1
|
Jeanne X, Török Z, Vigh L, Prodromou C. The role of the FKBP51-Hsp90 complex in Alzheimer's disease: An emerging new drug target. Cell Stress Chaperones 2024; 29:792-804. [PMID: 39615785 DOI: 10.1016/j.cstres.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
With increasing age comes the inevitable decline in proteostasis, where chaperone and co-chaperone activity becomes imbalanced. These changes lead to global disturbances and pathogenic rewiring of the chaperone system into epichaperones consisting of protein networks that are ultimately dysfunctional. Such imbalances in proteostasis may favor mechanisms that can lead to neurological diseases, such as Alzheimer's disease (AD). Consequently, there has been an increase in research activity toward finding small molecules that can re-balance the chaperone and co-chaperone machinery to counter the effects of disease resulting from old age. The Hsp90 co-chaperone FKBP51 has recently been identified as a protein whose induction not only increases with age but is elevated further in AD cells. Significantly, FKBP51 plays a role in the Hsp90-dependent isomerization of tau, which in turn influences its phosphorylation and susceptibility to aggregation. We hypothesize that FKBP51 is a major player that is able to elicit tauopathy in response to amyloid-beta senile plaques that damage the brain. We propose that elevated FKBP51 levels result in an abnormal FKBP51-Hsp90 activity that alters the normal processing of tau, which manifests as hyperphosphorylation and oligomerization of tau. Thus, the Hsp90-FKBP51 complex is emerging as a drug target against AD. In support of this idea, the structure of the FKBP51-Hsp90 complex was recently described, and significantly, the small-molecule dihydropyridine LA1011 was shown to be able to disrupt the Hsp90-FKBP51 complex. LA1011 was previously shown to effectively prevent neurodegeneration in the APPxPS1 AD transgenic mouse model. This review looks at the role of Hsp90 and its co-chaperones in AD with a focus on FKBP51.
Collapse
Affiliation(s)
- Xavier Jeanne
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, Falmer BN1 9QG, UK
| | - Zsolt Török
- LipidArt Research and Development Ltd, Szeged, Temesvári Street 62, H-6726, Hungary
| | - László Vigh
- LipidArt Research and Development Ltd, Szeged, Temesvári Street 62, H-6726, Hungary
| | - Chrisostomos Prodromou
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, Falmer BN1 9QG, UK.
| |
Collapse
|
2
|
Zhang Q, Yan L, Zhang L, Yu J, Han Z, Liu H, Gu J, Wang K, Wang J, Chen F, Zhao R, Yan Y, Jiang C, You Q, Wang L. Allosteric Activation of Protein Phosphatase 5 with Small Molecules. J Med Chem 2024; 67:15080-15097. [PMID: 39145509 DOI: 10.1021/acs.jmedchem.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The activation of PP5 is essential for a variety of cellular processes, as it participates in a variety of biological pathways by dephosphorylating substrates. However, activation of PP5 by small molecules has been a challenge due to its native "self-inhibition" mechanism, which is controlled by the N-terminal TPR domain and the C-terminal αJ helix. Here, we reported the discovery of DDO-3733, a well-identified TPR-independent PP5 allosteric activator, which facilitates the dephosphorylation process of downstream substrates. Considering the negative regulatory effect of PP5 on heat shock transcription factor HSF1, pharmacologic activation of PP5 by DDO-3733 was found to reduce the HSP90 inhibitor-induced heat shock response. These results provide a chemical tool to advance the exploration of PP5 as a potential therapeutic target and highlight the value of pharmacological activation of PP5 to reduce heat shock toxicity of HSP90 inhibitors.
Collapse
Affiliation(s)
- Qiuyue Zhang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Yan
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lixiao Zhang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Yu
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zeyu Han
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Liu
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinying Gu
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Keran Wang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiayi Wang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Fangsu Chen
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Rongde Zhao
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Yan
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Roe SM, Török Z, McGown A, Horváth I, Spencer J, Pázmány T, Vigh L, Prodromou C. The Crystal Structure of the Hsp90-LA1011 Complex and the Mechanism by Which LA1011 May Improve the Prognosis of Alzheimer's Disease. Biomolecules 2023; 13:1051. [PMID: 37509087 PMCID: PMC10377191 DOI: 10.3390/biom13071051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Functional changes in chaperone systems play a major role in the decline of cognition and contribute to neurological pathologies, such as Alzheimer's disease (AD). While such a decline may occur naturally with age or with stress or trauma, the mechanisms involved have remained elusive. The current models suggest that amyloid-β (Aβ) plaque formation leads to the hyperphosphorylation of tau by a Hsp90-dependent process that triggers tau neurofibrillary tangle formation and neurotoxicity. Several co-chaperones of Hsp90 can influence the phosphorylation of tau, including FKBP51, FKBP52 and PP5. In particular, elevated levels of FKBP51 occur with age and stress and are further elevated in AD. Recently, the dihydropyridine LA1011 was shown to reduce tau pathology and amyloid plaque formation in transgenic AD mice, probably through its interaction with Hsp90, although the precise mode of action is currently unknown. Here, we present a co-crystal structure of LA1011 in complex with a fragment of Hsp90. We show that LA1011 can disrupt the binding of FKBP51, which might help to rebalance the Hsp90-FKBP51 chaperone machinery and provide a favourable prognosis towards AD. However, without direct evidence, we cannot completely rule out effects on other Hsp90-co-chaprone complexes and the mechanisms they are involved in, including effects on Hsp90 client proteins. Nonetheless, it is highly significant that LA1011 showed promise in our previous AD mouse models, as AD is generally a disease affecting older patients, where slowing of disease progression could result in AD no longer being life limiting. The clinical value of LA1011 and its possible derivatives thereof remains to be seen.
Collapse
Affiliation(s)
- S Mark Roe
- Department of Biochemistry and Biomedicine, University of Sussex, Brighton BN1 9QG, UK
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | - Andrew McGown
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | - John Spencer
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Tamás Pázmány
- Gedeon Richter Plc, 1475 Budapest, Hungary
- National Vaccine Factory Plc, 4032 Debrecen, Hungary
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | | |
Collapse
|
4
|
Jaime-Garza M, Nowotny CA, Coutandin D, Wang F, Tabios M, Agard DA. Hsp90 provides a platform for kinase dephosphorylation by PP5. Nat Commun 2023; 14:2197. [PMID: 37069154 PMCID: PMC10110553 DOI: 10.1038/s41467-023-37659-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/23/2023] [Indexed: 04/19/2023] Open
Abstract
The Hsp90 molecular chaperone collaborates with the phosphorylated Cdc37 cochaperone for the folding and activation of its many client kinases. As with many kinases, the Hsp90 client kinase CRaf is activated by phosphorylation at specific regulatory sites. The cochaperone phosphatase PP5 dephosphorylates CRaf and Cdc37 in an Hsp90-dependent manner. Although dephosphorylating Cdc37 has been proposed as a mechanism for releasing Hsp90-bound kinases, here we show that Hsp90 bound kinases sterically inhibit Cdc37 dephosphorylation indicating kinase release must occur before Cdc37 dephosphorylation. Our cryo-EM structure of PP5 in complex with Hsp90:Cdc37:CRaf reveals how Hsp90 both activates PP5 and scaffolds its association with the bound CRaf to dephosphorylate phosphorylation sites neighboring the kinase domain. Thus, we directly show how Hsp90's role in maintaining protein homeostasis goes beyond folding and activation to include post translationally modifying its client kinases.
