1
|
Cáceres JC, Dolmatch A, Greene BL. The Mechanism of Inhibition of Pyruvate Formate Lyase by Methacrylate. J Am Chem Soc 2023; 145:22504-22515. [PMID: 37797332 PMCID: PMC10591478 DOI: 10.1021/jacs.3c07256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Indexed: 10/07/2023]
Abstract
Pyruvate Formate Lyase (PFL) catalyzes acetyl transfer from pyruvate to coenzyme a by a mechanism involving multiple amino acid radicals. A post-translationally installed glycyl radical (G734· in Escherichia coli) is essential for enzyme activity and two cysteines (C418 and C419) are proposed to form thiyl radicals during turnover, yet their unique roles in catalysis have not been directly demonstrated with both structural and electronic resolution. Methacrylate is an isostructural analog of pyruvate and an informative irreversible inhibitor of pfl. Here we demonstrate the mechanism of inhibition of pfl by methacrylate. Treatment of activated pfl with methacrylate results in the conversion of the G734· to a new radical species, concomitant with enzyme inhibition, centered at g = 2.0033. Spectral simulations, reactions with methacrylate isotopologues, and Density Functional Theory (DFT) calculations support our assignment of the radical to a C2 tertiary methacryl radical. The reaction is specific for C418, as evidenced by mass spectrometry. The methacryl radical decays over time, reforming G734·, and the decay exhibits a H/D solvent isotope effect of 3.4, consistent with H-atom transfer from an ionizable donor, presumably the C419 sulfhydryl group. Acrylate also inhibits PFL irreversibly, and alkylates C418, but we did not observe an acryl secondary radical in H2O or in D2O within 10 s, consistent with our DFT calculations and the expected reactivity of a secondary versus tertiary carbon-centered radical. Together, the results support unique roles of the two active site cysteines of PFL and a C419 S-H bond dissociation energy between that of a secondary and tertiary C-H bond.
Collapse
Affiliation(s)
- Juan Carlos Cáceres
- Biomolecular
Science and Engineering Program, University
of California, Santa
Barbara, California 93106, United States
| | - August Dolmatch
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Brandon L. Greene
- Biomolecular
Science and Engineering Program, University
of California, Santa
Barbara, California 93106, United States
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| |
Collapse
|
2
|
Blasl AT, Schulze S, Qin C, Graf LG, Vogt R, Lammers M. Post-translational lysine ac(et)ylation in health, ageing and disease. Biol Chem 2021; 403:151-194. [PMID: 34433238 DOI: 10.1515/hsz-2021-0139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
The acetylation/acylation (ac(et)ylation) of lysine side chains is a dynamic post-translational modification (PTM) regulating fundamental cellular processes with implications on the organisms' ageing process: metabolism, transcription, translation, cell proliferation, regulation of the cytoskeleton and DNA damage repair. First identified to occur on histones, later studies revealed the presence of lysine ac(et)ylation in organisms of all kingdoms of life, in proteins covering all essential cellular processes. A remarkable finding showed that the NAD+-dependent sirtuin deacetylase Sir2 has an impact on replicative lifespan in Saccharomyces cerevisiae suggesting that lysine acetylation has a direct role in the ageing process. Later studies identified sirtuins as mediators for beneficial effects of caloric/dietary restriction on the organisms' health- or lifespan. However, the molecular mechanisms underlying these effects are only incompletely understood. Progress in mass-spectrometry, structural biology, synthetic and semi-synthetic biology deepened our understanding of this PTM. This review summarizes recent developments in the research field. It shows how lysine ac(et)ylation regulates protein function, how it is regulated enzymatically and non-enzymatically, how a dysfunction in this post-translational machinery contributes to disease development. A focus is set on sirtuins and lysine acyltransferases as these are direct sensors and mediators of the cellular metabolic state. Finally, this review highlights technological advances to study lysine ac(et)ylation.
Collapse
Affiliation(s)
- Anna-Theresa Blasl
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Robert Vogt
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| |
Collapse
|
3
|
Zhang B, Lingga C, Bowman C, Hackmann TJ. A New Pathway for Forming Acetate and Synthesizing ATP during Fermentation in Bacteria. Appl Environ Microbiol 2021; 87:e0295920. [PMID: 33931420 PMCID: PMC8231725 DOI: 10.1128/aem.02959-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Many bacteria and other organisms carry out fermentations forming acetate. These fermentations have broad importance for foods, agriculture, and industry. They also are important for bacteria themselves because they often generate ATP. Here, we found a biochemical pathway for forming acetate and synthesizing ATP that was unknown in fermentative bacteria. We found that the bacterium Cutibacterium granulosum formed acetate during fermentation of glucose. It did not use phosphotransacetylase or acetate kinase, enzymes found in nearly all acetate-forming bacteria. Instead, it used a pathway involving two different enzymes. The first enzyme, succinyl coenzyme A (succinyl-CoA):acetate CoA-transferase (SCACT), forms acetate from acetyl-CoA. The second enzyme, succinyl-CoA synthetase (SCS), synthesizes ATP. We identified the genes encoding these enzymes, and they were homologs of SCACT and SCS genes found in other bacteria. The pathway resembles one described in eukaryotes, but it uses bacterial, not eukaryotic, gene homologs. To find other instances of the pathway, we analyzed sequences of all biochemically characterized homologs of SCACT and SCS (103 enzymes from 64 publications). Homologs with similar enzymatic activity had similar sequences, enabling a large-scale search for them in genomes. We searched nearly 600 genomes of bacteria known to form acetate, and we found that 6% encoded homologs with SCACT and SCS activity. This included >30 species belonging to 5 different phyla, showing that a diverse range of bacteria encode the SCACT/SCS pathway. This work suggests the SCACT/SCS pathway is important for acetate formation in many branches of the tree of life. IMPORTANCE Pathways for forming acetate during fermentation have been studied for over 80 years. In that time, several pathways in a range of organisms, from bacteria to animals, have been described. However, one pathway (involving succinyl-CoA:acetate CoA-transferase and succinyl-CoA synthetase) has not been reported in prokaryotes. Here, we discovered enzymes for this pathway in the fermentative bacterium Cutibacterium granulosum. We also found >30 other fermentative bacteria that encode this pathway, demonstrating that it could be common. This pathway represents a new way for bacteria to form acetate from acetyl-CoA and synthesize ATP via substrate-level phosphorylation. It could be a target for controlling yield of acetate during fermentation, with relevance for foods, agriculture, and industry.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Animal Science, University of California, Davis, California, USA
| | - Christopher Lingga
- Department of Animal Science, University of California, Davis, California, USA
| | - Courtney Bowman
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Timothy J. Hackmann
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
4
|
Kong L, Price NM. Transcriptomes of an oceanic diatom reveal the initial and final stages of acclimation to copper deficiency. Environ Microbiol 2021; 24:951-966. [PMID: 34029435 DOI: 10.1111/1462-2920.15609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
Copper (Cu) concentration is greatly reduced in the open sea so that phytoplankton must adjust their uptake systems and acclimate to sustain growth. Acclimation to low Cu involves changes to the photosynthetic apparatus and specific biochemical reactions that use Cu, but little is known how Cu affects cellular metabolic networks. Here we report results of whole transcriptome analysis of a plastocyanin-containing diatom, Thalassiosira oceanica 1005, during its initial stages of acclimation and after long-term adaptation in Cu-deficient seawater. Gene expression profiles, used to identify Cu-regulated metabolic pathways, show downregulation of anabolic and energy-yielding reactions in Cu-limited cells. These include the light reactions of photosynthesis, carbon fixation, nitrogen assimilation and glycolysis. Reduction of these pathways is consistent with reduced growth requirements for C and N caused by slower rates of photosynthetic electron transport. Upregulation of oxidative stress defence systems persists in adapted cells, suggesting cellular damage by increased reactive oxygen species (ROS) occurs even after acclimation. Copper deficiency also alters fatty acid metabolism, possibly in response to an increase in lipid peroxidation and membrane damage driven by ROS. During the initial stages of Cu-limitation the majority of differentially regulated genes are associated with photosynthetic metabolism, highlighting the chloroplast as the primary target of low Cu availability. The results provide insights into the mechanisms of acclimation and adaptation of T. oceanica to Cu deficiency.
