibitors, already in clinical use, can inhibit translocations generated by IR or topoisomerase II inhibition. These data confirm the central role of PARP1 in aNHEJ-mediated chromosomal translocations and raise the possibility of using clinically available PARP1 inhibitors in patients who are at high risk for secondary oncogenic chromosomal translocations.
Collapse
Affiliation(s)
- Michael Byrne
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jain A, Bacolla A, Del Mundo IM, Zhao J, Wang G, Vasquez KM. DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells. Nucleic Acids Res 2013; 41:10345-57. [PMID: 24049074 PMCID: PMC3905860 DOI: 10.1093/nar/gkt804] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures in the human genome have been implicated in stimulating genomic instability. Previously, we found that a naturally occurring intra-molecular triplex (H-DNA) caused genetic instability in mammals largely in the form of DNA double-strand breaks. Thus, it is of interest to determine the mechanism(s) involved in processing H-DNA. Recently, we demonstrated that human DHX9 helicase preferentially unwinds inter-molecular triplex DNA in vitro. Herein, we used a mutation-reporter system containing H-DNA to examine the relevance of DHX9 activity on naturally occurring H-DNA structures in human cells. We found that H-DNA significantly increased mutagenesis in small-interfering siRNA-treated, DHX9-depleted cells, affecting mostly deletions. Moreover, DHX9 associated with H-DNA in the context of supercoiled plasmids. To further investigate the role of DHX9 in the recognition/processing of H-DNA, we performed binding assays in vitro and chromatin immunoprecipitation assays in U2OS cells. DHX9 recognized H-DNA, as evidenced by its binding to the H-DNA structure and enrichment at the H-DNA region compared with a control region in human cells. These composite data implicate DHX9 in processing H-DNA structures in vivo and support its role in the overall maintenance of genomic stability at sites of alternatively structured DNA.
Collapse
Affiliation(s)
- Aklank Jain
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, USA
| | | | | | | | | | | |
Collapse
|
27
|
G-quadruplex structures formed at the HOX11 breakpoint region contribute to its fragility during t(10;14) translocation in T-cell leukemia. Mol Cell Biol 2013; 33:4266-81. [PMID: 24001773 DOI: 10.1128/mcb.00540-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The t(10;14) translocation involving the HOX11 gene is found in several T-cell leukemia patients. Previous efforts to determine the causes of HOX11 fragility were not successful. The role of non-B DNA structures is increasingly becoming an important cause of genomic instability. In the present study, bioinformatics analysis revealed two G-quadruplex-forming motifs at the HOX11 breakpoint cluster. Gel shift assays showed formation of both intra- and intermolecular G-quadruplexes, the latter being more predominant. The structure formation was dependent on four stretches of guanines, as revealed by mutagenesis. Circular dichroism analysis identified parallel conformations for both quadruplexes. The non-B DNA structure could block polymerization during replication on a plasmid, resulting in consistent K(+)-dependent pause sites, which were abolished upon mutation of G-motifs, thereby demonstrating the role of the stretches of guanines even on double-stranded DNA. Extrachromosomal assays showed that the G-quadruplex motifs could block transcription, leading to reduced expression of green fluorescent protein (GFP) within cells. More importantly, sodium bisulfite modification assay showed the single-stranded character at regions I and II of HOX11 in the genome. Thus, our findings suggest the occurrence of G-quadruplex structures at the HOX11 breakpoint region, which could explain its fragility during the t(10;14) translocation.
Collapse
|
28
|
Saini N, Zhang Y, Nishida Y, Sheng Z, Choudhury S, Mieczkowski P, Lobachev KS. Fragile DNA motifs trigger mutagenesis at distant chromosomal loci in saccharomyces cerevisiae. PLoS Genet 2013; 9:e1003551. [PMID: 23785298 PMCID: PMC3681665 DOI: 10.1371/journal.pgen.1003551] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 04/23/2013] [Indexed: 11/19/2022] Open
Abstract
DNA sequences capable of adopting non-canonical secondary structures have been associated with gross-chromosomal rearrangements in humans and model organisms. Previously, we have shown that long inverted repeats that form hairpin and cruciform structures and triplex-forming GAA/TTC repeats induce the formation of double-strand breaks which trigger genome instability in yeast. In this study, we demonstrate that breakage at both inverted repeats and GAA/TTC repeats is augmented by defects in DNA replication. Increased fragility is associated with increased mutation levels in the reporter genes located as far as 8 kb from both sides of the repeats. The increase in mutations was dependent on the presence of inverted or GAA/TTC repeats and activity of the translesion polymerase Polζ. Mutagenesis induced by inverted repeats also required Sae2 which opens hairpin-capped breaks and initiates end resection. The amount of breakage at the repeats is an important determinant of mutations as a perfect palindromic sequence with inherently increased fragility was also found to elevate mutation rates even in replication-proficient strains. We hypothesize that the underlying mechanism for mutagenesis induced by fragile motifs involves the formation of long single-stranded regions in the broken chromosome, invasion of the undamaged sister chromatid for repair, and faulty DNA synthesis employing Polζ. These data demonstrate that repeat-mediated breaks pose a dual threat to eukaryotic genome integrity by inducing chromosomal aberrations as well as mutations in flanking genes.