Collapse
Affiliation(s)
- Maru Jaime-Garza
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Carlos A Nowotny
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Daniel Coutandin
- Novartis Institutes for BioMedical Research, San Diego, CA, 92121, USA
| | - Feng Wang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mariano Tabios
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
5
|
Zhang H, Zhang Q, Tu J, You Q, Wang L. Dual function of protein phosphatase 5 (PPP5C): An emerging therapeutic target for drug discovery. Eur J Med Chem 2023; 254:115350. [PMID: 37054560 DOI: 10.1016/j.ejmech.2023.115350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Phosphorylation of proteins is reversibly controlled by the kinases and phosphatases in many posttranslational regulation patterns. Protein phosphatase 5 (PPP5C) is a serine/threonine protein phosphatase showing dual function by simultaneously exerting dephosphorylation and co-chaperone functions. Due to this special role, PPP5C was found to participate in many signal transductions related to various diseases. Abnormal expression of PPP5C results in cancers, obesity, and Alzheimer's disease, making it a potential drug target. However, the design of small molecules targeting PPP5C is struggling due to its special monomeric enzyme form and low basal activity by a self-inhibition mechanism. Through realizing the PPP5C's dual function as phosphatase and co-chaperone, more and more small molecules were found to regulate PPP5C with a different mechanism. This review aims to provide insights into PPP5C's dual function from structure to function, which could provide efficient design strategies for small molecules targeting PPP5C as therapeutic candidates.
Collapse
Affiliation(s)
- Hengheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaqi Tu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
6
|
Saini LK, Bheri M, Pandey GK. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:307-370. [PMID: 36858740 DOI: 10.1016/bs.apcsb.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein phosphorylation is a vital reversible post-translational modification. This process is established by two classes of enzymes: protein kinases and protein phosphatases. Protein kinases phosphorylate proteins while protein phosphatases dephosphorylate phosphorylated proteins, thus, functioning as 'critical regulators' in signaling pathways. The eukaryotic protein phosphatases are classified as phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine (Ser)/threonine (Thr) specific phosphatases (STPs) that dephosphorylate Ser and Thr residues. The PTP family dephosphorylates Tyr residues while dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. The composition of these enzymes as well as their substrate specificity are important determinants of their functional significance in a number of cellular processes and stress responses. Their role in animal systems is well-understood and characterized. The functional characterization of protein phosphatases has been extensively covered in plants, although the comprehension of their mechanistic basis is an ongoing pursuit. The nature of their interactions with other key players in the signaling process is vital to our understanding. The substrates or targets determine their potential as well as magnitude of the impact they have on signaling pathways. In this article, we exclusively overview the various substrates of protein phosphatases in plant signaling pathways, which are a critical determinant of the outcome of various developmental and stress stimuli.
Collapse
Affiliation(s)
- Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
7
|
Abstract
The co-chaperone p50/Cdc37 is an important partner for Hsp90, assisting in molecular chaperone activities, particularly with regard to the regulation of protein kinases. Analysis of the structure of Hsp90-Cdc37-kinase complexes demonstrates the way in which Cdc37 interacts with and controls the folding of a large proportion of intracellular protein kinases. This co-chaperone thus stands at the hub of a multitude of intracellular signaling networks. Indeed, the influence of Cdc37 reaches beyond the housekeeping pathways of protein folding into the regulation of a wide range of cellular processes. This co-chaperone has attracted attention as a potential intermediate in carcinogenesis. Cdc37 is an attractive potential target in cancer due to (1) high expression in a number of tumor types and (2) control of multiple signaling pathways. These properties indicate (3) a potential for selectivity due to its elevated expression in malignant cells and (4) robustness, as the co-chaperone may control multiple growth signaling pathways and thus be less prone to evolution of resistance than less versatile oncoproteins. Cdc37 may also be involved in other aspects of pathophysiology and has been shown to be secreted in exosomes. Protein aggregation disorders have been linked to age-related declines in molecular chaperones and co-chaperones. Cdc37 also appears to be a potential agent in longevity due to its links to protein folding and autophagy, and it will be informative to study the role of Cdc37 maintenance/decline in aging organisms.
Collapse
Affiliation(s)
- Thomas L Prince
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ranok Therapeutics, Waltham, MA, USA
| | - Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Oberoi J, Guiu XA, Outwin EA, Schellenberger P, Roumeliotis TI, Choudhary JS, Pearl LH. HSP90-CDC37-PP5 forms a structural platform for kinase dephosphorylation. Nat Commun 2022; 13:7343. [PMID: 36446791 PMCID: PMC9709061 DOI: 10.1038/s41467-022-35143-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
Activation of client protein kinases by the HSP90 molecular chaperone system is affected by phosphorylation at multiple sites on HSP90, the kinase-specific co-chaperone CDC37, and the kinase client itself. Removal of regulatory phosphorylation from client kinases and their release from the HSP90-CDC37 system depends on the Ser/Thr phosphatase PP5, which associates with HSP90 via its N-terminal TPR domain. Here, we present the cryoEM structure of the oncogenic protein kinase client BRAFV600E bound to HSP90-CDC37, showing how the V600E mutation favours BRAF association with HSP90-CDC37. Structures of HSP90-CDC37-BRAFV600E complexes with PP5 in autoinhibited and activated conformations, together with proteomic analysis of its phosphatase activity on BRAFV600E and CRAF, reveal how PP5 is activated by recruitment to HSP90 complexes. PP5 comprehensively dephosphorylates client proteins, removing interaction sites for regulatory partners such as 14-3-3 proteins and thus performing a 'factory reset' of the kinase prior to release.
Collapse
Affiliation(s)
- Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Xavi Aran Guiu
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Emily A Outwin
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Pascale Schellenberger
- Electron Microscopy Imaging centre, School of Life Sciences, University of Sussex, Falmer, BN1 9QG, UK
| | - Theodoros I Roumeliotis
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Jyoti S Choudhary
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Laurence H Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.
| |
Collapse
|
9
|
Dörner MF, Boknik P, Köpp F, Buchwalow IB, Neumann J, Gergs U. Mechanisms of Systolic Cardiac Dysfunction in PP2A, PP5 and PP2AxPP5 Double Transgenic Mice. Int J Mol Sci 2021; 22:ijms22179448. [PMID: 34502355 PMCID: PMC8431312 DOI: 10.3390/ijms22179448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
As part of our ongoing studies on the potential pathophysiological role of serine/threonine phosphatases (PP) in the mammalian heart, we have generated transgenic mice with cardiac muscle cell-specific overexpression of PP2Acα (PP2A) and PP5 (PP5). For further studies we crossbred PP2A and PP5 mice to obtain PP2AxPP5 double transgenic mice (PP2AxPP5, DT) and compared them with littermate wild-type mice (WT) serving as a control. The mortality of DT mice was greatly enhanced vs. other genotypes. Cardiac fibrosis was noted histologically and mRNA levels of collagen 1α, collagen 3α and fibronectin 1 were augmented in DT. DT and PP2A mice exhibited an increase in relative heart weight. The ejection fraction (EF) was reduced in PP2A and DT but while the EF of PP2A was nearly normalized after β-adrenergic stimulation by isoproterenol, it was almost unchanged in DT. Moreover, left atrial preparations from DT were less sensitive to isoproterenol treatment both under normoxic conditions and after hypoxia. In addition, levels of the hypertrophy markers atrial natriuretic peptide and B-type natriuretic peptide as well as the inflammation markers interleukin 6 and nuclear factor kappa B were increased in DT. PP2A enzyme activity was enhanced in PP2A vs. WT but similar to DT. This was accompanied by a reduced phosphorylation state of phospholamban at serine-16. Fittingly, the relaxation times in left atria from DT were prolonged. In summary, cardiac co-overexpression of PP2A and PP5 were detrimental to animal survival and cardiac function, and the mechanism may involve dephosphorylation of important regulatory proteins but also fibrosis and inflammation.
