1
|
Loy CA, Trader DJ. Primed for Interactions: Investigating the Primed Substrate Channel of the Proteasome for Improved Molecular Engagement. Molecules 2024; 29:3356. [PMID: 39064934 PMCID: PMC11279888 DOI: 10.3390/molecules29143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Protein homeostasis is a tightly conserved process that is regulated through the ubiquitin proteasome system (UPS) in a ubiquitin-independent or ubiquitin-dependent manner. Over the past two decades, the proteasome has become an excellent therapeutic target through inhibition of the catalytic core particle, inhibition of subunits responsible for recognizing and binding ubiquitinated proteins, and more recently, through targeted protein degradation using proteolysis targeting chimeras (PROTACs). The majority of the developed inhibitors of the proteasome's core particle rely on gaining selectivity through binding interactions within the unprimed substrate channel. Although this has allowed for selective inhibitors and chemical probes to be generated for the different proteasome isoforms, much remains unknown about the interactions that could be harnessed within the primed substrate channel to increase potency or selectivity. Herein, we discuss small molecules that interact with the primed substrate pocket and how their differences may give rise to altered activity. Taking advantage of additional interactions with the primed substrate pocket of the proteasome could allow for the generation of improved chemical tools for perturbing or monitoring proteasome activity.
Collapse
Affiliation(s)
| | - Darci J. Trader
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92617, USA;
| |
Collapse
|
2
|
Nicolau I, Hădade ND, Matache M, Funeriu DP. Synthetic Approaches of Epoxysuccinate Chemical Probes. Chembiochem 2023; 24:e202300157. [PMID: 37096389 DOI: 10.1002/cbic.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 04/26/2023]
Abstract
Synthetic chemical probes are powerful tools for investigating biological processes. They are particularly useful for proteomic studies such as activity-based protein profiling (ABPP). These chemical methods initially used mimics of natural substrates. As the techniques gained prominence, more and more elaborate chemical probes with increased specificity towards given enzyme/protein families and amenability to various reaction conditions were used. Among the chemical probes, peptidyl-epoxysuccinates represent one of the first types of compounds used to investigate the activity of the cysteine protease papain-like family of enzymes. Structurally derived from the natural substrate, a wide body of inhibitors and activity- or affinity-based probes bearing the electrophilic oxirane unit for covalent labeling of active enzymes now exists. Herein, we review the literature regarding the synthetic approaches to epoxysuccinate-based chemical probes together with their reported applications, from biological chemistry and inhibition studies to supramolecular chemistry and the formation of protein arrays.
Collapse
Affiliation(s)
- Ioana Nicolau
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| | - Niculina D Hădade
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Supramolecular and Organometallic Chemistry Centre, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Mihaela Matache
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| | - Daniel P Funeriu
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| |
Collapse
|
3
|
Hsu YY, Chen SJ, Bernal-Chanchavac J, Sharma B, Moghimianavval H, Stephanopoulos N, Liu AP. Calcium-triggered DNA-mediated membrane fusion in synthetic cells. Chem Commun (Camb) 2023; 59:8806-8809. [PMID: 37365952 PMCID: PMC10527479 DOI: 10.1039/d3cc02204h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In cells, membrane fusion is mediated by SNARE proteins, whose activities are calcium-dependent. While several non-native membrane fusion mechanisms have been demonstrated, few can respond to external stimuli. Here, we develop a calcium-triggered DNA-mediated membrane fusion strategy where fusion is regulated using surface-bound PEG chains that are cleavable by the calcium-activated protease calpain-1.
Collapse
Affiliation(s)
- Yen-Yu Hsu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | - Samuel J Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | | | - Bineet Sharma
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Kudryashev JA, Madias MI, Kandell RM, Lin QX, Kwon EJ. An Activity-Based Nanosensor for Minimally-Invasive Measurement of Protease Activity in Traumatic Brain Injury. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2300218. [PMID: 37873031 PMCID: PMC10586543 DOI: 10.1002/adfm.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Indexed: 10/25/2023]
Abstract
Current screening and diagnostic tools for traumatic brain injury (TBI) have limitations in sensitivity and prognostication. Aberrant protease activity is a central process that drives disease progression in TBI and is associated with worsened prognosis; thus direct measurements of protease activity could provide more diagnostic information. In this study, a nanosensor is engineered to release a measurable signal into the blood and urine in response to activity from the TBI-associated protease calpain. Readouts from the nanosensor were designed to be compatible with ELISA and lateral flow assays, clinically-relevant assay modalities. In a mouse model of TBI, the nanosensor sensitivity is enhanced when ligands that target hyaluronic acid are added. In evaluation of mice with mild or severe injuries, the nanosensor identifies mild TBI with a higher sensitivity than the biomarker GFAP. This nanosensor technology allows for measurement of TBI-associated proteases without the need to directly access brain tissue, and has the potential to complement existing TBI diagnostic tools.
Collapse
Affiliation(s)
- Julia A Kudryashev
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Marianne I Madias
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Rebecca M Kandell
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Queenie X Lin
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ester J Kwon
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Hsu YY, Chen SJ, Bernal-Chanchavac J, Sharma B, Moghimianavval H, Stephanopoulos N, Liu AP. Calcium-triggered DNA-mediated membrane fusion in synthetic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539684. [PMID: 37205334 PMCID: PMC10187331 DOI: 10.1101/2023.05.06.539684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In cells, membrane fusion is mediated by SNARE proteins, whose activities are calcium-dependent. While several non-native membrane fusion mechanisms have been demonstrated, few can respond to external stimuli. Here, we develop a calcium-triggered DNA-mediated membrane fusion strategy where fusion is regulated using surface-bound PEG chains that are cleavable by the calcium-activated protease calpain-1.
Collapse
Affiliation(s)
- Yen-Yu Hsu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel J. Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Bineet Sharma
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Ameen SS, Griem-Krey N, Dufour A, Hossain MI, Hoque A, Sturgeon S, Nandurkar H, Draxler DF, Medcalf RL, Kamaruddin MA, Lucet IS, Leeming MG, Liu D, Dhillon A, Lim JP, Basheer F, Zhu HJ, Bokhari L, Roulston CL, Paradkar PN, Kleifeld O, Clarkson AN, Wellendorph P, Ciccotosto GD, Williamson NA, Ang CS, Cheng HC. N-Terminomic Changes in Neurons During Excitotoxicity Reveal Proteolytic Events Associated With Synaptic Dysfunctions and Potential Targets for Neuroprotection. Mol Cell Proteomics 2023; 22:100543. [PMID: 37030595 PMCID: PMC10199228 DOI: 10.1016/j.mcpro.2023.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023] Open
Abstract
Excitotoxicity, a neuronal death process in neurological disorders such as stroke, is initiated by the overstimulation of ionotropic glutamate receptors. Although dysregulation of proteolytic signaling networks is critical for excitotoxicity, the identity of affected proteins and mechanisms by which they induce neuronal cell death remain unclear. To address this, we used quantitative N-terminomics to identify proteins modified by proteolysis in neurons undergoing excitotoxic cell death. We found that most proteolytically processed proteins in excitotoxic neurons are likely substrates of calpains, including key synaptic regulatory proteins such as CRMP2, doublecortin-like kinase I, Src tyrosine kinase and calmodulin-dependent protein kinase IIβ (CaMKIIβ). Critically, calpain-catalyzed proteolytic processing of these proteins generates stable truncated fragments with altered activities that potentially contribute to neuronal death by perturbing synaptic organization and function. Blocking calpain-mediated proteolysis of one of these proteins, Src, protected against neuronal loss in a rat model of neurotoxicity. Extrapolation of our N-terminomic results led to the discovery that CaMKIIα, an isoform of CaMKIIβ, undergoes differential processing in mouse brains under physiological conditions and during ischemic stroke. In summary, by identifying the neuronal proteins undergoing proteolysis during excitotoxicity, our findings offer new insights into excitotoxic neuronal death mechanisms and reveal potential neuroprotective targets for neurological disorders.
Collapse
Affiliation(s)
- S Sadia Ameen
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Nane Griem-Krey
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - M Iqbal Hossain
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia; Department of Pharmacology and Toxicology, University of Alabama, Birmingham, Alabama, USA
| | - Ashfaqul Hoque
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Sharelle Sturgeon
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Harshal Nandurkar
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Dominik F Draxler
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Mohd Aizuddin Kamaruddin
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Isabelle S Lucet
- Chemical Biology Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Michael G Leeming
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Dazhi Liu
- Department of Neurology, School of Medicine, University of California, Davis, California, USA
| | - Amardeep Dhillon
- Faculty of Health, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Jet Phey Lim
- Faculty of Health, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Faiza Basheer
- Faculty of Health, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Hong-Jian Zhu
- Department of Surgery (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
| | - Laita Bokhari
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Carli L Roulston
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Prasad N Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, East Geelong, Victoria, Australia
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giuseppe D Ciccotosto
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| | - Nicholas A Williamson
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| | - Heung-Chin Cheng
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
7
|
Chen Y, Wang P, Li Q, Yan X, Xu T. The protease calpain2a limits innate immunity by targeting TRAF6 in teleost fish. Commun Biol 2023; 6:355. [PMID: 37002312 PMCID: PMC10066338 DOI: 10.1038/s42003-023-04711-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
TNF receptor-associated factor 6 (TRAF6) plays a key signal transduction role in both antibacterial and antiviral signaling pathways. However, the regulatory mechanisms of TRAF6 in lower vertebrates are less reported. In this study, we identify calpain2a, is a member of the calcium-dependent proteases family with unique hydrolytic enzyme activity, functions as a key regulator for antibacterial and antiviral immunity in teleost fish. Upon lipopolysaccharide (LPS) stimulation, knockdown of calpain2a promotes the upregulation of inflammatory cytokines. Mechanistically, calpain2a interacts with TRAF6 and reduces the protein level of TRAF6 by hydrolyzing. After loss of enzymatic activity, mutant calpain2a competitively inhibits dimer formation and auto-ubiquitination of TRAF6. Knockdown of calpain2a also promotes cellular antiviral response. Mutant calpain2a lacking hydrolase activity represses ubiquitination of IFN regulatory factor (IRF) 3/7 from TRAF6. Taken together, these findings classify calpain2a is a negative regulator of innate immune responses by targeting TRAF6 in teleost fish.