Collapse
Affiliation(s)
- Natalie Saini
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Yu Zhang
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Yuri Nishida
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Ziwei Sheng
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Shilpa Choudhury
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Piotr Mieczkowski
- Department of Genetics, School of Medicine, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
- * E-mail:
| |
Collapse
|
29
|
Vasquez KM, Wang G. The yin and yang of repair mechanisms in DNA structure-induced genetic instability. Mutat Res 2013; 743-744:118-131. [PMID: 23219604 PMCID: PMC3661696 DOI: 10.1016/j.mrfmmm.2012.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 01/14/2023]
Abstract
DNA can adopt a variety of secondary structures that deviate from the canonical Watson-Crick B-DNA form. More than 10 types of non-canonical or non-B DNA secondary structures have been characterized, and the sequences that have the capacity to adopt such structures are very abundant in the human genome. Non-B DNA structures have been implicated in many important biological processes and can serve as sources of genetic instability, implicating them in disease and evolution. Non-B DNA conformations interact with a wide variety of proteins involved in replication, transcription, DNA repair, and chromatin architectural regulation. In this review, we will focus on the interactions of DNA repair proteins with non-B DNA and their roles in genetic instability, as the proteins and DNA involved in such interactions may represent plausible targets for selective therapeutic intervention.
Collapse
Affiliation(s)
- Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| |
Collapse
|
30
|
R/G-band boundaries: genomic instability and human disease. Clin Chim Acta 2013; 419:108-12. [PMID: 23434413 DOI: 10.1016/j.cca.2013.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/29/2013] [Accepted: 02/03/2013] [Indexed: 01/19/2023]
Abstract
The human genome is composed of large-scale compartmentalized structures resulting from variations in the amount of guanine and cytosine residues (GC%) and in the timing of DNA replication. These compartmentalized structures are related to the light- and dark-staining bands along chromosomes after the appropriate staining. Here we describe our current understanding of the biological importance of the boundaries between these light and dark bands (the so-called R/G boundaries). These R/G boundaries were identified following integration of information obtained from analyses of chromosome bands and genome sequences. This review also discusses the potential medical significance of these chromosomal regions for conditions related to genomic instability, such as cancer and neural disease. We propose that R/G-chromosomal boundaries, which correspond to regions showing a switch in replication timing from early to late S phase (early/late-switch regions) and of transition in GC%, have an extremely low number of replication origins and more non-B-form DNA structures than other genomic regions. Further, we suggest that genes located at R/G boundaries and which contain such DNA sequences have an increased risk of genetic instability and of being associated with human diseases. Finally, we propose strategies for genome and epigenome analyses based on R/G boundaries.
Collapse
|
31
|
Kolganova NA, Shchyolkina AK, Chudinov AV, Zasedatelev AS, Florentiev VL, Timofeev EN. Targeting duplex DNA with chimeric α,β-triplex-forming oligonucleotides. Nucleic Acids Res 2012; 40:8175-85. [PMID: 22641847 PMCID: PMC3439883 DOI: 10.1093/nar/gks410] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/14/2022] Open
Abstract
Triplex-directed DNA recognition is strictly limited by polypurine sequences. In an attempt to address this problem with synthetic biology tools, we designed a panel of short chimeric α,β-triplex-forming oligonucleotides (TFOs) and studied their interaction with fluorescently labelled duplex hairpins using various techniques. The hybridization of hairpin with an array of chimeric probes suggests that recognition of double-stranded DNA follows complicated rules combining reversed Hoogsteen and non-canonical homologous hydrogen bonding. In the presence of magnesium ions, chimeric TFOs are able to form highly stable α,β-triplexes, as indicated by native gel-electrophoresis, on-array thermal denaturation and fluorescence-quenching experiments. CD spectra of chimeric triplexes exhibited features typically observed for anti-parallel purine triplexes with a GA or GT third strand. The high potential of chimeric α,β-TFOs in targeting double-stranded DNA was demonstrated in the EcoRI endonuclease protection assay. In this paper, we report, for the first time, the recognition of base pair inversions in a duplex by chimeric TFOs containing α-thymidine and α-deoxyguanosine.
