1
|
Yang Y, Han X, Sun L, Shao F, Yin Y, Zhang W. ETS Transcription Factors in Immune Cells and Immune-Related Diseases. Int J Mol Sci 2024; 25:10004. [PMID: 39337492 PMCID: PMC11432452 DOI: 10.3390/ijms251810004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The development, differentiation, and function of immune cells are precisely regulated by transcription factors. The E26 transformation-specific (ETS) transcription factor family is involved in various physiological and pathological processes by regulating cell proliferation, differentiation, and apoptosis. Emerging evidence has suggested that ETS family proteins are intimately involved in the development and function of immune cells. This review summarizes the role of the ETS family in immune cells and immune-related disorders. Seven transcription factors within the ETS family, including PU.1, ETV5, ETV6, ETS1/2, ELK3, and ELF1, play essential roles in the development and function of T cells, B cells, macrophages, neutrophils, and dendritic cells. Furthermore, they are involved in the occurrence and development of immune-related diseases, including tumors, allergies, autoimmune diseases, and arteriosclerosis. This review is conducive to a comprehensive overview of the role of the ETS family in immune cells, and thus is informative for the development of novel therapeutic strategies targeting the ETS family for immune-related diseases.
Collapse
Affiliation(s)
- Yaxu Yang
- Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (L.S.)
| | - Xue Han
- Department of Pharmacology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.H.); (F.S.)
| | - Lijun Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (L.S.)
| | - Fangyu Shao
- Department of Pharmacology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.H.); (F.S.)
| | - Yue Yin
- Department of Pharmacology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.H.); (F.S.)
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (L.S.)
| |
Collapse
|
2
|
Folate Receptor β (FRβ) Expression in Tissue-Resident and Tumor-Associated Macrophages Associates with and Depends on the Expression of PU.1. Cells 2020; 9:cells9061445. [PMID: 32532019 PMCID: PMC7349916 DOI: 10.3390/cells9061445] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
As macrophages exhibit a huge functional plasticity under homeostasis and pathological conditions, they have become a therapeutic target for chronic inflammatory diseases. Hence, the identification of macrophage subset-specific markers is a requisite for the development of macrophage-directed therapeutic interventions. In this regard, the macrophage-specific Folate Receptor β (FRβ, encoded by the FOLR2 gene) has been already validated as a target for molecular delivery in cancer as well as in macrophage-targeting therapeutic strategies for chronic inflammatory pathologies. We now show that the transcriptome of human macrophages from healthy and inflamed tissues (tumor; rheumatoid arthritis, RA) share a significant over-representation of the “anti-inflammatory gene set”, which defines the gene profile of M-CSF-dependent IL-10-producing human macrophages (M-MØ). More specifically, FOLR2 expression has been found to strongly correlate with the expression of M-MØ-specific genes in tissue-resident macrophages, tumor-associated macrophages (TAM) and macrophages from inflamed synovium, and also correlates with the presence of the PU.1 transcription factor. In fact, PU.1-binding elements are found upstream of the first exon of FOLR2 and most M-MØ-specific- and TAM-specific genes. The functional relevance of PU.1 binding was demonstrated through analysis of the proximal regulatory region of the FOLR2 gene, whose activity was dependent on a cluster of PU.1-binding sequences. Further, siRNA-mediated knockdown established the importance of PU.1 for FOLR2 gene expression in myeloid cells. Therefore, we provide evidence that FRβ marks tissue-resident macrophages as well as macrophages within inflamed tissues, and its expression is dependent on PU.1.
Collapse
|
3
|
miR-155 indicates the fate of CD4 + T cells. Immunol Lett 2020; 224:40-49. [PMID: 32485191 DOI: 10.1016/j.imlet.2020.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are a class of short noncoding RNAs that regulate the translation of target messenger RNA (mRNA) and consequently participate in a variety of biological processes at the posttranscriptional level. miR-155, encoded within a region known as the B cell integration cluster (BIC), plays multifunctional roles in shaping lymphocytes ranging from biological development to adaptive immunity. It has been revealed that miR-155 plays a key role in fine-tuning the regulation of lymphocyte subsets, including dendritic cells (DCs), macrophages, B cells, and CD8+ and CD4+ T cells. Antigen-specific CD4+ T lymphocytes are critical for host defense against pathogens and prevention of damage resulting from excessive inflammation. Over the past years, various studies have shown that miR-155 plays a critical role in CD4+ T cells function. Therefore, we summarize multiple target genes of miR-155 that regulate aspects of CD4+ T cells immunity, particularly CD4+ T cells differentiation, in this review. In addition, we also focus on the role of miR-155 in the regulation of immunological diseases, suggesting it as a potential disease biomarker and therapeutic target.