Collapse
Affiliation(s)
- Yang Chen
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Pengfei Wang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qi Li
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
8
|
Leo F, Svensäter G, Lood R, Wickström C. Characterization of a highly conserved MUC5B-degrading protease, MdpL, from Limosilactobacillus fermentum. Front Microbiol 2023; 14:1127466. [PMID: 36925480 PMCID: PMC10011156 DOI: 10.3389/fmicb.2023.1127466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
MUC5B is the predominant glycoprotein in saliva and is instrumental in the establishment and maintenance of multi-species eubiotic biofilms in the oral cavity. Investigations of the aciduric Lactobacillaceae family, and its role in biofilms emphasizes the diversity across different genera of the proteolytic systems involved in the nutritional utilization of mucins. We have characterized a protease from Limosilactobacillus fermentum, MdpL (Mucin degrading protease from Limosilactobacillus) with a high protein backbone similarity with commensals that exploit mucins for attachment and nutrition. MdpL was shown to be associated with the bacterial cell surface, in close proximity to MUC5B, which was sequentially degraded into low molecular weight fragments. Mapping the substrate preference revealed multiple hydrolytic sites of proteins with a high O-glycan occurrence, although hydrolysis was not dependent on the presence of O-glycans. However, since proteolysis of immunoglobulins was absent, and general protease activity was low, a preference for glycoproteins similar to MUC5B in terms of glycosylation and structure is suggested. MdpL preferentially hydrolyzed C-terminally located hydrophobic residues in peptides larger than 20 amino acids, which hinted at a limited sequence preference. To secure proper enzyme folding and optimal conditions for activity, L. fermentum incorporates a complex system that establishes a reducing environment. The importance of overall reducing conditions was confirmed by the activity boosting effect of the added reducing agents L-cysteine and DTT. High activity was retained in low to neutral pH 5.5-7.0, but the enzyme was completely inhibited in the presence of Zn2+. Here we have characterized a highly conserved mucin degrading protease from L. fermentum. MdpL, that together with the recently discovered O-glycanase and O-glycoprotease enzyme groups, increases our understanding of mucin degradation and complex biofilm dynamics.
Collapse
Affiliation(s)
- Fredrik Leo
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Genovis AB, Lund, Sweden
| | - Gunnel Svensäter
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Rolf Lood
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Claes Wickström
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
9
|
Ballouhey O, Courrier S, Kergourlay V, Gorokhova S, Cerino M, Krahn M, Lévy N, Bartoli M. The Dysferlin Transcript Containing the Alternative Exon 40a is Essential for Myocyte Functions. Front Cell Dev Biol 2021; 9:754555. [PMID: 34888307 PMCID: PMC8650162 DOI: 10.3389/fcell.2021.754555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Dysferlinopathies are a group of muscular dystrophies caused by recessive mutations in the DYSF gene encoding the dysferlin protein. Dysferlin is a transmembrane protein involved in several muscle functions like T-tubule maintenance and membrane repair. In 2009, a study showed the existence of fourteen dysferlin transcripts generated from alternative splicing. We were interested in dysferlin transcripts containing the exon 40a, and among them the transcript 11 which contains all the canonical exons and exon 40a. This alternative exon encodes a protein region that is cleaved by calpains during the muscle membrane repair mechanism. Firstly, we tested the impact of mutations in exon 40a on its cleavability by calpains. We showed that the peptide encoded by the exon 40a domain is resistant to mutations and that calpains cleaved dysferlin in the first part of DYSF exon 40a. To further explore the implication of this transcript in cell functions, we performed membrane repair, osmotic shock, and transferrin assay. Our results indicated that dysferlin transcript 11 is a key factor in the membrane repair process. Moreover, dysferlin transcript 11 participates in other cell functions such as membrane protection and vesicle trafficking. These results support the need to restore the dysferlin transcript containing the alternative exon 40a in patients affected with dysferlinopathy.
Collapse
Affiliation(s)
| | | | | | - Svetlana Gorokhova
- INSERM, MMG, U1251, Aix Marseille University, Marseille, France.,AP-HM, Département de Génétique Médicale, Hôpital d'Enfants de la Timone, Marseille, France
| | - Mathieu Cerino
- INSERM, MMG, U1251, Aix Marseille University, Marseille, France.,AP-HM, Département de Génétique Médicale, Hôpital d'Enfants de la Timone, Marseille, France
| | - Martin Krahn
- INSERM, MMG, U1251, Aix Marseille University, Marseille, France.,AP-HM, Département de Génétique Médicale, Hôpital d'Enfants de la Timone, Marseille, France
| | - Nicolas Lévy
- INSERM, MMG, U1251, Aix Marseille University, Marseille, France.,AP-HM, Département de Génétique Médicale, Hôpital d'Enfants de la Timone, Marseille, France.,GIPTIS, Genetics Institute for Patients Therapies Innovation and Science, Marseille, France
| | - Marc Bartoli
- INSERM, MMG, U1251, Aix Marseille University, Marseille, France
| |
Collapse
|
10
|
Simões AT, Carmona V, Duarte-Neves J, Cunha-Santos J, Pereira de Almeida L. Identification of the calpain-generated toxic fragment of ataxin-3 protein provides new avenues for therapy of Machado-Joseph disease| Spinocerebellar ataxia type 3. Neuropathol Appl Neurobiol 2021; 48:e12748. [PMID: 34273111 DOI: 10.1111/nan.12748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 06/26/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022]
Abstract
AIMS Machado-Joseph disease (MJD) is the most frequent dominantly inherited cerebellar ataxia worldwide. Expansion of a CAG trinucleotide in the MJD1 gene translates into a polyglutamine tract within ataxin-3, which upon proteolysis may lead to MJD. The aim of this work was to understand the in vivo contribution of calpain proteases to the pathogenesis of MJD. Therefore, we investigated (a) the calpain cleavage sites in ataxin-3 protein, (b) the most toxic ataxin-3 fragment generated by calpain cleavage and (c) whether targeting calpain cleavage sites of mutant ataxin-3 could be a therapeutic strategy for MJD. METHODS We generated truncated and calpain-resistant constructs at the predicted cleavage sites of ataxin-3 using inverse PCR mutagenesis. Lentiviral vectors encoding these constructs were transduced in the adult mouse brain prior to western blot and immunohistochemical analysis 5 and 8 weeks later. RESULTS We identified the putative calpain cleavage sites for both wild-type and mutant ataxin-3 proteins. The mutation of these sites eliminated the formation of the toxic fragments, namely, the 26-kDa fragment, the major contributor for striatal degeneration. Nonetheless, reducing the formation of both the 26- and 34-kDa fragments was required to preclude the intranuclear localisation of ataxin-3. A neuroprotective effect was observed upon mutagenesis of calpain cleavage sites within mutant ataxin-3 protein. CONCLUSIONS These findings suggest that the calpain system should be considered a target for MJD therapy. The identified calpain cleavage sites will contribute to the design of targeted drugs and genome editing systems for those specific locations.
Collapse
Affiliation(s)
- Ana Teresa Simões
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Vítor Carmona
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Joana Duarte-Neves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Janete Cunha-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Hoover CA, Ott KL, Manring HR, Dew T, Borzok MA, Wright NT. Creating a 'Molecular Band-Aid'; Blocking an Exposed Protease Target Site in Desmoplakin. J Pers Med 2021; 11:jpm11050401. [PMID: 34065787 PMCID: PMC8151963 DOI: 10.3390/jpm11050401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Desmoplakin (DSP) is a large (~260 kDa) protein found in the desmosome, a subcellular complex that links the cytoskeleton of one cell to its neighbor. A mutation ‘hot-spot’ within the NH2-terminal third of the DSP protein (specifically, residues 299–515) is associated with both cardiomyopathies and skin defects. In select DSP variants, disease is linked specifically to the uncovering of a previously-occluded calpain target site (residues 447–451). Here, we partially stabilize these calpain-sensitive DSP clinical variants through the addition of a secondary single point mutation—tyrosine for leucine at amino acid position 518 (L518Y). Molecular dynamic (MD) simulations and enzymatic assays reveal that this stabilizing mutation partially blocks access to the calpain target site, resulting in restored DSP protein levels. This ‘molecular band-aid’ provides a novel way to maintain DSP protein levels, which may lead to new strategies for treating this subset of DSP-related disorders.