Collapse
Affiliation(s)
- Liangliang Kong
- Department of Biology, McGill University, Montréal, QC, Canada.,College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Neil M Price
- Department of Biology, McGill University, Montréal, QC, Canada
| |
Collapse
|
5
|
Occurrence, Evolution and Specificities of Iron-Sulfur Proteins and Maturation Factors in Chloroplasts from Algae. Int J Mol Sci 2021; 22:ijms22063175. [PMID: 33804694 PMCID: PMC8003979 DOI: 10.3390/ijms22063175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
Iron-containing proteins, including iron-sulfur (Fe-S) proteins, are essential for numerous electron transfer and metabolic reactions. They are present in most subcellular compartments. In plastids, in addition to sustaining the linear and cyclic photosynthetic electron transfer chains, Fe-S proteins participate in carbon, nitrogen, and sulfur assimilation, tetrapyrrole and isoprenoid metabolism, and lipoic acid and thiamine synthesis. The synthesis of Fe-S clusters, their trafficking, and their insertion into chloroplastic proteins necessitate the so-called sulfur mobilization (SUF) protein machinery. In the first part, we describe the molecular mechanisms that allow Fe-S cluster synthesis and insertion into acceptor proteins by the SUF machinery and analyze the occurrence of the SUF components in microalgae, focusing in particular on the green alga Chlamydomonas reinhardtii. In the second part, we describe chloroplastic Fe-S protein-dependent pathways that are specific to Chlamydomonas or for which Chlamydomonas presents specificities compared to terrestrial plants, putting notable emphasis on the contribution of Fe-S proteins to chlorophyll synthesis in the dark and to the fermentative metabolism. The occurrence and evolutionary conservation of these enzymes and pathways have been analyzed in all supergroups of microalgae performing oxygenic photosynthesis.
Collapse
|
6
|
van Lis R, Couté Y, Brugière S, Tourasse NJ, Laurent B, Nitschke W, Vallon O, Atteia A. Phylogenetic and functional diversity of aldehyde-alcohol dehydrogenases in microalgae. PLANT MOLECULAR BIOLOGY 2021; 105:497-511. [PMID: 33415608 DOI: 10.1007/s11103-020-01105-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The study shows the biochemical and enzymatic divergence between the two aldehyde-alcohol dehydrogenases of the alga Polytomella sp., shedding light on novel aspects of the enzyme evolution amid unicellular eukaryotes. Aldehyde-alcohol dehydrogenases (ADHEs) are large metalloenzymes that typically perform the two-step reduction of acetyl-CoA into ethanol. These enzymes consist of an N-terminal acetylating aldehyde dehydrogenase domain (ALDH) and a C-terminal alcohol dehydrogenase (ADH) domain. ADHEs are present in various bacterial phyla as well as in some unicellular eukaryotes. Here we focus on ADHEs in microalgae, a diverse and polyphyletic group of plastid-bearing unicellular eukaryotes. Genome survey shows the uneven distribution of the ADHE gene among free-living algae, and the presence of two distinct genes in various species. We show that the non-photosynthetic Chlorophyte alga Polytomella sp. SAG 198.80 harbors two genes for ADHE-like enzymes with divergent C-terminal ADH domains. Immunoblots indicate that both ADHEs accumulate in Polytomella cells growing aerobically on acetate or ethanol. ADHE1 of ~ 105-kDa is found in particulate fractions, whereas ADHE2 of ~ 95-kDa is mostly soluble. The study of the recombinant enzymes revealed that ADHE1 has both the ALDH and ADH activities, while ADHE2 has only the ALDH activity. Phylogeny shows that the divergence occurred close to the root of the Polytomella genus within a clade formed by the majority of the Chlorophyte ADHE sequences, next to the cyanobacterial clade. The potential diversification of function in Polytomella spp. unveiled here likely took place after the loss of photosynthesis. Overall, our study provides a glimpse at the complex evolutionary history of the ADHE in microalgae which includes (i) acquisition via different gene donors, (ii) gene duplication and (iii) independent evolution of one of the two enzymatic domains.
Collapse
Affiliation(s)
- Robert van Lis
- Aix Marseille Université, CNRS, BIP UMR 7281, Marseille, France
- LBE, Univ Montpellier, INRAE, Narbonne, France
| | - Yohann Couté
- Univ Grenoble Alpes, CEA, INSERM, IRIG, Grenoble, BGE, France
| | - Sabine Brugière
- Univ Grenoble Alpes, CEA, INSERM, IRIG, Grenoble, BGE, France
| | - Nicolas J Tourasse
- UMR7141 CNRS-Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - Benoist Laurent
- FR 550 CNRS, Institut de Biologie Physico-Chimique, Paris, France
| | | | - Olivier Vallon
- UMR7141 CNRS-Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - Ariane Atteia
- Aix Marseille Université, CNRS, BIP UMR 7281, Marseille, France.
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France.
- MARBEC, Station Ifremer, Avenue Jean Monnet, Sète, France.
| |
Collapse
|
7
|
Binas O, Schamber T, Schwalbe H. The conformational landscape of transcription intermediates involved in the regulation of the ZMP-sensing riboswitch from Thermosinus carboxydivorans. Nucleic Acids Res 2020; 48:6970-6979. [PMID: 32479610 PMCID: PMC7337938 DOI: 10.1093/nar/gkaa427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/29/2020] [Indexed: 01/30/2023] Open
Abstract
Recently, prokaryotic riboswitches have been identified that regulate transcription in response to change of the concentration of secondary messengers. The ZMP (5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR))-sensing riboswitch from Thermosinus carboxydivorans is a transcriptional ON-switch that is involved in purine and carbon-1 metabolic cycles. Its aptamer domain includes the pfl motif, which features a pseudoknot, impeding rho-independent terminator formation upon stabilization by ZMP interaction. We herein investigate the conformational landscape of transcriptional intermediates including the expression platform of this riboswitch and characterize the formation and unfolding of the important pseudoknot structure in the context of increasing length of RNA transcripts. NMR spectroscopic data show that even surprisingly short pre-terminator stems are able to disrupt ligand binding and thus metabolite sensing. We further show that the pseudoknot structure, a prerequisite for ligand binding, is preformed in transcription intermediates up to a certain length. Our results describe the conformational changes of 13 transcription intermediates of increasing length to delineate the change in structure as mRNA is elongated during transcription. We thus determine the length of the key transcription intermediate to which addition of a single nucleotide leads to a drastic drop in ZMP affinity.
Collapse
Affiliation(s)
- Oliver Binas
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Tatjana Schamber
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| |
Collapse
|
8
|
Hasni I, Decloquement P, Demanèche S, Mameri RM, Abbe O, Colson P, La Scola B. Insight into the Lifestyle of Amoeba Willaertia magna during Bioreactor Growth Using Transcriptomics and Proteomics. Microorganisms 2020; 8:microorganisms8050771. [PMID: 32455615 PMCID: PMC7285305 DOI: 10.3390/microorganisms8050771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Willaertia magna C2c maky is a thermophilic free-living amoeba strain that showed ability to eliminate Legionella pneumophila, a pathogenic bacterium living in the aquatic environment. The amoeba industry has proposed the use of Willaertia magna as a natural biocide to control L. pneumophila proliferation in cooling towers. Here, transcriptomic and proteomic studies were carried out in order to expand knowledge on W. magna produced in a bioreactor. Illumina RNA-seq generated 217 million raw reads. A total of 8790 transcripts were identified, of which 6179 and 5341 were assigned a function through comparisons with National Center of Biotechnology Information (NCBI) reference sequence and the Clusters of Orthologous Groups of proteins (COG) databases, respectively. To corroborate these transcriptomic data, we analyzed the W. magna proteome using LC–MS/MS. A total of 3561 proteins were identified. The results of transcriptome and proteome analyses were highly congruent. Metabolism study showed that W. magna preferentially consumed carbohydrates and fatty acids to grow. Finally, an in-depth analysis has shown that W. magna produces several enzymes that are probably involved in the metabolism of secondary metabolites. Overall, our multi-omic study of W. magna opens the way to a better understanding of the genetics and biology of this amoeba.
Collapse
Affiliation(s)
- Issam Hasni
- Aix-Marseille University, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), UM63, 13005 Marseille, France; (I.H.); (P.D.); (P.C.)
- R&D Department, Amoéba, 69680 Chassieu, France; (S.D.); (R.M.M.); (O.A.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
| | - Philippe Decloquement
- Aix-Marseille University, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), UM63, 13005 Marseille, France; (I.H.); (P.D.); (P.C.)
| | - Sandrine Demanèche
- R&D Department, Amoéba, 69680 Chassieu, France; (S.D.); (R.M.M.); (O.A.)
| | - Rayane Mouh Mameri
- R&D Department, Amoéba, 69680 Chassieu, France; (S.D.); (R.M.M.); (O.A.)
| | - Olivier Abbe
- R&D Department, Amoéba, 69680 Chassieu, France; (S.D.); (R.M.M.); (O.A.)
| | - Philippe Colson
- Aix-Marseille University, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), UM63, 13005 Marseille, France; (I.H.); (P.D.); (P.C.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
| | - Bernard La Scola
- Aix-Marseille University, Institut de Recherche pour le Développement IRD 198, Assistance Publique—Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), UM63, 13005 Marseille, France; (I.H.); (P.D.); (P.C.)
