1
|
DeKryger W, Chroneos ZC. Emerging concepts of myosin 18A isoform mechanobiology in organismal and immune system physiology, development, and function. FASEB J 2024; 38:e23649. [PMID: 38776246 DOI: 10.1096/fj.202400350r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024]
Abstract
Alternative and combinatorial splicing of myosin 18A (MYO18A) gene transcripts results in expression of MYO18A protein isoforms and isoform variants with different membrane and subcellular localizations, and functional properties. MYO18A proteins are members of the myosin superfamily consisting of a myosin-like motor domain, an IQ motif, and a coiled-coil domain. MYO18A isoforms, however, lack the ability to hydrolyze ATP and do not perform ATP-dependent motor activity. MYO18A isoforms are distinguished by different amino- and carboxy-terminal extensions and domains. The domain organization and functions of MYO18Aα, MYO18Aβ, and MYO18Aγ have been studied experimentally. MYO18Aα and MYO18Aβ have a common carboxy-terminal extension but differ by the presence or absence of an amino-terminal KE repeat and PDZ domain, respectively. The amino- and carboxy-terminal extensions of MYO18Aγ contain unique proline and serine-rich domains. Computationally predicted MYO18Aε and MYO18Aδ isoforms contain the carboxy-terminal serine-rich extension but differ by the presence or absence of the amino-terminal KE/PDZ extension. Additional isoform variants within each category arise by alternative utilization or inclusion/exclusion of small exons. MYO18Aα variants are expressed in somatic cells and mature immune cells, whereas MYO18Aβ variants occur mainly in myeloid and natural killer cells. MYO18Aγ expression is selective to cardiac and skeletal muscle. In the present review perspective, we discuss current and emerging concepts of the functional specialization of MYO18A proteins in membrane and cytoskeletal dynamics, cellular communication and signaling, endocytic and exocytic organelle movement, viral infection, and as the SP-R210 receptor for surfactant protein A.
Collapse
Affiliation(s)
- William DeKryger
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Zissis C Chroneos
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
2
|
Horsthemke M, Arnaud CA, Hanley PJ. Are the class 18 myosins Myo18A and Myo18B specialist sarcomeric proteins? Front Physiol 2024; 15:1401717. [PMID: 38784114 PMCID: PMC11112018 DOI: 10.3389/fphys.2024.1401717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Initially, the two members of class 18 myosins, Myo18A and Myo18B, appeared to exhibit highly divergent functions, complicating the assignment of class-specific functions. However, the identification of a striated muscle-specific isoform of Myo18A, Myo18Aγ, suggests that class 18 myosins may have evolved to complement the functions of conventional class 2 myosins in sarcomeres. Indeed, both genes, Myo18a and Myo18b, are predominantly expressed in the heart and somites, precursors of skeletal muscle, of developing mouse embryos. Genetic deletion of either gene in mice is embryonic lethal and is associated with the disorganization of cardiac sarcomeres. Moreover, Myo18Aγ and Myo18B localize to sarcomeric A-bands, albeit the motor (head) domains of these unconventional myosins have been both deduced and biochemically demonstrated to exhibit negligible ATPase activity, a hallmark of motor proteins. Instead, Myo18Aγ and Myo18B presumably coassemble with thick filaments and provide structural integrity and/or internal resistance through interactions with F-actin and/or other proteins. In addition, Myo18Aγ and Myo18B may play distinct roles in the assembly of myofibrils, which may arise from actin stress fibers containing the α-isoform of Myo18A, Myo18Aα. The β-isoform of Myo18A, Myo18Aβ, is similar to Myo18Aα, except that it lacks the N-terminal extension, and may serve as a negative regulator through heterodimerization with either Myo18Aα or Myo18Aγ. In this review, we contend that Myo18Aγ and Myo18B are essential for myofibril structure and function in striated muscle cells, while α- and β-isoforms of Myo18A play diverse roles in nonmuscle cells.
Collapse
Affiliation(s)
- Markus Horsthemke
- IMM Institute for Molecular Medicine, HMU Health and Medical University Potsdam, Potsdam, Germany
| | - Charles-Adrien Arnaud
- IMM Institute for Molecular Medicine, HMU Health and Medical University Potsdam, Potsdam, Germany
- Department of Medicine, Science Faculty, MSB Medical School Berlin, Berlin, Germany
| | - Peter J. Hanley
- IMM Institute for Molecular Medicine, HMU Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
3
|
Guan Z, Worth B, Umstead TM, Amatya S, Booth J, Chroneos ZC. Disruption of the SP-A/SP-R210 L (MYO18Aα) pathway prolongs gestation and reduces fetal survival during lipopolysaccharide-induced parturition in late gestation. Am J Physiol Lung Cell Mol Physiol 2024; 326:L508-L513. [PMID: 38349123 PMCID: PMC11281786 DOI: 10.1152/ajplung.00383.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 04/07/2024] Open
Abstract
Prolonged labor can lead to infection, fetal distress, asphyxia, and life-threatening harm to both the mother and the baby. Surfactant protein A (SP-A) was shown to contribute to the maintenance of pregnancy and timing of term labor. SP-A modulates the stoichiometric expression of the SP-R210L and SP-R210S isoforms of the SP-R210 receptor on alveolar macrophages (AMs). Lack of SP-R210L dysregulates macrophage inflammatory responses. We asked whether SP-A alters normal and inflammation-induced parturition through SP-R210 using SP-A- and SP-R210L-deficient mice. Labor and delivery of time-pregnant mice were monitored in real time using a time-lapse infrared camera. Intrauterine injection with either vehicle or Escherichia coli lipopolysaccharide (LPS) on embryonic (E) day 18.5 post coitus was used to assess the effect of gene disruption in chorioamnionitis-induced labor. We report that either lack of SP-A or disruption of SP-R210L delays parturition by 0.40 and 0.55 days compared with controls, respectively. LPS induced labor at 0.60, 1.01, 0.40, 1.00, and 1.31 days earlier than PBS controls in wild type (WT), SP-A-deficient, littermate controls, heterozygous, and homozygous SP-R210L-deficient mice, respectively. Lack of SP-A reduced litter size in PBS-treated mice, whereas the total number of pups delivered was similar in all LPS-treated mice. The number of live pups, however, was significantly reduced by 50%-70% in SP-A and SP-R210L-deficient mice compared with controls. Differences in gestational length were not associated with intrauterine growth restriction. The present findings support the novel concept that the SP-A/SP-R210 pathway modulates timely labor and delivery and supports fetal lung barrier integrity during fetal-to-neonatal transition in term pregnancy.NEW & NOTEWORTHY To our knowledge, this study is the first to report that SP-A prevents delay of labor and inflammation-induced stillbirth through the receptor SP-R210L.
Collapse
Affiliation(s)
- Zhiwei Guan
- Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Brandon Worth
- Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Todd M Umstead
- Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Shaili Amatya
- Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Jennifer Booth
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Zissis C Chroneos
- Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
4
|
Yau E, Yang L, Chen Y, Umstead TM, Stanley AE, Halstead ES, Gandhi CK, Yewdell JW, Chroneos ZC. SP-R210 isoforms of Myosin18A modulate endosomal sorting and recognition of influenza A virus infection in macrophages. Microbes Infect 2024; 26:105280. [PMID: 38135024 PMCID: PMC10948314 DOI: 10.1016/j.micinf.2023.105280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Influenza A virus (IAV) infection causes acute and often lethal inflammation in the lung. The role of macrophages in this adverse inflammation is partially understood. The surfactant protein A receptor 210 (SP-R210) consists of two isoforms, a long (L) SP-R210L and a short (S) SP-R210S isoform encoded by alternative splicing of the myosin 18A gene. We reported that disruption of SP-R210L enhances cytosolic and endosomal antiviral response pathways. Here, we report that SP-R210L antagonizes type I interferon β (IFNβ), as depletion of SP-R210L potentiates IFNβ secretion. SP-R210 antibodies enhance and attenuate IFNβ secretion in SP-R210L replete and deficient macrophages, respectively, indicating that SP-R210 isoform stoichiometry alters macrophage function intrinsically. This reciprocal response is coupled to unopposed and restricted expression of viral genes in control and SP-R210L-deficient macrophages, respectively. Human monocytic cells with sub-stoichiometric expression of SP-R210L resist IAV infection, whereas alveolar macrophages with increased abundance of SP-R210L permit viral gene expression similar to murine macrophages. Uptake and membrane binding studies show that lack of SP-R210 isoforms does not impair IAV binding and internalization. Lack of SP-R210L, however, results in macropinocytic retention of the virus that depends on both SP-R210S and interferon-inducible transmembrane protein-3 (IFITM3). Mass spectrometry and Western blot analyses indicate that SP-R210 isoforms modulate differential recruitment of the Rho-family GTPase RAC1 and guanine nucleotide exchange factors. Our study suggests that SP-R210 isoforms modulate RAC-dependent macropinosomal sorting of IAV to discrete endosomal and lysosomal compartments that either permit or prevent endolysosomal escape and inflammatory sensing of viral genomes in macrophages.
Collapse
Affiliation(s)
- Eric Yau
- Department of Pediatrics, Division of Perinatal-Neonatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Linlin Yang
- Department of Pediatrics, Division of Perinatal-Neonatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yan Chen
- Department of Pediatrics, Division of Perinatal-Neonatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Todd M Umstead
- Department of Pediatrics, Division of Perinatal-Neonatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Anne E Stanley
- Mass Spectrometry Core, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - E Scott Halstead
- Department of Pediatrics, Division of Perinatal-Neonatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pediatrics, Division of Pediatric Critical Care Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Chintan K Gandhi
- Department of Pediatrics, Division of Perinatal-Neonatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Zissis C Chroneos
- Department of Pediatrics, Division of Perinatal-Neonatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
5
|
Yau E, Yang L, Chen Y, Umstead TM, Atkins H, Katz ZE, Yewdell JW, Gandhi CK, Halstead ES, Chroneos ZC. Surfactant protein A alters endosomal trafficking of influenza A virus in macrophages. Front Immunol 2023; 14:919800. [PMID: 36960051 PMCID: PMC10028185 DOI: 10.3389/fimmu.2023.919800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Influenza A virus infection (IAV) often leads to acute lung injury that impairs breathing and can lead to death, with disproportionate mortality in children and the elderly. Surfactant Protein A (SP-A) is a calcium-dependent opsonin that binds a variety of pathogens to help control pulmonary infections by alveolar macrophages. Alveolar macrophages play critical roles in host resistance and susceptibility to IAV infection. The effect of SP-A on IAV infection and antiviral response of macrophages, however, is not understood. Here, we report that SP-A attenuates IAV infection in a dose-dependent manner at the level of endosomal trafficking, resulting in infection delay in a model macrophage cell line. The ability of SP-A to suppress infection was independent of its glycosylation status. Binding of SP-A to hemagglutinin did not rely on the glycosylation status or sugar binding properties of either protein. Incubation of either macrophages or IAV with SP-A slowed endocytic uptake rate of IAV. SP-A interfered with binding to cell membrane and endosomal exit of the viral genome as indicated by experiments using isolated cell membranes, an antibody recognizing a pH-sensitive conformational epitope on hemagglutinin, and microscopy. Lack of SP-A in mice enhanced IFNβ expression, viral clearance and reduced mortality from IAV infection. These findings support the idea that IAV is an opportunistic pathogen that co-opts SP-A to evade host defense by alveolar macrophages. Our study highlights novel aspects of host-pathogen interactions that may lead to better understanding of the local mechanisms that shape activation of antiviral and inflammatory responses to viral infection in the lung.