Collapse
Affiliation(s)
- Catherine A. Hoover
- Department of Natural Sciences, Mansfield University of Pennsylvania, Mansfield, PA 16933, USA;
| | - Kendahl L. Ott
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA;
| | - Heather R. Manring
- Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (H.R.M.); (T.D.)
| | - Trevor Dew
- Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (H.R.M.); (T.D.)
| | - Maegen A. Borzok
- Department of Natural Sciences, Mansfield University of Pennsylvania, Mansfield, PA 16933, USA;
- Correspondence: (M.A.B.); (N.T.W.)
| | - Nathan T. Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA;
- Correspondence: (M.A.B.); (N.T.W.)
| |
Collapse
|
12
|
Spinozzi S, Albini S, Best H, Richard I. Calpains for dummies: What you need to know about the calpain family. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140616. [PMID: 33545367 DOI: 10.1016/j.bbapap.2021.140616] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
This review was written in memory of our late friend, Dr. Hiroyuki Sorimachi, who, following the steps of his mentor Koichi Suzuki, a pioneer in calpain research, has made tremendous contributions to the field. During his career, Hiro also wrote several reviews on calpain, the last of which, published in 2016, was comprehensive. In this manuscript, we decided to put together a review with the basic information a novice may need to know about calpains. We also tried to avoid similarities with previous reviews and reported the most significant new findings, at the same time highlighting Hiro's contributions to the field. The review will cover a short history of calpain discovery, the presentation of the family, the life of calpain from transcription to activity, human diseases caused by calpain mutations and therapeutic perspectives.
Collapse
Affiliation(s)
- Simone Spinozzi
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Sonia Albini
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Heather Best
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Isabelle Richard
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France.
| |
Collapse
|
13
|
Yamashima T, Ota T, Mizukoshi E, Nakamura H, Yamamoto Y, Kikuchi M, Yamashita T, Kaneko S. Intake of ω-6 Polyunsaturated Fatty Acid-Rich Vegetable Oils and Risk of Lifestyle Diseases. Adv Nutr 2020; 11:1489-1509. [PMID: 32623461 PMCID: PMC7666899 DOI: 10.1093/advances/nmaa072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/30/2019] [Accepted: 05/26/2020] [Indexed: 12/28/2022] Open
Abstract
Although excessive consumption of deep-fried foods is regarded as 1 of the most important epidemiological factors of lifestyle diseases such as Alzheimer's disease, type 2 diabetes, and obesity, the exact mechanism remains unknown. This review aims to discuss whether heated cooking oil-derived peroxidation products cause cell degeneration/death for the occurrence of lifestyle diseases. Deep-fried foods cooked in ω-6 PUFA-rich vegetable oils such as rapeseed (canola), soybean, sunflower, and corn oils, already contain or intrinsically generate "hydroxynonenal" by peroxidation. As demonstrated previously, hydroxynonenal promotes carbonylation of heat-shock protein 70.1 (Hsp70.1), with the resultant impaired ability of cells to recycle damaged proteins and stabilize the lysosomal membrane. Until now, the implication of lysosomal/autophagy failure due to the daily consumption of ω-6 PUFA-rich vegetable oils in the progression of cell degeneration/death has not been reported. Since the "calpain-cathepsin hypothesis" was formulated as a cause of ischemic neuronal death in 1998, its relevance to Alzheimer's neuronal death has been suggested with particular attention to hydroxynonenal. However, its relevance to cell death of the hypothalamus, liver, and pancreas, especially related to appetite/energy control, is unknown. The hypothalamus senses information from both adipocyte-derived leptin and circulating free fatty acids. Concentrations of circulating fatty acid and its oxidized form, especially hydroxynonenal, are increased in obese and/or aged subjects. As overactivation of the fatty acid receptor G-protein coupled receptor 40 (GPR40) in response to excessive or oxidized fatty acids in these subjects may lead to the disruption of Ca2+ homeostasis, it should be evaluated whether GPR40 overactivation contributes to diverse cell death. Here, we describe the molecular implication of ω-6 PUFA-rich vegetable oil-derived hydroxynonenal in lysosomal destabilization leading to cell death. By oxidizing Hsp70.1, both the dietary PUFA- (exogenous) and the membrane phospholipid- (intrinsic) peroxidation product "hydroxynonenal," when combined, may play crucial roles in the occurrence of diverse lifestyle diseases including Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Yasuhiko Yamamoto
- Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | | | | | | |
Collapse
|
14
|
Dókus LE, Yousef M, Bánóczi Z. Modulators of calpain activity: inhibitors and activators as potential drugs. Expert Opin Drug Discov 2020; 15:471-486. [DOI: 10.1080/17460441.2020.1722638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Levente Endre Dókus
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Mo’ath Yousef
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
15
|
Structure and proteolytic susceptibility of the inhibitory C-terminal tail of cardiac troponin I. Biochim Biophys Acta Gen Subj 2019; 1863:661-671. [DOI: 10.1016/j.bbagen.2019.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/22/2018] [Accepted: 01/14/2019] [Indexed: 01/17/2023]
|
16
|
Abstract
Calpain, an intracellular Ca2+-dependent cysteine protease, is known to play a role in a wide range of metabolic pathways through limited proteolysis of its substrates. However, only a limited number of these substrates are currently known, with the exact mechanism of substrate recognition and cleavage by calpain still largely unknown.Current sequencing technologies have made it possible to compile large amounts of cleavage data and brought greater understanding of the underlying protein interactions. However, the practical impossibility of exhaustively retrieving substrate sequences through experimentation alone has created the need for efficient computational prediction methods. Such methods must be able to quickly mark substrate candidates and putative cleavage sites for further analysis. While many methods exist for both calpain and other types of proteolytic actions, the expected reliability of these methods depends heavily on the type and complexity of proteolytic action, as well as the availability of well-labeled experimental datasets, which both vary greatly across enzyme families.This chapter introduces CalCleaveMKL: a tool for calpain cleavage prediction based on multiple kernel learning, an extension to the classic support vector machine framework that is able to train complex models based on rich, heterogeneous feature sets, leading to significantly improved prediction quality. Along with its improved accuracy, the method used by CalCleaveMKL provided numerous insights on the respective importance of sequence-related features, such as solvent accessibility and secondary structure. It notably demonstrated there existed significant specificity differences across calpain subtypes, despite previous assumption to the contrary.An online implementation of this prediction tool is available at http://calpain.org .
Collapse
|
17
|
Abstract
Calpains are signaling proteases that have relatively little sequence specificity but some preferences for certain residues on either side of the scissile bond. As with most proteases, they mainly cut unstructured or extended regions of their target proteins. The tendency for concentrated calpain to rapidly autoproteolyze when activated by calcium complicates the kinetic assessment of calpain activity. As calpain autoproteolyzes, the amount of fully active enzyme continuously decreases until all of the calpain molecules have been cut and their activity reduced to a tiny fraction of the starting rate. To accurately measure calpain kinetics, only the initial rate of substrate hydrolysis, where autoproteolysis is minimal, can be used. To accomplish this, a method for rapid, quantifiable determination of substrate cleavage is required. Many of the existing assays are lacking in their sensitivity to accurately quantify calpain activity within this timeframe. However, the FRET peptide substrates developed by Cuerrier et al. have been shown to have sufficiently high affinity between substrate and enzyme to accurately measure the initial enzyme reaction velocity at substrate concentrations above the Km value. With a suitably sensitive fluorimeter, sufficient data can be obtained to evaluate calpain kinetics and inhibition. Here we describe a facile, reliable calpain assay based on the continuous monitoring of FRET fluorescence from the highly sensitive calpain-specific substrate, (EDANS)-EPLFAERK-(DABCYL). We illustrate some difficulties associated with determining kinetic constants of whole calpains that are simultaneously undergoing autoproteolysis and how the assay can be used to help characterize calpain-specific inhibitors. We also present a variation of this fluorescence-based assay for high-throughput screening using the calpain protease core and a fluorescence plate reader.
Collapse
Affiliation(s)
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
18
|
McCartney CSE, Ye Q, Campbell RL, Davies PL. Insertion sequence 1 from calpain-3 is functional in calpain-2 as an internal propeptide. J Biol Chem 2018; 293:17716-17730. [PMID: 30254072 DOI: 10.1074/jbc.ra118.004803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/18/2018] [Indexed: 11/06/2022] Open
Abstract
Calpains are intracellular, calcium-activated cysteine proteases. Calpain-3 is abundant in skeletal muscle, where its mutation-induced loss of function causes limb-girdle muscular dystrophy type 2A. Unlike the small subunit-containing calpain-1 and -2, the calpain-3 isoform homodimerizes through pairing of its C-terminal penta-EF-hand domain. It also has two unique insertion sequences (ISs) not found in the other calpains: IS1 within calpain-3's protease core and IS2 just prior to the penta-EF-hand domain. Production of either native or recombinant full-length calpain-3 to characterize the function of these ISs is challenging. Therefore, here we used recombinant rat calpain-2 as a stable surrogate and inserted IS1 into its equivalent position in the protease core. As it does in calpain-3, IS1 occupied the catalytic cleft and restricted the enzyme's access to substrate and inhibitors. Following activation by Ca2+, IS1 was rapidly cleaved by intramolecular autolysis, permitting the enzyme to freely accept substrate and inhibitors. The surrogate remained functional until extensive intermolecular autoproteolysis inactivated the enzyme, as is typical of calpain-2. Although the small-molecule inhibitors E-64 and leupeptin limited intermolecular autolysis of the surrogate, they did not block the initial intramolecular cleavage of IS1, establishing its role as a propeptide. Surprisingly, the large-molecule calpain inhibitor, calpastatin, completely blocked enzyme activity, even with IS1 intact. We suggest that calpastatin is large enough to oust IS1 from the catalytic cleft and take its place. We propose an explanation for why calpastatin can inhibit calpain-2 bearing the IS1 insertion but cannot inhibit WT calpain-3.