- Institut Hospitalo-Universitaire (IHU)—Méditerranée Infection, 13005 Marseille, France
- Correspondence: ; Tel.: +33-4-9132-4375; Fax: +33-4-9138-7772
| |
Collapse
|
9
|
Gholizadeh M, Fayazi J, Asgari Y, Zali H, Kaderali L. Reconstruction and Analysis of Cattle Metabolic Networks in Normal and Acidosis Rumen Tissue. Animals (Basel) 2020; 10:ani10030469. [PMID: 32168900 PMCID: PMC7142512 DOI: 10.3390/ani10030469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Economics of feedlot beef production dictate that beef cattle must gain weight at their maximum potential rate; this involves getting them quickly onto a full feed of high fermentable diet which can induce the ruminal acidosis disease. The molecular host mechanisms that occur as a response to the acidosis, are mostly unknown. For answering this question, the rumen epithelial transcriptome in acidosis and control fattening steers were obtained. By RNA sequencing we found the different expression profiles of genes in normal and acidosis induced steers. Then we constructed two metabolic networks for normal and acidosis tissue based on gene expression profile. Our results suggest that rapid shifts to diets rich in fermentable carbohydrates cause an increased concentration of ruminal volatile fatty acids (VFA) and toxins and significant changes in transcriptome profiles and metabolites of rumen epithelial tissue, with negative effects on economic consequences of poor performance and animal health. Abstract The objective of this study was to develop a system-level understanding of acidosis biology. Therefore, the genes expression differences between the normal and acidosis rumen epithelial tissues were first examined using the RNA-seq data in order to understand the molecular mechanisms involved in the disease and then their corresponding metabolic networks constructed. A number of 1074 genes, 978 isoforms, 1049 transcription start sites (TSS), 998 coding DNA sequence (CDS) and 2 promoters were identified being differentially expressed in the rumen tissue between the normal and acidosis samples (p < 0.05). The functional analysis of 627 up-regulated genes revealed their involvement in ion transmembrane transport, filament organization, regulation of cell adhesion, regulation of the actin cytoskeleton, ATP binding, glucose transmembrane transporter activity, carbohydrate binding, growth factor binding and cAMP metabolic process. Additionally, 111 differentially expressed enzymes were identified between the rumen epithelial tissue of the normal and acidosis steers with 46 up-regulated and 65 down-regulated ones in the acidosis group. The pathways and reactions analyses associated with the up-regulated enzymes indicate that most of these enzymes are involved in the fatty acid metabolism, biosynthesis of amino acids, pyruvate and carbon metabolism while most of the down-regulated ones are involved in purine and pyrimidine, vitamin B6 and antibiotics metabolisms. The degree distribution of both metabolic networks follows a power-law one, hence displaying a scale-free property. The top 15 hub metabolites were determined in the acidosis metabolic network with most of them involved in the fatty acid oxidation, VFA biosynthesis, amino acid biogenesis and glutathione metabolism which plays an important role in the stress condition. The limitations of this study were low number of animals and using only epithelial tissue (ventral sac) for RNA-seq.
Collapse
Affiliation(s)
- Maryam Gholizadeh
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz 6341773637, Iran;
| | - Jamal Fayazi
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz 6341773637, Iran;
- Correspondence: ; Tel.: +98-91-6612-4162
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran;
| | - Hakimeh Zali
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany;
| |
Collapse
|
10
|
van Lis R, Brugière S, Baffert C, Couté Y, Nitschke W, Atteia A. Hybrid cluster proteins in a photosynthetic microalga. FEBS J 2019; 287:721-735. [PMID: 31361397 DOI: 10.1111/febs.15025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/21/2019] [Accepted: 07/28/2019] [Indexed: 11/30/2022]
Abstract
Hybrid cluster proteins (HCPs) are metalloproteins characterized by the presence of an iron-sulfur-oxygen cluster. These proteins occur in all three domains of life. In eukaryotes, HCPs have so far been found only in a few anaerobic parasites and photosynthetic microalgae. With respect to all species harboring an HCP, the green microalga Chlamydomonas reinhardtii stands out by the presence of four HCP genes. The study of the gene and protein structures as well as the phylogenetic analyses strongly support a model in which the HCP family in the alga has emerged from a single gene of alpha proteobacterial origin and then expanded by several rounds of duplications. The spectra and redox properties of HCP1 and HCP3, produced heterologously in Escherichia coli, were analyzed by electron paramagnetic resonance spectroscopy on redox-titrated samples. Both proteins contain a [4Fe-4S]-cluster as well as a [4Fe-2O-2S]-hybrid cluster with paramagnetic properties related to those of HCPs from Desulfovibrio species. Immunoblotting experiments combined with mass spectrometry-based proteomics showed that both nitrate and darkness contribute to the strong upregulation of the HCP levels in C. reinhardtii growing under oxic conditions. The link to the nitrate metabolism is discussed in the light of recent data on the potential role of HCP in S-nitrosylation in bacteria.
Collapse
Affiliation(s)
- Robert van Lis
- Aix Marseille Univ, CNRS, Unité de Bioénergétique et Ingénierie des Protéines, UMR 7281, Marseille, France.,LBE, Univ Montpellier, INRA, Narbonne, France
| | - Sabine Brugière
- Univ Grenoble Alpes, CEA and INSERM, BIG-BGE, Grenoble, France
| | - Carole Baffert
- Aix Marseille Univ, CNRS, Unité de Bioénergétique et Ingénierie des Protéines, UMR 7281, Marseille, France
| | - Yohann Couté
- Univ Grenoble Alpes, CEA and INSERM, BIG-BGE, Grenoble, France
| | - Wolfgang Nitschke
- Aix Marseille Univ, CNRS, Unité de Bioénergétique et Ingénierie des Protéines, UMR 7281, Marseille, France
| | - Ariane Atteia
- Aix Marseille Univ, CNRS, Unité de Bioénergétique et Ingénierie des Protéines, UMR 7281, Marseille, France.,MARBEC CNRS, IFREMER, IRD, Univ. Montpellier, UMR 9091, Sète, France
| |
Collapse
|
11
|
Zimorski V, Mentel M, Tielens AGM, Martin WF. Energy metabolism in anaerobic eukaryotes and Earth's late oxygenation. Free Radic Biol Med 2019; 140:279-294. [PMID: 30935869 PMCID: PMC6856725 DOI: 10.1016/j.freeradbiomed.2019.03.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Eukaryotes arose about 1.6 billion years ago, at a time when oxygen levels were still very low on Earth, both in the atmosphere and in the ocean. According to newer geochemical data, oxygen rose to approximately its present atmospheric levels very late in evolution, perhaps as late as the origin of land plants (only about 450 million years ago). It is therefore natural that many lineages of eukaryotes harbor, and use, enzymes for oxygen-independent energy metabolism. This paper provides a concise overview of anaerobic energy metabolism in eukaryotes with a focus on anaerobic energy metabolism in mitochondria. We also address the widespread assumption that oxygen improves the overall energetic state of a cell. While it is true that ATP yield from glucose or amino acids is increased in the presence of oxygen, it is also true that the synthesis of biomass costs thirteen times more energy per cell in the presence of oxygen than in anoxic conditions. This is because in the reaction of cellular biomass with O2, the equilibrium lies very far on the side of CO2. The absence of oxygen offers energetic benefits of the same magnitude as the presence of oxygen. Anaerobic and low oxygen environments are ancient. During evolution, some eukaryotes have specialized to life in permanently oxic environments (life on land), other eukaryotes have remained specialized to low oxygen habitats. We suggest that the Km of mitochondrial cytochrome c oxidase of 0.1-10 μM for O2, which corresponds to about 0.04%-4% (avg. 0.4%) of present atmospheric O2 levels, reflects environmental O2 concentrations that existed at the time that the eukaryotes arose.
Collapse
Affiliation(s)
- Verena Zimorski
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 851 04, Bratislava, Slovakia.