Collapse
Affiliation(s)
- Mara-Francine Dörner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
- Mibe GmbH Arzneimittel, D-06796 Brehna, Germany
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, D-48149 Münster, Germany;
| | - Friedrich Köpp
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
| | - Igor B. Buchwalow
- Institute for Hematopathology, Fangdieckstr. 75a, D-22547 Hamburg, Germany;
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
- Correspondence: ; Tel.: +49-345-557-4093
| |
Collapse
|
10
|
Lang BJ, Guerrero ME, Prince TL, Okusha Y, Bonorino C, Calderwood SK. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Arch Toxicol 2021; 95:1943-1970. [PMID: 34003342 DOI: 10.1007/s00204-021-03070-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Cells respond to protein-damaging (proteotoxic) stress by activation of the Heat Shock Response (HSR). The HSR provides cells with an enhanced ability to endure proteotoxic insults and plays a crucial role in determining subsequent cell death or survival. The HSR is, therefore, a critical factor that influences the toxicity of protein stress. While named for its vital role in the cellular response to heat stress, various components of the HSR system and the molecular chaperone network execute essential physiological functions as well as responses to other diverse toxic insults. The effector molecules of the HSR, the Heat Shock Factors (HSFs) and Heat Shock Proteins (HSPs), are also important regulatory targets in the progression of neurodegenerative diseases and cancers. Modulation of the HSR and/or its extended network have, therefore, become attractive treatment strategies for these diseases. Development of effective therapies will, however, require a detailed understanding of the HSR, important features of which continue to be uncovered and are yet to be completely understood. We review recently described and hallmark mechanistic principles of the HSR, the regulation and functions of HSPs, and contexts in which the HSR is activated and influences cell fate in response to various toxic conditions.
Collapse
Affiliation(s)
- Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Martin E Guerrero
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), 5500, Mendoza, Argentina
| | - Thomas L Prince
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Cristina Bonorino
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil.,Department of Surgery, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
11
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
12
|
Zhang Q, Wu X, Zhou J, Zhang L, Xu X, Zhang L, You Q, Wang L. Design, synthesis and bioevaluation of inhibitors targeting HSP90-CDC37 protein-protein interaction based on a hydrophobic core. Eur J Med Chem 2020; 210:112959. [PMID: 33109397 DOI: 10.1016/j.ejmech.2020.112959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
HSP90-CDC37 protein-protein interaction (PPI) works as a kinase specific-molecular chaperone system to regulate the maturation of kinases. Currently, selectively disrupting HSP90-CDC37 PPI, rather than the direct inhibition of the ATPase function of HSP90, is emerging as a promising strategy for cancer therapy by specifically blocking the maturation of kinases. However, due to the limited understanding of HSP90-CDC37 binding interface, design of small molecule inhibitors targeting HSP90-CDC37 PPI is challenging. In this work, based on the binding mode of compound 11 (previously reported by our group), we discovered a hydrophobic pocket centered on Phe213, which was previously unknown, contributing to the binding affinity of HSP90-CDC37 PPI inhibitors. A series of hydrophobic substituted inhibitors were utilized to confirm the importance of Phe213 hydrophobic core. Finally, we obtained an optimum compound DDO-5994 (exhibited an ideal binding pattern on hydrophobic core) with improved binding affinity (KD = 5.52 μM) and antiproliferative activity (IC50 = 6.34 μM). Both in vitro and in vivo assays confirmed DDO-5994 as a promising inhibitor to exhibit ideal antitumor efficacy through blocking HSP90-CDC37 PPI.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xuexuan Wu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianrui Zhou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lixiao Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lianshan Zhang
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai, 200245, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Sager RA, Dushukyan N, Woodford M, Mollapour M. Structure and function of the co-chaperone protein phosphatase 5 in cancer. Cell Stress Chaperones 2020; 25:383-394. [PMID: 32239474 PMCID: PMC7193036 DOI: 10.1007/s12192-020-01091-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Protein phosphatase 5 (PP5) is a serine/threonine protein phosphatase that regulates many cellular functions including steroid hormone signaling, stress response, proliferation, apoptosis, and DNA repair. PP5 is also a co-chaperone of the heat shock protein 90 molecular chaperone machinery that assists in regulation of cellular signaling pathways essential for cell survival and growth. PP5 plays a significant role in survival and propagation of multiple cancers, which makes it a promising target for cancer therapy. Though there are several naturally occurring PP5 inhibitors, none is specific for PP5. Here, we review the roles of PP5 in cancer progression and survival and discuss the unique features of the PP5 structure that differentiate it from other phosphoprotein phosphatase (PPP) family members and make it an attractive therapeutic target.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Natela Dushukyan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mark Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
14
|
Weber B, Maier A, Buchner J. Peptides in proteins. J Pept Sci 2019; 26:e3235. [PMID: 31867828 DOI: 10.1002/psc.3235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
Abstract
During evolution C-terminal peptide extensions were added to proteins on the gene level. These convey additional functions such as interaction with partner proteins or oligomerisation. IgM antibodies and molecular chaperones are two prominent examples discussed.
Collapse
Affiliation(s)
- Benedikt Weber
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Andreas Maier
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| |
Collapse
|
15
|
Gergs U, Jahn T, Werner F, Köhler C, Köpp F, Großmann C, Neumann J. Overexpression of protein phosphatase 5 in the mouse heart: Reduced contractility but increased stress tolerance - Two sides of the same coin? PLoS One 2019; 14:e0221289. [PMID: 31425567 PMCID: PMC6699691 DOI: 10.1371/journal.pone.0221289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/02/2019] [Indexed: 11/18/2022] Open
Abstract
The pathophysiological mechanisms of sepsis-induced cardiac dysfunction are largely unknown. The Toll-like receptor 4 (TLR4) is expressed in cardiac myocytes and is involved in bacterial endotoxin-mediated inflammatory disorders. TLR4 signaling leads to activation of the nuclear factor kappa B followed by increased expression of cytokines. Several protein phosphatases including PP2Cβ, PP2A or PP1 are known to act as regulators of this signaling pathway. Here, we examined the role of PP5 for the inflammatory response to the bacterial endotoxin lipopolysaccharide in the heart using a transgenic mouse model with cardiac myocyte directed overexpression of PP5. In these transgenic mice, basal cardiac contractility was reduced, in vivo as well as in vitro, but LPS-induced cardiac dysfunction was less pronounced compared to wild type mice. Quantitative RT-PCR suggested an attenuated NF-κB signaling in the heart and cardiac expression of heat shock protein 25 (HSP25) was increased in PP5 transgenic mice. From our data we assume that PP5 increases stress tolerance of cardiac myocytes by downregulation of NF-κB signaling and upregulation of HSP25 expression.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- * E-mail:
| | - Tina Jahn
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Franziska Werner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Carolin Köhler
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Friedrich Köpp
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Großmann
- Julius-Bernstein-Institut für Physiologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
16
|
Shelton LB, Koren J, Blair LJ. Imbalances in the Hsp90 Chaperone Machinery: Implications for Tauopathies. Front Neurosci 2017; 11:724. [PMID: 29311797 PMCID: PMC5744016 DOI: 10.3389/fnins.2017.00724] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022] Open
Abstract
The ATP-dependent 90 kDa heat shock protein, Hsp90, is a major regulator of protein triage, from assisting in nascent protein folding to refolding or degrading aberrant proteins. Tau, a microtubule associated protein, aberrantly accumulates in Alzheimer's disease (AD) and other neurodegenerative diseases, deemed tauopathies. Hsp90 binds to and regulates tau fate in coordination with a diverse group of co-chaperones. Imbalances in chaperone levels and activity, as found in the aging brain, can contribute to disease onset and progression. For example, the levels of the Hsp90 co-chaperone, FK506-binding protein 51 kDa (FKBP51), progressively increase with age. In vitro and in vivo tau models demonstrated that FKBP51 synergizes with Hsp90 to increase neurotoxic tau oligomer production. Inversely, protein phosphatase 5 (PP5), which dephosphorylates tau to restore microtubule-binding function, is repressed with aging and activity is further repressed in AD. Similarly, levels of cyclophilin 40 (CyP40) are reduced in the aged brain and further repressed in AD. Interestingly, CyP40 was shown to breakup tau aggregates in vitro and prevent tau-induced neurotoxicity in vivo. Moreover, the only known stimulator of Hsp90 ATPase activity, Aha1, increases tau aggregation and toxicity. While the levels of Aha1 are not significantly altered with aging, increased levels have been found in AD brains. Overall, these changes in the Hsp90 heterocomplex could drive tau deposition and neurotoxicity. While the relationship of tau and Hsp90 in coordination with these co-chaperones is still under investigation, it is clear that imbalances in these proteins with aging can contribute to disease onset and progression. This review highlights the current understanding of how the Hsp90 family of molecular chaperones regulates tau or other misfolded proteins in neurodegenerative diseases with a particular emphasis on the impact of aging.