Collapse
Affiliation(s)
- Eric Yau
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Linlin Yang
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Yan Chen
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Todd M. Umstead
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Hannah Atkins
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, PA, Hershey, United States
| | - Zoe E. Katz
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jonathan W. Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Chintan K. Gandhi
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - E. Scott Halstead
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Zissis C. Chroneos
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
- *Correspondence: Zissis C. Chroneos,
| |
Collapse
|
6
|
Matozo T, Kogachi L, de Alencar BC. Myosin motors on the pathway of viral infections. Cytoskeleton (Hoboken) 2022; 79:41-63. [PMID: 35842902 DOI: 10.1002/cm.21718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 01/30/2023]
Abstract
Molecular motors are microscopic machines that use energy from adenosine triphosphate (ATP) hydrolysis to generate movement. While kinesins and dynein are molecular motors associated with microtubule tracks, myosins bind to and move on actin filaments. Mammalian cells express several myosin motors. They power cellular processes such as endo- and exocytosis, intracellular trafficking, transcription, migration, and cytokinesis. As viruses navigate through cells, they may take advantage or be hindered by host components and machinery, including the cytoskeleton. This review delves into myosins' cell roles and compares them to their reported functions in viral infections. In most cases, the previously described myosin functions align with their reported role in viral infections, although not in all cases. This opens the possibility that knowledge obtained from studying myosins in viral infections might shed light on new physiological roles for myosins in cells. However, given the high number of myosins expressed and the variety of viruses investigated in the different studies, it is challenging to infer whether the interactions found are specific to a single virus or can be applied to other viruses with the same characteristics. We conclude that the participation of myosins in viral cycles is still a largely unexplored area, especially concerning unconventional myosins.
Collapse
Affiliation(s)
- Tais Matozo
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia Kogachi
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruna Cunha de Alencar
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Yau E, Chen Y, Song C, Webb J, Carillo M, Kawasawa YI, Tang Z, Takahashi Y, Umstead TM, Dovat S, Chroneos ZC. Genomic and epigenomic adaptation in SP-R210 (Myo18A) isoform-deficient macrophages. Immunobiology 2021; 226:152150. [PMID: 34735924 DOI: 10.1016/j.imbio.2021.152150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
Macrophages play an important role in maintaining tissue homeostasis, from regulating the inflammatory response to pathogens to resolving inflammation and aiding tissue repair. The surfactant protein A (SP-A) receptor SP-R210 (MYO18A) has been shown to affect basal and inflammatory macrophage states. Specifically, disruption of the longer splice isoform SP-R210L/MYO18Aα renders macrophages hyper-inflammatory, although the mechanism by which this occurs is not well understood. We asked whether disruption of the L isoform led to the hyper-inflammatory state via alteration of global genomic responses. RNA sequencing analysis of L isoform-deficient macrophages (SP-R210L(DN)) revealed basal and influenza-induced upregulation of genes associated with inflammatory pathways, such as TLR, RIG-I, NOD, and cytoplasmic DNA signaling, whereas knockout of both SP-R210 isoforms (L and S) only resulted in increased RIG-I and NOD signaling. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis showed increased genome-wide deposition of the pioneer transcription factor PU.1 in SP-R210L(DN) cells, with increased representation around genes relevant to inflammatory pathways. Additional ChIP-seq analysis of histone H3 methylation marks showed decreases in both repressive H3K9me3 and H3K27me3 marks with a commensurate increase in transcriptionally active (H3K4me3) histone marks in the L isoform deficient macrophages. Influenza A virus (IAV) infection, known to stimulate a wide array of anti-viral responses, caused a differential redistribution of PU.1 binding between proximal promoter and distal sites and decoupling from Toll-like receptor regulated gene promoters in SP-R210L(DN) cells. These finding suggest that the inflammatory differences seen in SP-R210L-deficient macrophages are a result of transcriptional differences that are mediated by epigenetic changes brought about by differential expression of the SP-R210 isoforms. This provides an avenue to explore how the signaling pathways downstream of the receptor and the ligands can modulate the macrophage inflammatory response.
Collapse
Affiliation(s)
- Eric Yau
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA.
| | - Yan Chen
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA; Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunhua Song
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, PA, USA; Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH, USA
| | - Jason Webb
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA
| | - Marykate Carillo
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, PA, USA
| | - Zhenyuan Tang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yoshinori Takahashi
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Todd M Umstead
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA
| | - Sinisa Dovat
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zissis C Chroneos
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA.
| |
Collapse
|
8
|
Ouyang Z, Zhao S, Yao S, Wang J, Cui Y, Wei K, Jiu Y. Multifaceted Function of Myosin-18, an Unconventional Class of the Myosin Superfamily. Front Cell Dev Biol 2021; 9:632445. [PMID: 33634131 PMCID: PMC7900500 DOI: 10.3389/fcell.2021.632445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Myosin is a diverse superfamily of motor proteins responsible for actin-based motility and contractility in eukaryotic cells. Myosin-18 family, including myosin-18A and myosin-18B, belongs to an unconventional class of myosin, which lacks ATPase motor activity, and the investigations on their functions and molecular mechanisms in vertebrate development and diseases have just been initiated in recent years. Myosin-18A is ubiquitously expressed in mammalian cells, whereas myosin-18B shows strong enrichment in striated muscles. Myosin-18 family is important for cell motility, sarcomere formation, and mechanosensing, mostly by interacting with other cytoskeletal proteins and cellular apparatus. Myosin-18A participates in several intracellular transport processes, such as Golgi trafficking, and has multiple roles in focal adhesions, stress fibers, and lamellipodia formation. Myosin-18B, on the other hand, participates in actomyosin alignment and sarcomere assembly, thus relating to cell migration and muscle contractility. Mutations of either Myo18a or Myo18b cause cardiac developmental defects in mouse, emphasizing their crucial role in muscle development and cardiac diseases. In this review, we revisit the discovery history of myosin-18s and summarize the evolving understanding of the molecular functions of myosin-18A and myosin-18B, with an emphasis on their separate yet closely related functions in cell motility and contraction. Moreover, we discuss the diseases tightly associated with myosin-18s, especially cardiovascular defects and cancer, as well as highlight the unanswered questions and potential future research perspectives on myosin-18s.
Collapse
Affiliation(s)
- Zhaohui Ouyang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuangshuang Zhao
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Su Yao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jing Wang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanqin Cui
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ke Wei
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yaming Jiu
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Watson A, Madsen J, Clark HW. SP-A and SP-D: Dual Functioning Immune Molecules With Antiviral and Immunomodulatory Properties. Front Immunol 2021; 11:622598. [PMID: 33542724 PMCID: PMC7851053 DOI: 10.3389/fimmu.2020.622598] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023] Open
Abstract
Surfactant proteins A (SP-A) and D (SP-D) are soluble innate immune molecules which maintain lung homeostasis through their dual roles as anti-infectious and immunomodulatory agents. SP-A and SP-D bind numerous viruses including influenza A virus, respiratory syncytial virus (RSV) and human immunodeficiency virus (HIV), enhancing their clearance from mucosal points of entry and modulating the inflammatory response. They also have diverse roles in mediating innate and adaptive cell functions and in clearing apoptotic cells, allergens and other noxious particles. Here, we review how the properties of these first line defense molecules modulate inflammatory responses, as well as host-mediated immunopathology in response to viral infections. Since SP-A and SP-D are known to offer protection from viral and other infections, if their levels are decreased in some disease states as they are in severe asthma and chronic obstructive pulmonary disease (COPD), this may confer an increased risk of viral infection and exacerbations of disease. Recombinant molecules of SP-A and SP-D could be useful in both blocking respiratory viral infection while also modulating the immune system to prevent excessive inflammatory responses seen in, for example, RSV or coronavirus disease 2019 (COVID-19). Recombinant SP-A and SP-D could have therapeutic potential in neutralizing both current and future strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus as well as modulating the inflammation-mediated pathology associated with COVID-19. A recombinant fragment of human (rfh)SP-D has recently been shown to neutralize SARS-CoV-2. Further work investigating the potential therapeutic role of SP-A and SP-D in COVID-19 and other infectious and inflammatory diseases is indicated.
Collapse
Affiliation(s)
- Alastair Watson
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Southampton NIHR Respiratory Biomedical Research Centre, Southampton General Hospital, Southampton, United Kingdom
- Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Jens Madsen
- Neonatology, EGA Institute for Women’s Health, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Howard William Clark
- Neonatology, EGA Institute for Women’s Health, Faculty of Population Health Sciences, University College London, London, United Kingdom
- NIHR Biomedical Research Centre, University College London Hospital (UCLH), University College London (UCL), London, United Kingdom
| |
Collapse
|
10
|
Murugaiah V, Tsolaki AG, Kishore U. Collectins: Innate Immune Pattern Recognition Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:75-127. [PMID: 32152944 PMCID: PMC7120701 DOI: 10.1007/978-981-15-1580-4_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collectins are collagen-containing C-type (calcium-dependent) lectins which are important pathogen pattern recognising innate immune molecules. Their primary structure is characterised by an N-terminal, triple-helical collagenous region made up of Gly-X-Y repeats, an a-helical coiled-coil trimerising neck region, and a C-terminal C-type lectin or carbohydrate recognition domain (CRD). Further oligomerisation of this primary structure can give rise to more complex and multimeric structures that can be seen under electron microscope. Collectins can be found in serum as well as in a range of tissues at the mucosal surfaces. Mannanbinding lectin can activate the complement system while other members of the collectin family are extremely versatile in recognising a diverse range of pathogens via their CRDs and bring about effector functions designed at the clearance of invading pathogens. These mechanisms include opsonisation, enhancement of phagocytosis, triggering superoxidative burst and nitric oxide production. Collectins can also potentiate the adaptive immune response via antigen presenting cells such as macrophages and dendritic cells through modulation of cytokines and chemokines, thus they can act as a link between innate and adaptive immunity. This chapter describes the structure-function relationships of collectins, their diverse functions, and their interaction with viruses, bacteria, fungi and parasites.