Collapse
Affiliation(s)
- Christian-Scott E McCartney
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Qilu Ye
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Robert L Campbell
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Peter L Davies
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
19
|
Boeckel GR, Ehrlich BE. NCS-1 is a regulator of calcium signaling in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1660-1667. [PMID: 29746899 DOI: 10.1016/j.bbamcr.2018.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
Neuronal Calcium Sensor-1 (NCS-1) is a highly conserved calcium binding protein which contributes to the maintenance of intracellular calcium homeostasis and regulation of calcium-dependent signaling pathways. It is involved in a variety of physiological cell functions, including exocytosis, regulation of calcium permeable channels, neuroplasticity and response to neuronal damage. Over the past 30 years, continuing investigation of cellular functions of NCS-1 and associated disease states have highlighted its function in the pathophysiology of several disorders and as a therapeutic target. Among the diseases that were found to be associated with NCS-1 are neurological disorders such as bipolar disease and non-neurological conditions such as breast cancer. Furthermore, alteration of NCS-1 expression is associated with substance abuse disorders and severe side effects of chemotherapeutic agents. The objective of this article is to summarize the current body of evidence describing NCS-1 and its interactions on a molecular and cellular scale, as well as describing macroscopic implications in physiology and medicine. Particular attention is paid to the role of NCS-1 in development and prevention of chemotherapy induced peripheral neuropathy (CIPN).
Collapse
Affiliation(s)
- Göran R Boeckel
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| |
Collapse
|
20
|
An easy-to-use FRET protein substrate to detect calpain cleavage in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:221-230. [DOI: 10.1016/j.bbamcr.2017.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/10/2017] [Accepted: 10/30/2017] [Indexed: 01/06/2023]
|
21
|
Synergy of Iron Chelators and Therapeutic Peptide Sequences Delivered via a Magnetic Nanocarrier. J Funct Biomater 2017; 8:jfb8030023. [PMID: 28672849 PMCID: PMC5618274 DOI: 10.3390/jfb8030023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 01/19/2023] Open
Abstract
Here, we report the synthesis, characterization, and efficacy study of Fe/Fe₃O₄-nanoparticles that were co-labeled with a tumor-homing and membrane-disrupting oligopeptide and the iron-chelator Dp44mT, which belongs to the group of the thiosemicarbazones. Dp44mT and the peptide sequence PLFAERL(D[KLAKLAKKLAKLAK])CGKRK were tethered to the surface of Fe/Fe₃O₄ core/shell nanoparticles by utilizing dopamine-anchors. The 26-mer contains two important sequences, which are the tumor targeting peptide CGKRK, and D[KLAKLAK]₂, known to disrupt the mitochondrial cell walls and to initiate programmed cell death (apoptosis). It is noteworthy that Fe/Fe₃O₄ nanoparticles can also be used for MRI imaging purposes in live mammals. In a first step of this endeavor, the efficacy of this nanoplatform has been tested on the highly metastatic 4T1 breast cancer cell line. At the optimal ratio of PLFAERD[KLAKLAK]₂CGKRK to Dp44mT of 1 to 3.2 at the surface of the dopamine-coated Fe/Fe₃O₄-nanocarrier, the IC50 value after 24 h of incubation was found to be 2.2 times lower for murine breast cancer cells (4T1) than for a murine fibroblast cell line used as control. Based on these encouraging results, the reported approach has the potential of leading to a new generation of nanoplatforms for cancer treatment with considerably enhanced selectivity towards tumor cells.
Collapse
|
22
|
Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol 2017; 133:665-704. [PMID: 28386764 PMCID: PMC5390006 DOI: 10.1007/s00401-017-1707-9] [Citation(s) in RCA: 587] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/26/2017] [Accepted: 03/26/2017] [Indexed: 01/18/2023]
Abstract
Tau is well established as a microtubule-associated protein in neurons. However, under pathological conditions, aberrant assembly of tau into insoluble aggregates is accompanied by synaptic dysfunction and neural cell death in a range of neurodegenerative disorders, collectively referred to as tauopathies. Recent advances in our understanding of the multiple functions and different locations of tau inside and outside neurons have revealed novel insights into its importance in a diverse range of molecular pathways including cell signalling, synaptic plasticity, and regulation of genomic stability. The present review describes the physiological and pathophysiological properties of tau and how these relate to its distribution and functions in neurons. We highlight the post-translational modifications of tau, which are pivotal in defining and modulating tau localisation and its roles in health and disease. We include discussion of other pathologically relevant changes in tau, including mutation and aggregation, and how these aspects impinge on the propensity of tau to propagate, and potentially drive neuronal loss, in diseased brain. Finally, we describe the cascade of pathological events that may be driven by tau dysfunction, including impaired axonal transport, alterations in synapse and mitochondrial function, activation of the unfolded protein response and defective protein degradation. It is important to fully understand the range of neuronal functions attributed to tau, since this will provide vital information on its involvement in the development and pathogenesis of disease. Such knowledge will enable determination of which critical molecular pathways should be targeted by potential therapeutic agents developed for the treatment of tauopathies.
Collapse
Affiliation(s)
- Tong Guo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK
| | - Diane P Hanger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK.
| |
Collapse
|
23
|
Can 'calpain-cathepsin hypothesis' explain Alzheimer neuronal death? Ageing Res Rev 2016; 32:169-179. [PMID: 27306474 DOI: 10.1016/j.arr.2016.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/10/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023]
Abstract
Neurons are highly specialized post-mitotic cells, so their homeostasis and survival depend on the tightly-regulated, continuous protein degradation, synthesis, and turnover. In neurons, autophagy is indispensable to facilitate recycling of long-lived, damaged proteins and organelles in a lysosome-dependent manner. Since lysosomal proteolysis under basal conditions performs an essential housekeeping function, inhibition of the proteolysis exacerbates level of neurodegeneration. The latter is characterized by an accumulation of abnormal proteins or organelles within autophagic vacuoles which reveal as 'granulo-vacuolar degenerations' on microscopy. Heat-shock protein70.1 (Hsp70.1), as a means of molecular chaperone and lysosomal stabilizer, is a potent survival protein that confers neuroprotection against diverse stimuli, but its depletion induces neurodegeneration via autophagy failure. In response to hydroxynonenal generated from linoleic or arachidonic acids by the reactive oxygen species, a specific oxidative injury 'carbonylation' occurs at the key site Arg469 of Hsp70.1. Oxidative stress-induced carbonylation of Hsp70.1, in coordination with the calpain-mediated cleavage, leads to lysosomal destabilization/rupture and release of cathepsins with the resultant neuronal death. Hsp70.1 carbonylation which occurs anywhere in the brain is indispensable for neuronal death, but extent of calpain activation should be more crucial for determining the cell death fate. Importantly, not only acute ischemia during stroke but also chronic ischemia due to ageing may cause calpain activation. Here, role of Hsp70.1-mediated lysosomal rupture is discussed by comparing ischemic and Alzheimer neuronal death. A common neuronal death cascade may exist between cerebral ischemia and Alzheimer's disease.
Collapse
|
24
|
Hata S, Kitamura F, Yamaguchi M, Shitara H, Murakami M, Sorimachi H. A Gastrointestinal Calpain Complex, G-calpain, Is a Heterodimer of CAPN8 and CAPN9 Calpain Isoforms, Which Play Catalytic and Regulatory Roles, Respectively. J Biol Chem 2016; 291:27313-27322. [PMID: 27881674 DOI: 10.1074/jbc.m116.763912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/17/2016] [Indexed: 11/06/2022] Open
Abstract
Calpains (CAPN) are a family of Ca2+-dependent cysteine proteases that regulate various cellular functions by cleaving diverse substrates. Of the 15 mammalian calpains, CAPN8 and CAPN9 are two that are expressed predominantly in the gastrointestinal tract, where they interact to form a protease complex, termed G-calpain. However, because native G-calpain exhibits a highly restricted expression pattern, it has never been purified, and the interactions between CAPN8 and CAPN9 have not been characterized. Here, we clarified the molecular nature of G-calpain by using recombinant proteins and transgenic mice expressing FLAG-tagged CAPN8 (CAPN8-FLAG). Recombinant mouse CAPN8 and CAPN9 co-expressed in eukaryotic expression systems exhibited the same mobility as native mouse G-calpain in Blue Native-PAGE gels, and CAPN8-FLAG immunoprecipitation from stomach homogenates of the transgenic mice showed that CAPN9 was the only protein that associated with CAPN8-FLAG. These results indicated that G-calpain is a heterodimer of CAPN8 and CAPN9. In addition, active recombinant G-calpain was expressed and purified using an in vitro translation system, and the purified protease exhibited enzymatic properties that were comparable with that of calpain-2. We found that an active-site mutant of CAPN8, but not CAPN9, compromised G-calpain's substrate cleavage activity, and that the N-terminal helix region of CAPN8 and the C-terminal EF-hands of CAPN8 and CAPN9 were involved in CAPN8/9 dimerization. Furthermore, CAPN8 protein in Capn9-/- mice was almost completely lost, whereas CAPN9 was only partially lost in Capn8-/- mice. Collectively, these results demonstrated that CAPN8 and CAPN9 function as catalytic and chaperone-like subunits, respectively, in G-calpain.