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, The Netherlands; Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| |
Collapse
|
12
|
Multiomics resolution of molecular events during a day in the life of Chlamydomonas. Proc Natl Acad Sci U S A 2019; 116:2374-2383. [PMID: 30659148 PMCID: PMC6369806 DOI: 10.1073/pnas.1815238116] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii displays metabolic flexibility in response to a changing environment. We analyzed expression patterns of its three genomes in cells grown under light-dark cycles. Nearly 85% of transcribed genes show differential expression, with different sets of transcripts being up-regulated over the course of the day to coordinate cellular growth before undergoing cell division. Parallel measurements of select metabolites and pigments, physiological parameters, and a subset of proteins allow us to infer metabolic events and to evaluate the impact of the transcriptome on the proteome. Among the findings are the observations that Chlamydomonas exhibits lower respiratory activity at night compared with the day; multiple fermentation pathways, some oxygen-sensitive, are expressed at night in aerated cultures; we propose that the ferredoxin, FDX9, is potentially the electron donor to hydrogenases. The light stress-responsive genes PSBS, LHCSR1, and LHCSR3 show an acute response to lights-on at dawn under abrupt dark-to-light transitions, while LHCSR3 genes also exhibit a later, second burst in expression in the middle of the day dependent on light intensity. Each response to light (acute and sustained) can be selectively activated under specific conditions. Our expression dataset, complemented with coexpression networks and metabolite profiling, should constitute an excellent resource for the algal and plant communities.
Collapse
|
13
|
Das B, Patra S. Multisubstrate specific flavin containing monooxygenase from Chlorella pyrenoidosa with potential application for phenolic wastewater remediation and biosensor application. ENVIRONMENTAL TECHNOLOGY 2018; 39:2073-2089. [PMID: 28662620 DOI: 10.1080/09593330.2017.1349838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microbial degradation of phenolic pollutants in industrial wastewater is dependent on enzymatic pathway comprising a cascade of phenol metabolizing enzymes. Phenol hydroxylase is the first enzyme of the pathway catalysing the initial attack on phenol in green algae Chlorella pyrenoidosa. The present work reports cost-effective production of partially purified microalgal phenol hydroylase by single-step purification and characterization of its kinetic properties with the view of application for enzyme-based remediation of phenolic wastewater or in phenolic biosensor. The enzyme with a molecular weight of 25 kDa shows all characteristics of phenol hydroxylases, that is, hydroxylation of phenol to catechol (confirmed by HPLC), substrate-dependent NADPH oxidation, absorption spectrum typical of flavoproteins and peptide mass fingerprint corresponding to flavoprotein hydroxylase. The enzyme utilizes phenol with apparent Michealis constant (Km) of 1.71 µM, maximal velocity (Vmax) of 0.4 µM/min with optimal activity at pH 7 and 35°C. Fe2+chelators (Phenanthroline and sodium arsenate), heavy metals, denaturants and oxidizing agents showed inhibitory effect on phenol hydroxylation activity of the enzyme. The enzyme has broad substrate specificity against isomeric diphenols, isomeric methylphenols, halogen-substituted phenols, amino-substituted phenols, nitrophenols, hydroxybenzaldehyde and hydroxylbenzoic acid. The enzyme shows remarkable storage stability at room temperature and at 4°C. The multisubstrate specificity coupled to remarkable storage stability of the microalgal phenol hydroxylase opens up avenues for its application in remediation of a wide range of phenolics released in industrial wastewater or phenolic biosensor application.
Collapse
Affiliation(s)
- Bhaskar Das
- a Centre for the Environment , Indian Institute of Technology Guwahati , Guwahati , India
| | - Sanjukta Patra
- b Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , India
| |
Collapse
|
14
|
Löwe J, Siewert A, Scholpp AC, Wobbe L, Gröger H. Providing reducing power by microalgal photosynthesis: a novel perspective towards sustainable biocatalytic production of bulk chemicals exemplified for aliphatic amines. Sci Rep 2018; 8:10436. [PMID: 29993023 PMCID: PMC6041261 DOI: 10.1038/s41598-018-28755-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/29/2018] [Indexed: 01/23/2023] Open
Abstract
A biotechnological process is reported, which enables an enzymatic reduction without the need for addition of an organic co-substrate for in situ-cofactor recycling. The process is based on merging the fields of enzymatic reductive amination with formate dehydrogenase-based in situ-cofactor recycling and algae biotechnology by means of the photoautotrophic microorganism Chlamydomonas reinhardtii, providing the needed formate in situ by formation from carbon dioxide, water and light. This biotransformation has been exemplified for the synthesis of various aliphatic amines known as bulk chemicals.
Collapse
Affiliation(s)
- Jana Löwe
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstr, 25, 33615, Bielefeld, Germany
| | - Arthur Siewert
- Algae Biotechnology and Bioenergy Group, Faculty of Biology, Center for Biotechnology/CeBiTec, Bielefeld University, Universitätsstr, 27, 33615, Bielefeld, Germany
| | - Anna-Catharina Scholpp
- Algae Biotechnology and Bioenergy Group, Faculty of Biology, Center for Biotechnology/CeBiTec, Bielefeld University, Universitätsstr, 27, 33615, Bielefeld, Germany
| | - Lutz Wobbe
- Algae Biotechnology and Bioenergy Group, Faculty of Biology, Center for Biotechnology/CeBiTec, Bielefeld University, Universitätsstr, 27, 33615, Bielefeld, Germany.
| | - Harald Gröger
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstr, 25, 33615, Bielefeld, Germany.
| |
Collapse
|
15
|
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
van Lis R, Popek M, Couté Y, Kosta A, Drapier D, Nitschke W, Atteia A. Concerted Up-regulation of Aldehyde/Alcohol Dehydrogenase (ADHE) and Starch in Chlamydomonas reinhardtii Increases Survival under Dark Anoxia. J Biol Chem 2016; 292:2395-2410. [PMID: 28007962 DOI: 10.1074/jbc.m116.766048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/21/2016] [Indexed: 11/06/2022] Open
Abstract
Aldehyde/alcohol dehydrogenases (ADHEs) are bifunctional enzymes that commonly produce ethanol from acetyl-CoA with acetaldehyde as intermediate and play a key role in anaerobic redox balance in many fermenting bacteria. ADHEs are also present in photosynthetic unicellular eukaryotes, where their physiological role and regulation are, however, largely unknown. Herein we provide the first molecular and enzymatic characterization of the ADHE from the photosynthetic microalga Chlamydomonas reinhardtii Purified recombinant ADHE catalyzed the reversible NADH-mediated interconversions of acetyl-CoA, acetaldehyde, and ethanol but seemed to be poised toward the production of ethanol from acetaldehyde. Phylogenetic analysis of the algal fermentative enzyme supports a vertical inheritance from a cyanobacterial-related ancestor. ADHE was located in the chloroplast, where it associated in dimers and higher order oligomers. Electron microscopy analysis of ADHE-enriched stromal fractions revealed fine spiral structures, similar to bacterial ADHE spirosomes. Protein blots showed that ADHE is regulated under oxic conditions. Up-regulation is observed in cells exposed to diverse physiological stresses, including zinc deficiency, nitrogen starvation, and inhibition of carbon concentration/fixation capacity. Analyses of the overall proteome and fermentation profiles revealed that cells with increased ADHE abundance exhibit better survival under dark anoxia. This likely relates to the fact that greater ADHE abundance appeared to coincide with enhanced starch accumulation, which might reflect ADHE-mediated anticipation of anaerobic survival.
Collapse
Affiliation(s)
- Robert van Lis
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France.,LBE, INRA, 11100 Narbonne, France
| | - Marion Popek
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France
| | - Yohann Couté
- the Université Grenoble Alpes, BIG-BGE, 38000 Grenoble, France.,the Commissariat à l'Energie Atomique, BIG-BGE, 38000 Grenoble, France.,INSERM, BGE, 38000 Grenoble, France
| | - Artemis Kosta
- the Microscopy Core Facility, FR3479 Institut de Microbiologie de la Méditerranée, 13402 Marseille cedex 20, France, and
| | - Dominique Drapier
- the Institut de Biologie Physico-Chimique, UMR7141 CNRS-UPMC, 75005 Paris, France
| | - Wolfgang Nitschke
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France
| | - Ariane Atteia
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France,
| |
Collapse
|
17
|
Burgess SJ, Taha H, Yeoman JA, Iamshanova O, Chan KX, Boehm M, Behrends V, Bundy JG, Bialek W, Murray JW, Nixon PJ. Identification of the Elusive Pyruvate Reductase of Chlamydomonas reinhardtii Chloroplasts. PLANT & CELL PHYSIOLOGY 2016; 57:82-94. [PMID: 26574578 PMCID: PMC4722173 DOI: 10.1093/pcp/pcv167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/27/2015] [Indexed: 05/19/2023]
Abstract
Under anoxic conditions the green alga Chlamydomonas reinhardtii activates various fermentation pathways leading to the creation of formate, acetate, ethanol and small amounts of other metabolites including d-lactate and hydrogen. Progress has been made in identifying the enzymes involved in these pathways and their subcellular locations; however, the identity of the enzyme involved in reducing pyruvate to d-lactate has remained unclear. Based on sequence comparisons, enzyme activity measurements, X-ray crystallography, biochemical fractionation and analysis of knock-down mutants, we conclude that pyruvate reduction in the chloroplast is catalyzed by a tetrameric NAD(+)-dependent d-lactate dehydrogenase encoded by Cre07.g324550. Its expression during aerobic growth supports a possible function as a 'lactate valve' for the export of lactate to the mitochondrion for oxidation by cytochrome-dependent d-lactate dehydrogenases and by glycolate dehydrogenase. We also present a revised spatial model of fermentation based on our immunochemical detection of the likely pyruvate decarboxylase, PDC3, in the cytoplasm.
