1
|
Liu S, Wang T, Lu Q, Li F, Wu G, Jiang Z, Habden X, Liu L, Zhang X, Lukianov DA, Osterman IA, Sergiev PV, Dontsova OA, Sun C. Bioprospecting of Soil-Derived Actinobacteria Along the Alar-Hotan Desert Highway in the Taklamakan Desert. Front Microbiol 2021; 12:604999. [PMID: 33790875 PMCID: PMC8005632 DOI: 10.3389/fmicb.2021.604999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/22/2021] [Indexed: 02/04/2023] Open
Abstract
Taklamakan desert is known as the largest dunefield in China and as the second largest shifting sand desert in the world. Although with long history and glorious culture, the Taklamakan desert remains largely unexplored and numerous microorganisms have not been harvested in culture or taxonomically identified yet. The main objective of this study is to explore the diversity, novelty, and pharmacological potential of the cultivable actinomycetes from soil samples at various sites along the Alar-Hotan desert highway in the Taklamakan desert. A total of 590 actinobacterial strains were recovered by the culture-dependent approach. Phylogenetic analysis based on 16S ribosomal RNA (rRNA) gene sequences unveiled a significant level of actinobacterial diversity with 55 genera distributed in 27 families of 12 orders. Thirty-six strains showed relatively low 16S rRNA similarities (<98.65%) with validly described species, among which four strains had already been characterized as novel taxa by our previous research. One hundred and forty-six actinobacterial isolates were selected as representatives to evaluate the antibacterial activities and mechanism of action by the paper-disk diffusion method and a double fluorescent protein reporter "pDualrep2" system, respectively. A total of 61 isolates exhibited antagonistic activity against the tested "ESKAPE" pathogens, among which seven strains could produce bioactive metabolites either to be able to block translation machinery or to induce SOS-response in the pDualrep2 system. Notably, Saccharothrix sp. 16Sb2-4, harboring a promising antibacterial potential with the mechanism of interfering with protein translation, was analyzed in detail to gain deeper insights into its bioactive metabolites. Through ultra-performance liquid chromatography (UPLC)-quadrupole time-of-flight (QToF)-MS/MS based molecular networking analysis and databases identification, four families of compounds (1-16) were putatively identified. Subsequent bioassay-guided separation resulted in purification of four 16-membered macrolide antibiotics, aldgamycin H (8), aldgamycin K (9), aldgamycin G (10), and swalpamycin B (11), and their structures were elucidated by HR-electrospray ionization source (ESI)-MS and NMR spectroscopy. All compounds 8-11 displayed antibacterial activities by inhibiting protein synthesis in the pDualrep2 system. In conclusion, this work demonstrates that Taklamakan desert is a potentially unique reservoir of versatile actinobacteria, which can be a promising source for discovery of novel species and diverse bioactive compounds.
Collapse
Affiliation(s)
- Shaowei Liu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ting Wang
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qinpei Lu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Feina Li
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gang Wu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhongke Jiang
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xugela Habden
- College of Life Science, Xinjiang Normal University, Urumchi, China
| | - Lin Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaolin Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dmitry A. Lukianov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Ilya A. Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Petr V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga A. Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Chenghang Sun
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host's immune system. Biochem J 2020; 477:1983-2006. [PMID: 32470138 PMCID: PMC7261415 DOI: 10.1042/bcj20200194] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
Tuberculosis, caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb), is the leading cause of death from an infectious disease, with a mortality rate of over a million people per year. This pathogen's remarkable resilience and infectivity is largely due to its unique waxy cell envelope, 40% of which comprises complex lipids. Therefore, an understanding of the structure and function of the cell wall lipids is of huge indirect clinical significance. This review provides a synopsis of the cell envelope and the major lipids contained within, including structure, biosynthesis and roles in pathogenesis.