Collapse
|
4
|
Zhou S, Zhang L, Feng D, Luo M, Xie R, Yang K, Xu D, Yang K, Fei J, Zhou T. The mTOR-RUNX1 pathway regulates DC-SIGN expression in renal tubular epithelial cells. Biochem Biophys Res Commun 2019; 519:620-625. [DOI: 10.1016/j.bbrc.2019.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
|
5
|
Tibúrcio R, Nunes S, Nunes I, Rosa Ampuero M, Silva IB, Lima R, Machado Tavares N, Brodskyn C. Molecular Aspects of Dendritic Cell Activation in Leishmaniasis: An Immunobiological View. Front Immunol 2019; 10:227. [PMID: 30873156 PMCID: PMC6401646 DOI: 10.3389/fimmu.2019.00227] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) are a diverse group of leukocytes responsible for bridging innate and adaptive immunity. Despite their functional versatility, DCs exist primarily in two basic functional states: immature and mature. A large body of evidence suggests that upon interactions with pathogens, DCs undergo intricate cellular processes that culminate in their activation, which is paramount to the orchestration of effective immune responses against Leishmania parasites. Herein we offer a concise review of the emerging hallmarks of DCs activation in leishmaniasis as well as a comprehensive discussion of the following underlying molecular events: DC-Leishmania interaction, antigen uptake, costimulatory molecule expression, parasite ability to affect DC migration, antigen presentation, metabolic reprogramming, and epigenetic alterations.
Collapse
Affiliation(s)
- Rafael Tibúrcio
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Sara Nunes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Ivanéia Nunes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Mariana Rosa Ampuero
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Icaro Bonyek Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Reinan Lima
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Natalia Machado Tavares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia (INCT) iii Instituto de Investigação em Imunologia, São Paulo, Brazil
| | - Cláudia Brodskyn
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia (INCT) iii Instituto de Investigação em Imunologia, São Paulo, Brazil
| |
Collapse
|
6
|
Domínguez-Soto Á, Simón-Fuentes M, de Las Casas-Engel M, Cuevas VD, López-Bravo M, Domínguez-Andrés J, Saz-Leal P, Sancho D, Ardavín C, Ochoa-Grullón J, Sánchez-Ramón S, Vega MA, Corbí AL. IVIg Promote Cross-Tolerance against Inflammatory Stimuli In Vitro and In Vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:41-52. [PMID: 29743313 DOI: 10.4049/jimmunol.1701093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 04/18/2018] [Indexed: 01/25/2023]
Abstract
IVIg is an approved therapy for immunodeficiency and for several autoimmune and inflammatory diseases. However, the molecular basis for the IVIg anti-inflammatory activity remains to be fully explained and cannot be extrapolated from studies on animal models of disease. We now report that IVIg impairs the generation of human monocyte-derived anti-inflammatory macrophages by inducing JNK activation and activin A production and limits proinflammatory macrophage differentiation by inhibiting GM-CSF-driven STAT5 activation. In vivo, IVIg provokes a rapid increase in peripheral blood activin A, CCL2, and IL-6 levels, an effect that can be recapitulated in vitro on human monocytes. On differentiating monocytes, IVIg promotes the acquisition of altered transcriptional and cytokine profiles, reduces TLR expression and signaling, and upregulates negative regulators of TLR-initiated intracellular signaling. In line with these effects, in vivo IVIg infusion induces a state tolerant toward subsequent stimuli that results in reduced inflammatory cytokine production after LPS challenge in human peripheral blood and significant protection from LPS-induced death in mice. Therefore, IVIg conditions human macrophages toward the acquisition of a state of cross-tolerance against inflammatory stimuli, an effect that correlates with the net anti-inflammatory action of IVIg in vivo.
Collapse
Affiliation(s)
- Ángeles Domínguez-Soto
- Departamento de Biología Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, 28040 Madrid, Spain;
| | - Miriam Simón-Fuentes
- Departamento de Biología Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, 28040 Madrid, Spain
| | - Mateo de Las Casas-Engel
- Departamento de Biología Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, 28040 Madrid, Spain
| | - Víctor D Cuevas
- Departamento de Biología Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, 28040 Madrid, Spain
| | - María López-Bravo
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | - Jorge Domínguez-Andrés
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | - Paula Saz-Leal
- Fundación Centro Nacional de Investigaciones Cardiovasculares, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; and
| | - David Sancho
- Fundación Centro Nacional de Investigaciones Cardiovasculares, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; and
| | - Carlos Ardavín
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | - Juliana Ochoa-Grullón
- Departamento de Inmunología Clínica, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain
| | - Silvia Sánchez-Ramón
- Departamento de Inmunología Clínica, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain
| | - Miguel A Vega
- Departamento de Biología Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, 28040 Madrid, Spain
| | - Angel L Corbí
- Departamento de Biología Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, 28040 Madrid, Spain;
| |
Collapse
|
7
|
Mennens SFB, Bolomini-Vittori M, Weiden J, Joosten B, Cambi A, van den Dries K. Substrate stiffness influences phenotype and function of human antigen-presenting dendritic cells. Sci Rep 2017; 7:17511. [PMID: 29235514 PMCID: PMC5727489 DOI: 10.1038/s41598-017-17787-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) are specialized immune cells that scan peripheral tissues for foreign material or aberrant cells and, upon recognition of such danger signals, travel to lymph nodes to activate T cells and evoke an immune response. For this, DCs travel large distances through the body, encountering a variety of microenvironments with different mechanical properties such as tissue stiffness. While immune-related pathological conditions such as fibrosis or cancer are associated with tissue stiffening, the role of tissue stiffness in regulating key functions of DCs has not been studied yet. Here, we investigated the effect of substrate stiffness on the phenotype and function of DCs by conditioning DCs on polyacrylamide substrates of 2, 12 and 50 kPa. Interestingly, we found that C-type lectin expression on immature DCs (iDCs) is regulated by substrate stiffness, resulting in differential antigen internalization. Furthermore, we show that substrate stiffness affects β2 integrin expression and podosome formation by iDCs. Finally, we demonstrate that substrate stiffness influences CD83 and CCR7 expression on mature DCs, the latter leading to altered chemokine-directed migration. Together, our results indicate that DC phenotype and function are affected by substrate stiffness, suggesting that tissue stiffness is an important determinant for modulating immune responses.