Collapse
Affiliation(s)
- Steven J Burgess
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK These authors contributed equally to this work
| | - Hussein Taha
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK These authors contributed equally to this work Present address: Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Brunei Darussalam
| | - Justin A Yeoman
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Oksana Iamshanova
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Kher Xing Chan
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Marko Boehm
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Volker Behrends
- Department of Biomolecular Medicine, Sir Alexander Fleming Building, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Jacob G Bundy
- Department of Biomolecular Medicine, Sir Alexander Fleming Building, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Wojciech Bialek
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - James W Murray
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
18
|
Igamberdiev AU, Eprintsev AT. Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1042. [PMID: 27471516 PMCID: PMC4945632 DOI: 10.3389/fpls.2016.01042] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/04/2016] [Indexed: 05/18/2023]
Abstract
Organic acids are synthesized in plants as a result of the incomplete oxidation of photosynthetic products and represent the stored pools of fixed carbon accumulated due to different transient times of conversion of carbon compounds in metabolic pathways. When redox level in the cell increases, e.g., in conditions of active photosynthesis, the tricarboxylic acid (TCA) cycle in mitochondria is transformed to a partial cycle supplying citrate for the synthesis of 2-oxoglutarate and glutamate (citrate valve), while malate is accumulated and participates in the redox balance in different cell compartments (via malate valve). This results in malate and citrate frequently being the most accumulated acids in plants. However, the intensity of reactions linked to the conversion of these compounds can cause preferential accumulation of other organic acids, e.g., fumarate or isocitrate, in higher concentrations than malate and citrate. The secondary reactions, associated with the central metabolic pathways, in particularly with the TCA cycle, result in accumulation of other organic acids that are derived from the intermediates of the cycle. They form the additional pools of fixed carbon and stabilize the TCA cycle. Trans-aconitate is formed from citrate or cis-aconitate, accumulation of hydroxycitrate can be linked to metabolism of 2-oxoglutarate, while 4-hydroxy-2-oxoglutarate can be formed from pyruvate and glyoxylate. Glyoxylate, a product of either glycolate oxidase or isocitrate lyase, can be converted to oxalate. Malonate is accumulated at high concentrations in legume plants. Organic acids play a role in plants in providing redox equilibrium, supporting ionic gradients on membranes, and acidification of the extracellular medium.
Collapse
Affiliation(s)
- Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’sNL, Canada
- *Correspondence: Abir U. Igamberdiev,
| | - Alexander T. Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State UniversityVoronezh, Russia
| |
Collapse
|
19
|
Martin WF, Garg S, Zimorski V. Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140330. [PMID: 26323761 PMCID: PMC4571569 DOI: 10.1098/rstb.2014.0330] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2015] [Indexed: 11/12/2022] Open
Abstract
For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, Universität Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Sriram Garg
- Institute for Molecular Evolution, Universität Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Verena Zimorski
- Institute for Molecular Evolution, Universität Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
20
|
Shtaida N, Khozin-Goldberg I, Boussiba S. The role of pyruvate hub enzymes in supplying carbon precursors for fatty acid synthesis in photosynthetic microalgae. PHOTOSYNTHESIS RESEARCH 2015; 125:407-22. [PMID: 25846135 DOI: 10.1007/s11120-015-0136-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/27/2015] [Indexed: 05/15/2023]
Abstract
Photosynthetic microalgae are currently the focus of basic and applied research due to an ever-growing interest in renewable energy resources. This review discusses the role of carbon-unit supply for the production of acetyl-CoA, a direct precursor of fatty acid biosynthesis and the primary building block of the growing acyl chains for the purpose of triacylglycerol (TAG) production in photosynthetic microalgae under stressful conditions. It underscores the importance of intraplastidic acetyl-CoA generation for storage lipid accumulation. The main focus is placed on two enzymatic steps linking the central carbon metabolism and fatty acid synthesis, namely the reactions catalyzed by the plastidic isoform of pyruvate kinase and the chloroplastic pyruvate dehydrogenase complex. Alternative routes for plastidic acetyl-CoA synthesis are also reviewed. A separate section is devoted to recent advances in functional genomics studies related to fatty acid and TAG biosynthesis.
Collapse
Affiliation(s)
- Nastassia Shtaida
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes of Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Midreshet Ben-Gurion, Israel
| | | | | |
Collapse
|
21
|
Gonzalez-Ballester D, Jurado-Oller JL, Fernandez E. Relevance of nutrient media composition for hydrogen production in Chlamydomonas. PHOTOSYNTHESIS RESEARCH 2015; 125:395-406. [PMID: 25952745 DOI: 10.1007/s11120-015-0152-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/29/2015] [Indexed: 05/23/2023]
Abstract
Microalgae are capable of biological H2 photoproduction from water, solar energy, and a variety of organic substrates. Acclimation responses to different nutrient regimes finely control photosynthetic activity and can influence H2 production. Hence, nutrient stresses are an interesting scenario to study H2 production in photosynthetic organisms. In this review, we mainly focus on the H2-production mechanisms in Chlamydomonas reinhardtii and the physiological relevance of the nutrient media composition when producing H2.
Collapse
Affiliation(s)
- David Gonzalez-Ballester
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edif. Severo Ochoa, 14071, Córdoba, Spain,
| | | | | |
Collapse
|
22
|
Biochemical and Kinetic Characterization of the Eukaryotic Phosphotransacetylase Class IIa Enzyme from Phytophthora ramorum. EUKARYOTIC CELL 2015; 14:652-60. [PMID: 25956919 DOI: 10.1128/ec.00007-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/06/2015] [Indexed: 11/20/2022]
Abstract
Phosphotransacetylase (Pta), a key enzyme in bacterial metabolism, catalyzes the reversible transfer of an acetyl group from acetyl phosphate to coenzyme A (CoA) to produce acetyl-CoA and Pi. Two classes of Pta have been identified based on the absence (Pta(I)) or presence (Pta(II)) of an N-terminal regulatory domain. Pta(I) has been fairly well studied in bacteria and one genus of archaea; however, only the Escherichia coli and Salmonella enterica Pta(II) enzymes have been biochemically characterized, and they are allosterically regulated. Here, we describe the first biochemical and kinetic characterization of a eukaryotic Pta from the oomycete Phytophthora ramorum. The two Ptas from P. ramorum, designated PrPta(II)1 and PrPta(II)2, both belong to class II. PrPta(II)1 displayed positive cooperativity for both acetyl phosphate and CoA and is allosterically regulated. We compared the effects of different metabolites on PrPta(II)1 and the S. enterica Pta(II) and found that, although the N-terminal regulatory domains share only 19% identity, both enzymes are inhibited by ATP, NADP, NADH, phosphoenolpyruvate (PEP), and pyruvate in the acetyl-CoA/Pi-forming direction but are differentially regulated by AMP. Phylogenetic analysis of bacterial, archaeal, and eukaryotic sequences identified four subtypes of Pta(II) based on the presence or absence of the P-loop and DRTGG subdomains within the N-terminal regulatory domain. Although the E. coli, S. enterica, and P. ramorum enzymes all belong to the IIa subclass, our kinetic analysis has indicated that enzymes within a subclass can still display differences in their allosteric regulation.