Collapse
Affiliation(s)
| | | | - Midori Yamaguchi
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, and
| | | |
Collapse
|
25
|
Ono Y, Saido TC, Sorimachi H. Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov 2016; 15:854-876. [PMID: 27833121 DOI: 10.1038/nrd.2016.212] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calpains are a family of proteases that were scientifically recognized earlier than proteasomes and caspases, but remain enigmatic. However, they are known to participate in a multitude of physiological and pathological processes, performing 'limited proteolysis' whereby they do not destroy but rather modulate the functions of their substrates. Calpains are therefore referred to as 'modulator proteases'. Multidisciplinary research on calpains has begun to elucidate their involvement in pathophysiological mechanisms. Therapeutic strategies targeting malfunctions of calpains have been developed, driven primarily by improvements in the specificity and bioavailability of calpain inhibitors. Here, we review the calpain superfamily and calpain-related disorders, and discuss emerging calpain-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yasuko Ono
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
26
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
27
|
Blood biomarkers for brain injury: What are we measuring? Neurosci Biobehav Rev 2016; 68:460-473. [PMID: 27181909 DOI: 10.1016/j.neubiorev.2016.05.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 12/28/2022]
Abstract
Accurate diagnosis for mild traumatic brain injury (mTBI) remains challenging, as prognosis and return-to-play/work decisions are based largely on patient reports. Numerous investigations have identified and characterized cellular factors in the blood as potential biomarkers for TBI, in the hope that these factors may be used to gauge the severity of brain injury. None of these potential biomarkers have advanced to use in the clinical setting. Some of the most extensively studied blood biomarkers for TBI include S100β, neuron-specific enolase, glial fibrillary acidic protein, and Tau. Understanding the biological function of each of these factors may be imperative to achieve progress in the field. We address the basic question: what are we measuring? This review will discuss blood biomarkers in terms of cellular origin, normal and pathological function, and possible reasons for increased blood levels. Considerations in the selection, evaluation, and validation of potential biomarkers will also be addressed, along with mechanisms that allow brain-derived proteins to enter the bloodstream after TBI. Lastly, we will highlight perspectives and implications for repetitive neurotrauma in the field of blood biomarkers for brain injury.
Collapse
|
28
|
Jeon HY, Jung SH, Jung YM, Kim YM, Ghandehari H, Ha KS. Array-Based High-Throughput Analysis of Silk-Elastinlike Protein Polymer Degradation and C-Peptide Release by Proteases. Anal Chem 2016; 88:5398-405. [PMID: 27109435 DOI: 10.1021/acs.analchem.6b00739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The objective of this study was to utilize an on-chip degradation assay to evaluate polymer depots and the predicted drug release from the depots. We conjugated four silk-elastinlike protein (SELP) polymers including SELP-815K, SELP-815K-RS1, SELP-815K-RS2, and SELP-815K-RS5 with a Cy5-NHS ester and fabricated SELP arrays by immobilizing the conjugated polymers onto well-type amine arrays. SELP polymer degradation rates were investigated by calculating the half-maximal effective concentration (EC50). Eight cleavage enzymes were applied, all of which exhibited distinctive EC50 values for SELP-815K and its three analogues. We successfully utilized this assay to study the in vitro release of the Cy5-conjugated C-peptide from SELP-815K hydrogel arrays. Additionally, cumulative C-peptide release from the SELP-815K depots was also demonstrated using repetitive elastase treatments. Therefore, this array-based on-chip degradation assay could potentially be used for evaluating depot degradation and controlled drug release from polymer depots at the molecular level.
Collapse
Affiliation(s)
- Hye-Yoon Jeon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine , Chuncheon, Kangwon-Do 200-701, Korea
| | - Se-Hui Jung
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine , Chuncheon, Kangwon-Do 200-701, Korea
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University , Chuncheon, Kangwon-Do 200-701, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine , Chuncheon, Kangwon-Do 200-701, Korea
| | - Hamidreza Ghandehari
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology , Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Korea.,Departments of Phamaceutics and Pharmaceutical Chemistry, and Bioengineering, Center for Nanomedicine, Nano Institute of Utah, University of Utah , Salt Lake City, Utah 84112, United States
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine , Chuncheon, Kangwon-Do 200-701, Korea
| |
Collapse
|
29
|
An eccentric calpain, CAPN3/p94/calpain-3. Biochimie 2016; 122:169-87. [DOI: 10.1016/j.biochi.2015.09.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/07/2015] [Indexed: 01/09/2023]
|
30
|
Shinkai-Ouchi F, Koyama S, Ono Y, Hata S, Ojima K, Shindo M, duVerle D, Ueno M, Kitamura F, Doi N, Takigawa I, Mamitsuka H, Sorimachi H. Predictions of Cleavability of Calpain Proteolysis by Quantitative Structure-Activity Relationship Analysis Using Newly Determined Cleavage Sites and Catalytic Efficiencies of an Oligopeptide Array. Mol Cell Proteomics 2016; 15:1262-80. [PMID: 26796116 PMCID: PMC4824854 DOI: 10.1074/mcp.m115.053413] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Indexed: 12/18/2022] Open
Abstract
Calpains are intracellular Ca2+-regulated cysteine proteases that are essential for various cellular functions. Mammalian conventional calpains (calpain-1 and calpain-2) modulate the structure and function of their substrates by limited proteolysis. Thus, it is critically important to determine the site(s) in proteins at which calpains cleave. However, the calpains' substrate specificity remains unclear, because the amino acid (aa) sequences around their cleavage sites are very diverse. To clarify calpains' substrate specificities, 84 20-mer oligopeptides, corresponding to P10-P10′ of reported cleavage site sequences, were proteolyzed by calpains, and the catalytic efficiencies (kcat/Km) were globally determined by LC/MS. This analysis revealed 483 cleavage site sequences, including 360 novel ones. The kcat/Kms for 119 sites ranged from 12.5–1,710 M−1s−1. Although most sites were cleaved by both calpain-1 and −2 with a similar kcat/Km, sequence comparisons revealed distinct aa preferences at P9-P7/P2/P5′. The aa compositions of the novel sites were not statistically different from those of previously reported sites as a whole, suggesting calpains have a strict implicit rule for sequence specificity, and that the limited proteolysis of intact substrates is because of substrates' higher-order structures. Cleavage position frequencies indicated that longer sequences N-terminal to the cleavage site (P-sites) were preferred for proteolysis over C-terminal (P′-sites). Quantitative structure-activity relationship (QSAR) analyses using partial least-squares regression and >1,300 aa descriptors achieved kcat/Km prediction with r = 0.834, and binary-QSAR modeling attained an 87.5% positive prediction value for 132 reported calpain cleavage sites independent of our model construction. These results outperformed previous calpain cleavage predictors, and revealed the importance of the P2, P3′, and P4′ sites, and P1-P2 cooperativity. Furthermore, using our binary-QSAR model, novel cleavage sites in myoglobin were identified, verifying our predictor. This study increases our understanding of calpain substrate specificities, and opens calpains to “next-generation,” i.e. activity-related quantitative and cooperativity-dependent analyses.
Collapse
Affiliation(s)
| | - Suguru Koyama
- From the ‡Calpain Project, Department of Advanced Science for Biomolecules, and
| | - Yasuko Ono
- From the ‡Calpain Project, Department of Advanced Science for Biomolecules, and
| | - Shoji Hata
- From the ‡Calpain Project, Department of Advanced Science for Biomolecules, and
| | - Koichi Ojima
- From the ‡Calpain Project, Department of Advanced Science for Biomolecules, and
| | - Mayumi Shindo
- §The Advanced Technical Support Department, The Basic Technology Research Center, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - David duVerle
- ¶Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Mika Ueno
- From the ‡Calpain Project, Department of Advanced Science for Biomolecules, and
| | - Fujiko Kitamura
- From the ‡Calpain Project, Department of Advanced Science for Biomolecules, and
| | - Naoko Doi
- From the ‡Calpain Project, Department of Advanced Science for Biomolecules, and
| | - Ichigaku Takigawa
- ‖Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan
| | - Hiroshi Mamitsuka
- **Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroyuki Sorimachi
- From the ‡Calpain Project, Department of Advanced Science for Biomolecules, and
| |
Collapse
|
31
|
Chen M, Nguyen HT. Our "energy-Ca(2+) signaling deficits" hypothesis and its explanatory potential for key features of Alzheimer's disease. Front Aging Neurosci 2014; 6:329. [PMID: 25489296 PMCID: PMC4253736 DOI: 10.3389/fnagi.2014.00329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/10/2014] [Indexed: 12/15/2022] Open
Abstract
Sporadic Alzheimer's disease (sAD) has not been explained by any current theories, so new hypotheses are urgently needed. We proposed that "energy and Ca(2+) signaling deficits" are perhaps the earliest modifiable defects in brain aging underlying memory decline and tau deposits (by means of inactivating Ca(2+)-dependent protease calpain). Consistent with this hypothesis, we now notice that at least eight other known calpain substrates have also been reported to accumulate in aging and AD. Thus, protein accumulation or aggregation is not a "pathogenic" event, but occurs naturally and selectively to a peculiar family of proteins, and is best explained by calpain inactivation. Why are only calpain substrates accumulated and how can they stay for decades in the brain without being attacked by many other non-specific proteases there? We believe that these long-lasting puzzles can be explained by calpain's unique properties, especially its unusual specificity and exclusivity in substrate recognition, which can protect the substrates from other proteases' attacks after calpain inactivation. Interestingly, our model, in essence, may also explain tau phosphorylation and the formation of amyloid plaques. Our studies suggest that α-secretase is an energy-/Ca(2+)-dual dependent protease and is also the primary determinant for Aβ levels. Therefore, β- and γ-secretases can only play secondary roles and, by biological laws, they are unlikely to be "positively identified". This study thus raises serious questions for policymakers and researchers and these questions may help explain why sAD can remain an enigma today.