Collapse
Affiliation(s)
- Svenja F B Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Matteo Bolomini-Vittori
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Jorieke Weiden
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Kumar Kingsley SM, Vishnu Bhat B. Role of MicroRNAs in the development and function of innate immune cells. Int Rev Immunol 2017; 36:154-175. [DOI: 10.1080/08830185.2017.1284212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. Manoj Kumar Kingsley
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - B. Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
9
|
Wang M, Liu Z, Liu C, Wu T, Cai F, Wang Q, Su X, Shi Y. PU.1 is involved in the immune response to Aspergillus fumigatus through upregulating Dectin-1 expression. BMC Infect Dis 2016; 16:297. [PMID: 27306059 PMCID: PMC4910222 DOI: 10.1186/s12879-016-1632-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023] Open
Abstract
Background Invasive aspergillosis is a life-threatening disease, and its incidence has increased in the recent past. Dectin-1 recognizes β-glucans and mediates innate immune responses to Aspergillus fumigatus. Transcription factor PU.1 has been the focus of recent research due to its role in inflammation and infection. However, its role in Dectin-1 regulation during A. fumigatus infection remains to be elucidated. Methods THP-1 cells were stimulated with A. fumigatus conidia. We then used real-time RT-PCR, Western blot, and immunofluorescence assays to analyze the mRNA and protein levels and cellular distribution, respectively, of Dectin-1 and PU.1 in stimulated THP-1 cells. Additionally, we used the luciferase reporter assays, chromatin immunoprecipitation (ChIP) assays, electrophoretic mobility shift assays (EMSA), and RNA interference experiments to investigate the role of PU.1 in Dectin-1 regulation. Results Our results revealed that Dectin-1 mRNA and protein levels as well as the PU.1 protein level were increased in THP-1 cells stimulated with A. fumigatus conidia, while the mRNA expression level did not significantly change between the stimulated and control groups. We also observed that PU.1 translocated into the nucleus in stimulated THP-1 cells. The results of the luciferase reporter assay showed that PU.1 promoted human Dectin-1 (hDectin-1) gene activity. ChIP and EMSA indicated that PU.1 could bind with hDectin-1 gene promoter at three potential transcription factor-binding sites (TFBSs). In addition, knockdown of PU.1 significantly decreased Dectin-1 expression. Conclusions This study demonstrated the novel role of PU.1 in the immune response to A. fumigatus through upregulation of Dectin-1 expression and its translocation to the nucleus in A. fumigatus-stimulated THP-1 cells.
Collapse
Affiliation(s)
- Min Wang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, China
| | | | | | - Ting Wu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, China
| | - Feng Cai
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, China
| | - Quan Wang
- Department of Respiratory Medicine, BenQ Medical Center, Nanjing, China
| | - Xin Su
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, China.
| | - Yi Shi
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, China.
| |
Collapse
|
10
|
Graham DB, Becker CE, Doan A, Goel G, Villablanca EJ, Knights D, Mok A, Ng ACY, Doench JG, Root DE, Clish CB, Xavier RJ. Functional genomics identifies negative regulatory nodes controlling phagocyte oxidative burst. Nat Commun 2015; 6:7838. [PMID: 26194095 PMCID: PMC4518307 DOI: 10.1038/ncomms8838] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/17/2015] [Indexed: 01/06/2023] Open
Abstract
The phagocyte oxidative burst, mediated by Nox2 NADPH oxidase-derived reactive oxygen species, confers host defense against a broad spectrum of bacterial and fungal pathogens. Loss-of-function mutations that impair function of the Nox2 complex result in a life-threatening immunodeficiency, and genetic variants of Nox2 subunits have been implicated in pathogenesis of inflammatory bowel disease (IBD). Thus, alterations in the oxidative burst can profoundly impact host defense, yet little is known about regulatory mechanisms that fine-tune this response. Here we report the discovery of regulatory nodes controlling oxidative burst by functional screening of genes within loci linked to human inflammatory disease. Implementing a multi-omics approach, we define transcriptional, metabolic and ubiquitin-cycling nodes controlled by Rbpj, Pfkl and Rnf145, respectively. Furthermore, we implicate Rnf145 in proteostasis of the Nox2 complex by endoplasmic reticulum-associated degradation. Consequently, ablation of Rnf145 in murine macrophages enhances bacterial clearance, and rescues the oxidative burst defects associated with Ncf4 haploinsufficiency.