Collapse
|
23
|
Yang W, Catalanotti C, Wittkopp TM, Posewitz MC, Grossman AR. Algae after dark: mechanisms to cope with anoxic/hypoxic conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:481-503. [PMID: 25752440 DOI: 10.1111/tpj.12823] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
Chlamydomonas reinhardtii is a unicellular, soil-dwelling (and aquatic) green alga that has significant metabolic flexibility for balancing redox equivalents and generating ATP when it experiences hypoxic/anoxic conditions. The diversity of pathways available to ferment sugars is often revealed in mutants in which the activities of specific branches of fermentative metabolism have been eliminated; compensatory pathways that have little activity in parental strains under standard laboratory fermentative conditions are often activated. The ways in which these pathways are regulated and integrated have not been extensively explored. In this review, we primarily discuss the intricacies of dark anoxic metabolism in Chlamydomonas, but also discuss aspects of dark oxic metabolism, the utilization of acetate, and the relatively uncharacterized but critical interactions that link chloroplastic and mitochondrial metabolic networks.
Collapse
Affiliation(s)
- Wenqiang Yang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Claudia Catalanotti
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Tyler M Wittkopp
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Matthew C Posewitz
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
24
|
Cornish AJ, Green R, Gärtner K, Mason S, Hegg EL. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri. PLoS One 2015; 10:e0125324. [PMID: 25927230 PMCID: PMC4416025 DOI: 10.1371/journal.pone.0125324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/19/2015] [Indexed: 01/13/2023] Open
Abstract
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.
Collapse
Affiliation(s)
- Adam J. Cornish
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Robin Green
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Katrin Gärtner
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Saundra Mason
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Eric L. Hegg
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
25
|
Krivoruchko A, Zhang Y, Siewers V, Chen Y, Nielsen J. Microbial acetyl-CoA metabolism and metabolic engineering. Metab Eng 2014; 28:28-42. [PMID: 25485951 DOI: 10.1016/j.ymben.2014.11.009] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/23/2022]
Abstract
Recent concerns over the sustainability of petrochemical-based processes for production of desired chemicals have fueled research into alternative modes of production. Metabolic engineering of microbial cell factories such as Saccharomyces cerevisiae and Escherichia coli offers a sustainable and flexible alternative for the production of various molecules. Acetyl-CoA is a key molecule in microbial central carbon metabolism and is involved in a variety of cellular processes. In addition, it functions as a precursor for many molecules of biotechnological relevance. Therefore, much interest exists in engineering the metabolism around the acetyl-CoA pools in cells in order to increase product titers. Here we provide an overview of the acetyl-CoA metabolism in eukaryotic and prokaryotic microbes (with a focus on S. cerevisiae and E. coli), with an emphasis on reactions involved in the production and consumption of acetyl-CoA. In addition, we review various strategies that have been used to increase acetyl-CoA production in these microbes.
Collapse
Affiliation(s)
- Anastasia Krivoruchko
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yiming Zhang
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yun Chen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
26
|
Hampl V, Stairs CW, Roger AJ. The tangled past of eukaryotic enzymes involved in anaerobic metabolism. Mob Genet Elements 2014; 1:71-74. [PMID: 22016847 DOI: 10.4161/mge.1.1.15588] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 11/19/2022] Open
Abstract
There is little doubt that genes can spread across unrelated prokaryotes, eukaryotes and even between these domains. It is expected that organisms inhabiting a common niche may exchange their genes even more often due to their physical proximity and similar demands. One such niche is anaerobic or microaerophilic environments in some sediments and intestines of animals. Indeed, enzymes advantageous for metabolism in these environments often exhibit an evolutionary history incoherent with the history of their hosts indicating potential transfers. The evolutionary paths of some very basic enzymes for energy metabolism of anaerobic eukaryotes (pyruvate formate lyase, pyruvate:ferredoxin oxidoreductase, [FeFe]hydrogenase and arginine deiminase) seems to be particularly intriguing and although their histories are not identical they share several unexpected features in common. Every enzyme mentioned above is present in groups of eukaryotes that are unrelated to each other. Although the enzyme phylogenies are not always robustly supported, they always suggest that the eukaryotic homologues form one or two clades, in which the relationships are not congruent with the eukaryotic phylogeny. Finally, these eukaryotic enzymes are never specifically related to homologues from α-proteobacteria, ancestors of mitochondria. The most plausible explanation for evolution of this pattern expects one or two interdomain transfers to one or two eukaryotes from prokaryotes, who were not the mitochondrial endosymbiont. Once the genes were introduced into the eukaryotic domain they have spread to other eukaryotic groups exclusively via eukaryote-to-eukaryote transfers. Currently, eukaryote-to-eukaryote gene transfers have been regarded as less common than prokaryote-to-eukaryote transfers. The fact that eukaryotes accepted genes for these enzymes solely from other eukaryotes and not prokaryotes present in the same environment is surprising.
Collapse
Affiliation(s)
- Vladimir Hampl
- Charles University in Prague; Faculty of Science; Department of Parasitology; Prague, Czech Republic
| | | | | |
Collapse
|
27
|
Yang W, Catalanotti C, D'Adamo S, Wittkopp TM, Ingram-Smith CJ, Mackinder L, Miller TE, Heuberger AL, Peers G, Smith KS, Jonikas MC, Grossman AR, Posewitz MC. Alternative acetate production pathways in Chlamydomonas reinhardtii during dark anoxia and the dominant role of chloroplasts in fermentative acetate production. THE PLANT CELL 2014; 26:4499-518. [PMID: 25381350 PMCID: PMC4277214 DOI: 10.1105/tpc.114.129965] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 07/15/2014] [Accepted: 10/15/2014] [Indexed: 05/18/2023]
Abstract
Chlamydomonas reinhardtii insertion mutants disrupted for genes encoding acetate kinases (EC 2.7.2.1) (ACK1 and ACK2) and a phosphate acetyltransferase (EC 2.3.1.8) (PAT2, but not PAT1) were isolated to characterize fermentative acetate production. ACK1 and PAT2 were localized to chloroplasts, while ACK2 and PAT1 were shown to be in mitochondria. Characterization of the mutants showed that PAT2 and ACK1 activity in chloroplasts plays a dominant role (relative to ACK2 and PAT1 in mitochondria) in producing acetate under dark, anoxic conditions and, surprisingly, also suggested that Chlamydomonas has other pathways that generate acetate in the absence of ACK activity. We identified a number of proteins associated with alternative pathways for acetate production that are encoded on the Chlamydomonas genome. Furthermore, we observed that only modest alterations in the accumulation of fermentative products occurred in the ack1, ack2, and ack1 ack2 mutants, which contrasts with the substantial metabolite alterations described in strains devoid of other key fermentation enzymes.
Collapse
Affiliation(s)
- Wenqiang Yang
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
| | - Claudia Catalanotti
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
| | - Sarah D'Adamo
- Colorado School of Mines, Department of Chemistry and Geochemistry, Golden, Colorado 80401
| | - Tyler M Wittkopp
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305 Stanford University, Department of Biology, Stanford, California 94305
| | - Cheryl J Ingram-Smith
- Clemson University, Department of Genetics and Biochemistry, Clemson, South Carolina 29634
| | - Luke Mackinder
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
| | - Tarryn E Miller
- Colorado School of Mines, Department of Chemistry and Geochemistry, Golden, Colorado 80401
| | - Adam L Heuberger
- Colorado State University, Proteomics and Metabolomics Facility, Fort Collins, Colorado 80523
| | - Graham Peers
- Colorado State University, Department of Biology, Fort Collins, Colorado 80523
| | - Kerry S Smith
- Clemson University, Department of Genetics and Biochemistry, Clemson, South Carolina 29634
| | - Martin C Jonikas
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
| | - Arthur R Grossman
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
| | - Matthew C Posewitz
- Colorado School of Mines, Department of Chemistry and Geochemistry, Golden, Colorado 80401
| |
Collapse
|
28
|
Subramanian V, Dubini A, Astling DP, Laurens LML, Old WM, Grossman AR, Posewitz MC, Seibert M. Profiling Chlamydomonas metabolism under dark, anoxic H2-producing conditions using a combined proteomic, transcriptomic, and metabolomic approach. J Proteome Res 2014; 13:5431-51. [PMID: 25333711 DOI: 10.1021/pr500342j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chlamydomonas reinhardtii is well adapted to survive under different environmental conditions due to the unique flexibility of its metabolism. Here we report metabolic pathways that are active during acclimation to anoxia, but were previously not thoroughly studied under dark, anoxic H2-producing conditions in this model green alga. Proteomic analyses, using 2D-differential in-gel electrophoresis in combination with shotgun mass fingerprinting, revealed increased levels of proteins involved in the glycolytic pathway downstream of 3-phosphoglycerate, the glyoxylate pathway, and steps of the tricarboxylic acid (TCA) reactions. Upregulation of the enzyme, isocitrate lyase (ICL), was observed, which was accompanied by increased intracellular succinate levels, suggesting the functioning of glyoxylate pathway reactions. The ICL-inhibitor study revealed presence of reverse TCA reactions under these conditions. Contributions of the serine-isocitrate lyase pathway, glycine cleavage system, and c1-THF/serine hydroxymethyltransferase pathway in the acclimation to dark anoxia were found. We also observed increased levels of amino acids (AAs) suggesting nitrogen reorganization in the form of de novo AA biosynthesis during anoxia. Overall, novel routes for reductant utilization, in combination with redistribution of carbon and nitrogen, are used by this alga during acclimation to O2 deprivation in the dark.