Collapse
Affiliation(s)
- Lindsey B Shelton
- Department of Molecular Medicine and USF Health Byrd Institute, University of South Florida, Tampa, FL, United States
| | - John Koren
- Department of Molecular Medicine and USF Health Byrd Institute, University of South Florida, Tampa, FL, United States
| | - Laura J Blair
- Department of Molecular Medicine and USF Health Byrd Institute, University of South Florida, Tampa, FL, United States
| |
Collapse
|
17
|
Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants. PLoS One 2015; 10:e0141786. [PMID: 26517842 PMCID: PMC4627809 DOI: 10.1371/journal.pone.0141786] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
The two cytosolic/nuclear isoforms of the molecular chaperone HSP90, stress-inducible HSP90α and constitutively expressed HSP90β, fold, assemble and maintain the three-dimensional structure of numerous client proteins. Because many HSP90 clients are important in cancer, several HSP90 inhibitors have been evaluated in the clinic. However, little is known concerning possible unique isoform or conformational preferences of either individual HSP90 clients or inhibitors. In this report, we compare the relative interaction strength of both HSP90α and HSP90β with the transcription factors HSF1 and HIF1α, the kinases ERBB2 and MET, the E3-ubiquitin ligases KEAP1 and RHOBTB2, and the HSP90 inhibitors geldanamycin and ganetespib. We observed unexpected differences in relative client and drug preferences for the two HSP90 isoforms, with HSP90α binding each client protein with greater apparent affinity compared to HSP90β, while HSP90β bound each inhibitor with greater relative interaction strength compared to HSP90α. Stable HSP90 interaction was associated with reduced client activity. Using a defined set of HSP90 conformational mutants, we found that some clients interact strongly with a single, ATP-stabilized HSP90 conformation, only transiently populated during the dynamic HSP90 chaperone cycle, while other clients interact equally with multiple HSP90 conformations. These data suggest different functional requirements among HSP90 clientele that, for some clients, are likely to be ATP-independent. Lastly, the two inhibitors examined, although sharing the same binding site, were differentially able to access distinct HSP90 conformational states.
Collapse
|
18
|
Ishikawa Y, Kawabata S, Sakurai H. HSF1 transcriptional activity is modulated by IER5 and PP2A/B55. FEBS Lett 2015; 589:1150-5. [PMID: 25816751 DOI: 10.1016/j.febslet.2015.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 12/20/2022]
Abstract
Heat shock factor 1 (HSF1) is the master transcriptional regulator of chaperone genes. HSF1 regulates the expression of the immediate-early response gene IER5, which encodes a protein that has roles in the stress response and cell proliferation. Here, we have shown that IER5 interacts with protein phosphatase 2A (PP2A) and its B55 regulatory subunits. Expression of IER5 and B55 in cells leads to HSF1 dephosphorylation and activation of HSF1 target genes. The B55 subunits directly bind to HSF1. These results suggest that IER5 functions as a positive feedback regulator of HSF1 and that this process involves PP2A/B55 and HSF1 dephosphorylation.
Collapse
Affiliation(s)
- Yukio Ishikawa
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Shotaro Kawabata
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Hiroshi Sakurai
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
19
|
Cho BR, Lee P, Hahn JS. CK2-dependent inhibitory phosphorylation is relieved by Ppt1 phosphatase for the ethanol stress-specific activation of Hsf1 in Saccharomyces cerevisiae. Mol Microbiol 2014; 93:306-16. [PMID: 24894977 DOI: 10.1111/mmi.12660] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2014] [Indexed: 12/21/2022]
Abstract
Ethanol, the major fermentation product of Saccharomyces cerevisiae, has long been known as an inducer of heat shock response, but the underlying mechanisms by which ethanol activates heat shock transcription factor (HSF) are not well understood. We demonstrate that CK2-dependent phosphorylation on S608 is an ethanol stress-specific repression mechanism of Hsf1, which does not affect the basal or heat-induced activity of Hsf1. This repression is relieved by dephosphorylation by Ppt1 which directly interacts with Hsf1 via its tetratricopeptide repeat (TPR) domain. In response to ethanol stress, PPT1 deletion and CK2 overexpression exert synergistic inhibitory effects on Hsf1 activation, whereas Hsf1(S608A) mutant shows enhanced activation. Therefore, regulation of the Hsf1 S608 phosphorylation status by reciprocal actions of CK2 and Ppt1 might play an important role to determine Hsf1 sensitivity towards ethanol stress.
Collapse
Affiliation(s)
- Bo-Ram Cho
- Interdisciplinary Program for Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-744, Korea
| | | | | |
Collapse
|
20
|
Hong TJ, Kim S, Wi AR, Lee P, Kang M, Jeong JH, Hahn JS. Dynamic nucleotide-dependent interactions of cysteine- and histidine-rich domain (CHORD)-containing Hsp90 cochaperones Chp-1 and melusin with cochaperones PP5 and Sgt1. J Biol Chem 2012. [PMID: 23184943 DOI: 10.1074/jbc.m112.398636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mammals have two cysteine- and histidine-rich domain (CHORD)-containing Hsp90 cochaperones, Chp-1 and melusin, which are homologs of plant Rar1. It has been shown previously that Rar1 CHORD directly interacts with ADP bound to the nucleotide pocket of Hsp90. Here, we report that ADP and ATP can bind to Hsp90 cochaperones Chp-1 and PP5, inducing their conformational changes. Furthermore, we demonstrate that Chp-1 and melusin can interact with cochaperones PP5 and Sgt1 and with each other in an ATP-dependent manner. Based on the known structure of the Rar1-Hsp90 complex, His-186 has been identified as an important residue of Chp-1 for ADP/ATP binding. His-186 is necessary for the nucleotide-dependent interaction of Chp-1 not only with Hsp90 but also with Sgt1. In addition, Ca(2+), which is known to bind to melusin, enhances the interactions of melusin with Hsp90 and Sgt1. Furthermore, melusin acquires the ADP preference for Hsp90 binding in the presence of Ca(2+). Our newly discovered nucleotide-dependent interactions between cochaperones might provide additional complexity to the dynamics of the Hsp90 chaperone system, also suggesting potential Hsp90-independent roles for these cochaperones.