Collapse
Affiliation(s)
- Valarmathy Murugaiah
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Anthony G Tsolaki
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Uday Kishore
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK.
| |
Collapse
|
11
|
Abstract
Class XVIII myosins represent a branch of the myosin family tree characterized by the presence of large N- and C-terminal extensions flanking a generic myosin core. These myosins display the highest sequence similarity to conventional class II muscle myosins and are compatible with but not restricted to myosin-2 contractile structures. Instead, they fulfill their functions at diverse localities, such as lamella, actomyosin bundles, the Golgi apparatus, focal adhesions, the cell membrane, and within sarcomeres. Sequence comparison of active-site residues and biochemical data available thus far indicate that this myosin class lacks active ATPase-driven motor activity, suggesting that its members function as structural myosins. An emerging body of evidence indicates that this structural capability is essential for the organization, maturation, and regulation of the contractile machinery in both muscle and nonmuscle cells. This is supported by the clear association of myosin-18A (Myo18A) and myosin-18B (Myo18B) dysregulation with diseases such as cancer and various myopathies.
Collapse
|
12
|
Nalian A, Umstead TM, Yang CH, Silveyra P, Thomas NJ, Floros J, McCormack FX, Chroneos ZC. Structural and Functional Determinants of Rodent and Human Surfactant Protein A: A Synthesis of Binding and Computational Data. Front Immunol 2019; 10:2613. [PMID: 31781112 PMCID: PMC6856657 DOI: 10.3389/fimmu.2019.02613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/21/2019] [Indexed: 11/23/2022] Open
Abstract
Surfactant protein A (SP-A) provides surfactant stability, first line host defense, and lung homeostasis by binding surfactant phospholipids, pathogens, alveolar macrophages (AMs), and epithelial cells. Non-primates express one SP-A protein whereas humans express two: SP-A1 and SP-A2 with core intra- and inter-species differences in the collagen-like domain. Here, we used macrophages and solid phase binding assays to discern structural correlates of rat (r) and human (h) SP-A function. Binding assays using recombinant rSP-A expressed in insect cells showed that lack of proline hydroxylation, truncations of amino-terminal oligomerization domains, and site-directed serine (S) or alanine (A) mutagenesis of cysteine 6 (C6S), glutamate 195 (E195A), and glutamate 171 (E171A) in the carbohydrate recognition domain (CRD) all impaired SP-A binding. Replacement of arginine 197 with alanine found in hSP-A (R197A), however, restored the binding of hydroxyproline-deficient rSP-A to the SP-A receptor SP-R210 similar to native rat and human SP-A. In silico calculation of Ca++ coordination bond length and solvent accessibility surface area revealed that the “humanized” R197A substitution alters topology and solvent accessibility of the Ca++ coordination residues of the CRD domain. Binding assays in mouse AMs that were exposed to either endogenous SP-A or hSP-A1 (6A2) and hSP-A2 (1A0) isoforms in vivo revealed that mouse SP-A is a functional hybrid of hSP-A1 and hSP-A2 in regulating SP-A receptor occupancy and binding affinity. Binding assays using neonatal and adult human AMs indicates that the interaction of SP-A1 and SP-A2 with AMs is developmentally regulated. Furthermore, our data indicate that the auxiliary ion coordination loop encompassing the conserved E171 residue may comprise a conserved site of interaction with macrophages, and SP-R210 specifically, that merits further investigation to discern conserved and divergent SP-A functions between species. In summary, our findings support the notion that complex structural adaptation of SP-A regulate conserved and species specific AM functions in vertebrates.
Collapse
Affiliation(s)
- Armen Nalian
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX, United States.,The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Todd M Umstead
- Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| | - Ching-Hui Yang
- The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Patricia Silveyra
- Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| | - Neal J Thomas
- Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Department of Public Health Sciences, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Center of Host Defense and Inflammatory Disease Research, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Department of Obstetrics and Gynecology, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| | - Francis X McCormack
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Zissis C Chroneos
- The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX, United States.,Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Department of Microbiology and Immunology, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| |
Collapse
|
13
|
Casals C, García-Fojeda B, Minutti CM. Soluble defense collagens: Sweeping up immune threats. Mol Immunol 2019; 112:291-304. [DOI: 10.1016/j.molimm.2019.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
|
14
|
Rahajeng J, Kuna RS, Makowski SL, Tran TTT, Buschman MD, Li S, Cheng N, Ng MM, Field SJ. Efficient Golgi Forward Trafficking Requires GOLPH3-Driven, PI4P-Dependent Membrane Curvature. Dev Cell 2019; 50:573-585.e5. [PMID: 31231041 PMCID: PMC7583631 DOI: 10.1016/j.devcel.2019.05.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/22/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
Vesicle budding for Golgi-to-plasma membrane trafficking is a key step in secretion. Proteins that induce curvature of the Golgi membrane are predicted to be required, by analogy to vesicle budding from other membranes. Here, we demonstrate that GOLPH3, upon binding to the phosphoinositide PI4P, induces curvature of synthetic membranes in vitro and the Golgi in cells. Moreover, efficient Golgi-to-plasma membrane trafficking critically depends on the ability of GOLPH3 to curve the Golgi membrane. Interestingly, uncoupling of GOLPH3 from its binding partner MYO18A results in extensive curvature of Golgi membranes, producing dramatic tubulation of the Golgi, but does not support forward trafficking. Thus, forward trafficking from the Golgi to the plasma membrane requires the ability of GOLPH3 both to induce Golgi membrane curvature and to recruit MYO18A. These data provide fundamental insight into the mechanism of Golgi trafficking and into the function of the unique Golgi secretory oncoproteins GOLPH3 and MYO18A.
Collapse
Affiliation(s)
- Juliati Rahajeng
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ramya S Kuna
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefanie L Makowski
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thuy T T Tran
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew D Buschman
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sheng Li
- Department of Medicine, Division of Rheumatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Norton Cheng
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michelle M Ng
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seth J Field
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Horsthemke M, Nutter LMJ, Bachg AC, Skryabin BV, Honnert U, Zobel T, Bogdan S, Stoll M, Seidl MD, Müller FU, Ravens U, Unger A, Linke WA, van Gorp PRR, de Vries AAF, Bähler M, Hanley PJ. A novel isoform of myosin 18A (Myo18Aγ) is an essential sarcomeric protein in mouse heart. J Biol Chem 2019; 294:7202-7218. [PMID: 30737279 DOI: 10.1074/jbc.ra118.004560] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/19/2019] [Indexed: 01/19/2023] Open
Abstract
Whereas myosin 18B (Myo18B) is known to be a critical sarcomeric protein, the function of myosin 18A (Myo18A) is unclear, although it has been implicated in cell motility and Golgi shape. Here, we show that homozygous deletion (homozygous tm1a, tm1b, or tm1d alleles) of Myo18a in mouse is embryonic lethal. Reminiscent of Myo18b, Myo18a was highly expressed in the embryo heart, and cardiac-restricted Myo18a deletion in mice was embryonic lethal. Surprisingly, using Western blot analysis, we were unable to detect the known isoforms of Myo18A, Myo18Aα and Myo18Aβ, in mouse heart using a custom C-terminal antibody. However, alternative anti-Myo18A antibodies detected a larger than expected protein, and RNA-Seq analysis indicated that a novel Myo18A transcript is expressed in mouse ventricular myocytes (and human heart). Cloning and sequencing revealed that this cardiac isoform, denoted Myo18Aγ, lacks the PDZ-containing N terminus of Myo18Aα but includes an alternative N-terminal extension and a long serine-rich C terminus. EGFP-tagged Myo18Aγ expressed in ventricular myocytes localized to the level of A-bands in sarcomeres, and Myo18a knockout embryos at day 10.5 exhibited disorganized sarcomeres with wavy thick filaments. We additionally generated myeloid-restricted Myo18a knockout mice to investigate the role of Myo18A in nonmuscle cells, exemplified by macrophages, which express more Myo18Aβ than Myo18Aα, but no defects in cell shape, motility, or Golgi shape were detected. In summary, we have identified a previously unrecognized sarcomere component, a large novel isoform (denoted Myo18Aγ) of Myo18A. Thus, both members of class XVIII myosins are critical components of cardiac sarcomeres.
Collapse
Affiliation(s)
| | - Lauryl M J Nutter
- the Centre for Phenogenomics, Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada
| | | | - Boris V Skryabin
- Department of Medicine, Transgenic Animal and Genetic Engineering Models (TRAM)
| | | | - Thomas Zobel
- the Center for Advanced Imaging, Heinrich Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven Bogdan
- the Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | | | - Matthias D Seidl
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Frank U Müller
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Ursula Ravens
- the Institut für Experimentelle Kardiovaskuläre Medizin, Universitätsklinikum Freiburg, 79110 Freiburg, Germany
| | - Andreas Unger
- the Institut für Physiologie II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 27b, 48149 Münster, Germany, and
| | - Wolfgang A Linke
- the Institut für Physiologie II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 27b, 48149 Münster, Germany, and
| | - Pim R R van Gorp
- the Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Antoine A F de Vries
- the Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
16
|
Abstract
MYO18A is a divergent member of the myosin family characterized by the presence of an amino-terminal PDZ domain. MYO18A has been found in a few different complexes involved in intracellular transport processes. MYO18A is found in a complex with LURAP1 and MRCK that functions in retrograde treadmilling of actin. It also has been found in a complex with PAK2, βPIX, and GIT1, functioning to transport that protein complex from focal adhesions to the leading edge. Finally, a high proportion of MYO18A is found in complex with GOLPH3 at the trans Golgi, where it functions to promote vesicle budding for Golgi-to-plasma membrane trafficking. Interestingly, MYO18A has been implicated as a cancer driver, as have other components of the GOLPH3 pathway. It remains uncertain as to whether or not MYO18A has intrinsic motor activity. While many questions remain, MYO18A is a fascinatingly unique myosin that is essential in higher organisms.
Collapse
|
17
|
Minutti CM, Jackson-Jones LH, García-Fojeda B, Knipper JA, Sutherland TE, Logan N, Ringqvist E, Guillamat-Prats R, Ferenbach DA, Artigas A, Stamme C, Chroneos ZC, Zaiss DM, Casals C, Allen JE. Local amplifiers of IL-4Rα-mediated macrophage activation promote repair in lung and liver. Science 2017; 356:1076-1080. [PMID: 28495878 DOI: 10.1126/science.aaj2067] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/11/2017] [Accepted: 04/27/2017] [Indexed: 12/28/2022]
Abstract
The type 2 immune response controls helminth infection and maintains tissue homeostasis but can lead to allergy and fibrosis if not adequately regulated. We have discovered local tissue-specific amplifiers of type 2-mediated macrophage activation. In the lung, surfactant protein A (SP-A) enhanced interleukin-4 (IL-4)-dependent macrophage proliferation and activation, accelerating parasite clearance and reducing pulmonary injury after infection with a lung-migrating helminth. In the peritoneal cavity and liver, C1q enhancement of type 2 macrophage activation was required for liver repair after bacterial infection, but resulted in fibrosis after peritoneal dialysis. IL-4 drives production of these structurally related defense collagens, SP-A and C1q, and the expression of their receptor, myosin 18A. These findings reveal the existence within different tissues of an amplification system needed for local type 2 responses.