Collapse
|
3
|
Sawettanai N, Leelayuwapan H, Karoonuthaisiri N, Ruchirawat S, Boonyarattanakalin S. Synthetic Lipomannan Glycan Microarray Reveals the Importance of α(1,2) Mannose Branching in DC-SIGN Binding. J Org Chem 2019; 84:7606-7617. [PMID: 31099561 DOI: 10.1021/acs.joc.8b02944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipomannan (LM), a glycophospholipid found on the cell surface of mycobacteria, involves the virulence and survival in host cells. However, there is little to no information on how exactly mannan alignment, including the number of mannose units and the branched motif of LM, affects protein engagement during host-pathogen interactions. In this study, we synthesized the exact substructures of the LM glycans that consist of an α(1,6) mannan core, with and without the complete α(1,2) mannose branching, and comparatively studied their protein-carbohydrate interactions. The synthetic LM glycans were equipped with a thiol linker for immobilizations on the surfaces of microarrays. As per our findings, the presence of the branching α(1,2) mannose on the LM glycans increases their binding toward the dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin receptor. An increase in the number of mannose units on the glycans also increases the binding with the mannose receptor. Thus, the set of synthetic glycans can serve as a useful tool to study the biological activities of LM and can provide a better understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Nithinan Sawettanai
- Program in Chemical Biology, Chulabhorn Graduate Institute , Chulabhorn Royal Academy , Bangkok 10210 , Thailand
| | - Harin Leelayuwapan
- Program in Chemical Biology, Chulabhorn Graduate Institute , Chulabhorn Royal Academy , Bangkok 10210 , Thailand
| | - Nitsara Karoonuthaisiri
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC) , National Science and Technology Development Agency (NSTDA) , Pathum Thani 12120 , Thailand
| | - Somsak Ruchirawat
- Program in Chemical Biology, Chulabhorn Graduate Institute , Chulabhorn Royal Academy , Bangkok 10210 , Thailand.,Laboratory of Medicinal Chemistry , Chulabhorn Research Institute, and Centre of Excellence on Environmental Health and Toxicology , Bangkok 10210 , Thailand
| | - Siwarutt Boonyarattanakalin
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology , Thammasat University , Pathum Thani 12121 , Thailand
| |
Collapse
|
4
|
Abstract
Actinobacteria is a group of diverse bacteria. Most species in this class of bacteria are filamentous aerobes found in soil, including the genus Streptomyces perhaps best known for their fascinating capabilities of producing antibiotics. These bacteria typically have a Gram-positive cell envelope, comprised of a plasma membrane and a thick peptidoglycan layer. However, there is a notable exception of the Corynebacteriales order, which has evolved a unique type of outer membrane likely as a consequence of convergent evolution. In this chapter, we will focus on the unique cell envelope of this order. This cell envelope features the peptidoglycan layer that is covalently modified by an additional layer of arabinogalactan . Furthermore, the arabinogalactan layer provides the platform for the covalent attachment of mycolic acids , some of the longest natural fatty acids that can contain ~100 carbon atoms per molecule. Mycolic acids are thought to be the main component of the outer membrane, which is composed of many additional lipids including trehalose dimycolate, also known as the cord factor. Importantly, a subset of bacteria in the Corynebacteriales order are pathogens of human and domestic animals, including Mycobacterium tuberculosis. The surface coat of these pathogens are the first point of contact with the host immune system, and we now know a number of host receptors specific to molecular patterns exposed on the pathogen's surface, highlighting the importance of understanding how the cell envelope of Actinobacteria is structured and constructed. This chapter describes the main structural and biosynthetic features of major components found in the actinobacterial cell envelopes and highlights the key differences between them.