Collapse
|
29
|
Awata J, Takada S, Standley C, Lechtreck KF, Bellvé KD, Pazour GJ, Fogarty KE, Witman GB. NPHP4 controls ciliary trafficking of membrane proteins and large soluble proteins at the transition zone. J Cell Sci 2014; 127:4714-27. [PMID: 25150219 DOI: 10.1242/jcs.155275] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein nephrocystin-4 (NPHP4) is widespread in ciliated organisms, and defects in NPHP4 cause nephronophthisis and blindness in humans. To learn more about the function of NPHP4, we have studied it in Chlamydomonas reinhardtii. NPHP4 is stably incorporated into the distal part of the flagellar transition zone, close to the membrane and distal to CEP290, another transition zone protein. Therefore, these two proteins, which are incorporated into the transition zone independently of each other, define different domains of the transition zone. An nphp4-null mutant forms flagella with nearly normal length, ultrastructure and intraflagellar transport. When fractions from isolated wild-type and nphp4 flagella were compared, few differences were observed between the axonemes, but the amounts of certain membrane proteins were greatly reduced in the mutant flagella, and cellular housekeeping proteins >50 kDa were no longer excluded from mutant flagella. Therefore, NPHP4 functions at the transition zone as an essential part of a barrier that regulates both membrane and soluble protein composition of flagella. The phenotypic consequences of NPHP4 mutations in humans likely follow from protein mislocalization due to defects in the transition zone barrier.
Collapse
Affiliation(s)
- Junya Awata
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Saeko Takada
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clive Standley
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karl F Lechtreck
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Karl D Bellvé
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kevin E Fogarty
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
30
|
Johnson EA, Rice S, Preimesberger MR, Nye DB, Gilevicius L, Wenke BB, Brown JM, Witman GB, Lecomte JTJ. Characterization of THB1, a Chlamydomonas reinhardtii truncated hemoglobin: linkage to nitrogen metabolism and identification of lysine as the distal heme ligand. Biochemistry 2014; 53:4573-89. [PMID: 24964018 PMCID: PMC4108185 DOI: 10.1021/bi5005206] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/23/2014] [Indexed: 12/21/2022]
Abstract
The nuclear genome of the model organism Chlamydomonas reinhardtii contains genes for a dozen hemoglobins of the truncated lineage. Of those, THB1 is known to be expressed, but the product and its function have not yet been characterized. We present mutagenesis, optical, and nuclear magnetic resonance data for the recombinant protein and show that at pH near neutral in the absence of added ligand, THB1 coordinates the heme iron with the canonical proximal histidine and a distal lysine. In the cyanomet state, THB1 is structurally similar to other known truncated hemoglobins, particularly the heme domain of Chlamydomonas eugametos LI637, a light-induced chloroplastic hemoglobin. Recombinant THB1 is capable of binding nitric oxide (NO(•)) in either the ferric or ferrous state and has efficient NO(•) dioxygenase activity. By using different C. reinhardtii strains and growth conditions, we demonstrate that the expression of THB1 is under the control of the NIT2 regulatory gene and that the hemoglobin is linked to the nitrogen assimilation pathway.
Collapse
Affiliation(s)
- Eric A. Johnson
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Selena
L. Rice
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | | - Dillon B. Nye
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lukas Gilevicius
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Belinda B. Wenke
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jason M. Brown
- Department
of Cell and Developmental Biology, University
of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - George B. Witman
- Department
of Cell and Developmental Biology, University
of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Juliette T. J. Lecomte
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
31
|
Gawryluk RMR, Chisholm KA, Pinto DM, Gray MW. Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants. J Proteomics 2014; 109:400-16. [PMID: 25026440 DOI: 10.1016/j.jprot.2014.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/09/2014] [Accepted: 07/04/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED We present a combined proteomic and bioinformatic investigation of mitochondrial proteins from the amoeboid protist Acanthamoeba castellanii, the first such comprehensive investigation in a free-living member of the supergroup Amoebozoa. This protist was chosen both for its phylogenetic position (as a sister to animals and fungi) and its ecological ubiquity and physiological flexibility. We report 1033 A. castellanii mitochondrial protein sequences, 709 supported by mass spectrometry data (676 nucleus-encoded and 33 mitochondrion-encoded), including two previously unannotated mtDNA-encoded proteins, which we identify as highly divergent mitochondrial ribosomal proteins. Other notable findings include duplicate proteins for all of the enzymes of the tricarboxylic acid (TCA) cycle-which, along with the identification of a mitochondrial malate synthase-isocitrate lyase fusion protein, suggests the interesting possibility that the glyoxylate cycle operates in A. castellanii mitochondria. Additionally, the A. castellanii genome encodes an unusually high number (at least 29) of mitochondrion-targeted pentatricopeptide repeat (PPR) proteins, organellar RNA metabolism factors in other organisms. We discuss several key mitochondrial pathways, including DNA replication, transcription and translation, protein degradation, protein import and Fe-S cluster biosynthesis, highlighting similarities and differences in these pathways in other eukaryotes. In compositional and functional complexity, the mitochondrial proteome of A. castellanii rivals that of multicellular eukaryotes. BIOLOGICAL SIGNIFICANCE Comprehensive proteomic surveys of mitochondria have been undertaken in a limited number of predominantly multicellular eukaryotes. This phylogenetically narrow perspective constrains and biases our insights into mitochondrial function and evolution, as it neglects protists, which account for most of the evolutionary and functional diversity within eukaryotes. We report here the first comprehensive investigation of the mitochondrial proteome in a member (A. castellanii) of the eukaryotic supergroup Amoebozoa. Through a combination of tandem mass spectrometry (MS/MS) and in silico data mining, we have retrieved 1033 candidate mitochondrial protein sequences, 709 having MS support. These data were used to reconstruct the metabolic pathways and protein complexes of A. castellanii mitochondria, and were integrated with data from other characterized mitochondrial proteomes to augment our understanding of mitochondrial proteome evolution. Our results demonstrate the power of combining direct proteomic and bioinformatic approaches in the discovery of novel mitochondrial proteins, both nucleus-encoded and mitochondrion-encoded, and highlight the compositional complexity of the A. castellanii mitochondrial proteome, which rivals that of animals, fungi and plants.
Collapse
Affiliation(s)
- Ryan M R Gawryluk
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kenneth A Chisholm
- Mass Spectrometry and Proteomics Group, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Devanand M Pinto
- Mass Spectrometry and Proteomics Group, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Michael W Gray
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
32
|
Stairs CW, Eme L, Brown MW, Mutsaers C, Susko E, Dellaire G, Soanes DM, van der Giezen M, Roger AJ. A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr Biol 2014; 24:1176-86. [PMID: 24856215 DOI: 10.1016/j.cub.2014.04.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/08/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Many microbial eukaryotes have evolved anaerobic alternatives to mitochondria known as mitochondrion-related organelles (MROs). Yet, only a few of these have been experimentally investigated. Here we report an RNA-seq-based reconstruction of the MRO proteome of Pygsuia biforma, an anaerobic representative of an unexplored deep-branching eukaryotic lineage. RESULTS Pygsuia's MRO has a completely novel suite of functions, defying existing "function-based" organelle classifications. Most notable is the replacement of the mitochondrial iron-sulfur cluster machinery by an archaeal sulfur mobilization (SUF) system acquired via lateral gene transfer (LGT). Using immunolocalization in Pygsuia and heterologous expression in yeast, we show that the SUF system does indeed localize to the MRO. The Pygsuia MRO also possesses a unique assemblage of features, including: cardiolipin, phosphonolipid, amino acid, and fatty acid metabolism; a partial Kreb's cycle; a reduced respiratory chain; and a laterally acquired rhodoquinone (RQ) biosynthesis enzyme. The latter observation suggests that RQ is an electron carrier of a fumarate reductase-type complex II in this MRO. CONCLUSIONS The unique functional profile of this MRO underscores the tremendous plasticity of mitochondrial function within eukaryotes and showcases the role of LGT in forging metabolic mosaics of ancestral and newly acquired organellar pathways.