Collapse
Affiliation(s)
- Tae-Joon Hong
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Sriram K, Rodriguez-Fernandez M, Doyle FJ. A detailed modular analysis of heat-shock protein dynamics under acute and chronic stress and its implication in anxiety disorders. PLoS One 2012; 7:e42958. [PMID: 22937003 PMCID: PMC3425570 DOI: 10.1371/journal.pone.0042958] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 07/16/2012] [Indexed: 01/01/2023] Open
Abstract
Physiological and psychological stresses cause anxiety disorders such as depression and post-traumatic stress disorder (PTSD) and induce drastic changes at a molecular level in the brain. To counteract this stress, the heat-shock protein (HSP) network plays a vital role in restoring the homeostasis of the system. To study the stress-induced dynamics of heat-shock network, we analyzed three modules of the HSP90 network—namely trimerization reactions, phosphorylation–dephosphorylation reactions, and the conversion of HSP90 from an open to a closed conformation—and constructed a corresponding nonlinear differential equation model based on mass action kinetics laws. The kinetic parameters of the model were obtained through global optimization, and sensitivity analyses revealed that the most sensitive parameters are the kinase and phosphatase that drive the phosphorylation–dephosphorylation reactions. Bifurcation analysis carried out with the estimated kinetic parameters of the model with stress as bifurcation parameter revealed the occurrence of “mushroom”, a type of complex dynamics in which S-shaped and Z-shaped hysteretic bistable forms are present together. We mapped the molecular events responsible for generating the mushroom dynamics under stress and interpreted the occurrence of the S-shaped hysteresis to a normal level of stress, and the Z-shaped hysteresis to the HSP90 variations under acute and chronic stress in the fear conditioned system, and further, we hypothesized that this can be extended to stress-related disorders such as depression and PTSD in humans. Finally, we studied the effect of parameter variations on the mushroom dynamics to get insight about the role of phosphorylation–dephosphorylation parameters in HSP90 network in bringing about complex dynamics such as isolas, where the stable steady states in a bistable system are isolated and separated from each other and not connected by an unstable steady state.
Collapse
Affiliation(s)
- K. Sriram
- Institute of Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California, United States of America
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, United States of America
- Indraprastha Institute of Information Technology (IIIT), Delhi, India
| | - Maria Rodriguez-Fernandez
- Institute of Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California, United States of America
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Francis J. Doyle
- Institute of Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California, United States of America
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
West JD, Wang Y, Morano KA. Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise. Chem Res Toxicol 2012; 25:2036-53. [PMID: 22799889 DOI: 10.1021/tx300264x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
All cells have developed various mechanisms to respond and adapt to a variety of environmental challenges, including stresses that damage cellular proteins. One such response, the heat shock response (HSR), leads to the transcriptional activation of a family of molecular chaperone proteins that promote proper folding or clearance of damaged proteins within the cytosol. In addition to its role in protection against acute insults, the HSR also regulates lifespan and protects against protein misfolding that is associated with degenerative diseases of aging. As a result, identifying pharmacological regulators of the HSR has become an active area of research in recent years. Here, we review progress made in identifying small molecule activators of the HSR, what cellular targets these compounds interact with to drive response activation, and how such molecules may ultimately be employed to delay or reverse protein misfolding events that contribute to a number of diseases.
Collapse
Affiliation(s)
- James D West
- Biochemistry and Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, USA.
| | | | | |
Collapse
|
23
|
Schreiber TB, Mäusbacher N, Soroka J, Wandinger SK, Buchner J, Daub H. Global Analysis of Phosphoproteome Regulation by the Ser/Thr Phosphatase Ppt1 in Saccharomyces cerevisiae. J Proteome Res 2012; 11:2397-408. [DOI: 10.1021/pr201134p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thiemo B. Schreiber
- Department of Molecular
Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Nina Mäusbacher
- Department of Molecular
Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Joanna Soroka
- Center for Integrated Protein Science, Department
of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Sebastian K. Wandinger
- Center for Integrated Protein Science, Department
of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science, Department
of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Henrik Daub
- Department of Molecular
Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
24
|
Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov 2011; 10:930-44. [PMID: 22129991 DOI: 10.1038/nrd3453] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and prion-based neurodegeneration are associated with the accumulation of misfolded proteins, resulting in neuronal dysfunction and cell death. However, current treatments for these diseases predominantly address disease symptoms, rather than the underlying protein misfolding and cell death, and are not able to halt or reverse the degenerative process. Studies in cell culture, fruitfly, worm and mouse models of protein misfolding-based neurodegenerative diseases indicate that enhancing the protein-folding capacity of cells, via elevated expression of chaperone proteins, has therapeutic potential. Here, we review advances in strategies to harness the power of the natural cellular protein-folding machinery through pharmacological activation of heat shock transcription factor 1--the master activator of chaperone protein gene expression--to treat neurodegenerative diseases.
Collapse
|
25
|
Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains. Appl Environ Microbiol 2011; 78:385-92. [PMID: 22057870 DOI: 10.1128/aem.06341-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE-lacZ activity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. Since HSF1 allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1 mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entire PPT1 gene locus. We confirmed that the expression of laboratory yeast-derived functional PPT1 recovered the HSE-mediated stress response of sake yeast. In addition, deletion of PPT1 in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of the PPT1 gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains.
Collapse
|
26
|
Abstract
BACKGROUND The 90-kDa heat-shock proteins (Hsp90) have rapidly evolved into promising therapeutic targets for the treatment of several diseases, including cancer and neurodegenerative diseases. Hsp90 is a molecular chaperone that aids in the conformational maturation of nascent polypeptides, as well as the rematuration of denatured proteins. DISCUSSION Many of the Hsp90-dependent client proteins are associated with cellular growth and survival and, consequently, inhibition of Hsp90 represents a promising approach for the treatment of cancer. Conversely, stimulation of heat-shock protein levels has potential therapeutic applications for the treatment of neurodegenerative diseases that result from misfolded and aggregated proteins. CONCLUSION Hsp90 modulation exhibits the potential to treat unrelated disease states, from cancer to neurodegenerative diseases, and, thus, to fold or not to fold, becomes a question of great value.
Collapse
|
27
|
Salminen A, Ojala J, Kaarniranta K, Hiltunen M, Soininen H. Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer's disease. Prog Neurobiol 2010; 93:99-110. [PMID: 21056617 DOI: 10.1016/j.pneurobio.2010.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/19/2010] [Accepted: 10/28/2010] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease is a tauopathy which involves the deposition of microtubule-associated tau proteins into neurofibrillary tangles. Post-translational modifications, in particular site-specific phosphorylations, affect the conformation of tau protein which is an intrinsically disordered protein. These structural changes significantly increase the affinity of tau protein for certain molecular chaperones. Hsp90 is a major cellular chaperone which assembles large complexes with a variety of co-chaperones. The main function of Hsp90 complexes is to maintain protein quality control and assist in protein degradation via proteasomal and autophagic-lysosomal pathways. Tau protein is a client protein for these Hsp90 complexes. If the tau protein is in an abnormal or modified form, then it can trigger the recruitment of CHIP protein, a co-chaperone with E3 activity, to the complex which induces the ubiquitination of tau protein and activates its downstream degradation processes. Large immunophilins, FKBP51 and FKBP52 are also co-chaperones of Hsp90-tau complexes. These proteins contain peptidylprolyl cis/trans isomerase activity which catalyzes phosphorylation-dependent rotation in pSer/Thr-Pro peptide bond. The proline switch in the tau conformation triggers dephosphorylation of Ser/Thr residues phosphorylated, e.g. by two well-known tau kinases Cdk5 and GSK-3β. Binding of PP5 protein phosphatase to Hsp90 complex, can also dephosphorylate tau protein. Subsequently, dephosphorylated tau protein can be shuttled back to the microtubules. It seems that high-affinity binding of abnormal tau to Hsp90 complexes may have some counteracting effects on the aggregation process, since Hsp90 inhibitors can ameliorate the aggregation process in several neurodegenerative diseases. We will review the role of Hsp90 chaperone network in the regulation of tau biology and pathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
28
|
Heikkila JJ. Heat shock protein gene expression and function in amphibian model systems. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:19-33. [DOI: 10.1016/j.cbpa.2010.01.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 12/22/2022]
|
29
|
Conde R, Belak ZR, Nair M, O'Carroll RF, Ovsenek N. Modulation of Hsf1 activity by novobiocin and geldanamycin. Biochem Cell Biol 2010; 87:845-51. [PMID: 19935870 DOI: 10.1139/o09-049] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Since Hsp90 is a known modulator of HSF1 activity, we examined the effects of two pharmacological inhibitors of Hsp90, novobiocin and geldanamycin, on HSF1 DNA-binding activity in the Xenopus oocyte model system. Novobiocin exhibits antiproliferative activity in culture cells and interacts with a C-terminal ATP-binding pocket on Hsp90, inhibiting Hsp90 autophosphorylation. Treatment of oocytes with novobiocin followed by heat shock results in a dose-dependent decrease in HSF1 DNA-binding and transcriptional activity. Immunoprecipitation experiments demonstrate novobiocin does not alter HSF1 activity through dissociation of Hsp90 from either monomeric or trimerized HSF1, suggesting that the effect of novobiocin on HSF1 is mediated through alterations in Hsp90 autophosphorylation. Geldanamycin binds the N-terminal ATPase site of Hsp90 and inhibits chaperone activity. Geldanamycin treatment of oocytes resulted in a dose-dependent increase in stability of active HSF1 trimers during submaximal heat shock and a delay in disassembly of trimers during recovery. The results suggest that Hsp90 chaperone activity is required for disassembly of HSF1 trimers. The data obtained with novobiocin suggests the C-terminal ATP-binding activity of Hsp90 is required for the initial steps of HSF1 trimerization, whereas the effects of geldanamycin suggest N-terminal ATPase and chaperone activities are required for disassembly of activated trimers. These data provide important insight into the molecular mechanisms by which pharmacological inhibitors of Hsp90 affect the heat shock response.