Collapse
Affiliation(s)
| | | | | | | | | | - E. N. Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| |
Collapse
|
32
|
Buske FA, Bauer DC, Mattick JS, Bailey TL. Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res 2012; 22:1372-81. [PMID: 22550012 PMCID: PMC3396377 DOI: 10.1101/gr.130237.111] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 03/20/2012] [Indexed: 11/28/2022]
Abstract
Double-stranded DNA is able to form triple-helical structures by accommodating a third nucleotide strand in its major groove. This sequence-specific process offers a potent mechanism for targeting genomic loci of interest that is of great value for biotechnological and gene-therapeutic applications. It is likely that nature has leveraged this addressing system for gene regulation, because computational studies have uncovered an abundance of putative triplex target sites in various genomes, with enrichment particularly in gene promoters. However, to draw a more complete picture of the in vivo role of triplexes, not only the putative targets but also the sequences acting as the third strand and their capability to pair with the predicted target sites need to be studied. Here we present Triplexator, the first computational framework that integrates all aspects of triplex formation, and showcase its potential by discussing research examples for which the different aspects of triplex formation are important. We find that chromatin-associated RNAs have a significantly higher fraction of sequence features able to form triplexes than expected at random, suggesting their involvement in gene regulation. We furthermore identify hundreds of human genes that contain sequence features in their promoter predicted to be able to form a triplex with a target within the same promoter, suggesting the involvement of triplexes in feedback-based gene regulation. With focus on biotechnological applications, we screen mammalian genomes for high-affinity triplex target sites that can be used to target genomic loci specifically and find that triplex formation offers a resolution of ~1300 nt.
Collapse
Affiliation(s)
- Fabian A. Buske
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD, Australia
| | - Denis C. Bauer
- Division of Mathematics, Informatics, and Statistics, CSIRO, Sydney, 2113 NSW, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072 QLD, Australia
| | - John S. Mattick
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD, Australia
- Garvan Institute of Medical Research, Sydney, 2010 NSW, Australia
| | - Timothy L. Bailey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD, Australia
| |
Collapse
|
33
|
Begum NA, Honjo T. Evolutionary comparison of the mechanism of DNA cleavage with respect to immune diversity and genomic instability. Biochemistry 2012; 51:5243-56. [PMID: 22712724 DOI: 10.1021/bi3005895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is generally assumed that the genetic mechanism for immune diversity is unique and distinct from that for general genome diversity, in part because of the high efficiency and strict regulation of immune diversity. This expectation was partially met by the discovery of RAG1 and -2, which catalyze V(D)J recombination to generate the immune repertoire of B and T lymphocyte receptors. RAG1 and -2 were later shown to be derived from a transposon. On the other hand, activation-induced cytidine deaminase (AID), which mediates both somatic hypermutation (SHM) and the class-switch recombination (CSR) of the immunoglobulin genes, evolved earlier than RAG1 and -2 in jawless vertebrates. This review compares immune diversity and general genome diversity from an evolutionary perspective, shedding light on the roles of DNA-cleaving enzymes and target recognition markers. This comparison revealed that AID-mediated SHM and CSR share the cleaving enzyme topoisomerase 1 with transcription-associated mutation (TAM) and triplet contraction, which is involved in many genetic diseases. These genome-altering events appear to target DNA with non-B structure, which is induced by the inefficient correction of the excessive supercoiling that is caused by active transcription. Furthermore, an epigenetic modification on chromatin (histone H3K4 trimethylation) is used as a mark for DNA cleavage sites in meiotic recombination, V(D)J recombination, CSR, and SHM. We conclude that acquired immune diversity evolved via the appearance of an AID orthologue that utilized a preexisting mechanism for genomic instability, such as TAM.
Collapse
Affiliation(s)
- Nasim A Begum
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|
34
|
Nambiar M, Raghavan SC. Mechanism of fragility at BCL2 gene minor breakpoint cluster region during t(14;18) chromosomal translocation. J Biol Chem 2012; 287:8688-701. [PMID: 22275374 DOI: 10.1074/jbc.m111.307363] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Breaks in chromosome 18 are localized at the 3'-UTR of BCL2 gene or downstream and are mainly clustered in either the major breakpoint region or the minor breakpoint cluster region (mcr). The recombination activating gene (RAG) complex induces breaks at IgH locus of chromosome 14, whereas the mechanism of fragility at BCL2 mcr remains unclear. Here, for the first time, we show that RAGs can nick mcr; however, the mechanism is unique. Three independent nicks of equal efficiency are generated, when both Mg(2+) and Mn(2+) are present, unlike a single nick during V(D)J recombination. Further, we demonstrate that RAG binding and nicking at the mcr are independent of nonamer, whereas a CCACCTCT motif plays a critical role in its fragility, as shown by sequential mutagenesis. More importantly, we recapitulate the BCL2 mcr translocation and find that mcr can undergo synapsis with a standard recombination signal sequence within the cells, in a RAG-dependent manner. Further, mutation to the CCACCTCT motif abolishes recombination within the cells, indicating its vital role. Hence, our data suggest a novel, physiologically relevant, nonamer-independent mechanism of RAG nicking at mcr, which may be important for generation of chromosomal translocations in humans.