Collapse
Affiliation(s)
- Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Ian L Sparks
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
5
|
Decout A, Silva-Gomes S, Drocourt D, Blattes E, Rivière M, Prandi J, Larrouy-Maumus G, Caminade AM, Hamasur B, Källenius G, Kaur D, Dobos KM, Lucas M, Sutcliffe IC, Besra GS, Appelmelk BJ, Gilleron M, Jackson M, Vercellone A, Tiraby G, Nigou J. Deciphering the molecular basis of mycobacteria and lipoglycan recognition by the C-type lectin Dectin-2. Sci Rep 2018; 8:16840. [PMID: 30443026 PMCID: PMC6237770 DOI: 10.1038/s41598-018-35393-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/05/2018] [Indexed: 01/04/2023] Open
Abstract
Dectin-2 is a C-type lectin involved in the recognition of several pathogens such as Aspergillus fumigatus, Candida albicans, Schistosoma mansonii, and Mycobacterium tuberculosis that triggers Th17 immune responses. Identifying pathogen ligands and understanding the molecular basis of their recognition is one of the current challenges. Purified M. tuberculosis mannose-capped lipoarabinomannan (ManLAM) was shown to induce signaling via Dectin-2, an activity that requires the (α1 → 2)-linked mannosides forming the caps. Here, using isogenic M. tuberculosis mutant strains, we demonstrate that ManLAM is a bona fide and actually the sole ligand mediating bacilli recognition by Dectin-2, although M. tuberculosis produces a variety of cell envelope mannoconjugates, such as phosphatidyl-myo-inositol hexamannosides, lipomannan or manno(lipo)proteins, that bear (α1 → 2)-linked mannosides. In addition, we found that Dectin-2 can recognize lipoglycans from other bacterial species, such as Saccharotrix aerocolonigenes or the human opportunistic pathogen Tsukamurella paurometabola, suggesting that lipoglycans are prototypical Dectin-2 ligands. Finally, from a structure/function relationship perspective, we show, using lipoglycan variants and synthetic mannodendrimers, that dimannoside caps and multivalent interaction are required for ligand binding to and signaling via Dectin-2. Better understanding of the molecular basis of ligand recognition by Dectin-2 will pave the way for the rational design of potent adjuvants targeting this receptor.
Collapse
Affiliation(s)
- Alexiane Decout
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France.,InvivoGen, Research Department, 31400, Toulouse, France.,Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sandro Silva-Gomes
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France.,GlaxoSmithKline (GSK), Stevenage Herts, SG1 2NY, UK
| | | | - Emilyne Blattes
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France.,Innovative Medecine for Tuberculosis (iM4TB), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Michel Rivière
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Jacques Prandi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Gérald Larrouy-Maumus
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France.,Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Beston Hamasur
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden.,Biopromic AB, 171 65, Solna, Sweden
| | - Gunilla Källenius
- Department of Medicine, Karolinska Institutet Solna 171 76, Stockholm, Sweden
| | - Devinder Kaur
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA.,Massachusetts Supranational TB Reference Laboratory, University of Massachusetts Medical School, Jamaica Plain, MA, 0213, USA
| | - Karen M Dobos
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Megan Lucas
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Iain C Sutcliffe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ben J Appelmelk
- Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 BT, Amsterdam, The Netherlands
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Alain Vercellone
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Gérard Tiraby
- InvivoGen, Research Department, 31400, Toulouse, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France.
| |
Collapse
|
6
|
Controlled rapid synthesis and in vivo immunomodulatory effects of LM α(1,6)mannan with an amine linker. Carbohydr Polym 2018; 195:420-431. [DOI: 10.1016/j.carbpol.2018.04.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/14/2018] [Accepted: 04/10/2018] [Indexed: 11/22/2022]
|
7
|
Leelayuwapan H, Kangwanrangsan N, Chawengkirttikul R, Ponpuak M, Charlermroj R, Boonyarattanakalin K, Ruchirawat S, Boonyarattanakalin S. Synthesis and Immunological Studies of the Lipomannan Backbone Glycans Found on the Surface of Mycobacterium tuberculosis. J Org Chem 2017; 82:7190-7199. [PMID: 28682637 DOI: 10.1021/acs.joc.7b00703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Investigations into novel bacterial drug targets and vaccines are necessary to overcome tuberculosis. Lipomannan (LM), found on the surface of Mycobacterium tuberculosis (Mtb), is actively involved in the pathogenesis and survival of Mtb. Here, we report for the first time a rapid synthesis and biological activities of an LM glycan backbone, α(1-6)mannans. The rapid synthesis is achieved via a regio- and stereoselective ring opening polymerization to generate multiple glycosidic bonds in one simple chemical step, allowing us to finish assembling the defined polysaccharides of 5-20 units within days rather than years. Within the same pot, the polymerization is terminated by a thiol-linker to serve as a conjugation point to carrier proteins and surfaces for immunological experiments. The synthetic glycans are found to have adjuvant activities in vivo. The interactions with DC-SIGN demonstrated the significance of α(1-6)mannan motif present in LM structure. Moreover, surface plasmon resonance (SPR) showed that longer chain of synthetic α(1-6)mannans gain better lectin's binding affinity. The chemically defined components of the bacterial envelope serve as important tools to reveal the interactions of Mtb with mammalian hosts and facilitate the determination of the immunologically active molecular components.