Collapse
Affiliation(s)
- Carlos M Minutti
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, 28040-Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029-Madrid, Spain.,School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Lucy H Jackson-Jones
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Belén García-Fojeda
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, 28040-Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029-Madrid, Spain
| | - Johanna A Knipper
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Tara E Sutherland
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.,Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK
| | - Nicola Logan
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Emma Ringqvist
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Raquel Guillamat-Prats
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029-Madrid, Spain.,Critical Care Centre, Corporació Sanitària Universitària Parc Taulí, Universitat Autònoma de Barcelona Parc Taulí 1, 08208-Sabadell, Spain
| | - David A Ferenbach
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Antonio Artigas
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029-Madrid, Spain.,Critical Care Centre, Corporació Sanitària Universitària Parc Taulí, Universitat Autònoma de Barcelona Parc Taulí 1, 08208-Sabadell, Spain
| | - Cordula Stamme
- Division of Cellular Pneumology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23845 Borstel, and Department of Anesthesiology and Intensive Care, University of Lübeck, 23538 Lübeck, Germany
| | - Zissis C Chroneos
- Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, and Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey PA 17033, USA
| | - Dietmar M Zaiss
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, 28040-Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029-Madrid, Spain
| | - Judith E Allen
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.,Faculty of Biology, Medicine and Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
18
|
De Masson A, Giustiniani J, Marie-Cardine A, Bouaziz JD, Dulphy N, Gossot D, Validire P, Tazi A, Garbar C, Bagot M, Merrouche Y, Bensussan A. Identification of CD245 as myosin 18A, a receptor for surfactant A: A novel pathway for activating human NK lymphocytes. Oncoimmunology 2016; 5:e1127493. [PMID: 27467939 DOI: 10.1080/2162402x.2015.1127493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022] Open
Abstract
CD245 is a human surface antigen expressed on peripheral blood lymphocytes, initially delineated by two monoclonal antibodies DY12 and DY35. Until now, CD245 molecular and functional characteristics remained largely unknown. We combined immunological and proteomic approaches and identified CD245 as the unconventional myosin 18A, a highly conserved motor enzyme reported as a receptor for the surfactant protein A (SP-A), that plays a critical role in cytoskeleton organization and Golgi budding. We report that the recruitment of CD245 strongly enhanced NK cell cytotoxicity. Further, we show that the enhancement of the NK lymphocytes killing ability toward CD137-ligand expressing target cells could result from the induction of CD137 expression following CD245 engagement. The SP-A receptor could therefore represent a novel and promising target in cancer immunotherapy.
Collapse
Affiliation(s)
- A De Masson
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique (UMRS)-976, Laboratoire "Oncodermatology, Immunology and Cutaneous Stem Cells", Hôpital Saint-Louis, Paris, France; Université Paris VII Paris Diderot, Sorbonne Paris Cité, Paris, France; Service de Dermatologie, Hôpital Saint-Louis, Paris, France; Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - J Giustiniani
- Institut Jean Godinot, Unicancer, Reims, France; Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51 rue Cognacq-Jay , Reims cedex, France
| | - A Marie-Cardine
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique (UMRS)-976, Laboratoire "Oncodermatology, Immunology and Cutaneous Stem Cells", Hôpital Saint-Louis, Paris, France; Université Paris VII Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - J D Bouaziz
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique (UMRS)-976, Laboratoire "Oncodermatology, Immunology and Cutaneous Stem Cells", Hôpital Saint-Louis, Paris, France; Université Paris VII Paris Diderot, Sorbonne Paris Cité, Paris, France; Service de Dermatologie, Hôpital Saint-Louis, Paris, France
| | - N Dulphy
- Université Paris VII Paris Diderot, Sorbonne Paris Cité, Paris, France; INSERM UMRS-1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France; Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - D Gossot
- Service de chirurgie thoracique, Institut Mutualiste Montsouris , Paris, France
| | - P Validire
- Service d'anatomopathologie, Institut Mutualiste Montsouris , Paris, France
| | - A Tazi
- Université Paris VII Paris Diderot, Sorbonne Paris Cité, Paris, France; Service de pneumologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - C Garbar
- Institut Jean Godinot, Unicancer, Reims, France; Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51 rue Cognacq-Jay , Reims cedex, France
| | - M Bagot
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique (UMRS)-976, Laboratoire "Oncodermatology, Immunology and Cutaneous Stem Cells", Hôpital Saint-Louis, Paris, France; Université Paris VII Paris Diderot, Sorbonne Paris Cité, Paris, France; Service de Dermatologie, Hôpital Saint-Louis, Paris, France
| | - Y Merrouche
- Institut Jean Godinot, Unicancer, Reims, France; Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51 rue Cognacq-Jay , Reims cedex, France
| | - A Bensussan
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique (UMRS)-976, Laboratoire "Oncodermatology, Immunology and Cutaneous Stem Cells", Hôpital Saint-Louis, Paris, France; Université Paris VII Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
19
|
|
20
|
Raesch SS, Tenzer S, Storck W, Rurainski A, Selzer D, Ruge CA, Perez-Gil J, Schaefer UF, Lehr CM. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition. ACS NANO 2015; 9:11872-85. [PMID: 26575243 DOI: 10.1021/acsnano.5b04215] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pulmonary surfactant (PS) constitutes the first line of host defense in the deep lung. Because of its high content of phospholipids and surfactant specific proteins, the interaction of inhaled nanoparticles (NPs) with the pulmonary surfactant layer is likely to form a corona that is different to the one formed in plasma. Here we present a detailed lipidomic and proteomic analysis of NP corona formation using native porcine surfactant as a model. We analyzed the adsorbed biomolecules in the corona of three NP with different surface properties (PEG-, PLGA-, and Lipid-NP) after incubation with native porcine surfactant. Using label-free shotgun analysis for protein and LC-MS for lipid analysis, we quantitatively determined the corona composition. Our results show a conserved lipid composition in the coronas of all investigated NPs regardless of their surface properties, with only hydrophilic PEG-NPs adsorbing fewer lipids in total. In contrast, the analyzed NP displayed a marked difference in the protein corona, consisting of up to 417 different proteins. Among the proteins showing significant differences between the NP coronas, there was a striking prevalence of molecules with a notoriously high lipid and surface binding, such as, e.g., SP-A, SP-D, DMBT1. Our data indicate that the selective adsorption of proteins mediates the relatively similar lipid pattern in the coronas of different NPs. On the basis of our lipidomic and proteomic analysis, we provide a detailed set of quantitative data on the composition of the surfactant corona formed upon NP inhalation, which is unique and markedly different to the plasma corona.
Collapse
Affiliation(s)
- Simon Sebastian Raesch
- Department of Pharmacy, Saarland University , 66123 Saarbruecken, Germany
- HIPS - Helmholtz Institute for Pharmaceutical Research Saarland , Helmholtz Centre for Infection Research, 66123 Saarbruecken, Germany
| | - Stefan Tenzer
- Institute of Immunology, Mainz University , 55131 Mainz, Germany
| | - Wiebke Storck
- Institute of Immunology, Mainz University , 55131 Mainz, Germany
| | - Alexander Rurainski
- Scientific Consilience GmbH, Saarland University , 66123 Saarbruecken, Germany
| | - Dominik Selzer
- Scientific Consilience GmbH, Saarland University , 66123 Saarbruecken, Germany
| | | | - Jesus Perez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University , 28040 Madrid, Spain
| | | | - Claus-Michael Lehr
- Department of Pharmacy, Saarland University , 66123 Saarbruecken, Germany
- HIPS - Helmholtz Institute for Pharmaceutical Research Saarland , Helmholtz Centre for Infection Research, 66123 Saarbruecken, Germany
| |
Collapse
|
21
|
SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation. PLoS One 2015; 10:e0126576. [PMID: 25965346 PMCID: PMC4428707 DOI: 10.1371/journal.pone.0126576] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 04/06/2015] [Indexed: 11/19/2022] Open
Abstract
The surfactant protein (SP-A) receptor SP-R210 has been shown to increase phagocytosis of SP-A-bound pathogens and to modulate cytokine secretion by immune cells. SP-A plays an important role in pulmonary immunity by enhancing opsonization and clearance of pathogens and by modulating macrophage inflammatory responses. Alternative splicing of the Myo18A gene results in two isoforms: SP-R210S and SP-R210L, with the latter predominantly expressed in alveolar macrophages. In this study we show that SP-A is required for optimal expression of SP-R210L on alveolar macrophages. Interestingly, pre-treatment with SP-A prepared by different methods either enhances or suppresses responsiveness to LPS, possibly due to differential co-isolation of SP-B or other proteins. We also report that dominant negative disruption of SP-R210L augments expression of receptors including SR-A, CD14, and CD36, and enhances macrophages' inflammatory response to TLR stimulation. Finally, because SP-A is known to modulate CD14, we used a variety of techniques to investigate how SP-R210 mediates the effect of SP-A on CD14. These studies revealed a novel physical association between SP-R210S, CD14, and SR-A leading to an enhanced response to LPS, and found that SP-R210L and SP-R210S regulate internalization of CD14 via distinct macropinocytosis-like mechanisms. Together, our findings support a model in which SP-R210 isoforms differentially regulate trafficking, expression, and activation of innate immune receptors on macrophages.
Collapse
|
22
|
Hsu RM, Hsieh YJ, Yang TH, Chiang YC, Kan CY, Lin YT, Chen JT, Yu JS. Binding of the extreme carboxyl-terminus of PAK-interacting exchange factor β (βPIX) to myosin 18A (MYO18A) is required for epithelial cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2513-27. [PMID: 25014165 DOI: 10.1016/j.bbamcr.2014.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
Abstract
The PAK2/βPIX/GIT1 (p21-activated kinase 2/PAK-interacting exchange factor-β/G protein-coupled receptor kinase-interactor 1) complex has been shown to distribute to both membrane ruffles and focal adhesions of cells, where it plays an important role in regulating focal adhesion turnover. However, the detailed mechanism underlying this regulation is largely unknown. We previously reported that MYO18Aα interacts via its carboxyl terminus with the PAK2/βPIX/GIT1 complex through direct binding to βPIX, and that knockdown of MYO18Aα in epithelial cells causes accumulation of the complex in focal adhesions and decreased cell migration ability (Hsu et al., 2010). The current study characterized the detailed MYO18Aα-βPIX interaction mechanism and the biological significance of this interaction. We found that deletion of the carboxyl-terminal globular domain of MYO18Aα profoundly altered the cellular localization of βPIX and inhibited cell migration. βPIX interacts through its most carboxyl-terminus, PAWDETNL (639-646), with MYO18Aα and partially colocalized with MYO18Aα in membrane ruffles of cells, whereas βPIX(1-638), a mutant with deletion of PAWDETNL, accumulated in focal adhesions. Both focal adhesion numbers and area in βPIX(1-638)-expressing cells were greater than those in cells expressing wild-type βPIX(FL). Further experiments using deletion mutants of MYO18A and βPIX showed that disruption of MYO18A-βPIX interaction not only impaired cell motility but also decreased Rac1 activity. Collectively, our data unravel the interaction regions between MYO18A and βPIX and provide evidence for the critical role of this interaction in regulating cellular localization of βPIX, Rac1 activity, and adhesion and migration in epithelial cells.