Collapse
Affiliation(s)
- Mridula Nambiar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
35
|
Naik AK, Raghavan SC. Differential reaction kinetics, cleavage complex formation, and nonamer binding domain dependence dictate the structure-specific and sequence-specific nuclease activity of RAGs. J Mol Biol 2011; 415:475-88. [PMID: 22119487 DOI: 10.1016/j.jmb.2011.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/27/2011] [Accepted: 11/01/2011] [Indexed: 11/28/2022]
Abstract
During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the "nonamer binding region," which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
36
|
Sharma S. Non-B DNA Secondary Structures and Their Resolution by RecQ Helicases. J Nucleic Acids 2011; 2011:724215. [PMID: 21977309 PMCID: PMC3185257 DOI: 10.4061/2011/724215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/25/2011] [Indexed: 01/14/2023] Open
Abstract
In addition to the canonical B-form structure first described by Watson and Crick, DNA can adopt a number of alternative structures. These non-B-form DNA secondary structures form spontaneously on tracts of repeat sequences that are abundant in genomes. In addition, structured forms of DNA with intrastrand pairing may arise on single-stranded DNA produced transiently during various cellular processes. Such secondary structures have a range of biological functions but also induce genetic instability. Increasing evidence suggests that genomic instabilities induced by non-B DNA secondary structures result in predisposition to diseases. Secondary DNA structures also represent a new class of molecular targets for DNA-interactive compounds that might be useful for targeting telomeres and transcriptional control. The equilibrium between the duplex DNA and formation of multistranded non-B-form structures is partly dependent upon the helicases that unwind (resolve) these alternate DNA structures. With special focus on tetraplex, triplex, and cruciform, this paper summarizes the incidence of non-B DNA structures and their association with genomic instability and emphasizes the roles of RecQ-like DNA helicases in genome maintenance by resolution of DNA secondary structures. In future, RecQ helicases are anticipated to be additional molecular targets for cancer chemotherapeutics.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Suite 3424A, Washington, DC 20059, USA
| |
Collapse
|
37
|
Lestienne PP. Priming DNA replication from triple helix oligonucleotides: possible threestranded DNA in DNA polymerases. Mol Biol Int 2011; 2011:562849. [PMID: 22229092 PMCID: PMC3200174 DOI: 10.4061/2011/562849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/02/2011] [Indexed: 11/20/2022] Open
Abstract
Triplex associate with a duplex DNA presenting the same polypurine or polypyrimidine-rich sequence in an antiparallel orientation. So far, triplex forming oligonucleotides (TFOs) are known to inhibit transcription, replication, and to induce mutations. A new property of TFO is reviewed here upon analysis of DNA breakpoint yielding DNA rearrangements; the synthesized sequence of the first direct repeat displays a skewed polypurine- rich sequence. This synthesized sequence can bind the second homologous duplex sequence through the formation of a triple helix, which is able to prime further DNA replication. In these case, the d(G)-rich Triple Helix Primers (THP) bind the homologous strand in a parallel manner, possibly via a RecA-like mechanism. This novel property is shared by all tested DNA polymerases: phage, retrovirus, bacteria, and human. These features may account for illegitimate initiation of replication upon single-strand breakage and annealing to a homologous sequence where priming may occur. Our experiments suggest that DNA polymerases can bind three instead of two polynucleotide strands in their catalytic centre.
Collapse
Affiliation(s)
- Patrick P Lestienne
- U 1053 INSERM, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux, France
| |
Collapse
|
38
|
DNA secondary structure is influenced by genetic variation and alters susceptibility to de novo translocation. Mol Cytogenet 2011; 4:18. [PMID: 21899780 PMCID: PMC3197554 DOI: 10.1186/1755-8166-4-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 09/08/2011] [Indexed: 12/15/2022] Open
Abstract
Background Cumulative evidence suggests that DNA secondary structures impact DNA replication, transcription and genomic rearrangements. One of the best studied examples is the recurrent constitutional t(11;22) in humans that is mediated by potentially cruciform-forming sequences at the breakpoints, palindromic AT-rich repeats (PATRRs). We previously demonstrated that polymorphisms of PATRR sequences affect the frequency of de novo t(11;22)s in sperm samples from normal healthy males. These studies were designed to determine whether PATRR polymorphisms affect DNA secondary structure, thus leading to variation in translocation frequency. Methods We studied the potential for DNA cruciform formation for several PATRR11 polymorphic alleles using mobility shift analysis in gel electrophoresis as well as by direct visualization of the DNA by atomic force microscopy. The structural data for various alleles were compared with the frequency of de novo t(11;22)s the allele produced. Results The data indicate that the propensity for DNA cruciform structure of each polymorphic allele correlates with the frequency of de novo t(11;22)s produced (r = 0.77, P = 0.01). Conclusions Although indirect, our results strongly suggest that the PATRR adopts unstable cruciform structures during spermatogenesis that act as translocation hotspots in humans.