Collapse
Affiliation(s)
- Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Christine E Becker
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Aivi Doan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Gautam Goel
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Eduardo J Villablanca
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Amanda Mok
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Aylwin C Y Ng
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.,Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
11
|
Cocaine enhances HIV-1 infectivity in monocyte derived dendritic cells by suppressing microRNA-155. PLoS One 2013; 8:e83682. [PMID: 24391808 PMCID: PMC3877075 DOI: 10.1371/journal.pone.0083682] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/06/2013] [Indexed: 01/05/2023] Open
Abstract
Cocaine and other drugs of abuse increase HIV-induced immunopathogenesis; and neurobiological mechanisms of cocaine addiction implicate a key role for microRNAs (miRNAs), single-stranded non-coding RNAs that regulate gene expression and defend against viruses. In fact, HIV defends against miRNAs by actively suppressing the expression of polycistronic miRNA cluster miRNA-17/92, which encodes miRNAs including miR-20a. IFN-g production by natural killer cells is regulated by miR-155 and this miRNA is also critical to dendritic cell (DC) maturation. However, the impact of cocaine on miR-155 expression and subsequent HIV replication is unknown. We examined the impact of cocaine on two miRNAs, miR-20a and miR-155, which are integral to HIV replication, and immune activation. Using miRNA isolation and analysis, RNA interference, quantitative real time PCR, and reporter assays we explored the effects of cocaine on miR-155 and miR-20 in the context of HIV infection. Here we demonstrate using monocyte-derived dendritic cells (MDCCs) that cocaine significantly inhibited miR-155 and miR-20a expression in a dose dependent manner. Cocaine and HIV synergized to lower miR-155 and miR-20a in MDDCs by 90%. Cocaine treatment elevated LTR-mediated transcription and PU.1 levels in MDCCs. But in context of HIV infection, PU.1 was reduced in MDDCs regardless of cocaine presence. Cocaine increased DC-SIGN and and decreased CD83 expression in MDDC, respectively. Overall, we show that cocaine inhibited miR-155 and prevented maturation of MDDCs; potentially, resulting in increased susceptibility to HIV-1. Our findings could lead to the development of novel miRNA-based therapeutic strategies targeting HIV infected cocaine abusers.
Collapse
|
12
|
MicroRNA-155 is required for Mycobacterium bovis BCG-mediated apoptosis of macrophages. Mol Cell Biol 2012; 32:2239-53. [PMID: 22473996 DOI: 10.1128/mcb.06597-11] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pathogenic mycobacteria, including Mycobacterium tuberculosis and Mycobacterium bovis, cause significant morbidity and mortality worldwide. However, the vaccine strain Mycobacterium bovis BCG, unlike virulent strains, triggers extensive apoptosis of infected macrophages, a step necessary for the elicitation of robust protective immunity. We here demonstrate that M. bovis BCG triggers Toll-like receptor 2 (TLR2)-dependent microRNA-155 (miR-155) expression, which involves signaling cross talk among phosphatidylinositol 3-kinase (PI3K), protein kinase Cδ (PKCδ), and mitogen-activated protein kinases (MAPKs) and recruitment of NF-κB and c-ETS to miR-155 promoter. Genetic and signaling perturbations presented the evidence that miR-155 regulates PKA signaling by directly targeting a negative regulator of PKA, protein kinase inhibitor alpha (PKI-α). Enhanced activation of PKA signaling resulted in the generation of PKA C-α; phosphorylation of MSK1, cyclic AMP response element binding protein (CREB), and histone H3; and recruitment of phospho-CREB to the apoptotic gene promoters. The miR-155-triggered activation of caspase-3, BAK1, and cytochrome c translocation involved signaling integration of MAPKs and epigenetic or posttranslational modification of histones or CREB. Importantly, M. bovis BCG infection-induced apoptosis was severely compromised in macrophages derived from miR-155 knockout mice. Gain-of-function and loss-of-function studies validated the requirement of miR-155 for M. bovis BCG's ability to trigger apoptosis. Overall, M. bovis BCG-driven miR-155 dictates cell fate decisions of infected macrophages, strongly implicating a novel role for miR-155 in orchestrating cellular reprogramming during immune responses to mycobacterial infection.
Collapse
|
13
|
Turner ML, Schnorfeil FM, Brocker T. MicroRNAs Regulate Dendritic Cell Differentiation and Function. THE JOURNAL OF IMMUNOLOGY 2011; 187:3911-7. [DOI: 10.4049/jimmunol.1101137] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Domínguez-Soto A, Sierra-Filardi E, Puig-Kröger A, Pérez-Maceda B, Gómez-Aguado F, Corcuera MT, Sánchez-Mateos P, Corbí AL. Dendritic Cell-Specific ICAM-3–Grabbing Nonintegrin Expression on M2-Polarized and Tumor-Associated Macrophages Is Macrophage-CSF Dependent and Enhanced by Tumor-Derived IL-6 and IL-10. THE JOURNAL OF IMMUNOLOGY 2011; 186:2192-200. [DOI: 10.4049/jimmunol.1000475] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Martinez-Nunez RT, Louafi F, Sanchez-Elsner T. The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem 2010; 286:1786-94. [PMID: 21097505 DOI: 10.1074/jbc.m110.169367] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macrophages play a central role in the balance and efficiency of the immune response and are at the interface between innate and adaptive immunity. Their phenotype is a delicate equilibrium between the M1 (classical, pro-Th(1)) and M2 (alternative, pro-Th(2)) profiles. This balance is regulated by cytokines such as interleukin 13 (IL-13), a typical pro-M2-Th(2) cytokine that has been related to allergic disease and asthma. IL-13 binds to IL-13 receptor α1 (IL13Rα1), a component of the Type II IL-4 receptor, and exerts its effects by activating the transcription factor signal transducer and activator of transcription 6 (STAT6) through phosphorylation. MicroRNAs are short (∼22 nucleotide) inhibitory non-coding RNAs that block the translation or promote the degradation of their specific mRNA targets. By bioinformatics analysis, we found that microRNA-155 (miR-155) is predicted to target IL13Rα1. This suggested that miR-155 might be involved in the regulation of the M1/M2 balance in macrophages by modulating IL-13 effects. miR-155 has been implicated in the development of a healthy immune system and function as well as in the inflammatory pro-Th(1)/M1 immune profile. Here we have shown that in human macrophages, miR-155 directly targets IL13Rα1 and reduces the levels of IL13Rα1 protein, leading to diminished activation of STAT6. Finally we also demonstrate that miR-155 affects the IL-13-dependent regulation of several genes (SOCS1, DC-SIGN, CCL18, CD23, and SERPINE) involved in the establishment of an M2/pro-Th(2) phenotype in macrophages. Our work shows a central role for miR-155 in determining the M2 phenotype in human macrophages.