Collapse
Affiliation(s)
- Rae-Mann Hsu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - Ya-Ju Hsieh
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - Tsung-Han Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - Yi-Chien Chiang
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - Chih-Yen Kan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - Yu-Tsuen Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - Jeng-Ting Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - Jau-Song Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC.
| |
Collapse
|
23
|
Taft MH, Behrmann E, Munske-Weidemann LC, Thiel C, Raunser S, Manstein DJ. Functional characterization of human myosin-18A and its interaction with F-actin and GOLPH3. J Biol Chem 2013; 288:30029-30041. [PMID: 23990465 DOI: 10.1074/jbc.m113.497180] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Molecular motors of the myosin superfamily share a generic motor domain region. They commonly bind actin in an ATP-sensitive manner, exhibit actin-activated ATPase activity, and generate force and movement in this interaction. Class-18 myosins form heavy chain dimers and contain protein interaction domains located at their unique N-terminal extension. Here, we characterized human myosin-18A molecular function in the interaction with nucleotides, F-actin, and its putative binding partner, the Golgi-associated phosphoprotein GOLPH3. We show that myosin-18A comprises two actin binding sites. One is located in the KE-rich region at the start of the N-terminal extension and appears to mediate ATP-independent binding to F-actin. The second actin-binding site resides in the generic motor domain and is regulated by nucleotide binding in the absence of intrinsic ATP hydrolysis competence. This core motor domain displays its highest actin affinity in the ADP state. Electron micrographs of myosin-18A motor domain-decorated F-actin filaments show a periodic binding pattern independent of the nucleotide state. We show that the PDZ module mediates direct binding of myosin-18A to GOLPH3, and this interaction in turn modulates the actin binding properties of the N-terminal extension. Thus, myosin-18A can act as an actin cross-linker with multiple regulatory modulators that targets interacting proteins or complexes to the actin-based cytoskeleton.
Collapse
Affiliation(s)
- Manuel H Taft
- From the Institute for Biophysical Chemistry, Hannover Medical School, OE 4350, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany and.
| | - Elmar Behrmann
- the Department of Physical Biochemistry, Max-Planck-Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Lena-Christin Munske-Weidemann
- From the Institute for Biophysical Chemistry, Hannover Medical School, OE 4350, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany and
| | - Claudia Thiel
- From the Institute for Biophysical Chemistry, Hannover Medical School, OE 4350, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany and
| | - Stefan Raunser
- the Department of Physical Biochemistry, Max-Planck-Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Dietmar J Manstein
- From the Institute for Biophysical Chemistry, Hannover Medical School, OE 4350, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany and
| |
Collapse
|
24
|
Guzik-Lendrum S, Heissler SM, Billington N, Takagi Y, Yang Y, Knight PJ, Homsher E, Sellers JR. Mammalian myosin-18A, a highly divergent myosin. J Biol Chem 2013; 288:9532-48. [PMID: 23382379 DOI: 10.1074/jbc.m112.441238] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Mus musculus myosin-18A gene is expressed as two alternatively spliced isoforms, α and β, with reported roles in Golgi localization, in maintenance of cytoskeleton, and as receptors for immunological surfactant proteins. Both myosin-18A isoforms feature a myosin motor domain, a single predicted IQ motif, and a long coiled-coil reminiscent of myosin-2. The myosin-18Aα isoform, additionally, has an N-terminal PDZ domain. Recombinant heavy meromyosin- and subfragment-1 (S1)-like constructs for both myosin-18Aα and -18β species were purified from the baculovirus/Sf9 cell expression system. These constructs bound both essential and regulatory light chains, indicating an additional noncanonical light chain binding site in the neck. Myosin-18Aα-S1 and -18Aβ-S1 molecules bound actin weakly with Kd values of 4.9 and 54 μm, respectively. The actin binding data could be modeled by assuming an equilibrium between two myosin conformations, a competent and an incompetent form to bind actin. Actin binding was unchanged by presence of nucleotide. Both myosin-18A isoforms bound N-methylanthraniloyl-nucleotides, but the rate of ATP hydrolysis was very slow (<0.002 s(-1)) and not significantly enhanced by actin. Phosphorylation of the regulatory light chain had no effect on ATP hydrolysis, and neither did the addition of tropomyosin or of GOLPH3, a myosin-18A binding partner. Electron microscopy of myosin-18A-S1 showed that the lever is strongly angled with respect to the long axis of the motor domain, suggesting a pre-power stroke conformation regardless of the presence of ATP. These data lead us to conclude that myosin-18A does not operate as a traditional molecular motor in cells.
Collapse
Affiliation(s)
- Stephanie Guzik-Lendrum
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, MD 20892-8015, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ussowicz M, Jaśkowiec A, Meyer C, Marschalek R, Chybicka A, Szczepański T, Haus O. A three-way translocation of MLL, MLLT11, and the novel reciprocal partner gene MYO18A in a child with acute myeloid leukemia. Cancer Genet 2012; 205:261-5. [PMID: 22682626 DOI: 10.1016/j.cancergen.2012.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
Translocations of the MLL gene are common among neonates and infants with acute lymphoblastic and acute myeloid leukemias. We characterized a new three-way translocation involving MLL in an infant with acute myeloid leukemia who subsequently relapsed and underwent a hematopoietic stem cell transplant from an unrelated stem cell donor. The translocation was characterized using karyotyping and fluorescence in situ hybridization. In this patient, a complex rearrangement fused the distal part of 11q23 with 17q11.2, the distal part of 17q11.2 with 1q21, and the distal part of 1q21 with 11q23, resulting in a three-way translocation; t(1;11;17)(q21;q23;q11.2). The two reciprocal MLL fusion sites were cloned by long-distance inverse polymerase chain reaction, which led to the identification of MLL-MLLT11 and the reciprocal MYO18A-MLL fusion alleles. Both fusion genes are in-frame and can be translated into functional fusion proteins. Although the MLL-MLLT11 fusion gene has been described in the literature, the reciprocal MYO18A fusion partner is a novel candidate gene in the growing list of reciprocal MLL fusions.
Collapse
Affiliation(s)
- Marek Ussowicz
- Wrocław Medical University, Department of Pediatric BMT, Hematology and Oncology, Wrocław, Poland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Mukherjee S, Giamberardino C, Thomas JM, Gowdy K, Pastva AM, Wright JR. Surfactant protein A modulates induction of regulatory T cells via TGF-β. THE JOURNAL OF IMMUNOLOGY 2012; 188:4376-84. [PMID: 22474025 DOI: 10.4049/jimmunol.1101775] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
TCR signaling plays a critical role in regulatory T cell (Treg) development. However, the mechanism for tissue-specific induction of Tregs in the periphery remains unclear. We observed that surfactant protein A (SP-A)-deficient mice have impaired expression of Foxp3 and fewer CD25(+)Foxp3(+) Tregs after ex vivo stimulation and after stimulation with LPS in vivo. The addition of exogenous SP-A completely reversed this phenotype. Although SP-A is known to inhibit T cell proliferation under certain activation conditions, both IL-2 levels as well as active TGF-β levels increase on extended culture with exogenous SP-A, providing a key mechanism for the maintenance and induction of Tregs. In addition, kinetic suppression assays demonstrate that SP-A enhances the frequency of functional Foxp3(+) Tregs in responder T cell populations in a TGF-β-dependent manner. In mice treated with LPS in vivo, Tregs increased ∼160% in wild-type mice compared with only a 50% increase in LPS-treated SP-A(-/-) mice 8 d after exposure. Taken together, these findings support the hypothesis that SP-A affects T cell immune function by the induction of Tregs during activation.
Collapse
Affiliation(s)
- Sambuddho Mukherjee
- Department of Cell Biology, Duke University Medical Center, Durham NC 27710, USA
| | | | | | | | | | | |
Collapse
|
27
|
Mukherjee S, Giamberardino C, Thomas J, Evans K, Goto H, Ledford JG, Hsia B, Pastva AM, Wright JR. Surfactant protein A integrates activation signal strength to differentially modulate T cell proliferation. THE JOURNAL OF IMMUNOLOGY 2012; 188:957-67. [PMID: 22219327 DOI: 10.4049/jimmunol.1100461] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pulmonary surfactant lipoproteins lower the surface tension at the alveolar-airway interface of the lung and participate in host defense. Previous studies reported that surfactant protein A (SP-A) inhibits lymphocyte proliferation. We hypothesized that SP-A-mediated modulation of T cell activation depends upon the strength, duration, and type of lymphocyte activating signals. Modulation of T cell signal strength imparted by different activating agents ex vivo and in vivo in different mouse models and in vitro with human T cells shows a strong correlation between strength of signal (SoS) and functional effects of SP-A interactions. T cell proliferation is enhanced in the presence of SP-A at low SoS imparted by exogenous mitogens, specific Abs, APCs, or in homeostatic proliferation. Proliferation is inhibited at higher SoS imparted by different doses of the same T cell mitogens or indirect stimuli such as LPS. Importantly, reconstitution with exogenous SP-A into the lungs of SP-A(-/-) mice stimulated with a strong signal also resulted in suppression of T cell proliferation while elevating baseline proliferation in unstimulated T cells. These signal strength and SP-A-dependent effects are mediated by changes in intracellular Ca(2+) levels over time, involving extrinsic Ca(2+)-activated channels late during activation. These effects are intrinsic to the global T cell population and are manifested in vivo in naive as well as memory phenotype T cells. Thus, SP-A appears to integrate signal thresholds to control T cell proliferation.