Collapse
|
39
|
Nambiar M, Raghavan SC. How does DNA break during chromosomal translocations? Nucleic Acids Res 2011; 39:5813-25. [PMID: 21498543 PMCID: PMC3152359 DOI: 10.1093/nar/gkr223] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 12/20/2022] Open
Abstract
Chromosomal translocations are one of the most common types of genetic rearrangements and are molecular signatures for many types of cancers. They are considered as primary causes for cancers, especially lymphoma and leukemia. Although many translocations have been reported in the last four decades, the mechanism by which chromosomes break during a translocation remains largely unknown. In this review, we summarize recent advances made in understanding the molecular mechanism of chromosomal translocations.
Collapse
Affiliation(s)
- Mridula Nambiar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
40
|
Lexa M, Martínek T, Burgetová I, Kopeček D, Brázdová M. A dynamic programming algorithm for identification of triplex-forming sequences. ACTA ACUST UNITED AC 2011; 27:2510-7. [PMID: 21791534 DOI: 10.1093/bioinformatics/btr439] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Current methods for identification of potential triplex-forming sequences in genomes and similar sequence sets rely primarily on detecting homopurine and homopyrimidine tracts. Procedures capable of detecting sequences supporting imperfect, but structurally feasible intramolecular triplex structures are needed for better sequence analysis. RESULTS We modified an algorithm for detection of approximate palindromes, so as to account for the special nature of triplex DNA structures. From available literature, we conclude that approximate triplexes tolerate two classes of errors. One, analogical to mismatches in duplex DNA, involves nucleotides in triplets that do not readily form Hoogsteen bonds. The other class involves geometrically incompatible neighboring triplets hindering proper alignment of strands for optimal hydrogen bonding and stacking. We tested the statistical properties of the algorithm, as well as its correctness when confronted with known triplex sequences. The proposed algorithm satisfactorily detects sequences with intramolecular triplex-forming potential. Its complexity is directly comparable to palindrome searching. AVAILABILITY Our implementation of the algorithm is available at http://www.fi.muni.cz/lexa/triplex as source code and a web-based search tool. The source code compiles into a library providing searching capability to other programs, as well as into a stand-alone command-line application based on this library. CONTACT lexa@fi.muni.cz SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Matej Lexa
- Department of Information Technology, Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
41
|
Triplex-forming MicroRNAs form stable complexes with HIV-1 provirus and inhibit its replication. Appl Immunohistochem Mol Morphol 2011; 18:532-45. [PMID: 20502318 DOI: 10.1097/pai.0b013e3181e1ef6a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND One of the most fascinating discoveries in biology in recent years is unquestionably the identification of the family of small, noncoding RNAs known as microRNAs (miRNAs). Each miRNA targets multiple mRNA species through recognition of complementary sequences, typically located at multiple sites within the 3 untranslated region. In animals, single-stranded miRNA binds specific messenger RNA (mRNA) by a mechanism that is yet to be fully characterized. The bound mRNA remains untranslated resulting in reduced levels of the corresponding protein; however, if the sequence match between the miRNA and its target is precise, the bound mRNA can be degraded resulting in reduced levels of the corresponding transcript. Eukaryotic genes are also regulated by triplex formation between double helix and a third small RNA or DNA molecule. Thousands of triplex-forming (TF) islands in human genomes are mapped. However, the role of TF miRNAs within the hairpin structures of miRNA and the target mRNA has not been reported. We have explored TF complexes between human miRNAs (hsa-miR) that are complementary to human immunodeficiency virus (HIV)-1 and their antiviral potential as therapeutic agents. METHODS We downloaded mature miRNA sequences from the human miRBase Sequence Database (http://microrna.sanger.ac.uk/sequences/), and computationally analyzed miRNAs that have significant homologies to HIV-1 genome (pNL 4-3 Accession #AF324493). We developed an algorithm to look for triplex-binding motifs (C+CG and T AT) and selected 4 miRNAs with 3 negative controls. TF stability was tested by using fluorophore-labeled duplexes connected by a single hexaethylene glycol moiety, representing HIV-1 proviral motifs, and black-hole quencher-1 labeled oligonucleotides, representing miRNA. RESULTS Fifty miRNAs were discovered that showed greater than 80% homology to HIV-1, of which 4 hsa-miR that exhibited an ability to form stable triplex with double stranded-HIV-1 sequences were selected. Three negative controls were used. The TF stability of the 4 hsa-miRs and the negative controls were confirmed and measured. Stably transfected Hela-CD4+ cell lines expressing each of the hsa-miR were developed. All 4 miRNAs exhibited a significant inhibition of HIV-1 as measured by HIV-1 p24 enzyme-linked immunosorbent assay (>90%; P>0.001) when compared with the 3 negative controls. By using immunohistochemical staining with triplex binding monoclonal antibodies, significant expression of TF miRNAs was detected in the cell lines, but not in the negative controls (P<0.001). CONCLUSIONS In this study, we demonstrated for the first time that besides the well-established post-transcriptional silencing based on mRNA degradation, miRNAs may be responsible for long-term latency of HIV-1 by TF, a different mechanism. We provide a possible molecular mechanism by which HIV-1 homologous miRNAs may impart resistance to HIV-1 and suggest a new miRNA-based therapeutic strategy for HIV-1.