Collapse
Affiliation(s)
- Ming Chen
- Aging Research Laboratory, Research and Development Service, Bay Pines Veterans Affairs Healthcare System Bay Pines, FL, USA ; Department of Molecular Pharmacology and Physiology, University of South Florida Tampa, FL, USA
| | - Huey T Nguyen
- Aging Research Laboratory, Research and Development Service, Bay Pines Veterans Affairs Healthcare System Bay Pines, FL, USA
| |
Collapse
|
32
|
Understanding the interaction determinants of CAPN1 inhibition by CAST4 from bovines using molecular modeling techniques. Molecules 2014; 19:14316-51. [PMID: 25215589 PMCID: PMC6271145 DOI: 10.3390/molecules190914316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022] Open
Abstract
HCV-induced CAPN activation and its effects on virus-infected cells in a host-immune system have been studied recently. It has been shown that the HCV-nonstructural 5A protein acts as both an inducer and a substrate for host CAPN protease; it participates in suppressing the TNF-α-induced apoptosis response and downstream IFN-induced antiviral processes. However, little is known regarding the disturbance of antiviral responses generated by bovine CAPN activation by BVDV, which is a surrogate model of HCV and is one of the most destructive diseases leading to great economic losses in cattle herds worldwide. This is also thought to be associated with the effects of either small CAPN inhibitors or the natural inhibitor CAST. They mainly bind to the binding site of CAPN substrate proteins and competitively inhibit the binding of the enzyme substrates to possibly defend against the two viruses (HCV and BVDV) for anti-viral immunity. To devise a new stratagem to discover lead candidates for an anti-BVDV drug, we first attempted to understand the bovine CAPN-CAST interaction sites and the interaction constraints of local binding architectures, were well reflected in the geometry between the pharmacophore features and its shape constraints identified using our modeled bovine CAPN1/CAST4 complex structures. We propose a computer-aided molecular design of an anti-BVDV drug as a mimetic CAST inhibitor to develop a rule-based screening function for adjusting the puzzle of relationship between bovine CAPN1 and the BVDV nonstructural proteins from all of the data obtained in the study.
Collapse
|
33
|
Abstract
Evolution has exploited the chemical properties of Ca(2+), which facilitate its reversible binding to the sites of irregular geometry offered by biological macromolecules, to select it as a carrier of cellular signals. A number of proteins bind Ca(2+) to specific sites: those intrinsic to membranes play the most important role in the spatial and temporal regulation of the concentration and movements of Ca(2+) inside cells. Those which are soluble, or organized in non-membranous structures, also decode the Ca(2+) message to be then transmitted to the targets of its regulation. Since Ca(2+) controls the most important processes in the life of cells, it must be very carefully controlled within the cytoplasm, where most of the targets of its signaling function reside. Membrane channels (in the plasma membrane and in the organelles) mediate the entrance of Ca(2+) into the cytoplasm, ATPases, exchangers, and the mitochondrial Ca(2+) uptake system remove Ca(2+) from it. The concentration of Ca(2+) in the external spaces, which is controlled essentially by its dynamic exchanges in the bone system, is much higher than inside cells, and can, under conditions of pathology, generate a situation of dangerous internal Ca(2+) overload. When massive and persistent, the Ca(2+) overload culminates in the death of the cell. Subtle conditions of cellular Ca(2+) dyshomeostasis that affect individual systems that control Ca(2+), generate cell disease phenotypes that are particularly severe in tissues in which the signaling function of Ca(2+) has special importance, e.g., the nervous system.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy,
| | | | | | | |
Collapse
|
34
|
The enterovirus protease inhibitor rupintrivir exerts cross-genotypic anti-norovirus activity and clears cells from the norovirus replicon. Antimicrob Agents Chemother 2014; 58:4675-81. [PMID: 24890597 DOI: 10.1128/aac.02546-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Potent and safe inhibitors of norovirus replication are needed for the treatment and prophylaxis of norovirus infections. We here report that the in vitro anti-norovirus activity of the protease inhibitor rupintrivir is extended to murine noroviruses and that rupintrivir clears human cells from their Norwalk replicon after only two passages of antiviral pressure. In addition, we demonstrate that rupintrivir inhibits the human norovirus (genogroup II [GII]) protease and further explain the inhibitory effect of the molecule by means of molecular modeling on the basis of the crystal structure of the Norwalk virus protease. The combination of rupintrivir with the RNA-dependent RNA polymerase inhibitors 2'-C-methylcytidine and favipiravir (T-705) resulted in a merely additive antiviral effect. The fact that rupintrivir is active against noroviruses belonging to genogroup I (Norwalk virus), genogroup V (murine norovirus), and the recombinant 3C-like protease of a GII norovirus suggests that the drug exerts cross-genotypic anti-norovirus activity and will thus most likely be effective against the clinically relevant human norovirus strains. The design of antiviral molecules targeting the norovirus protease could be a valuable approach for the treatment and/or prophylaxis of norovirus infections.
Collapse
|
35
|
Rosenberger TA. Targeting calpain-mediated proteolysis and peptide signaling as a strategy to reduce injury in multiple sclerosis. J Neurochem 2014; 130:161-4. [PMID: 24844646 DOI: 10.1111/jnc.12732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Thad A Rosenberger
- University of North Dakota School of Medicine and Health Sciences, Department of Basic Sciences, Grand Forks, North Dakota
| |
Collapse
|
36
|
Chai HH, Lim D, Lee SH, Chai HY, Jung E. Homology modeling study of bovine μ-calpain inhibitor-binding domains. Int J Mol Sci 2014; 15:7897-938. [PMID: 24806345 PMCID: PMC4057710 DOI: 10.3390/ijms15057897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 01/19/2023] Open
Abstract
The activated mammalian CAPN-structures, the CAPN/CAST complex in particular, have become an invaluable target model using the structure-based virtual screening of drug candidates from the discovery phase to development for over-activated CAPN linked to several diseases, such as post-ischemic injury and cataract formation. The effect of Ca2+-binding to the enzyme is thought to include activation, as well as the dissociation, aggregation, and autolysis of small regular subunits. Unfortunately, the Ca2+-activated enzyme tends to aggregate when provided as a divalent ion at the high-concentration required for the protease crystallization. This is also makes it very difficult to crystallize the whole-length enzyme itself, as well as the enzyme-inhibitor complex. Several parameters that influence CAPN activity have been investigated to determine its roles in Ca2+-modulation, autoproteolysis, phosphorylation, and intracellular distribution and inhibition by its endogenous inhibitor CAST. CAST binds and inhibits CAPN via its CAPN-inhibitor domains (four repeating domains 1–4; CAST1–4) when CAPN is activated by Ca2+-binding. An important key to understanding CAPN1 inhibition by CAST is to determine how CAST interacts at the molecular level with CAPN1 to inhibit its protease activity. In this study, a 3D structure model of a CAPN1 bound bovine CAST4 complex was built by comparative modeling based on the only known template structure of a rat CAPN2/CAST4 complex. The complex model suggests certain residues of bovine CAST4, notably, the TIPPKYQ motif sequence, and the structural elements of these residues, which are important for CAPN1 inhibition. In particular, as CAST4 docks near the flexible active site of CAPN1, conformational changes at the interaction site after binding could be directly related to CAST4 inhibitory activity. These functional interfaces can serve as a guide to the site-mutagenesis in research on bovine CAPN1 structure-function relationships for the design of small molecules inhibitors to prevent uncontrolled and unspecific degradation in the proteolysis of key protease substrates.
Collapse
Affiliation(s)
- Han-Ha Chai
- Animal Genome & Bioinformatics Division, National Institute of Animal Science, RDA, Suwon 441-706, Korea.
| | - Dajeong Lim
- Animal Genome & Bioinformatics Division, National Institute of Animal Science, RDA, Suwon 441-706, Korea.
| | - Seung-Hwan Lee
- Hanwoo Experiment Station, National Institute of Animal Science, RDA, PyeongChang 232-950, Korea.
| | - Hee-Yeoul Chai
- Division of Biosafety Evaluation and Control, Korea National Institute of Helth 187 Osongsaengmyeong2-ro, Gango-myeon, Cheongwon-gun, Chungcheongbuk-do 363-951, Korea.
| | - Eunkyoung Jung
- Insilicotech Co., Ltd., C-602 Korea Bio Park, 694-1 Sampyeong-Dong, Bundang-Gu, Seongnam-Shi, Gyeonggi-do 463-400, Korea.
| |
Collapse
|
37
|
Mihalikova A, Baliova M, Jursky F. Effect of phosphomimetic mutations on the C-terminal sensitivity of glycine transporter GlyT1 to calpain. Neurosci Res 2014; 81-82:85-91. [DOI: 10.1016/j.neures.2014.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/24/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|
38
|
Fan X, Zhang Q, You C, Qian Y, Gao J, Liu P, Chen H, Song H, Chen Y, Chen K, Zhou Y. Proteolysis of the human DNA polymerase delta smallest subunit p12 by μ-calpain in calcium-triggered apoptotic HeLa cells. PLoS One 2014; 9:e93642. [PMID: 24691096 PMCID: PMC3972206 DOI: 10.1371/journal.pone.0093642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
Degradation of p12 subunit of human DNA polymerase delta (Pol δ) that results in an interconversion between Pol δ4 and Pol δ3 forms plays a significant role in response to replication stress or genotoxic agents triggered DNA damage. Also, the p12 is readily degraded by human calpain in vitro. However, little has been done for the investigation of its degree of participation in any of the more common apoptosis. Here, we first report that the p12 subunit is a substrate of μ-calpain. In calcium-triggered apoptotic HeLa cells, the p12 is degraded at 12 hours post-induction (hpi), restored thereafter by 24 hpi, and then depleted again after 36 hpi in a time-dependent manner while the other three subunits are not affected. It suggests a dual function of Pol δ by its interconversion between Pol δ4 and Pol δ3 that is involved in a novel unknown apoptosis mechanism. The proteolysis of p12 could be efficiently blocked by both calpain inhibitor ALLN and proteasome inhibitor MG132. In vitro pull down and co-immunoprecipitation assays show that the μ-calpain binds to p12 through the interaction of μ-calpain with Pol δ other three subunits, not p12 itself, and PCNA, implying that the proteolysis of p12 by μ-calpain might be through a Pol δ4/PCNA complex. The p12 cleavage sites by μ-calpain are further determined as the location within a 16-amino acids peptide 28-43 by in vitro cleavage assays. Thus, the p12/Pol δ is a target as a nuclear substrate of μ-calpain in a calcium-triggered apoptosis and appears to be a potential marker in the study of the chemotherapy of cancer therapies.