Collapse
Affiliation(s)
- Sambuddho Mukherjee
- Department of Cell Biology, Duke University Medical Center, Durham NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Awasthi S, Madhusoodhanan R, Wolf R. Surfactant protein-A and toll-like receptor-4 modulate immune functions of preterm baboon lung dendritic cell precursor cells. Cell Immunol 2011; 268:87-96. [PMID: 21439559 PMCID: PMC3104394 DOI: 10.1016/j.cellimm.2011.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/28/2011] [Indexed: 01/04/2023]
Abstract
Lung infections are important risk factors for an increased morbidity and mortality in prematurely-delivered babies. Immaturity of the innate immune components makes them extremely susceptible to infection. Recently, we isolated lung dendritic cell (DC)-precursor cells from preterm fetal baboons. The isolated cells were found to be defective in phagocytosing Escherichia coli under basal conditions. In this study, we investigated the effects of exogenously-added purified native lung surfactant protein (SP)-A and recombinant toll-like receptor (TLR)-4-MD2 proteins on phagocytic uptake and cytokine secreting ability of fetal baboon lung DC-precursor cells. The cells were pulsed with SP-A and/or TLR4-MD2 proteins and the phagocytic function was investigated by incubating the cells with fluorescent-labeled E. coli bioparticles and analyzed by spectrofluorometry. The amounts of TNF-α secreted in cell-free supernatants were measured by ELISA. Our results demonstrate that SP-A and TLR4-MD2 proteins, whether added alone or together, induce phagocytosis of E. coli (p<0.05). The SP-A does not affect TNF-α secretion, while the TLR4-MD2 protein induces TNF-α. However, simultaneous addition of SP-A with TLR4-MD2 protein reduces the TLR4-MD2-protein induced TNF-α to basal level. In conclusion, our results indicate that an exogenous administration of SP-A can potentially induce phagocytic activity and anti-inflammatory effect in preterm babies, and help control infection and inflammation.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK 73117, USA.
| | | | | |
Collapse
|
29
|
López-Sánchez A, Sáenz A, Casals C. Surfactant protein A (SP-A)-tacrolimus complexes have a greater anti-inflammatory effect than either SP-A or tacrolimus alone on human macrophage-like U937 cells. Eur J Pharm Biopharm 2010; 77:384-91. [PMID: 21172435 DOI: 10.1016/j.ejpb.2010.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 12/08/2010] [Accepted: 12/13/2010] [Indexed: 01/24/2023]
Abstract
Intratracheal administration of immunosuppressive agents to the lung is a novel treatment after lung transplantation. Nanoparticles of tacrolimus (FK506) might interact with human SP-A, which is the most abundant lipoprotein in the alveolar fluid. This study was undertaken to determine whether the formation of FK506/SP-A complexes interferes with FK506 immunosuppressive actions on stimulated human macrophage-like U937 cells. We found that SP-A was avidly bound to FK506 (K(d) = 35 ± 4nM), as determined by solid phase-binding assays and dynamic light scattering. Free FK506, at concentrations ≤ 1 μM, had no effect on the inflammatory response of LPS-stimulated U937 macrophages. However, coincubation of FK506 and SP-A, at concentrations where each component alone did not affect LPS-stimulated macrophage response, significantly inhibited LPS-induced NF-κB activation and TNF-alpha secretion. Free FK506, but not FK506/SP-A, functioned as substrate for the efflux transporter P-glycoprotein. FK506 bound to SP-A was delivered to macrophages by endocytosis, since several endocytosis inhibitors blocked FK506/SP-A anti-inflammatory effects. This process depended partly on SP-A binding to its receptor, SP-R210. These results indicate that FK506/SP-A complexes have a greater anti-inflammatory effect than either FK506 or SP-A alone and suggest that SP-A strengthened FK506 anti-inflammatory activity by facilitating FK506 entrance into the cell, overcoming P-glycoprotein.
Collapse
Affiliation(s)
- Almudena López-Sánchez
- Departamento de Bioquímica & Biología Molecular & CIBER Enfermedades Respiratorias, Universidad Complutense de Madrid, Madrid, Spain
| | | | | |
Collapse
|
30
|
Awasthi S, Brown K, King C, Awasthi V, Bondugula R. A toll-like receptor-4-interacting surfactant protein-A-derived peptide suppresses tumor necrosis factor-α release from mouse JAWS II dendritic cells. J Pharmacol Exp Ther 2010; 336:672-81. [PMID: 21159752 DOI: 10.1124/jpet.110.173765] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Surfactant protein-A (SP-A) and Toll-like receptor-4 (TLR4) proteins are recognized as pathogen-recognition receptors. An exaggerated activation of TLR4 induces inflammatory response, whereas SP-A protein down-regulates inflammation. We hypothesized that SP-A-TLR4 interaction may lead to inhibition of inflammation. In this study, we investigated interaction between native baboon lung SP-A and baboon and human TLR4-MD2 proteins by coimmunoprecipitation/immunoblotting and microwell-based methods. The interaction between SP-A and TLR4-MD2 proteins was then analyzed using a bioinformatics approach. In the in silico model of SP-A-TLR4-MD2 complex, we identified potential binding regions and amino acids at the interface of SP-A-TLR4. Using this information, we synthesized a library of human SP-A-derived peptides that contained interacting amino acids. Next, we tested whether the TLR4-interacting SP-A peptides would suppress inflammatory cytokines. The peptides were screened for any changes in the tumor necrosis factor-α (TNF-α) response against lipopolysaccharide (LPS) stimuli in the mouse JAWS II dendritic cell line. Different approaches used in this study suggested binding between SP-A and TLR4-MD2 proteins. In cells pretreated with peptides, three of seven peptides increased TNF-α production against LPS. However, two of these peptides (SPA4: GDFRYSDGTPVNYTNWYRGE and SPA5: YVGLTEGPSPGDFRYSDFTP) decreased the TNF-α production in LPS-challenged JAWS II dendritic cells; SPA4 peptide showed more pronounced inhibitory effect than SPA5 peptide. In conclusion, we identify a human SP-A-derived peptide (SPA4 peptide) that interacts with TLR4-MD2 protein and inhibits the LPS-stimulated release of TNF-α in JAWS II dendritic cells.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| | | | | | | | | |
Collapse
|
31
|
Sever-Chroneos Z, Krupa A, Davis J, Hasan M, Yang CH, Szeliga J, Herrmann M, Hussain M, Geisbrecht BV, Kobzik L, Chroneos ZC. Surfactant protein A (SP-A)-mediated clearance of Staphylococcus aureus involves binding of SP-A to the staphylococcal adhesin eap and the macrophage receptors SP-A receptor 210 and scavenger receptor class A. J Biol Chem 2010; 286:4854-70. [PMID: 21123169 DOI: 10.1074/jbc.m110.125567] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus causes life-threatening pneumonia in hospitals and deadly superinfection during viral influenza. The current study investigated the role of surfactant protein A (SP-A) in opsonization and clearance of S. aureus. Previous studies showed that SP-A mediates phagocytosis via the SP-A receptor 210 (SP-R210). Here, we show that SP-R210 mediates binding and control of SP-A-opsonized S. aureus by macrophages. We determined that SP-A binds S. aureus through the extracellular adhesin Eap. Consequently, SP-A enhanced macrophage uptake of Eap-expressing (Eap(+)) but not Eap-deficient (Eap(-)) S. aureus. In a reciprocal fashion, SP-A failed to enhance uptake of Eap(+) S. aureus in peritoneal Raw264.7 macrophages with a dominant negative mutation (SP-R210(DN)) blocking surface expression of SP-R210. Accordingly, WT mice cleared infection with Eap(+) but succumbed to sublethal infection with Eap- S. aureus. However, SP-R210(DN) cells compensated by increasing non-opsonic phagocytosis of Eap(+) S. aureus via the scavenger receptor scavenger receptor class A (SR-A), while non-opsonic uptake of Eap(-) S. aureus was impaired. Macrophages express two isoforms: SP-R210(L) and SP-R210(S). The results show that WT alveolar macrophages are distinguished by expression of SP-R210(L), whereas SR-A(-/-) alveolar macrophages are deficient in SP-R210(L) expressing only SP-R210(S). Accordingly, SR-A(-/-) mice were highly susceptible to both Eap(+) and Eap(-) S. aureus. The lungs of susceptible mice generated abnormal inflammatory responses that were associated with impaired killing and persistence of S. aureus infection in the lung. In conclusion, alveolar macrophage SP-R210(L) mediates recognition and killing of SP-A-opsonized S. aureus in vivo, coordinating inflammatory responses and resolution of S. aureus pneumonia through interaction with SR-A.
Collapse
Affiliation(s)
- Zvjezdana Sever-Chroneos
- Center of Biomedical Research, University of Texas Health Science Center, Tyler, Texas 75708-3154, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Litvack ML, Palaniyar N. Review: Soluble innate immune pattern-recognition proteins for clearing dying cells and cellular components: implications on exacerbating or resolving inflammation. Innate Immun 2010; 16:191-200. [PMID: 20529971 DOI: 10.1177/1753425910369271] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Soluble innate immune pattern-recognition proteins (sPRPs) identify non-self or altered-self molecular patterns. Dying cells often display altered-self arrays of molecules on their surfaces. Hence, sPRPs are ideal for recognizing these cells and their components. Dying cell surfaces often contain, or allow the access to different lipids, intracellular glycoproteins and nucleic acids such as DNA at different stages of cell death. These are considered as 'eat me' signals that replace the native 'don't eat me' signals such as CD31, CD47 present on the live cells. A programmed cell death process such as apoptosis also generates cell surface blebs that contain intracellular components. These blebs are easily released for effective clearance or signalling. During late stages of cell death, soluble components are also released that act as 'find me' signal (e.g. LysoPC, nucleotides). The sPRPs such as collectins, ficolins, pentraxins, sCD14, MFG-E8, natural IgM and C1q can effectively identify some of these specific molecular patterns. The biological end-point is different depending on sPRP, tissue, stage of apoptosis and the type of cell death. The sPRPs that reside in the immune-privileged surfaces such as lungs often act as opsonins and enhance a silent clearance of dying cells and cellular material by macrophages and other phagocytic cells. Although the recognition of these materials by complement-activating proteins could amplify the opsonic signal, this pathway may aggravate inflammation. Clear understanding of the involvement of specific sPRPs in cell death and subsequent clearance of dying cell and their components is essential for devising appropriate treatment strategies for diseases involving infection, inflammation and auto-antibody generation.
Collapse
|
33
|
Chroneos ZC, Sever-Chroneos Z, Shepherd VL. Pulmonary surfactant: an immunological perspective. Cell Physiol Biochem 2009; 25:13-26. [PMID: 20054141 DOI: 10.1159/000272047] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2009] [Indexed: 11/19/2022] Open
Abstract
Pulmonary surfactant has two crucial roles in respiratory function; first, as a biophysical entity it reduces surface tension at the air water interface, facilitating gas exchange and alveolar stability during breathing, and, second, as an innate component of the lung's immune system it helps maintain sterility and balance immune reactions in the distal airways. Pulmonary surfactant consists of 90% lipids and 10% protein. There are four surfactant proteins named SP-A, SP-B, SP-C, and SP-D; their distinct interactions with surfactant phospholipids are necessary for the ultra-structural organization, stability, metabolism, and lowering of surface tension. In addition, SP-A and SP-D bind pathogens, inflict damage to microbial membranes, and regulate microbial phagocytosis and activation or deactivation of inflammatory responses by alveolar macrophages. SP-A and SP-D, also known as pulmonary collectins, mediate microbial phagocytosis via SP-A and SP-D receptors and the coordinated induction of other innate receptors. Several receptors (SP-R210, CD91/calreticulin, SIRPalpha, and toll-like receptors) mediate the immunological functions of SP-A and SP-D. However, accumulating evidence indicate that SP-B and SP-C and one or more lipid constituents of surfactant share similar immuno-regulatory properties as SP-A and SP-D. The present review discusses current knowledge on the interaction of surfactant with lung innate host defense.