Collapse
Affiliation(s)
- Harin Leelayuwapan
- Chemical Biology Program, Chulabhorn Graduate Institute, Chulabhorn Research Institute, Center of Excellence on Environmental Health and Toxicology (EHT) , Bangkok 10210, Thailand
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University , Bangkok 10400, Thailand
| | | | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University , Bangkok 10400, Thailand
| | - Ratthaphol Charlermroj
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) , Pathumthani 12120, Thailand
| | - Kanokthip Boonyarattanakalin
- College of Nanotechnology, King Mongkut's Institute of Technology Ladkrabang , Ladkrabang, Bangkok 10520, Thailand
| | - Somsak Ruchirawat
- Chemical Biology Program, Chulabhorn Graduate Institute, Chulabhorn Research Institute, Center of Excellence on Environmental Health and Toxicology (EHT) , Bangkok 10210, Thailand
| | - Siwarutt Boonyarattanakalin
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University , Pathumthani 12121, Thailand
| |
Collapse
|
8
|
Vergne I, Gilleron M, Nigou J. Manipulation of the endocytic pathway and phagocyte functions by Mycobacterium tuberculosis lipoarabinomannan. Front Cell Infect Microbiol 2015; 4:187. [PMID: 25629008 PMCID: PMC4290680 DOI: 10.3389/fcimb.2014.00187] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/15/2014] [Indexed: 12/11/2022] Open
Abstract
Lipoarabinomannan is a major immunomodulatory lipoglycan found in the cell envelope of Mycobacterium tuberculosis and related human pathogens. It reproduces several salient properties of M. tuberculosis in phagocytic cells, including inhibition of pro-inflammatory cytokine production, inhibition of phagolysosome biogenesis, and inhibition of apoptosis as well as autophagy. In this review, we present our current knowledge on lipoarabinomannan structure and ability to manipulate the endocytic pathway as well as phagocyte functions. A special focus is put on the molecular mechanisms employed and the signaling pathways hijacked. Available information is discussed in the context of M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Isabelle Vergne
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III - Paul Sabatier Toulouse, France
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III - Paul Sabatier Toulouse, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III - Paul Sabatier Toulouse, France
| |
Collapse
|
9
|
Bacterial cell wall macroamphiphiles: Pathogen-/microbe-associated molecular patterns detected by mammalian innate immune system. Biochimie 2013; 95:33-42. [DOI: 10.1016/j.biochi.2012.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/06/2012] [Indexed: 02/02/2023]
|
10
|
Cot M, Ray A, Gilleron M, Vercellone A, Larrouy-Maumus G, Armau E, Gauthier S, Tiraby G, Puzo G, Nigou J. Lipoteichoic acid in Streptomyces hygroscopicus: structural model and immunomodulatory activities. PLoS One 2011; 6:e26316. [PMID: 22028855 PMCID: PMC3196553 DOI: 10.1371/journal.pone.0026316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/23/2011] [Indexed: 12/17/2022] Open
Abstract
Gram positive bacteria produce cell envelope macroamphiphile glycopolymers, i.e. lipoteichoic acids or lipoglycans, whose functions and biosynthesis are not yet fully understood. We report for the first time a detailed structure of lipoteichoic acid isolated from a Streptomyces species, i.e. Streptomyces hygroscopicus subsp. hygroscopicus NRRL 2387T. Chemical, MS and NMR analyses revealed a polyglycerolphosphate backbone substituted with α-glucosaminyl and α-N-acetyl-glucosaminyl residues but devoid of any amino-acid substituent. This structure is very close, if not identical, to that of the wall teichoic acid of this organism. These data not only contribute to the growing recognition that lipoteichoic acid is a cell envelope component of Gram positive Actinobacteria but also strongly support the recently proposed hypothesis of an overlap between the pathways of lipoteichoic acid and wall teichoic acid synthesis in these bacteria. S. hygroscopicus lipoteichoic acid induced signalling by human innate immune receptor TLR2, confirming its role as a microbe-associated molecular pattern. Its activity was partially dependant on TLR1, TLR6 and CD14. Moreover, it stimulated TNF-α and IL-6 production by a human macrophage cell line to an extent similar to that of Staphylococcus aureus lipoteichoic acid. These results provide new clues on lipoteichoic acid structure/function relationships, most particularly on the role of the polyglycerolphosphate backbone substituents.