Collapse
Affiliation(s)
- Rocio T Martinez-Nunez
- JunkRNA Laboratory, Division of Infection, Inflammation and Immunity, University of Southampton School of Medicine, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | | | | |
Collapse
|
16
|
|
17
|
Plazolles N, Humbert JM, Vachot L, Verrier B, Hocke C, Halary F. Pivotal advance: The promotion of soluble DC-SIGN release by inflammatory signals and its enhancement of cytomegalovirus-mediated cis-infection of myeloid dendritic cells. J Leukoc Biol 2010; 89:329-42. [PMID: 20940323 PMCID: PMC7166666 DOI: 10.1189/jlb.0710386] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DC-SIGN is a member of the C-type lectin family. Mainly expressed by myeloid DCs, it is involved in the capture and internalization of pathogens, including human CMV. Several transcripts have been identified, some of which code for putative soluble proteins. However, little is known about the regulation and the functional properties of such putative sDC-SIGN variants. To better understand how sDC-SIGN could be involved in CMV infection, we set out to characterize biochemical and functional properties of rDC-SIGN as well as naturally occurring sDC-SIGN. We first developed a specific, quantitative ELISA and then used it to detect the presence sDC-SIGN in in vitro-generated DC culture supernatants as cell-free secreted tetramers. Next, in correlation with their inflammatory status, we demonstrated the presence of sDC-SIGN in several human body fluids, including serum, joint fluids, and BALs. CMV infection of human tissues was also shown to promote sDC-SIGN release. Based on the analysis of the cytokine/chemokine content of sDC-SIGN culture supernatants, we identified IFN-γ and CXCL8/IL-8 as inducers of sDC-SIGN production by MoDC. Finally, we demonstrated that sDC-SIGN was able to interact with CMV gB under native conditions, leading to a significant increase in MoDC CMV infection. Overall, our results confirm that sDC-SIGN, like its well-known, counterpart mDC-SIGN, may play a pivotal role in CMV-mediated pathogenesis.
Collapse
Affiliation(s)
- N Plazolles
- CNRS, UMR 5234, Université Bordeaux 2, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
18
|
Puig-Kröger A, Aguilera-Montilla N, Martínez-Nuñez R, Domínguez-Soto A, Sánchez-Cabo F, Martín-Gayo E, Zaballos A, Toribio ML, Groner Y, Ito Y, Dopazo A, Corcuera MT, Alonso Martín MJ, Vega MA, Corbí AL. The novel RUNX3/p33 isoform is induced upon monocyte-derived dendritic cell maturation and downregulates IL-8 expression. Immunobiology 2010; 215:812-20. [PMID: 20615577 DOI: 10.1016/j.imbio.2010.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
Abstract
RUNX proteins are heterodimeric factors that play crucial roles during development and differentiation of cells of the immune system. The RUNX3 transcription factor controls lineage decisions during thymopoiesis and T-cell differentiation, and modulates myeloid cell effector functions. We now report the characterization of the human RUNX3/p33 isoform, generated by splicing out a Runt DNA-binding domain-encoding exon, and whose transcriptional activities differ from those of the prototypic RUNX3/p44 molecule. Unlike RUNX3/p44, RUNX3/p33 is induced upon maturation of monocyte-derived dendritic cells (MDDC), and is unable to transactivate the regulatory regions of the CD11a, CD11c and CD49e integrin genes. Overexpression of RUNX3/p33 in myeloid cell lines led to diminished expression of genes involved in inflammatory responses. Moreover, overexpression of RUNX3/p33 down-modulated the basal level of IL-8 production from immature monocyte-derived dendritic cells (MDDC). Besides, siRNA-mediated knock-down of RUNX3 led to diminished levels of IL-8 RNA in immature MDDC, and modulated the neutrophil-recruiting capacity of myeloid cell line supernatants. Since IL-8 promotes neutrophil chemotaxis and degranulation during inflammatory responses, and exerts mitogenic and angiogenic actions within tumor microenvironment, our results imply that myeloid RUNX3 expression regulates the recruitment of leukocytes towards inflammatory foci and might also contribute to human cancer progression.