Collapse
Affiliation(s)
- Zissis C Chroneos
- The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX 75708-3154, USA.
| | | | | |
Collapse
|
34
|
Bates SR. P63 (CKAP4) as an SP-A receptor: implications for surfactant turnover. Cell Physiol Biochem 2009; 25:41-54. [PMID: 20054143 DOI: 10.1159/000272062] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2009] [Indexed: 12/28/2022] Open
Abstract
Surfactant protein-A (SP-A) plays an important role in the clearance of surfactant from the lung alveolar space and in the regulation of surfactant secretion and uptake by type II pneumocytes in culture. Two pathways are important for the endocytosis of surfactant by type II cells and the intact lung, a receptor-mediated clathrin-dependent pathway and a non-clathrin, actin-mediated pathway. The critical role of the clathrin/receptor-mediated pathway in normal mice is supported by the finding that SP-A gene-targeted mice use the actin-dependent pathway to maintain normal clearance of surfactant. Addition of SP-A to the surfactant of the SP-A null mice "rescued" the phenotype, further emphasizing the essential role of the SP-A/receptor-mediated process in surfactant turnover. This review presents an overview of the structure of SP-A and its function in surfactant turnover. The evidence that the interaction of SP-A with type II cells is a receptor-mediated process is presented. A newly identified receptor for SP-A, P63/CKAP4, is described in detail, with elucidation of the specific structural features of this 63 kDa, nonglycosylated, highly coiled, transmembrane protein. The compelling evidence that P63 functions as a receptor for SP-A on type II cells is summarized. Regulation of P63 receptor density on the surface of pneumocytes may be a novel approach for the regulation of surfactant homeostasis by the lung.
Collapse
Affiliation(s)
- Sandra R Bates
- Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
| |
Collapse
|
35
|
Hsu RM, Tsai MH, Hsieh YJ, Lyu PC, Yu JS. Identification of MYO18A as a novel interacting partner of the PAK2/betaPIX/GIT1 complex and its potential function in modulating epithelial cell migration. Mol Biol Cell 2009; 21:287-301. [PMID: 19923322 PMCID: PMC2808764 DOI: 10.1091/mbc.e09-03-0232] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MYO18A is found as a novel PAK2 binding partner via βPIX/GIT1. MYO18A-depleted cells showed dramatic changes in shape, actin stress fiber and membrane ruffle formation, and displayed increases in the number and size of focal adhesions and a decrease in cell migration, suggesting an important role of MYO18A in regulating epithelial cell migration. The p21-activated kinase (PAK) 2 is known to be involved in numerous biological functions, including the regulation of actin reorganization and cell motility. To better understand the mechanisms underlying this regulation, we herein used a proteomic approach to identify PAK2-interacting proteins in human epidermoid carcinoma A431 cells. We found that MYO18A, an emerging member of the myosin superfamily, is a novel PAK2 binding partner. Using a siRNA knockdown strategy and in vitro binding assay, we discovered that MYO18A binds to PAK2 through the βPIX/GIT1 complex. Under normal conditions, MYO18A and PAK2 colocalized in lamellipodia and membrane ruffles. Interestingly, knockdown of MYO18A in cells did not prevent formation of the PAK2/βPIX/GIT1 complex, but rather apparently changed its localization to focal adhesions. Moreover, MYO18A-depleted cells showed dramatic changes in morphology and actin stress fiber and membrane ruffle formation and displayed increases in the number and size of focal adhesions. Migration assays revealed that MYO18A-depleted cells had decreased cell motility, and reexpression of MYO18A restored their migration ability. Collectively, our findings indicate that MYO18A is a novel binding partner of the PAK2/βPIX/GIT1 complex and suggest that MYO18A may play an important role in regulating epithelial cell migration via affecting multiple cell machineries.
Collapse
Affiliation(s)
- Rae-Mann Hsu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
36
|
Walz C, Haferlach C, Hänel A, Metzgeroth G, Erben P, Gosenca D, Hochhaus A, Cross NCP, Reiter A. Identification of aMYO18A-PDGFRBfusion gene in an eosinophilia-associated atypical myeloproliferative neoplasm with a t(5;17)(q33-34;q11.2). Genes Chromosomes Cancer 2009; 48:179-83. [DOI: 10.1002/gcc.20629] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
37
|
Griseri P, Vos Y, Giorda R, Gimelli S, Beri S, Santamaria G, Mognato G, Hofstra RMW, Gimelli G, Ceccherini I. Complex pathogenesis of Hirschsprung's disease in a patient with hydrocephalus, vesico-ureteral reflux and a balanced translocation t(3;17)(p12;q11). Eur J Hum Genet 2008; 17:483-90. [PMID: 19300444 DOI: 10.1038/ejhg.2008.191] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hirschsprung's disease (HSCR), a congenital complex disorder of intestinal innervation, is often associated with other inherited syndromes. Identifying genes involved in syndromic HSCR cases will not only help understanding the specific underlying diseases, but it will also give an insight into the development of the most frequent isolated HSCR. The association between hydrocephalus and HSCR is not surprising as a large number of patients have been reported to show the same clinical association, most of them showing mutations in the L1CAM gene, encoding a neural adhesion molecule often involved in isolated X-linked hydrocephalus. L1 defects are believed to be necessary but not sufficient for the occurrence of the intestinal phenotype in syndromic cases. In this paper, we have carried out the molecular characterization of a patient affected with Hirschsprung's disease and X-linked hydrocephalus, with a de novo reciprocal balanced translocation t(3;17)(p12;q21). In particular, we have taken advantage of this chromosomal defect to gain access to the predisposing background possibly leading to Hirschsprung's disease. Detailed analysis of the RET and L1CAM genes, and molecular characterization of MYO18A and TIAF1, the genes involved in the balanced translocation, allowed us to identify, besides the L1 mutation c.2265delC, different additional factors related to RET-dependent and -independent pathways which may have contributed to the genesis of enteric phenotype in the present patient.
Collapse
Affiliation(s)
- Paola Griseri
- Laboratory Molecular Genetics and Cytogenetics, Genova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Henning LN, Azad AK, Parsa KVL, Crowther JE, Tridandapani S, Schlesinger LS. Pulmonary surfactant protein A regulates TLR expression and activity in human macrophages. THE JOURNAL OF IMMUNOLOGY 2008; 180:7847-58. [PMID: 18523248 DOI: 10.4049/jimmunol.180.12.7847] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pulmonary innate immune system responds to various airborne microbes. Although its specificity is broad and based on the recognition of pathogen-associated molecular patterns, it is uniquely regulated to limit inflammation and thereby prevent damage to the gas-exchanging alveoli. Macrophages, critical cell determinants of this system, recognize microbes through pattern recognition receptors such as TLRs, which typically mediate proinflammatory responses. The lung collectin, surfactant protein A (SP-A), has emerged as an important innate immune determinant that regulates microbe-macrophage interactions in this environment. In this study, we report the basal and SP-A-induced transcriptional and posttranslational regulation of TLR2 and TLR4 expression during the differentiation of primary human monocytes into macrophages. Despite SP-A's ability to up-regulate TLR2 expression on human macrophages, it dampens TLR2 and TLR4 signaling in these cells. SP-A decreases the phosphorylation of IkappaBalpha, a key regulator of NF-kappaB activity, and nuclear translocation of p65 which result in diminished TNF-alpha secretion in response to TLR ligands. SP-A also reduces the phosphorylation of TLR signaling proteins upstream of NF-kappaB, including members of the MAPK family. Finally, we report for the first time that SP-A decreases the phosphorylation of Akt, a major cell regulator of NF-kappaB and potentially MAPKs. These data identify a critical role for SP-A in modulating the lung inflammatory response by regulating macrophage TLR activity.
Collapse
Affiliation(s)
- Lisa N Henning
- Center for Microbial Interface Biology, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
39
|
Garcia-Verdugo I, Tanfin Z, Dallot E, Leroy MJ, Breuiller-Fouché M. Surfactant protein A signaling pathways in human uterine smooth muscle cells. Biol Reprod 2008; 79:348-55. [PMID: 18463356 DOI: 10.1095/biolreprod.108.068338] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The present study investigated the ability of surfactant associated protein A1 (SFTPA1), a major component of lung surfactant, to bind and serve as a signal in human cultured myometrial cells. By using ligand blot analysis with 125I-SFTPA1, we consistently identified two myometrial SFTPA1 interacting proteins (55 and 200 kDa). We found that the SFTPA1 immunoreactive protein was present in myometrial cells. We also showed by indirect immunofluorescence the nuclear translocation of RELA (also known as NFkappaB p65 subunit) after activation of myometrial cells by SFTPA1. Neutralization of TLR4 did not reverse this effect. Moreover, SFTPA1 rapidly activated mitogen-activated protein kinase 1/3 (MAPK1/3) and protein kinase C zeta (PRKCZ). The prolonged treatment of myometrial cells with SFTPA1 upregulated PTGS2 (COX2) protein levels. We next evaluated whether SFTPA1 affected the actin dynamic. Stimulation of myometrial cells with SFTPA1 markedly enhanced the intensity of the filamentous-actin pool stained with fluorescein isothiocyanate-phalloidin. Inhibition of PRKC or Rho-associated, coiled-coil containing protein kinase 1 (ROCK) reduced the SFTPA1-mediated stress fiber formation. Our data support the hypothesis that human myometrial cells express functional SFTPA1 binding sites and respond to SFTPA1 to initiate activation of signaling events related to human parturition.
Collapse
Affiliation(s)
- Ignacio Garcia-Verdugo
- Equipe Signalisation et Régulations Cellulaires, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, CNRS, UMR-8619, Université Paris-Sud, 91400 Orsay, France
| | | | | | | | | |
Collapse
|
40
|
Samten B, Townsend JC, Sever-Chroneos Z, Pasquinelli V, Barnes PF, Chroneos ZC. An antibody against the surfactant protein A (SP-A)-binding domain of the SP-A receptor inhibits T cell-mediated immune responses to Mycobacterium tuberculosis. J Leukoc Biol 2008; 84:115-23. [PMID: 18443188 DOI: 10.1189/jlb.1207835] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Surfactant protein A (SP-A) suppresses lymphocyte proliferation and IL-2 secretion, in part, by binding to its receptor, SP-R210. However, the mechanisms underlying this effect are not well understood. Here, we studied the effect of antibodies against the SP-A-binding (neck) domain (alpha-SP-R210n) or nonbinding C-terminal domain (alpha-SP-R210ct) of SP-R210 on human peripheral blood T cell immune responses against Mycobacterium tuberculosis. We demonstrated that both antibodies bind to more than 90% of monocytes and 5-10% of CD3+ T cells in freshly isolated PBMC. Stimulation of PBMC from healthy tuberculin reactors [purified protein derivative-positive (PPD+)] with heat-killed M. tuberculosis induced increased antibody binding to CD3+ cells. Increased antibody binding suggested enhanced expression of SP-R210, and this was confirmed by Western blotting. The antibodies (alpha-SP-R210n) cross-linking the SP-R210 through the SP-A-binding domain markedly inhibited cell proliferation and IFN-gamma secretion by PBMC from PPD+ donors in response to heat-killed M. tuberculosis, whereas preimmune IgG and antibodies (alpha-SP-R210ct) cross-linking SP-R210 through the non-SP-A-binding, C-terminal domain had no effect. Anti-SP-R210n also decreased M. tuberculosis-induced production of TNF-alpha but increased production of IL-10. Inhibition of IFN-gamma production by alpha-SP-R210n was abrogated by the combination of neutralizing antibodies to IL-10 and TGF-beta1. Together, these findings support the hypothesis that SP-A, via SP-R210, suppresses cell-mediated immunity against M. tuberculosis via a mechanism that up-regulates secretion of IL-10 and TGF-beta1.