Collapse
Affiliation(s)
- Renaud Conde
- Department of Anatomy and Cell Biology, College of Medicine, 107 Wiggins Rd., University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | | | | | | | | |
Collapse
|
30
|
Andreeva AV, Kutuzov MA. PPEF/PP7 protein Ser/Thr phosphatases. Cell Mol Life Sci 2009; 66:3103-10. [PMID: 19662497 PMCID: PMC11115641 DOI: 10.1007/s00018-009-0110-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 07/15/2009] [Indexed: 12/14/2022]
Abstract
PPEF/PP7 represents one of the five subfamilies of the PPP protein Ser/Thr phosphatases. Studies published in recent years point to a role of plant PP7 at a crossroad of different pathways of light and stress signalling. In animals, PPEFs are highly expressed in sensory neurons, and Drosophila PPEF phosphatase, rdgC, is essential for dephosphorylation of rhodopsin. Expression profiling suggests that mammalian PPEF may play a role in stress-protective responses, cell survival, growth, proliferation, and oncogenesis. Despite structural similarities of the catalytic domains and the fact that some of these phosphatases are involved in light perception both in animals and in plants, the plant and non-plant representatives of this group have distinct domain architecture and appear not to be orthologues.
Collapse
Affiliation(s)
- Alexandra V. Andreeva
- Department of Pharmacology (M/C 868), College of Medicine, University of Illinois, 909 S. Wolcott Ave., Chicago, IL 60612 USA
| | - Mikhail A. Kutuzov
- Department of Pharmacology (M/C 868), College of Medicine, University of Illinois, 909 S. Wolcott Ave., Chicago, IL 60612 USA
| |
Collapse
|
31
|
Whitesell L, Lindquist S. Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin Ther Targets 2009; 13:469-78. [PMID: 19335068 DOI: 10.1517/14728220902832697] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND In mammals, the cytoprotective heat-shock response is regulated primarily by heat shock factor 1 (HSF1). Unfortunately, the effects of HSF1 also support the ability of cancer cells to accommodate imbalances in signaling and alterations in DNA, protein and energy metabolism associated with oncogenesis. The malignant lifestyle confers dependence on this 'non-oncogene', suggesting a therapeutic role for HSF1 inhibitors. OBJECTIVE/METHODS We begin with an overview of how HSF1 affects cancer biology and how its activity is regulated. We then summarize progress in discovery and development of HSF1 inhibitors, their current limitations and potential as anticancer agents with a fundamentally different scope of action from other clinically validated modulators of protein homeostasis. RESULTS/CONCLUSIONS It is likely that within the next 5 years usable inhibitors of HSF1 will be identified and in early pre-clinical evaluation.
Collapse
Affiliation(s)
- Luke Whitesell
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
32
|
Mkaddem SB, Werts C, Goujon JM, Bens M, Pedruzzi E, Ogier-Denis E, Vandewalle A. Heat shock protein gp96 interacts with protein phosphatase 5 and controls toll-like receptor 2 (TLR2)-mediated activation of extracellular signal-regulated kinase (ERK) 1/2 in post-hypoxic kidney cells. J Biol Chem 2009; 284:12541-9. [PMID: 19265198 DOI: 10.1074/jbc.m808376200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) induces an innate immune response, leading to an inflammatory reaction and tissue damage that have been attributed to engagement of the Toll-like receptor (TLR) 2 and 4. However, the respective roles of TLR2 and/or TLR4 in mediating downstream activation of mitogen-activated protein kinase (MAPK) pathways during IRI have not been fully elucidated. Here we show that extracellular signal-regulated kinase (ERK)1/2 is activated in both intact kidneys and cultured renal tubule epithelial cells (RTECs) from wildtype and Tlr4 knockout mice, but not those from Tlr2 knockout mice subjected to transient ischemia. Geldanamycin (GA), an inhibitor of heat shock protein 90 and reticulum endoplasmic-resident gp96, and gp96 mRNA silencing (siRNA), did not affect ERK1/2 activation in either post-hypoxic wild-type or Tlr4-deficient RTECs, but did restore its activation in post-hypoxic Tlr2-deficient RTECs. Immunoprecipitation studies revealed that gp96 co-immunoprecipitates with the serine-threonine protein phosphatase 5 (PP5), identified as a negative modulator of the mitogen extracellular kinase (MEK)-ERK pathway, in unstressed wild-type and post-hypoxic Tlr2-deficient RTECs. In contrast, PP5 co-immunoprecipitation with gp96 was strikingly reduced in post-hypoxic wild-type RTECs, suggesting that the inactivation of PP5 resulting from the dissociation of PP5 from gp96 allows the activation of ERK1/2 to occur. Inhibition of PP5 by okadaic acid, and Pp5 siRNA also restored TLR2-mediated phosphorylation of ERK1/2, and apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK)-mediated apoptosis in post-hypoxic Tlr2-deficient RTECs. These findings indicate that gp96 interacts with PP5 and controls TLR2-mediated induction of ERK1/2 in post-hypoxic renal tubule cells.
Collapse
Affiliation(s)
- Sanae Ben Mkaddem
- INSERM U773, Centre de Recherche Biomédicale Bichat-Beaujon CRB3, UFR de Médecine Xavier Bichat, Université Paris 7-Denis Diderot, Site Bichat, BP 416, F-75870 Paris Cedex 18, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37. Mol Cell 2008; 31:886-95. [PMID: 18922470 PMCID: PMC2568865 DOI: 10.1016/j.molcel.2008.07.021] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/19/2008] [Accepted: 07/01/2008] [Indexed: 11/22/2022]
Abstract
Activation of protein kinase clients by the Hsp90 system is mediated by the cochaperone protein Cdc37. Cdc37 requires phosphorylation at Ser13, but little is known about the regulation of this essential posttranslational modification. We show that Ser13 of uncomplexed Cdc37 is phosphorylated in vivo, as well as in binary complex with a kinase (C-K), or in ternary complex with Hsp90 and kinase (H-C-K). Whereas pSer13-Cdc37 in the H-C-K complex is resistant to nonspecific phosphatases, it is efficiently dephosphorylated by the chaperone-targeted protein phosphatase 5 (PP5/Ppt1), which does not affect isolated Cdc37. We show that Cdc37 and PP5/Ppt1 associate in Hsp90 complexes in yeast and in human tumor cells, and that PP5/Ppt1 regulates phosphorylation of Ser13-Cdc37 in vivo, directly affecting activation of protein kinase clients by Hsp90-Cdc37. These data reveal a cyclic regulatory mechanism for Cdc37, in which its constitutive phosphorylation is reversed by targeted dephosphorylation in Hsp90 complexes.