Collapse
Affiliation(s)
- Marlène Cot
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Aurélie Ray
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Martine Gilleron
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Alain Vercellone
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Gérald Larrouy-Maumus
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Elise Armau
- Cayla InvivoGen, Research Department, Toulouse, France
| | | | - Gérard Tiraby
- Cayla InvivoGen, Research Department, Toulouse, France
| | - Germain Puzo
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Jérôme Nigou
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
- * E-mail:
| |
Collapse
|
11
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
12
|
Ishii KJ, Coban C, Akira S. Manifold mechanisms of Toll-like receptor-ligand recognition. J Clin Immunol 2009; 25:511-21. [PMID: 16380815 DOI: 10.1007/s10875-005-7829-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 08/08/2005] [Indexed: 02/07/2023]
Abstract
Toll-like receptors recognize a diverse range of molecules derived from pathogens as well as host cells. As the number and diversity of TLR ligands and host factors increase, more questions are being raised. Here, we review recent advances toward understanding the molecular and cellular mechanisms underlying TLR-mediated direct or indirect recognition of their diverse range of ligands, including lipids, proteins, and nucleic acids. The elucidation of such mechanisms may represent a key for developing novel immunotherapeutics for infectious diseases, allergies, or cancer and to intervene in immunological disorders such as autoimmune diseases.
Collapse
Affiliation(s)
- Ken J Ishii
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
13
|
Vissa VD, Sakamuri RM, Li W, Brennan PJ. Defining mycobacteria: Shared and specific genome features for different lifestyles. Indian J Microbiol 2009; 49:11-47. [PMID: 23100749 DOI: 10.1007/s12088-009-0006-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 08/16/2008] [Indexed: 11/28/2022] Open
Abstract
During the last decade, the combination of rapid whole genome sequencing capabilities, application of genetic and computational tools, and establishment of model systems for the study of a range of species for a spectrum of biological questions has enhanced our cumulative knowledge of mycobacteria in terms of their growth properties and requirements. The adaption of the corynebacterial surrogate system has simplified the study of cell wall biosynthetic machinery common to actinobacteria. Comparative genomics supported by experimentation reveals that superimposed on a common core of 'mycobacterial' gene set, pathogenic mycobacteria are endowed with multiple copies of several protein families that encode novel secretion and transport systems such as mce and esx; immunomodulators named PE/PPE proteins, and polyketide synthases for synthesis of complex lipids. The precise timing of expression, engagement and interactions involving one or more of these redundant proteins in their host environments likely play a role in the definition and differentiation of species and their disease phenotypes. Besides these, only a few species specific 'virulence' factors i.e., macromolecules have been discovered. Other subtleties may also arise from modifications of shared macromolecules. In contrast, to cope with the broad and changing growth conditions, their saprophytic relatives have larger genomes, in which the excess coding capacity is dedicated to transcriptional regulators, transporters for nutrients and toxic metabolites, biosynthesis of secondary metabolites and catabolic pathways. In this review, we present a sampling of the tools and techniques that are being implemented to tease apart aspects of physiology, phylogeny, ecology and pathology and illustrate the dominant genomic characteristics of representative species. The investigation of clinical isolates, natural disease states and discovery of new diagnostics, vaccines and drugs for existing and emerging mycobacterial diseases, particularly for multidrug resistant strains are the challenges in the coming decades.