Collapse
Affiliation(s)
- Xiaoting Fan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qian Zhang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Chao You
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yuanxia Qian
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing Gao
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Peng Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Huiqing Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Huifang Song
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yan Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yajing Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
39
|
Nguyen HT, Chen M. High-energy compounds mobilize intracellular Ca2+ and activate calpain in cultured cells: is calpain an energy-dependent protease? Brain Res Bull 2014; 102:9-14. [PMID: 24508187 DOI: 10.1016/j.brainresbull.2014.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 12/29/2022]
Abstract
Deficiency in energy metabolisms is perhaps the earliest modifiable defect in brain aging and sporadic Alzheimer's disease (sAD). Several high-energy compounds (HECs) such as ATP, phosphoenolpyruvate, phosphocreatine and acetyl coenzyme A have been shown to exhibit neuroprotective effects. To understand their mechanism of actions, we tested the effects of these HECs on intracellular Ca(2+), a central regulator in brain function. Our data showed that the HECs robustly and dose-dependently mobilized intracellular Ca(2+) in cultured SH-SY5Y cells, and the actions were sensitive to intracellular Ca(2+) chelator BAPTA-AM or energy metabolism blocker rotenone. The Ca(2+) influx triggered by the HECs was from both extracellular medium and intracellular stores and the HECs also induced repetitive Ca(2+) oscillations. As these actions were similar to those of classical Ca(2+) agonists, the HECs may be viewed as a new group of physiological Ca(2+) agonists. We also found that the HECs promoted the intracellular activity of calpain, a Ca(2+)-dependent protease, and the enzyme activity fluctuated in concert with cellular energy levels, suggesting that calpain activity may also be energy-driven or energy-dependent. These findings may add to current knowledge for the regulatory mechanisms of Ca(2+) and calpain. Since Ca(2+) and calpain undergo critical dysfunction in brain aging but the underlying mechanisms remain elusive, our work may provide a new perspective for clarifying some controversies. More importantly, the HECs, as key intermediates in glucose catabolism, the primary source of energy supply in the brain, may be used as potential drugs for rational prevention of sAD.
Collapse
Affiliation(s)
- Huey T Nguyen
- Aging Research Laboratory, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA
| | - Ming Chen
- Aging Research Laboratory, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA; Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
40
|
Kim C, Yun N, Lee YM, Jeong JY, Baek JY, Song HY, Ju C, Youdim MBH, Jin BK, Kim WK, Oh YJ. Gel-based protease proteomics for identifying the novel calpain substrates in dopaminergic neuronal cell. J Biol Chem 2013; 288:36717-32. [PMID: 24235151 DOI: 10.1074/jbc.m113.492876] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calpains are a family of calcium-dependent cysteine proteases that are ubiquitously expressed in mammals and play critical roles in neuronal death by catalyzing substrate proteolysis. Here, we developed two-dimensional gel electrophoresis-based protease proteomics to identify putative calpain substrates. To accomplish this, cellular lysates from neuronal cells were first separated by pI, and the immobilized sample on a gel strip was incubated with a recombinant calpain and separated by molecular weight. Among 25 altered protein spots that were differentially expressed by at least 2-fold, we confirmed that arsenical pump-driving ATPase, optineurin, and peripherin were cleaved by calpain using in vitro and in vivo cleavage assays. Furthermore, we found that all of these substrates were cleaved in MN9D cells treated with either ionomycin or 1-methyl-4-phenylpyridinium, both of which cause a calcium-mediated calpain activation. Their cleavage was blocked by calcium chelator or calpain inhibitors. In addition, calpain-mediated cleavage of these substrates and its inhibition by calpeptin were confirmed in a middle cerebral artery occlusion model of cerebral ischemia, as well as a stereotaxic brain injection model of Parkinson disease. Transient overexpression of each protein was shown to attenuate 1-methyl-4-phenylpyridinium-induced cell death, indicating that these substrates may confer protection of varying magnitudes against dopaminergic injury. Taken together, the data indicate that our protease proteomic method has the potential to be applicable for identifying proteolytic substrates affected by diverse proteases. Moreover, the results described here will help us decipher the molecular mechanisms underlying the progression of neurodegenerative disorders where protease activation is critically involved.
Collapse
Affiliation(s)
- Chiho Kim
- From the Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Calpain-1 inhibitors for selective treatment of rheumatoid arthritis: what is the future? Future Med Chem 2013; 5:2057-74. [DOI: 10.4155/fmc.13.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Effective small-molecule treatment of inflammatory diseases remains an unmet need in medicine. Current treatments are either limited in effectiveness or invasive. The latest biologics prevent influx of inflammatory cells to damaged tissue. Calpain-1 is a calcium-activated cysteine protease that plays an important role in neutrophil motility. It is, therefore, a potential target for intervention in inflammatory disease. Many inhibitors of calpains have been developed but most are unselective and so unsuitable for drug use. However, recent series of α-mercaptoacrylate inhibitors target regulatory domains of calpain-1 and are much more specific. These compounds are effective in impairing the cell spreading mechanism of neutrophils in vitro and raise the possibility of treating rheumatoid arthritis with a pill; however, challenges still remain. Improved bioavailability is needed and solution of their precise mode of action should prompt the development of specific calpain-1 screens for novel classes of inhibitors.
Collapse
|
42
|
Schiefer IT, Tapadar S, Litosh V, Siklos M, Scism R, Wijewickrama GT, Chandrasena EP, Sinha V, Tavassoli E, Brunsteiner M, Fa' M, Arancio O, Petukhov P, Thatcher GRJ. Design, synthesis, and optimization of novel epoxide incorporating peptidomimetics as selective calpain inhibitors. J Med Chem 2013; 56:6054-68. [PMID: 23834438 DOI: 10.1021/jm4006719] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperactivation of the calcium-dependent cysteine protease calpain 1 (Cal1) is implicated as a primary or secondary pathological event in a wide range of illnesses and in neurodegenerative states, including Alzheimer's disease (AD). E-64 is an epoxide-containing natural product identified as a potent nonselective, calpain inhibitor, with demonstrated efficacy in animal models of AD. By use of E-64 as a lead, three successive generations of calpain inhibitors were developed using computationally assisted design to increase selectivity for Cal1. First generation analogues were potent inhibitors, effecting covalent modification of recombinant Cal1 catalytic domain (Cal1cat), demonstrated using LC-MS/MS. Refinement yielded second generation inhibitors with improved selectivity. Further library expansion and ligand refinement gave three Cal1 inhibitors, one of which was designed as an activity-based protein profiling probe. These were determined to be irreversible and selective inhibitors by kinetics studies comparing full length Cal1 with the general cysteine protease papain.
Collapse
Affiliation(s)
- Isaac T Schiefer
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612-7231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Li F, Yu J, Zhang Z, Cui Z, Wang D, Wei H, Zhang XE. Use of hGluc/tdTomato pair for sensitive BRET sensing of protease with high solution media tolerance. Talanta 2013; 109:141-6. [PMID: 23618151 DOI: 10.1016/j.talanta.2013.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/25/2013] [Accepted: 02/01/2013] [Indexed: 11/23/2022]
Abstract
Due to the complicated media, monitoring proteases in real physiological environments is still a big challenge. Bioluminescence resonance energy transfer (BRET) is one of the promising techniques but its application is limited by the susceptibility to buffer composition, which might cause serious errors for the assay. Herein we report a novel combination of BRET pair with humanized Gaussia luciferase (hGluc) and highly bright red fluorescence protein tdTomato for sensitive and robust protease activity determination. As a result, the hGluc/tdTomato BRET pair showed much better tolerance to buffer composition, pH and sample matrices, and wide spectral separation (Δλ:~110 nm). With the protease sensor built with this pair, the detection limit for enterokinase reached 2.1 pM in pure buffer and 3.3 pM in 3% serum. The proposed pair would find broad use in both in vitro and in vivo assays, especially for samples with complicated matrix.