Collapse
|
34
|
Sundaram K, Mani SK, Kitatani K, Wu K, Pestell RG, Reddy SV. DACH1 negatively regulates the human RANK ligand gene expression in stromal/preosteoblast cells. J Cell Biochem 2008; 103:1747-59. [PMID: 17891780 PMCID: PMC2778848 DOI: 10.1002/jcb.21561] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Receptor activator of NF-kappaB ligand (RANKL) is a critical osteoclastogenic factor that is expressed on bone marrow stromal/preosteoblast cells. Most bone resorption stimuli induce osteoclast formation by modulating RANKL expression in these cells. However, little is known about the mechanisms regulating RANKL gene expression. We recently reported that heat shock factor-2 (HSF-2) is a downstream target for FGF-2 signaling to enhance RANKL gene transcription in marrow stromal/preosteoblast cells. In this study, we show that DACH1 (human homologue of Drosophila dachshund gene) negatively regulates RANKL gene expression and suppresses FGF-2-enhanced RANKL gene expression in these cells. DACH1 contains a conserved dachshund domain (DS) in the N-terminal region, which interacts with the nuclear co-repressor (NCoR) to repress gene expression. Co-expression of DACH1 with hRANKL promoter-luciferase reporter plasmid in normal human bone marrow-derived stromal cells significantly decreased (3.3-fold) FGF-2-stimulated hRANKL gene promoter activity. Deletion of DS domain abolished DACH1 inhibition of FGF-2-enhanced RANKL gene promoter activity. Western blot analysis confirmed that DACH1 suppressed FGF-2-stimulated RANKL expression in marrow stromal/preosteoblast cells. We show HSF-2 co-immune precipitated with DACH1 and that FGF-2 stimulation significantly increased (2.7-fold) HSF-2 binding to DACH1. Confocal microscopy analysis further demonstrated that FGF-2 promotes HSF-2 nuclear transport and co-localization with DACH1 in marrow stromal cells. Co-expression of NCoR with DACH1 significantly decreased (5.3-fold) and siRNA suppression of NCoR in DACH1 co-transfected cells increased (3.6-fold) RANKL promoter activity. Furthermore, DACH1 co-expression with NCoR significantly decreased (7.5-fold) RANKL mRNA expression in marrow stromal cells. Collectively, these studies indicate that NCoR participates in DACH1 repression of RANKL gene expression in marrow stromal/preosteoblast cells. Thus, DACH1 plays an important role in negative regulation of RANKL gene expression in marrow stromal/preosteoblast cells in the bone microenvironment.
Collapse
Affiliation(s)
- Kumaran Sundaram
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Santhosh K. Mani
- Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Kazuyuki Kitatani
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina
| | - Kongming Wu
- Kimmel Cancer Center, Thomas Jefferson University, Pennsylvania
| | | | - Sakamuri V. Reddy
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
- Correspondence to: Sakamuri V. Reddy, PhD, Charles P. Darby Children's Research Institute, 173 Ashley Avenue, Charleston, SC 29425.
| |
Collapse
|
35
|
Golden T, Swingle M, Honkanen RE. The role of serine/threonine protein phosphatase type 5 (PP5) in the regulation of stress-induced signaling networks and cancer. Cancer Metastasis Rev 2008; 27:169-78. [PMID: 18253812 DOI: 10.1007/s10555-008-9125-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although the aberrant actions of protein kinases have long been known to contribute to tumor promotion and carcinogenesis, roles for protein phosphatases in the development of human cancer have only emerged in the last decade. In this review, we discuss the data obtained from studies examining the biological and pathological roles of a serine/threonine protein phosphatase, PP5, which suggest that PP5 is a potentially important regulator of both hormone- and stress-induced signaling networks that enable a cell to respond appropriately to genomic stress.
Collapse
Affiliation(s)
- Teresa Golden
- Department of Biological Sciences, Southeastern Oklahoma State University, Durant, OK 74701, USA.
| | | | | |
Collapse
|
36
|
Jones C, Anderson S, Singha UK, Chaudhuri M. Protein phosphatase 5 is required for Hsp90 function during proteotoxic stresses in Trypanosoma brucei. Parasitol Res 2008; 102:835-44. [PMID: 18193284 DOI: 10.1007/s00436-007-0817-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 11/19/2007] [Indexed: 12/20/2022]
Abstract
Trypanosoma brucei, a parasitic protozoan that causes African trypanosomiasis in human and domestic animals, adapt in various environments during their digenetic life cycle. In this study, we found that Hsp90 is crucial for the survival of this parasite. Inhibition of Hsp90 activity by geldanamycin (GA) reduced cell growth and increased the level of Hsp90. Both the bloodstream and procyclic forms of T. brucei showed a several-fold greater sensitivity than the mammalian cells to GA and also to 17-AAG, a less toxic derivative of GA, suggesting that Hsp90 could be a potential chemotherapeuric target for African trypanosomiasis. T. brucei Hsp90 interacts with the protein phosphatase 5 (PP5) in vivo. Under normal growth conditions, T. brucei PP5 (TbPP5) and Hsp90 are primarily localized in the cytosol. However, with increase in growth temperature and GA treatment, these proteins translocate to the nucleus. Overproduction of TbPP5 by genetic manipulation reduced the growth inhibitory effect of GA, while knockdown of TbPP5 reduced cell growth more in the presence of GA, as compared to parental control. Depletion of TbPP5, however, did not prevent the induction of Hsp90 protein level during GA treatment. Together, these results suggest that TbPP5 positively regulates the function of Hsp90 to maintain cellular homeostasis during proteotoxic stresses in T. brucei.
Collapse
Affiliation(s)
- Candace Jones
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
37
|
Hinds TD, Sánchez ER. Protein phosphatase 5. Int J Biochem Cell Biol 2007; 40:2358-62. [PMID: 17951098 DOI: 10.1016/j.biocel.2007.08.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 08/21/2007] [Accepted: 08/21/2007] [Indexed: 01/16/2023]
Abstract
Protein phosphatase 5 (PP5) is a unique member of the PPP family of serine/threonine phosphatases based on the presence of tetratricopeptide repeat (TPR) domains within its structure. Since its discovery, PP5 has been implicated in wide ranging cellular processes, including MAPK-mediated growth and differentiation, cell cycle arrest and DNA damage repair via the p53 and ATM/ATR pathways, regulation of ion channels via the membrane receptor for atrial natriuretic peptide, the cellular heat shock response as mediated by heat shock transcription factor, and steroid receptor signaling, especially glucocorticoid receptor (GR). Given this diversity of effects, the recent development of viable PP5-deficient mice was surprising and suggests that PP5 is a modulatory, rather than essential, factor in phosphorylation pathways. Here, we review the signaling involvement of PP5 in light of new findings and relate these activities to the structural features of the protein.