Collapse
Affiliation(s)
- Varalakshmi D Vissa
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO-80523-1628 USA
| | | | | | | |
Collapse
|
14
|
Fraser-Reid B, Chaudhuri SR, Jayaprakash KN, Lu J, Ramamurty CVS. Efficient Chemical Synthesis of a Dodecasaccharidyl Lipomannan Component of Mycobacterial Lipoarabinomannan. J Org Chem 2008; 73:9732-43. [DOI: 10.1021/jo802000p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bert Fraser-Reid
- Natural Products and Glycotechnology Research Institute, Inc., 595 F Weathersfield Road, Pittsboro, North Carolina 27312
| | - Siddhartha Ray Chaudhuri
- Natural Products and Glycotechnology Research Institute, Inc., 595 F Weathersfield Road, Pittsboro, North Carolina 27312
| | - K. N. Jayaprakash
- Natural Products and Glycotechnology Research Institute, Inc., 595 F Weathersfield Road, Pittsboro, North Carolina 27312
| | - Jun Lu
- Natural Products and Glycotechnology Research Institute, Inc., 595 F Weathersfield Road, Pittsboro, North Carolina 27312
| | - Changalvala V. S. Ramamurty
- Natural Products and Glycotechnology Research Institute, Inc., 595 F Weathersfield Road, Pittsboro, North Carolina 27312
| |
Collapse
|
15
|
Moreira LO, Mattos-Guaraldi AL, Andrade AFB. Novel lipoarabinomannan-like lipoglycan (CdiLAM) contributes to the adherence of Corynebacterium diphtheriae to epithelial cells. Arch Microbiol 2008; 190:521-30. [PMID: 18575847 DOI: 10.1007/s00203-008-0398-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 04/20/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
Abstract
The genus Corynebacterium is part of the phylogenetic group nocardioform actinomycetes. Members of this group have a characteristic cell envelope structure composed primarily of branched long-chain lipids, termed mycolic acids, and a rich number of lipoglycans such as lipoarabinomanans (LAM) and lipomannans. In this study, we identified a novel LAM variant isolated from Corynebacterium diphtheriae named CdiLAM. The key structural features of CdiLAM are a linear alpha-1-->6-mannan with side chains containing 2-linked alpha-D-Manp and 4-linked alpha-D-Araf residues. The polysaccharide backbone is linked to a phosphatidylinositol anchor. In contrast to the LAMs of other members of actinomycetales, CdiLAM presents an unusual substitution at position 4 of alpha-1-->6-mannan backbone by alpha-D-Araf. Unlike the non-fimbrial adhesin 62-72p, CdiLAM did not function as a hemagglutinin to human red blood cells. Experimental evidences pointed to CdiLAM as an adhesin of C. diphtheriae to human respiratory epithelial cells, thereby, contributing to the pathogenesis of diphtheria.
Collapse
Affiliation(s)
- L O Moreira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
16
|
Nigou J, Vasselon T, Ray A, Constant P, Gilleron M, Besra GS, Sutcliffe I, Tiraby G, Puzo G. Mannan chain length controls lipoglycans signaling via and binding to TLR2. THE JOURNAL OF IMMUNOLOGY 2008; 180:6696-702. [PMID: 18453589 DOI: 10.4049/jimmunol.180.10.6696] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TLR2 is a pattern-recognition receptor that is activated by a large variety of conserved microbial components, including lipoproteins, lipoteichoic acids, and peptidoglycan. Lipoglycans are TLR2 agonists found in some genera of the phylogenetic order Actinomycetales, including Mycobacterium. They are built from a mannosyl-phosphatidyl-myo-inositol anchor attached to a (alpha1-->6)-linked d-mannopyranosyl chain whose units can be substituted by d-mannopyranosyl and/or d-arabinofuranosyl units. At this time, little is known about the molecular bases underlying their ability to induce signaling via this receptor. We have recently shown that the anchor must be at least triacylated, including a diacylglyceryl moiety, whereas the contribution of the glycosidic moiety is not yet clearly defined. We show herein that lipoglycan activity is directly determined by mannan chain length. Indeed, activity increases with the number of units constituting the (alpha1-->6)-mannopyranosyl backbone but is also critically dependent on the substitution type of the 2-hydroxyl of these units. We thus provide evidence for the definition of a new pattern that includes the nonlipidic moiety of the molecules, most probably as a result of the (alpha1-->6)-mannopyranosyl backbone being a highly conserved structural feature among lipoglycans. Moreover, we demonstrate that lipoglycans can bind cell surface-expressed TLR2 and that their ability to induce signaling might be, at least in part, dictated by their avidity for the receptor. Finally, our data suggest that lipoglycans and lipoproteins have a common binding site. The present results are thus discussed in the light of the recently published crystal structure of a TLR1-TLR2-lipopeptide complex.