Collapse
|
19
|
C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell Signal 2010; 22:1397-405. [PMID: 20363321 PMCID: PMC7127357 DOI: 10.1016/j.cellsig.2010.03.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 03/25/2010] [Indexed: 11/30/2022]
Abstract
The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a type II C-type lectin whose expression is restricted to the most potent antigen-presenting cells (APCs), the dendritic cells (DCs). In recent years, DC-SIGN has gained an exponential increase in attention because of its involvement in multiple aspects of immune function. Besides being an adhesion molecule, particularly in binding ICAM-2 and ICAM-3, it is also crucial in recognizing several endogenous and exogenous antigens. Additionally, the intracellular domain of DC-SIGN includes molecular motifs, which enable the activation of signal transduction pathways involving Raf-1 and subsequent modulation of DC-maturation status, through direct modification of nuclear factor Nf-κB in DCs. Upon DC-SIGN engagement by mannose- or fucose-containing oligosaccharides, the latter leads to a tailored Toll-like receptor signalling, resulting in an altered DC-cytokine profile and skewing of Th1/Th2 responses. In this article, we will discuss recent advances on a broad perspective concerning DC-SIGN structure, signalling and immune function.
Collapse
|
20
|
Martinez-Nunez RT, Louafi F, Friedmann PS, Sanchez-Elsner T. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem 2009; 284:16334-16342. [PMID: 19386588 DOI: 10.1074/jbc.m109.011601] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
MicroRNA-155 (miR-155) has been involved in the response to inflammation in macrophages and lymphocytes. Here we show how miR-155 participates in the maturation of human dendritic cells (DC) and modulates pathogen binding by down-regulating DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN), after directly targeting the transcription factor PU.1. During the maturation of DCs, miR-155 increases up to 130-fold, whereas PU.1 protein levels decrease accordingly. We establish that human PU.1 is a direct target for miR-155 and localize the target sequence for miR-155 in the 3'-untranslated region of PU.1. Also, overexpression of miR-155 in the THP1 monocytic cell line decreases PU.1 protein levels and DC-SIGN at both the mRNA and protein levels. We prove a link between the down-regulation of PU.1 and reduced transcriptional activity of the DC-SIGN promoter, which is likely to be the basis for its reduced mRNA expression, after miR-155 overexpression. Finally, we show that, by reducing DC-SIGN in the cellular membrane, miR-155 is involved in regulating pathogen binding as dendritic cells exhibited the lower binding capacity for fungi and HIV protein gp-120 when the levels of miR-155 were higher. Thus, our results suggest a mechanism by which miR-155 regulates proteins involved in the cellular immune response against pathogens that could have clinical implications in the way pathogens enter the human organism.
Collapse
Affiliation(s)
- Rocio T Martinez-Nunez
- From the Division of Infection, Inflammation and Repair, University of Southampton School of Medicine, Southampton SO16 6YD, United Kingdom
| | - Fethi Louafi
- From the Division of Infection, Inflammation and Repair, University of Southampton School of Medicine, Southampton SO16 6YD, United Kingdom
| | - Peter S Friedmann
- From the Division of Infection, Inflammation and Repair, University of Southampton School of Medicine, Southampton SO16 6YD, United Kingdom
| | - Tilman Sanchez-Elsner
- From the Division of Infection, Inflammation and Repair, University of Southampton School of Medicine, Southampton SO16 6YD, United Kingdom; Southampton General Hospital, Southampton SO16 6YD, United Kingdom.
| |
Collapse
|
21
|
Domínguez‐Soto Á, Aragoneses‐Fenoll L, Gómez‐Aguado F, Corcuera MT, Clária J, García‐Monzón C, Bustos M, Corbí AL. The pathogen receptor liver and lymph node sinusoidal endotelial cell C-type lectin is expressed in human Kupffer cells and regulated by PU.1. Hepatology 2009; 49:287-96. [PMID: 19111020 PMCID: PMC7165556 DOI: 10.1002/hep.22678] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Human LSECtin (liver and lymph node sinusoidal endothelial cell C-type lectin, CLEC4G) is a C-type lectin encoded within the L-SIGN/DC-SIGN/CD23 gene cluster. LSECtin acts as a pathogen attachment factor for Ebolavirus and the SARS coronavirus, and its expression can be induced by interleukin-4 on monocytes and macrophages. Although reported as a liver and lymph node sinusoidal endothelial cell-specific molecule, LSECtin could be detected in the MUTZ-3 dendritic-like cell line at the messenger RNA (mRNA) and protein level, and immunohistochemistry analysis on human liver revealed its presence in Kupffer cells coexpressing the myeloid marker CD68. The expression of LSECtin in myeloid cells was further corroborated through the analysis of the proximal regulatory region of the human LSECtin gene, whose activity was maximal in LSECtin+ myeloid cells, and which contains a highly conserved PU.1-binding site. PU.1 transactivated the LSECtin regulatory region in collaboration with hematopoietic-restricted transcription factors (Myb, RUNX3), and was found to bind constitutively to the LSECtin proximal promoter. Moreover, knockdown of PU.1 through the use of small interfering RNA led to a decrease in LSECtin mRNA levels in THP-1 and monocyte-derived dendritic cells, thus confirming the involvement of PU.1 in the myeloid expression of the lectin. CONCLUSION LSECtin is expressed by liver myeloid cells, and its expression is dependent on the PU.1 transcription factor.