Collapse
Affiliation(s)
- Terry D Hinds
- Department of Physiology & Pharmacology, University of Toledo College of Medicine, 3035 Arlington Avenue, Toledo, OH 43614-5804, USA.
| | | |
Collapse
|
38
|
Heikkila JJ, Kaldis A, Morrow G, Tanguay RM. The use of the Xenopus oocyte as a model system to analyze the expression and function of eukaryotic heat shock proteins. Biotechnol Adv 2007; 25:385-95. [PMID: 17459646 DOI: 10.1016/j.biotechadv.2007.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 03/21/2007] [Accepted: 03/21/2007] [Indexed: 11/26/2022]
Abstract
The analysis of the expression and function of heat shock protein (hsp) genes, a class of molecular chaperones, has been greatly aided by studies carried out with Xenopus oocytes. The large size of the oocyte facilitates microinjection of DNA, mRNA or protein, permits manual dissection of nuclei, and allows certain assays to be performed with single oocytes. These and other characteristics were useful in identifying the cis- and trans-acting factors involved in hsp gene transcription as well as the role of chaperones and co-chaperones in the repression and activation of heat shock factor. Xenopus oocytes were used to examine heat shock protein (HSP) molecular chaperone function as well as their involvement in intracellular trafficking, maturation, and secretion of protein. Possible new areas of research with this system include the role of membranes in the heat shock response, involvement of HSPs in viral replication and maturation, and in vivo NMR spectroscopy of microinjected HSPs.
Collapse
Affiliation(s)
- John J Heikkila
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | | | | | | |
Collapse
|
39
|
Fu Z, Larson KA, Chitta RK, Parker SA, Turk BE, Lawrence MW, Kaldis P, Galaktionov K, Cohn SM, Shabanowitz J, Hunt DF, Sturgill TW. Identification of yin-yang regulators and a phosphorylation consensus for male germ cell-associated kinase (MAK)-related kinase. Mol Cell Biol 2006; 26:8639-54. [PMID: 16954377 PMCID: PMC1636783 DOI: 10.1128/mcb.00816-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MAK (male germ cell-associated protein kinase) and MRK/ICK (MAK-related kinase/intestinal cell kinase) are human homologs of Ime2p in Saccharomyces cerevisiae and of Mde3 and Pit1 in Schizosaccharomyces pombe and are similar to human cyclin-dependent kinase 2 (CDK2) and extracellular signal-regulated kinase 2 (ERK2). MAK and MRK require dual phosphorylation in a TDY motif catalyzed by an unidentified human threonine kinase and tyrosine autophosphorylation. Herein, we establish that human CDK-related kinase CCRK (cell cycle-related kinase) is an activating T157 kinase for MRK, whereas active CDK7/cyclin H/MAT1 complexes phosphorylate CDK2 but not MRK. Protein phosphatase 5 (PP5) interacts with MRK in a complex and dephosphorylates MRK at T157 in vitro and in situ. Thus, CCRK and PP5 are yin-yang regulators of T157 phosphorylation. To determine a substrate consensus, we screened a combinatorial peptide library with active MRK. MRK preferentially phosphorylates R-P-X-S/T-P sites, with the preference for arginine at position -3 (P-3) being more stringent than for prolines at P-2 and P+1. Using the consensus, we identified a putative phosphorylation site (RPLT(1080)S) for MRK in human Scythe, an antiapoptotic protein that interacts with MRK. MRK phosphorylates Scythe at T1080 in vitro as determined by site-directed mutagenesis and mass spectrometry, supporting the consensus and suggesting Scythe as a physiological substrate for MRK.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908-0735, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kajiya H, Ito M, Ohshima H, Kenmotsu SI, Ries WL, Benjamin IJ, Reddy SV. RANK ligand expression in heat shock factor-2 deficient mouse bone marrow stromal/preosteoblast cells. J Cell Biochem 2006; 97:1362-9. [PMID: 16365894 DOI: 10.1002/jcb.20737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heat Shock Proteins (HSP) are molecular chaperones activated upon cellular stress/stimuli. HSP gene expression is regulated by Heat Shock Factors (HSF). We have recently demonstrated a functional role for heat shock factor-2 (HSF-2) in fibroblast growth factor-2 (FGF-2)-induced RANK ligand (RANKL), a critical osteoclastogenic factor expression on stromal/preosteoblast cells. In the present study, we show that FGF-2 treatment did not induce RANKL expression in HSF-2-/-stromal/preosteoblast cells. Interestingly, HSF-2 deficiency resulted in rapid induction of alkaline phosphatase (ALP) activity and osteocalcin mRNA expression in these cells. Furthermore, FGF-2 did not induce osteoclast formation in co-culture of normal mouse spleen cells and HSF-2-/-stromal/preosteoblast cells. Electron microscopy analysis demonstrated that osteoclasts from HSF-2-/-mice have poorly developed ruffled borders. These data further confirm that HSF-2 plays an important role in FGF-2-induced RANKL expression in stromal/preosteoblast cells. HSF-2 deficiency has pleotropic effects on gene expression during osteoblast differentiation and osteoclastogenesis in the bone microenvironment. Novel therapeutic agents that modulate HSF-2 activation may have therapeutic utility against increased levels of FGF-2 and bone destruction associated with pathologic conditions.
Collapse
Affiliation(s)
- Hiroshi Kajiya
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Sawara-ku, Fukuoka, 814-0193, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Kubinski K, Zielinski R, Hellman U, Mazur E, Szyszka R. Yeast elf1 factor is phosphorylated and interacts with protein kinase CK2. BMB Rep 2006; 39:311-8. [PMID: 16756761 DOI: 10.5483/bmbrep.2006.39.3.311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the biggest group of proteins influenced by protein kinase CK2 is formed by factors engaged in gene expression. Here we have reported recently identified yeast transcription elongation factor Elf1 as a new substrate for both monomeric and tetrameric forms of CK2. Elf1 serves as a substrate for both the recombinant CK2alpha' (K(m) 0.38 microM) and holoenzyme (K(m) 0.13 microM). By MALDI-MS we identified the two serine residues at positions 95 and 117 as the most probable in vitro phosphorylation sites. Coimmunoprecypitation experiments show that Elf1 interacts with catalytic (alpha and alpha') as well as regulatory (beta and beta') subunits of CK2. These data may help to elucidate the role of protein kinase CK2 and Elf1 in the regulation of transcription elongation.
Collapse
Affiliation(s)
- Konrad Kubinski
- Department of Molecular Biology, Environmental Protection Institute, John Paul II Catholic University of Lublin, Poland
| | | | | | | | | |
Collapse
|
42
|
Cliff MJ, Harris R, Barford D, Ladbury JE, Williams MA. Conformational Diversity in the TPR Domain-Mediated Interaction of Protein Phosphatase 5 with Hsp90. Structure 2006; 14:415-26. [PMID: 16531226 DOI: 10.1016/j.str.2005.12.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/12/2005] [Accepted: 12/18/2005] [Indexed: 11/25/2022]
Abstract
Protein phosphatase 5 (Ppp5) is one of several proteins that bind to the Hsp90 chaperone via a tetratricopeptide repeat (TPR) domain. We report the solution structure of a complex of the TPR domain of Ppp5 with the C-terminal pentapeptide of Hsp90. This structure has the "two-carboxylate clamp" mechanism of peptide binding first seen in the Hop-TPR domain complexes with Hsp90 and Hsp70 peptides. However, NMR data reveal that the Ppp5 clamp is highly dynamic, and that there are multiple modes of peptide binding and mobility throughout the complex. Although this interaction is of very high affinity, relatively few persistent contacts are found between the peptide and the Ppp5-TPR domain, thus explaining its promiscuity in binding both Hsp70 and Hsp90 in vivo. We consider the possible implications of this dynamic structure for the mechanism of relief of autoinhibition in Ppp5 and for the mechanisms of TPR-mediated recognition of Hsp90 by other proteins.
Collapse
Affiliation(s)
- Matthew J Cliff
- Department of Biochemistry and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | |
Collapse
|