Collapse
Affiliation(s)
- Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5089, Department of Molecular Mechanisms of Mycobacterial Infections, Toulouse, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pitarque S, Larrouy-Maumus G, Payré B, Jackson M, Puzo G, Nigou J. The immunomodulatory lipoglycans, lipoarabinomannan and lipomannan, are exposed at the mycobacterial cell surface. Tuberculosis (Edinb) 2008; 88:560-5. [PMID: 18539533 DOI: 10.1016/j.tube.2008.04.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 04/11/2008] [Accepted: 04/12/2008] [Indexed: 01/29/2023]
Abstract
By labeling surface carbohydrates, we found that a pool of lipoglycans, cell wall associated, is exposed at the cell surface of mycobacteria and thus, most probably, inserted in the outer leaflet of the outer membrane. In contrast, plasma membrane anchored lipoglycans are not accessible to surface labeling. This result supports the role of lipoglycans as key immunomodulatory molecules but raises the question of their transport from the plasma membrane, where they are synthesized, to the outermost layers of the envelope, where they can act as modulins. The data are discussed in terms of consequences for cell envelope organization.
Collapse
Affiliation(s)
- Sylvain Pitarque
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France
| | | | | | | | | | | |
Collapse
|
18
|
Mishra AK, Klein C, Gurcha SS, Alderwick LJ, Babu P, Hitchen PG, Morris HR, Dell A, Besra GS, Eggeling L. Structural characterization and functional properties of a novel lipomannan variant isolated from a Corynebacterium glutamicum pimB' mutant. Antonie van Leeuwenhoek 2008; 94:277-87. [PMID: 18421567 PMCID: PMC2480597 DOI: 10.1007/s10482-008-9243-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/04/2008] [Indexed: 11/28/2022]
Abstract
The genus Corynebacterium is part of the phylogenetic group nocardioform actinomycetes, which also includes the genus Mycobacterium. Members of this phylogenetic group have a characteristic cell envelope structure, which is dominated by complex lipids and amongst these, lipoglycans are of particular interest. The disruption of NCgl2106 in C. glutamicum resulted in a mutant devoid of monoacylated phosphatidyl-myo-inositol dimannoside (Ac1PIM2) resulting in the accumulation of Ac1PIM1 and cessation of phosphatidyl-myo-inositol (PI) based lipomannan (Cg-LM, now also termed ‘Cg-LM-A’) and lipoarabinomannan (Cg-LAM) biosynthesis. Interestingly, SDS-analysis of the lipoglycan fraction from the mutant revealed the synthesis of a single novel lipoglycan, now termed ‘Cg-LM-B’. Further chemical analyses established the lipoglycan possessed an α-d-glucopyranosyluronic acid-(1 → 3)-glycerol (GlcAGroAc2) based anchor which was then further glycosylated by 8–22 mannose residues, with Man12–20GlcAGroAC2 molecular species being the most abundant, to form a novel lipomannan structure (Cg-LM-B). The deletion of NCgl2106 in C. glutamicum has now provided a useful strain, in addition with a deletion mutant of NCgl0452 in C. glutamicum for the purification of Cg-LM-A and Cg-LM-B. Interestingly, both Cg-LM species induced a similar production of TNF-α by a human macrophage cell line suggesting that the phospho-myo-inositol residue of the PI-anchor does not play a key role in lipoglycan pro-inflammatory activity.
Collapse
Affiliation(s)
- Arun K Mishra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Synthesis of a 28-mer oligosaccharide core of Mycobacterial lipoarabinomannan (LAM) requires only two n-pentenyl orthoester progenitors. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.tetasy.2006.09.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Ridgway KM, Shi W, Lin SJ, Palcic MM, Lowary TL. Chemical and chemoenzymatic synthesis of a trisaccharide fragment of Tsukamurella paurometabola lipoarabinomannan. CAN J CHEM 2006. [DOI: 10.1139/v06-049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The synthesis of a trisaccharide fragment (1) of the lipoarabinomannan from Tsukamurella paurometabola is reported. Two approaches were investigated for the synthesis of the target. One was purely chemical, while the other involved the addition of one of the monosaccharide residues via a mannosyltransferase-catalyzed reaction. Both approaches produced the target in good overall yields. Thus, this chemoenzymatic approach appears to be a useful addition to the arsenal of methods for the synthesis of lipoarabinomannan-derived oligosaccharides.Key words: lipoarabinomannan, oligosaccharide, mannosyltransferase, enzymatic synthesis.
Collapse
|