Collapse
Affiliation(s)
| | | | | | | | - Joan Clária
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, Barcelona, Spain
| | - Carmelo García‐Monzón
- Hospital Universitario Santa Cristina, Madrid, Spain (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)
| | - Matilde Bustos
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Angel L. Corbí
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| |
Collapse
|
22
|
Bharadwaj AS, Agrawal DK. Transcription factors in the control of dendritic cell life cycle. Immunol Res 2007; 37:79-96. [PMID: 17496348 DOI: 10.1007/bf02686091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells that guard all parts of the body. They have the unique ability to prime T cells and generate primary immune responses. Their journey beginning with the development from precursor cells and ending with their death is controlled by a group of transcription factors. Some of the transcription factors like PU.1 are involved in more than one stage of DC life. Other transcription factors including Ikaros and JAK3 are involved in the development of more than one cell type. For a long time, the cellular and molecular mechanisms underlying the development, differentiation, maturation, and other stages of DC life were not well understood. However, in recent years novel information has been published by many researchers to better understand the molecular mechanisms of the development and function of DCs in immunological diseases such as asthma, cancer, autoimmunity, and transplantation. This review will discuss the various transcription factors and signaling pathways involved in each stage of the life cycle of DCs.
Collapse
Affiliation(s)
- Arpita S Bharadwaj
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | |
Collapse
|
23
|
Yagi M, Ninomiya K, Fujita N, Suzuki T, Iwasaki R, Morita K, Hosogane N, Matsuo K, Toyama Y, Suda T, Miyamoto T. Induction of DC-STAMP by alternative activation and downstream signaling mechanisms. J Bone Miner Res 2007; 22:992-1001. [PMID: 17402846 DOI: 10.1359/jbmr.070401] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED DC-STAMP is essential for fusion of osteoclasts and foreign body giant cells; however, it is not known whether dc-stamp expression in these two cell types is differentially regulated. Here, we show that dc-stamp expression and cell-cell fusion are regulated in a cell type-specific manner. INTRODUCTION The transcription factors c-Fos and NFATc1 cooperate to regulate osteoclast differentiation, whereas PU.1 and NF-kappaB are activated in macrophages and osteoclasts or in both cell types. Thus, we asked what role c-Fos, NFATc1, PU.1, and NF-kappaB played in regulating dendritic cell-specific transmembrane protein (dc-stamp) expression and fusion of osteoclasts and macrophage giant cells. MATERIALS AND METHODS Transcriptional activation by c-Fos and NFATc1 was examined by dc-stamp promoter analysis. Multinuclear cell formation was analyzed in cells from c-Fos-deficient mice or in wildtype cells treated with the NFAT inhibitor FK506. The role of DC-STAMP in cell fusion was examined in vitro in a macrophage giant cell formation assay using DC-STAMP-deficient cells. Recruitment of c-Fos, NFATc1, PU.1, and NF-kappaB to the dc-stamp promoter in osteoclasts and macrophage giant cells was analyzed by chromatin-immunoprecipitation analysis. RESULTS Both activator protein-1 (AP-1) and NFAT binding sites in the dc-stamp promoter were needed for dc-stamp expression after RANKL stimulation of osteoclasts. dc-stamp expression was induced in osteoclasts and macrophage giant cells, and cells from DC-STAMP-deficient mice failed to form either multinuclear osteoclasts or macrophage giant cells. In contrast, c-Fos is indispensable for dc-stamp expression and cell-cell fusion under conditions favoring in vitro and in vivo induction of osteoclasts but not macrophage giant cells. Consistently, an NFAT inhibitor suppressed multinuclear osteoclast formation but not macrophage giant cell formation. In addition, PU.1 and NF-kappaB binding sites were detected in the dc-stamp promoter, and both PU.1 and NF-kappaB were recruited to the dc-stamp promoter after granulocyte-macrophage colony stimulating factor (GM-CSF) + interleukin (IL)-4 stimulation. CONCLUSIONS dc-stamp expression is regulated differently in osteoclasts and macrophage giant cells. c-Fos and NFATc1, both of which are essential for osteoclast differentiation, are needed for dc-stamp expression and cell-cell fusion in osteoclasts, but both factors are dispensable for giant cell formation by macrophages. Because PU.1 and NF-kappaB are recruited to the dc-stamp promoter after stimulation with GM-CSF + IL-4, dc-stamp transcription is regulated in a cell type-specific manner.