Collapse
|
42
|
Dyachenko OV, Schevchuk TV, Kretzner L, Buryanov YI, Smith SS. Human non-CG methylation: are human stem cells plant-like? Epigenetics 2010; 5:569-72. [PMID: 20647766 DOI: 10.4161/epi.5.7.12702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Non-CG methylation is well characterized in plants, where it appears to play a role in gene silencing and genomic imprinting. Although strong evidence for the presence of non-CG methylation in animals has been available for some time, both its origin and function remain elusive. In this review we discuss available evidence on non-CG methylation in animals in light of evidence suggesting that the human stem cell methylome contains significant levels of methylation outside the CG site.
Collapse
Affiliation(s)
- Olga V Dyachenko
- Pushchino Branch, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | | | | | | | | |
Collapse
|
43
|
Nambiar M, Goldsmith G, Moorthy BT, Lieber MR, Joshi MV, Choudhary B, Hosur RV, Raghavan SC. Formation of a G-quadruplex at the BCL2 major breakpoint region of the t(14;18) translocation in follicular lymphoma. Nucleic Acids Res 2010; 39:936-48. [PMID: 20880994 PMCID: PMC3035451 DOI: 10.1093/nar/gkq824] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Most breaks on chromosome 18 are located at the 3′-UTR of the BCL2 gene and are mainly clustered in the major breakpoint region (MBR). Recently, we found that the BCL2 MBR has a non-B DNA character in genomic DNA. Here, we show that single-stranded DNA modeled from the template strand of the BCL2 MBR, forms secondary structures that migrate faster on native PAGE in the presence of potassium, due to the formation of intramolecular G-quadruplexes. Circular dichroism shows evidence for a parallel orientation for G-quadruplex structures in the template strand of the BCL2 MBR. Mutagenesis and the DMS modification assay confirm the presence of three guanine tetrads in the structure. 1H nuclear magnetic resonance studies further confirm the formation of an intramolecular G-quadruplex and a representative model has been built based on all of the experimental evidence. We also provide data consistent with the possible formation of a G-quadruplex structure at the BCL2 MBR within mammalian cells. In summary, these important features could contribute to the single-stranded character at the BCL2 MBR, thereby contributing to chromosomal fragility.
Collapse
Affiliation(s)
- Mridula Nambiar
- Department of Biochemistry, Indian Institute of Science, Bangalore-560 012, India
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ghosh S, Majumder P, Pradhan SK, Dasgupta D. Mechanism of interaction of small transcription inhibitors with DNA in the context of chromatin and telomere. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:795-809. [PMID: 20638489 DOI: 10.1016/j.bbagrm.2010.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/23/2010] [Accepted: 06/30/2010] [Indexed: 01/13/2023]
Abstract
Small molecules from natural and synthetic sources have long been employed as human drugs. The transcription inhibitory potential of one class of these molecules has paved their use as anticancer drugs. The principal mode of action of these molecules is via reversible interaction with genomic DNA, double and multiple stranded. In this article we have revisited the mechanism of the interaction in the context of chromatin and telomere. The established modes of association of these molecules with double helical DNA provide a preliminary mechanism of their transcription inhibitory potential, but the scenario assumes a different dimension when the genomic DNA is associated with proteins in the transcription apparatus of both prokaryotic and eukaryotic organisms. We have discussed this altered scenario as a prelude to understand the chemical biology of their action in the cell. For the telomeric quadruplex DNA, we have reviewed the mechanism of their association with the quadruplex and resultant cellular consequence.