Collapse
Affiliation(s)
- Fengyun Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Kim Y, Mandadapu SR, Groutas WC, Chang KO. Potent inhibition of feline coronaviruses with peptidyl compounds targeting coronavirus 3C-like protease. Antiviral Res 2013; 97:161-8. [PMID: 23219425 PMCID: PMC3563934 DOI: 10.1016/j.antiviral.2012.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/18/2012] [Accepted: 11/15/2012] [Indexed: 12/21/2022]
Abstract
Feline coronavirus infection is common among domestic and exotic felid species and usually associated with mild or asymptomatic enteritis; however, feline infectious peritonitis (FIP) is a fatal disease of cats that is caused by systemic infection with a feline infectious peritonitis virus (FIPV), a variant of feline enteric coronavirus (FECV). Currently, there is no specific treatment approved for FIP despite the importance of FIP as the leading infectious cause of death in young cats. During the replication process, coronavirus produces viral polyproteins that are processed into mature proteins by viral proteases, the main protease (3C-like [3CL] protease) and the papain-like protease. Since the cleavages of viral polyproteins are an essential step for virus replication, blockage of viral protease is an attractive target for therapeutic intervention. Previously, we reported the generation of broad-spectrum peptidyl inhibitors against viruses that possess a 3C or 3CL protease. In this study, we further evaluated the antiviral effects of the peptidyl inhibitors against feline coronaviruses, and investigated the interaction between our protease inhibitor and a cathepsin B inhibitor, an entry blocker, against a feline coronavirus in cell culture. Herein we report that our compounds behave as reversible, competitive inhibitors of 3CL protease, potently inhibited the replication of feline coronaviruses (EC(50) in a nanomolar range) and, furthermore, combination of cathepsin B and 3CL protease inhibitors led to a strong synergistic interaction against feline coronaviruses in a cell culture system.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66506, USA.
| | | | | | | |
Collapse
|
45
|
Abstract
Calpains are a family of complex multi-domain intracellular enzymes that share a calcium-dependent cysteine protease core. These are not degradative enzymes, but instead carry out limited cleavage of target proteins in response to calcium signalling. Selective cutting of cytoskeletal proteins to facilitate cell migration is one such function. The two most abundant and extensively studied members of this family in mammals, calpains 1 and 2, are heterodimers of an isoform-specific 80 kDa large subunit and a common 28 kDa small subunit. Structures of calpain-2, both Ca2+-free and bound to calpastatin in the activated Ca2+-bound state, have provided a wealth of information about the enzyme's structure-function relationships and activation. The main association between the subunits is the pairing of their C-terminal penta-EF-hand domains through extensive intimate hydrophobic contacts. A lesser contact is made between the N-terminal anchor helix of the large subunit and the penta-EF-hand domain of the small subunit. Up to ten Ca2+ ions are co-operatively bound during activation. The anchor helix is released and individual domains change their positions relative to each other to properly align the active site. Because calpains 1 and 2 require ~30 and ~350 μM Ca2+ ions for half-maximal activation respectively, it has long been argued that autoproteolysis, subunit dissociation, post-translational modifications or auxiliary proteins are needed to activate the enzymes in the cell, where Ca2+ levels are in the nanomolar range. In the absence of robust support for these mechanisms, it is possible that under normal conditions calpains are transiently activated by high Ca2+ concentrations in the microenvironment of a Ca2+ influx, and then return to an inactive state ready for reactivation.
Collapse
|
46
|
Fan YX, Zhang Y, Shen HB. LabCaS: labeling calpain substrate cleavage sites from amino acid sequence using conditional random fields. Proteins 2012. [PMID: 23180633 DOI: 10.1002/prot.24217] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The calpain family of Ca(2+) -dependent cysteine proteases plays a vital role in many important biological processes which is closely related with a variety of pathological states. Activated calpains selectively cleave relevant substrates at specific cleavage sites, yielding multiple fragments that can have different functions from the intact substrate protein. Until now, our knowledge about the calpain functions and their substrate cleavage mechanisms are limited because the experimental determination and validation on calpain binding are usually laborious and expensive. In this work, we aim to develop a new computational approach (LabCaS) for accurate prediction of the calpain substrate cleavage sites from amino acid sequences. To overcome the imbalance of negative and positive samples in the machine-learning training which have been suffered by most of the former approaches when splitting sequences into short peptides, we designed a conditional random field algorithm that can label the potential cleavage sites directly from the entire sequences. By integrating the multiple amino acid features and those derived from sequences, LabCaS achieves an accurate recognition of the cleave sites for most calpain proteins. In a jackknife test on a set of 129 benchmark proteins, LabCaS generates an AUC score 0.862. The LabCaS program is freely available at: http://www.csbio.sjtu.edu.cn/bioinf/LabCaS. Proteins 2013. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yong-Xian Fan
- Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | | | | |
Collapse
|
47
|
Zhang S, Kim TS, Dong Y, Kanazawa S, Kawaguchi M, Gao N, Minato H, Takegami T, Nojima T, Asai K, Miura Y. AT motif binding factor 1 (ATBF1) is highly phosphorylated in embryonic brain and protected from cleavage by calpain-1. Biochem Biophys Res Commun 2012; 427:537-41. [PMID: 23022192 DOI: 10.1016/j.bbrc.2012.09.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 09/15/2012] [Indexed: 12/12/2022]
Abstract
ATBF1 is a transcription factor that regulates genes responsible for repairing tissues and the protection of cells from oxidative stress. Therefore reduction of ATBF1 promotes susceptibility to varieties of human diseases including neurodegenerative diseases and malignant tumors. The instability of the protein was found to be an important background of diseases. Because ATBF1 is composed of a large 404-kDa protein, it can be easily targeted by proteinases. The protein instability should be a serious problem for the function in the cells and practically for our biochemical study of ATBF1. We have found that calpain-1 is a protease responsible for the degeneration of ATBF1. We observed distinct difference between embryo and adult brain derived ATBF1 regarding the sensitivity to calpain-1. The comparative study showed that eight phosphorylated serine residues (Ser1600, Ser2634, Ser2795, Ser2804, Ser2900, Ser3431, Ser3613, Ser3697) in embryonic brain, but only one site (Ser2634) in adult brain. As long as these amino acids were phosphorylated, ATBF1 derived from embryonic mouse brain showed resistance to cleavage; however, treatment with calf intestine alkaline phosphatase sensitized ATBF1 to be digested by calpain-1. An inhibitor (FK506) against calcineurin, which is a serine/threonine specific phosphatase enhanced the resistance of ATBF1 against the digestion by calpain-1. Taken together, these results demonstrate that these phosphorylation sites on ATBF1 function as a defensive shield to calpain-1.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Leishmania (L.) amazonensis peptidase activities inside the living cells and in their lysates. Mol Biochem Parasitol 2012; 184:82-9. [DOI: 10.1016/j.molbiopara.2012.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/13/2012] [Accepted: 04/27/2012] [Indexed: 11/22/2022]
|
49
|
Abstract
Calpains, a family of Ca(2+)-dependent cytosolic cysteine proteases, can modulate their substrates' structure and function through limited proteolytic activity. In the human genome, there are 15 calpain genes. The most-studied calpains, referred to as conventional calpains, are ubiquitous. While genetic studies in mice have improved our understanding about the conventional calpains' physiological functions, especially those essential for mammalian life as in embryogenesis, many reports have pointed to overactivated conventional calpains as an exacerbating factor in pathophysiological conditions such as cardiovascular diseases and muscular dystrophies. For treatment of these diseases, calpain inhibitors have always been considered as drug targets. Recent studies have introduced another aspect of calpains that calpain activity is required to protect the heart and skeletal muscle against stress. This review summarizes the functions and regulation of calpains, focusing on the relevance of calpains to cardiovascular disease.
Collapse
Affiliation(s)
- Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | |
Collapse
|
50
|
The atypical calpains: evolutionary analyses and roles in Caenorhabditis elegans cellular degeneration. PLoS Genet 2012; 8:e1002602. [PMID: 22479198 PMCID: PMC3315469 DOI: 10.1371/journal.pgen.1002602] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/04/2012] [Indexed: 01/17/2023] Open
Abstract
The calpains are physiologically important Ca2+-activated regulatory proteases, which are divided into typical or atypical sub-families based on constituent domains. Both sub-families are present in mammals, but our understanding of calpain function is based primarily on typical sub-family members. Here, we take advantage of the model organism Caenorhabditis elegans, which expresses only atypical calpains, to extend our knowledge of the phylogenetic evolution and function of calpains. We provide evidence that a typical human calpain protein with a penta EF hand, detected using custom profile hidden Markov models, is conserved in ancient metazoans and a divergent clade. These analyses also provide evidence for the lineage-specific loss of typical calpain genes in C. elegans and Ciona, and they reveal that many calpain-like genes lack an intact catalytic triad. Given the association between the dysregulation of typical calpains and human degenerative pathologies, we explored the phenotypes, expression profiles, and consequences of inappropriate reduction or activation of C. elegans atypical calpains. These studies show that the atypical calpain gene, clp-1, contributes to muscle degeneration and reveal that clp-1 activity is sensitive to genetic manipulation of [Ca2+]i. We show that CLP-1 localizes to sarcomeric sub-structures, but is excluded from dense bodies (Z-disks). We find that the muscle degeneration observed in a C. elegans model of dystrophin-based muscular dystrophy can be suppressed by clp-1 inactivation and that nemadipine-A inhibition of the EGL-19 calcium channel reveals that Ca2+ dysfunction underlies the C. elegans MyoD model of myopathy. Taken together, our analyses highlight the roles of calcium dysregulation and CLP-1 in muscle myopathies and suggest that the atypical calpains could retain conserved roles in myofilament turnover. Calpains are calcium activated non-lysosomal proteases that cleave proteins with exquisite selectivity. Proteins can be activated by calpain cleavage, because they are released from inhibitory constraints, or they can be targeted for further degradation to facilitate their normal physiological turnover or to promote cellular remodelling. Inappropriate calpain activity can lead to degenerative pathologies and cancers. Our understanding of calpain function is based primarily on typical calpains, which carry EF hand motifs that bind Ca2+ or mediate dimerization; however, typical and atypical calpains, which lack EF hand motifs, are both present in mammals. Hence, any therapeutic intervention designed to suppress degenerative conditions, particularly those caused by elevated Ca2+ levels, should also consider the potential involvement of atypical calpains. We have taken advantage of the model organism C. elegans, which only encodes atypical calpain proteins, to gain an understanding of the evolution and activities of these proteins. We show that the CLP-1 atypical calpain is normally expressed in muscle and localizes to sarcomeric sub-structures. We find that CLP-1 contributes to the muscle degeneration observed in a model of Duchenne muscular dystrophy. Our studies also highlight the importance of calcium dysregulation in promoting CLP-1 activity and muscle degeneration.
Collapse
|