Collapse
Affiliation(s)
- Mitsuru Yagi
- Department of Cell Differentiation, The Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dominguez-Soto A, Aragoneses-Fenoll L, Martin-Gayo E, Martinez-Prats L, Colmenares M, Naranjo-Gomez M, Borras FE, Munoz P, Zubiaur M, Toribio ML, Delgado R, Corbi AL. The DC-SIGN–related lectin LSECtin mediates antigen capture and pathogen binding by human myeloid cells. Blood 2007; 109:5337-45. [PMID: 17339424 DOI: 10.1182/blood-2006-09-048058] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractLiver and lymph node sinusoidal endothelial cell C-type lectin (LSECtin [CLEC4G]) is a C-type lectin encoded within the liver/lymph node–specific intercellular adhesion molecule-3–grabbing nonintegrin (L-SIGN)/dendritic cell–specific intercellular adhesion molecule-3–grabbing nonintegrin (DC-SIGN)/CD23 gene cluster. LSECtin expression has been previously described as restricted to sinusoidal endothelial cells of the liver and lymph node. We now report LSECtin expression in human peripheral blood and thymic dendritic cells isolated ex vivo. LSECtin is also detected in monocyte-derived macrophages and dendritic cells at the RNA and protein level. In vitro, interleukin-4 (IL-4) induces the expression of 3 LSECtin alternatively spliced isoforms, including a potentially soluble form (Δ2 isoform) and a shorter version of the prototypic molecule (Δ3/4 isoform). LSECtin functions as a pathogen receptor, because its expression confers Ebola virus–binding capacity to leukemic cells. Sugar-binding studies indicate that LSECtin specifically recognizes N-acetyl-glucosamine, whereas no LSECtin binding to Mannan- or N-acetyl-galactosamine–containing matrices are observed. Antibody or ligand-mediated engagement triggers a rapid internalization of LSECtin,which is dependent on tyrosine and diglutamic-containing motifs within the cytoplasmic tail. Therefore, LSECtin is a pathogen-associated molecular pattern receptor in human myeloid cells. In addition, our results suggest that LSECtin participates in antigen uptake and internalization, and might be a suitable target molecule in vaccination strategies.
Collapse
Affiliation(s)
- Angeles Dominguez-Soto
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Evans JM, Doki T, Fischer-Lougheed J, Davicioni E, Kearns-Jonker M. Expression changes in tolerant murine cardiac allografts after gene therapy with a lentiviral vector expressing alpha1,3 galactosyltransferase. Transplant Proc 2007; 38:3172-80. [PMID: 17175215 DOI: 10.1016/j.transproceed.2006.10.176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Indexed: 01/17/2023]
Abstract
Comparison of intragraft gene expression changes in tolerant cardiac allograft models may provide the basis for identifying pathways involved in graft survival. Our laboratory has previously demonstrated that tolerance to the gal alpha1,3 gal epitope, the major target of rejection of wild-type pig hearts in human cardiac transplantation, can be achieved after transplantation with bone marrow transduced with a lentiviral vector expressing alpha1,3 galactosyltransferase. We now present intracardiac gene expression changes associated with long-term tolerance in this model. Biotin-labeled cRNA was hybridized to Affymetrix GeneChip 430 2.0 Mouse Genome Arrays. Data were subjected to functional annotation analysis to identify genes of known function in which expression was increased or decreased by at least 2-fold (t-test, P < .05) in tolerant gal+/+ wild-type hearts as compared to transplanted syngeneic controls. Tolerant hearts demonstrated increased expression of genes associated with the stress response, modulation of immune function and cell survival (HSPa9a, CD56, and Akt1s1), and decreased expression of several immunoregulatory genes (CD209, CD26, and PDE4b). These data suggest that tolerance may be associated with activation of immunomodulatory and survival pathways.
Collapse
Affiliation(s)
- J M Evans
- Department of Anesthesiology Critical Care Medicine, Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027, USA.
| | | | | | | | | |
Collapse
|
26
|
Torrelles JB, Azad AK, Schlesinger LS. Fine discrimination in the recognition of individual species of phosphatidyl-myo-inositol mannosides from Mycobacterium tuberculosis by C-type lectin pattern recognition receptors. THE JOURNAL OF IMMUNOLOGY 2006; 177:1805-16. [PMID: 16849491 DOI: 10.4049/jimmunol.177.3.1805] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Mycobacterium tuberculosis (M.tb) envelope is highly mannosylated with phosphatidyl-myo-inositol mannosides (PIMs), lipomannan, and mannose-capped lipoarabinomannan (ManLAM). Little is known regarding the interaction between specific PIM types and host cell C-type lectin pattern recognition receptors. The macrophage mannose receptor (MR) and dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells engage ManLAM mannose caps and regulate several host responses. In this study, we analyzed the association of purified PIM families (f, separated by carbohydrate number) and individual PIM species (further separated by fatty acid number) from M.tb H(37)R(v) with human monocyte-derived macrophages (MDMs) and lectin-expressing cell lines using an established bead model. Higher-order PIMs preferentially associated with the MR as demonstrated by their reduced association with MDMs upon MR blockade and increased binding to COS-1-MR. In contrast, the lower-order PIM(2)f associated poorly with MDMs and did not bind to COS-1-MR. Triacylated PIM species were recognized by MDM lectins better than tetra-acylated species and the degree of acylation influenced higher-order PIM association with the MR. Moreover, only higher-order PIMs that bind the MR showed a significant increase in phagosome-lysosome fusion upon MR blockade. In contrast with the MR, the PIM(2)f and lipomannan were recognized by DC-SIGN comparable to higher-order PIMs and ManLAM, and the association was independent of their degree of acylation. Thus, recognition of M.tb PIMs by host cell C-type lectins is dependent on both the nature of the terminal carbohydrates and degree of acylation. Subtle structural differences among the PIMs impact host cell recognition and response and are predicted to influence the intracellular fate of M.tb.
Collapse
Affiliation(s)
- Jordi B Torrelles
- Department of Medicine, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|