Collapse
Affiliation(s)
- Saptaparni Ghosh
- Biophysics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhan Nagar, Kolkata Pin, 700064, India
| | | | | | | |
Collapse
|
45
|
Mancuso M, Sammarco MC, Grabczyk E. Transposon Tn7 preferentially inserts into GAA*TTC triplet repeats under conditions conducive to Y*R*Y triplex formation. PLoS One 2010; 5:e11121. [PMID: 20559546 PMCID: PMC2886061 DOI: 10.1371/journal.pone.0011121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 05/21/2010] [Indexed: 11/26/2022] Open
Abstract
Background Expansion of an unstable GAA•TTC repeat in the first intron of the FXN gene causes Friedreich ataxia by reducing frataxin expression. Structure formation by the repeat has been implicated in both frataxin repression and GAA•TTC instability. The GAA•TTC sequence is capable of adopting multiple non-B DNA structures including Y•R•Y and R•R•Y triplexes. Lower pH promotes the formation of Y•R•Y triplexes by GAA•TTC. Here we used the bacterial transposon Tn7 as an in vitro tool to probe whether GAA•TTC repeats can attract a well-characterized recombinase. Methodology/Principal Findings Tn7 showed a pH-dependent preference for insertion into uninterrupted regions of a Friedreich ataxia patient-derived repeat, inserting 48, 39 and 14 percent of the time at pH 7, pH 8 and pH 9, respectively. Moreover, Tn7 also showed orientation and region specific insertion within the repeat at pH 7 and pH 8, but not at pH 9. In contrast, transposon Tn5 showed no strong preference for or against the repeat during in vitro transposition at any pH tested. Y•R•Y triplex formation was reduced in predictable ways by transposon interruption of the GAA•TTC repeat. However, transposon interruptions in the GAA•TTC repeats did not increase the in vitro transcription efficiency of the templates. Conclusions/Significance We have demonstrated that transposon Tn7 will recognize structures that form spontaneously in GAA•TTC repeats and insert in a specific orientation within the repeat. The conditions used for in vitro transposition span the physiologically relevant range suggesting that long GAA•TTC repeats can form triplex structures in vivo, attracting enzymes involved in DNA repair, recombination and chromatin modification.
Collapse
Affiliation(s)
- Miriam Mancuso
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | | | | |
Collapse
|
46
|
Naik AK, Lieber MR, Raghavan SC. Cytosines, but not purines, determine recombination activating gene (RAG)-induced breaks on heteroduplex DNA structures: implications for genomic instability. J Biol Chem 2010; 285:7587-97. [PMID: 20051517 DOI: 10.1074/jbc.m109.089631] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sequence specificity of the recombination activating gene (RAG) complex during V(D)J recombination has been well studied. RAGs can also act as structure-specific nuclease; however, little is known about the mechanism of its action. Here, we show that in addition to DNA structure, sequence dictates the pattern and efficiency of RAG cleavage on altered DNA structures. Cytosine nucleotides are preferentially nicked by RAGs when present at single-stranded regions of heteroduplex DNA. Although unpaired thymine nucleotides are also nicked, the efficiency is many fold weaker. Induction of single- or double-strand breaks by RAGs depends on the position of cytosines and whether it is present on one or both of the strands. Interestingly, RAGs are unable to induce breaks when adenine or guanine nucleotides are present at single-strand regions. The nucleotide present immediately next to the bubble sequence could also affect RAG cleavage. Hence, we propose "C((d))C((S))C((S))" (d, double-stranded; s, single-stranded) as a consensus sequence for RAG-induced breaks at single-/double-strand DNA transitions. Such a consensus sequence motif is useful for explaining RAG cleavage on other types of DNA structures described in the literature. Therefore, the mechanism of RAG cleavage described here could explain facets of chromosomal rearrangements specific to lymphoid tissues leading to genomic instability.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
47
|
Zhao J, Bacolla A, Wang G, Vasquez KM. Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci 2010; 67:43-62. [PMID: 19727556 PMCID: PMC3017512 DOI: 10.1007/s00018-009-0131-2] [Citation(s) in RCA: 312] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/22/2009] [Accepted: 08/11/2009] [Indexed: 11/26/2022]
Abstract
Repetitive DNA motifs are abundant in the genomes of various species and have the capacity to adopt non-canonical (i.e., non-B) DNA structures. Several non-B DNA structures, including cruciforms, slipped structures, triplexes, G-quadruplexes, and Z-DNA, have been shown to cause mutations, such as deletions, expansions, and translocations in both prokaryotes and eukaryotes. Their distributions in genomes are not random and often co-localize with sites of chromosomal breakage associated with genetic diseases. Current genome-wide sequence analyses suggest that the genomic instabilities induced by non-B DNA structure-forming sequences not only result in predisposition to disease, but also contribute to rapid evolutionary changes, particularly in genes associated with development and regulatory functions. In this review, we describe the occurrence of non-B DNA-forming sequences in various species, the classes of genes enriched in non-B DNA-forming sequences, and recent mechanistic studies on DNA structure-induced genomic instability to highlight their importance in genomes.