Collapse
Affiliation(s)
- Buka Samten
- Department of Microbiology and Immunology, the Center for Pulmonary and Infectious Disease Control, the University of Texas Health Center, 11937 U.S. Hwy. 271, Tyler, TX 75708, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Garcia-Verdugo I, Synguelakis M, Degrouard J, Franco CA, Valot B, Zivy M, Chaby R, Tanfin Z. Interaction of surfactant protein A with the intermediate filaments desmin and vimentin. Biochemistry 2008; 47:5127-38. [PMID: 18407667 DOI: 10.1021/bi800070u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surfactant protein A (SP-A), a member of the collectin family that modulates innate immunity, has recently been involved in the physiology of reproduction. Consistent with the activation of ERK-1/2 and COX-2 induced by SP-A in myometrial cells, we reported previously the presence of two major proteins recognized by SP-A in these cells. Here we identify by mass spectrometry one of these SP-A targets as the intermediate filament (IF) desmin. In myometrial preparations derived from desmin-deficient mice, the absence of binding of SP-A to any 50 kDa protein confirmed the identity of this SP-A-binding site as desmin. Our data based on partial chymotrypsin digestion of pure desmin suggested that SP-A recognizes especially its rod domain, which is known to play an important role during the assembly of desmin into filaments. In line with that, electron microscopy experiments showed that SP-A inhibits in vitro the polymerization of desmin filaments. SP-A also recognized in vitro polymerized filaments in a calcium-dependent manner at a physiological ionic strength but not the C1q receptor gC1qR. Furthermore, Texas Red-labeled SP-A colocalized with desmin filaments in myometrial cells. Interestingly, vimentin, the IF characteristic of leukocytes, is one of the major proteins recognized by SP-A in protein extracts of U937 cells after PMA-induced differentiation of this monocytic cell line. Interaction of SP-A with vimentin was further confirmed using recombinant vimentin in solid-phase binding assays. The ability of SP-A to interact with desmin and vimentin, and to prevent polymerization of desmin monomers, shed light on unexpected and wider biological roles of this collectin.
Collapse
Affiliation(s)
- Ignacio Garcia-Verdugo
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR-8619 du CNRS, Université de Paris-Sud, 91400 Orsay, France.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Szeliga J, Daniel DS, Yang CH, Sever-Chroneos Z, Jagannath C, Chroneos ZC. Granulocyte-macrophage colony stimulating factor-mediated innate responses in tuberculosis. Tuberculosis (Edinb) 2007; 88:7-20. [PMID: 17928269 DOI: 10.1016/j.tube.2007.08.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 07/20/2007] [Accepted: 08/27/2007] [Indexed: 01/01/2023]
Abstract
The mechanisms by which GM-CSF mediates bacterial clearance and inflammation during mycobacterial infection are poorly understood. The objective of this work was to determine how GM-CSF alters pulmonary mycobacterial infection in vivo. Differences in GM-CSF levels in the lungs of normal mice (GM(+/+)), transgenic GM-CSF-deficient (GM-CSF(-/-)), and transgenic mice with high GM-CSF expression only in lung epithelial cells (SP-C-GM-CSF(+/+)/GM(-/-)) did not affect pulmonary infection rates caused by either the attenuated Mycobacterium bovis BCG or the virulent Mycobacterium tuberculosis H37Rv. However, in contrast to findings with BCG, all GM-CSF(-/-) and SP-C-GM-CSF(+/+)/GM(-/-) mice succumbed prematurely to virulent H37Rv. Granuloma formation was impaired in both GM-CSF(-/-) and SP-C-GM-CSF(+/+)/GM(-/-) mice regardless of mycobacterial virulence. However, H37Rv-infected GM-CSF(-/-) mice suffered broncho-alveolar destruction, edema, and necrosis while only short-lived granulomas were observed in SP-C-GM-CSF(+/+)/GM(-/-) mice. Bone marrow-derived macrophages, but not dendritic cells of SP-C-GM-CSF(+/+)/GM(-/-) mice, were hypo-responsive to mycobacterial infection. Surfactant protein levels were differentially influenced by BCG and H37Rv. We conclude that GM-CSF has an essential protective role first in preserving alveolar structure and second in regulating macrophages and dendritic cells to facilitate containment of virulent mycobacteria in pulmonary granulomas. However, precise regulation of lung GM-CSF is vital to effective control of M. tuberculosis.
Collapse
Affiliation(s)
- Jacek Szeliga
- Center of Biomedical Research, University of Texas Health Center at Tyler, Tyler, TX 75708-3154, USA
| | | | | | | | | | | |
Collapse
|
43
|
Garcia-Verdugo I, Leiber D, Robin P, Billon-Denis E, Chaby R, Tanfin Z. Direct interaction of surfactant protein A with myometrial binding sites: signaling and modulation by bacterial lipopolysaccharide. Biol Reprod 2007; 76:681-91. [PMID: 17202387 DOI: 10.1095/biolreprod.106.058131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Surfactant protein A (SFTPA1), a member of the collagenous lectin (collectin) family, was first described as a major constituent of lung surfactant, but has recently also been found in the female genital tract. Various microorganisms colonize this area and may cause intrauterine infection or trigger preterm labor. We found that SFTPA1 was not produced in the uterus. Instead, it was immunodetected transiently in rat myometrium at the end (Days 19 and 21) of gestation, but not postpartum, and in cultured myometrial cells. Fluorescence microscopy showed that Texas Red-labeled SFTPA1 bound to myometrial cells. This result was confirmed by biochemical approaches. [(125)I]-SFTPA1 bound to two myometrial cell proteins (55 and 210 kDa). This interaction was dependent on the integrity of the collagenlike domain of SFTPA1. SFTPA1 rapidly activated mitogen-activated protein kinase 1/3 (MAPK1/3) in myometrial cells. Bacterial lipopolysaccharide (LPS), an agent known to trigger uterine contractions and preterm birth, also activated MAPK1/3. The prolonged treatment of myometrial cells with LPS or SFTPA1 upregulated PTGS2 (COX2) protein levels. The addition of rough-type LPS to SFTPA1 blocked the interaction of SFTPA1 with its binding sites and the activation of MAPK1/3 and PTGS2 by SFTPA1. Our data provide the first demonstration of a direct effect of SFTPA1 on rat myometrial cells and inhibitory cross talk between SFTPA1 and LPS signals, providing new insight into the mechanisms of normal and preterm parturition.
Collapse
Affiliation(s)
- Ignacio Garcia-Verdugo
- Equipe Endotoxines, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR-8619, Université Paris-Sud, 91400 Orsay, France
| | | | | | | | | | | |
Collapse
|
44
|
Bohlson SS, Fraser DA, Tenner AJ. Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions. Mol Immunol 2007; 44:33-43. [PMID: 16908067 DOI: 10.1016/j.molimm.2006.06.021] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 06/21/2006] [Accepted: 06/26/2006] [Indexed: 12/16/2022]
Abstract
C1q and mannose binding lectin, members of the "defense collagen" family, are pattern recognition molecules that can trigger rapid enhanced phagocytosis resulting in efficient containment of pathogens or clearance of cellular debris, apoptotic cells and immune complexes. In addition, interaction of C1q and mannose binding lectin with the phagocyte alters subsequent phagocyte cytokine synthesis, and thus may have important implications in directing acute inflammation as well as long-term protective immunity. The importance of the role of defense collagens in phagocytosis of apoptotic cells is highlighted by studies in vivo of mice deficient in C1q, pulmonary surfactant D and mannose binding lectin in which there is delayed clearance of apoptotic cells. Indeed, deficiency of C1q is a risk factor for the development of autoimmunity in both humans and mice, consistent with the hypothesis that inefficient clearance of apoptotic cells results in release of autoantigens and contributes to the pathology associated with autoimmune diseases such as systemic lupus erythematosus. Further understanding of the importance of C1q and mannose binding lectin in the clearance of apoptotic cells and regulation of cytokine synthesis and identification of the receptors implicated in mediating these processes should provide novel targets for therapeutic intervention in the control and manipulation of the immune response in terms of both host defense against infectious disease and tissue repair and remodeling.
Collapse
Affiliation(s)
- Suzanne S Bohlson
- Department of Molecular Biology and Biochemistry, Center for Immunology, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|
45
|
Akei H, Whitsett JA, Buroker M, Ninomiya T, Tatsumi H, Weaver TE, Ikegami M. Surface tension influences cell shape and phagocytosis in alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 2006; 291:L572-9. [PMID: 16632521 DOI: 10.1152/ajplung.00060.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The effect of surface tension on alveolar macrophage shape and phagocytosis was assessed in vivo and in vitro. Surface tension was regulated in vivo by conditionally expressing surfactant protein (SP)-B in Sftpb-/- mice. Increased surface tension and respiratory distress were produced by depletion of SP-B and were readily reversed by repletion of SP-B in vivo. Electron microscopy was used to demonstrate that alveolar macrophages were usually located beneath the surfactant film on the alveolar surfaces. Reduction of SP-B increased surface tension and resulted in flattening of alveolar macrophages on epithelial surfaces in vivo. Phagocytosis of intratracheally injected fluorescent microbeads by alveolar macrophages was decreased during SP-B deficiency and was restored by repletion of SP-B in vivo. Incubation of MH-S cells, a mouse macrophage cell line, with inactive surfactant caused cell flattening and decreased phagocytosis in vitro, findings that were reversed by the addition of sheep surfactant or phospholipid containing SP-B. SP-B controls surface tension by forming a surfactant phospholipid film that regulates shape and nonspecific phagocytic activity of alveolar macrophages on the alveolar surface.
Collapse
Affiliation(s)
- Hiroko Akei
- Cincinnati Children's Hospital, Division of Pulmonary Biology, University of Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | |
Collapse
|