Collapse
Affiliation(s)
- Junhua Zhao
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| | - Albino Bacolla
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| | - Guliang Wang
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| | - Karen M. Vasquez
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| |
Collapse
|
48
|
AID-induced decrease in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class switch recombination. Proc Natl Acad Sci U S A 2009; 106:22375-80. [PMID: 20018730 DOI: 10.1073/pnas.0911879106] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To initiate class switch recombination (CSR) activation-induced cytidine deaminase (AID) induces staggered nick cleavage in the S region, which lies 5' to each Ig constant region gene and is rich in palindromic sequences. Topoisomerase 1 (Top1) controls the supercoiling of DNA by nicking, rotating, and religating one strand of DNA. Curiously, Top1 reduction or AID overexpression causes the genomic instability. Here, we report that the inactivation of Top1 by its specific inhibitor camptothecin drastically blocked both the S region cleavage and CSR, indicating that Top1 is responsible for the S region cleavage in CSR. Surprisingly, AID expression suppressed Top1 mRNA translation and reduced its protein level. In addition, the decrease in the Top1 protein by RNA-mediated knockdown augmented the AID-dependent S region cleavage, as well as CSR. Furthermore, Top1 reduction altered DNA structure of the Smu region. Taken together, AID-induced Top1 reduction alters S region DNA structure probably to non-B form, on which Top1 can introduce nicks but cannot religate, resulting in S region cleavage.
Collapse
|
49
|
Lestienne PP. Are there three polynucleotide strands in the catalytic centre of DNA polymerases? Biochimie 2009; 91:1523-30. [PMID: 19628017 DOI: 10.1016/j.biochi.2009.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
Mitochondrial DNA may undergo large-scale rearrangements, thus leading to diseases. The mechanisms of these rearrangements are still the matter of debates. Several lines of evidence indicate that breakpoints are characterized by direct repeats (DR), one of them being eliminated from the normal genome. Analysis of DR showed their skewed nucleotide content compatible with the formation of known triple helices. Here, I propose a novel mechanism involving the formation of triplex structures that result from the dissociation of the [synthesized repeat-DNA polymerase] complex. Upon binding to the homologous sequence, replication is initiated from the primer bound in a triple helix manner. This feature implies the initiation of replication on the double-stranded DNA from the triple helix primer. Hereby, I review evidences supporting this model. Indeed, all short d(G)-rich primers 10 nucleotides long can be elongated on double-stranded DNA by phage, bacterial, reverse transcriptases and eukaryotic DNA polymerases. Mismatches may be tolerated between the primer and its double-stranded binding site. In contrast to previous studies, evidences for the parallel binding of the triple helix to its homologous strand are provided. This suggest the displacement of the non-template strand by the triple helix primer upon binding within the DNA polymerase catalytic centre. Computer modelling indicates that the triple helix primer lies within the major groove of the double helix, with its 3' hydroxyl end nearby the catalytic amino acids. Taken together, I bring new concepts on DNA rearrangements, and novel features of triple helices and DNA polymerases that can bind three polynucleotide strands similar to RNA polymerases.
Collapse
Affiliation(s)
- Patrick P Lestienne
- U 889 INSERM, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux, France
| |
Collapse
|
50
|
McMillan RE, Sikes ML. Promoter activity 5' of Dbeta2 is coordinated by E47, Runx1, and GATA-3. Mol Immunol 2009; 46:3009-17. [PMID: 19592096 DOI: 10.1016/j.molimm.2009.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
Abstract
V(D)J recombination involves the stepwise assembly of B and T cell receptor genes as lymphocytes progress through the early stages of development. While the mechanisms that restrict each step in recombination to its appropriate developmental stage are largely unknown, they share many of the components that regulate transcription. For example, enhancer-dependent modifications in histone acetylation and methylation are essential for both germline transcription and rearrangement of antigen receptor genes. Promoters positioned proximal to individual D and J gene segments in Tcra, Tcrb, Tcrd, IgH, and Igk also contribute to antigen receptor gene assembly, though their effects appear more localized than those of enhancers. Tcrb assembly initiates with D-to-J joining at each of the two D-J-C gene segment clusters in DN1/2 thymocytes. DJ joints are fused with Vbeta elements to complete Tcrb recombination in DN3 cells. We have previously shown that Dbeta2 is flanked by upstream and downstream promoters, with the 5' promoter being held inactive until D-to-J recombination deletes the NFkappaB-dependent 3' promoter. We now report that activity of the 5' promoter reflects a complex interplay among Runx1, GATA-3, and E47 transcription factors. In particular, while multiple E47 and Runx1 binding sites clustered near the Dbeta2 5'RS and overlapping inr elements define the core 5'PDbeta2, they act in concert with an array of upstream GATA-3 sites to overcome the inhibitory effects of a 110bp distal polypurine.polypyrimidine (R.Y) tract. The dependence of 5'PDbeta2 on E47 is consistent with the reported role of E proteins in post-DN1 thymocyte development and V-to-DJbeta recombination.
Collapse
Affiliation(s)
- Ruth E McMillan
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|