Collapse
Affiliation(s)
- Courtney W Stairs
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Laura Eme
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; The Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Cornelis Mutsaers
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Edward Susko
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Mathematics and Statistics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Graham Dellaire
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | | | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
33
|
Photobiological hydrogen production: Bioenergetics and challenges for its practical application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2013. [DOI: 10.1016/j.jphotochemrev.2013.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Chen HC, Melis A. Marker-free genetic engineering of the chloroplast in the green microalga Chlamydomonas reinhardtii. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:818-28. [PMID: 23647698 DOI: 10.1111/pbi.12073] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/05/2013] [Accepted: 03/20/2013] [Indexed: 05/11/2023]
Abstract
The work applied a transgene expression method based on the replacement of an inactive rbcL gene as the selection marker in Chlamydomonas reinhardtii chloroplasts. The native rbcL gene in strain CC2653 has a point mutation that causes early translation termination, thus resulting in a photosynthesis mutant. Recovery of rbcL function for selection is offered along with the heterologous expression of the alcohol dehydrogenase ADH1 gene from Saccharomyces cerevisiae in the Chlamydomonas chloroplast. The CrCpADH1 gene was inserted via double homologous recombination in the psaB-rbcL chloroplast intergenic region of recipient strain CC2653, using the psaB and rbcL gene sequences for the double homologous recombination. This transformation conferred a functional rbcL gene and expression of the CrCpADH1 transgene in the recipient strain. This method alleviated the need to use antibiotics for selection, resulting in a negligible number of false positives during screening, and attaining a transformation efficiency greater than 90%. The approach also ensured segregation of chloroplast DNA copies, so as to achieve homoplasmy of the transformant chloroplast DNA, with a concomitant elimination of recipient strain Cp DNA. High levels of steady-state CrCpADH1 transcripts were detected in the homoplasmic transformants. However, CrCpADH1 protein levels were attenuated under continuous illumination growth conditions due to oxygen accumulation in the cells. Under conditions of low oxygen partial pressure, or anoxia, accumulation of CrCpADH1 protein in the cells and ethanol in the growth medium was observed. A metabolic pathway for ethanol production is proposed in Chlamydomonas, mediated by the chloroplast-localized CrCpADH1 transgenic enzyme.
Collapse
Affiliation(s)
- Hsu-Ching Chen
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | |
Collapse
|
35
|
Hemschemeier A, Casero D, Liu B, Benning C, Pellegrini M, Happe T, Merchant SS. Copper response regulator1-dependent and -independent responses of the Chlamydomonas reinhardtii transcriptome to dark anoxia. THE PLANT CELL 2013; 25:3186-211. [PMID: 24014546 PMCID: PMC3809527 DOI: 10.1105/tpc.113.115741] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Anaerobiosis is a stress condition for aerobic organisms and requires extensive acclimation responses. We used RNA-Seq for a whole-genome view of the acclimation of Chlamydomonas reinhardtii to anoxic conditions imposed simultaneously with transfer to the dark. Nearly 1.4 × 10(3) genes were affected by hypoxia. Comparing transcript profiles from early (hypoxic) with those from late (anoxic) time points indicated that cells activate oxidative energy generation pathways before employing fermentation. Probable substrates include amino acids and fatty acids (FAs). Lipid profiling of the C. reinhardtii cells revealed that they degraded FAs but also accumulated triacylglycerols (TAGs). In contrast with N-deprived cells, the TAGs in hypoxic cells were enriched in desaturated FAs, suggesting a distinct pathway for TAG accumulation. To distinguish transcriptional responses dependent on copper response regulator1 (CRR1), which is also involved in hypoxic gene regulation, we compared the transcriptomes of crr1 mutants and complemented strains. In crr1 mutants, ~40 genes were aberrantly regulated, reaffirming the importance of CRR1 for the hypoxic response, but indicating also the contribution of additional signaling strategies to account for the remaining differentially regulated transcripts. Based on transcript patterns and previous results, we conclude that nitric oxide-dependent signaling cascades operate in anoxic C. reinhardtii cells.
Collapse
Affiliation(s)
- Anja Hemschemeier
- Ruhr Universität Bochum, Fakultät für Biologie und Biotechnologie, Arbeitsgruppe Photobiotechnologie, 44801 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Ndimba BK, Ndimba RJ, Johnson TS, Waditee-Sirisattha R, Baba M, Sirisattha S, Shiraiwa Y, Agrawal GK, Rakwal R. Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae. J Proteomics 2013; 93:234-44. [PMID: 23792822 DOI: 10.1016/j.jprot.2013.05.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/28/2013] [Accepted: 05/30/2013] [Indexed: 11/29/2022]
Abstract
Sustainable energy is the need of the 21st century, not because of the numerous environmental and political reasons but because it is necessary to human civilization's energy future. Sustainable energy is loosely grouped into renewable energy, energy conservation, and sustainable transport disciplines. In this review, we deal with the renewable energy aspect focusing on the biomass from bioenergy crops to microalgae to produce biofuels to the utilization of high-throughput omics technologies, in particular proteomics in advancing our understanding and increasing biofuel production. We look at biofuel production by plant- and algal-based sources, and the role proteomics has played therein. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Bongani Kaiser Ndimba
- Proteomics Research and Services Unit, Biotechnology Platform, Agricultural Research Council, Infruitec-Nietvoorbij Campus, Stellenbosch, South Africa; Proteomics Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hildebrand M, Abbriano RM, Polle JEW, Traller JC, Trentacoste EM, Smith SR, Davis AK. Metabolic and cellular organization in evolutionarily diverse microalgae as related to biofuels production. Curr Opin Chem Biol 2013; 17:506-14. [PMID: 23538202 DOI: 10.1016/j.cbpa.2013.02.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/18/2013] [Accepted: 02/26/2013] [Indexed: 12/18/2022]
Abstract
Microalgae are among the most diverse organisms on the planet, and as a result of symbioses and evolutionary selection, the configuration of core metabolic networks is highly varied across distinct algal classes. The differences in photosynthesis, carbon fixation and processing, carbon storage, and the compartmentation of cellular and metabolic processes are substantial and likely to transcend into the efficiency of various steps involved in biofuel molecule production. By highlighting these differences, we hope to provide a framework for comparative analyses to determine the efficiency of the different arrangements or processes. This sets the stage for optimization on the based on information derived from evolutionary selection to diverse algal classes and to synthetic systems.
Collapse
Affiliation(s)
- Mark Hildebrand
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Banti V, Giuntoli B, Gonzali S, Loreti E, Magneschi L, Novi G, Paparelli E, Parlanti S, Pucciariello C, Santaniello A, Perata P. Low oxygen response mechanisms in green organisms. Int J Mol Sci 2013; 14:4734-61. [PMID: 23446868 PMCID: PMC3634410 DOI: 10.3390/ijms14034734] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 01/04/2023] Open
Abstract
Low oxygen stress often occurs during the life of green organisms, mostly due to the environmental conditions affecting oxygen availability. Both plants and algae respond to low oxygen by resetting their metabolism. The shift from mitochondrial respiration to fermentation is the hallmark of anaerobic metabolism in most organisms. This involves a modified carbohydrate metabolism coupled with glycolysis and fermentation. For a coordinated response to low oxygen, plants exploit various molecular mechanisms to sense when oxygen is either absent or in limited amounts. In Arabidopsis thaliana, a direct oxygen sensing system has recently been discovered, where a conserved N-terminal motif on some ethylene responsive factors (ERFs), targets the fate of the protein under normoxia/hypoxia. In Oryza sativa, this same group of ERFs drives physiological and anatomical modifications that vary in relation to the genotype studied. The microalga Chlamydomonas reinhardtii responses to low oxygen seem to have evolved independently of higher plants, posing questions on how the fermentative metabolism is modulated. In this review, we summarize the most recent findings related to these topics, highlighting promising developments for the future.
Collapse
Affiliation(s)
- Valeria Banti
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Mariscoglio 34, Pisa 56124, Italy; E-Mails: (V.B.); (B.G.); (S.G.); (G.N.); (E.P.); (S.P.); (C.P.); (A.S.)
| | - Beatrice Giuntoli
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Mariscoglio 34, Pisa 56124, Italy; E-Mails: (V.B.); (B.G.); (S.G.); (G.N.); (E.P.); (S.P.); (C.P.); (A.S.)
| | - Silvia Gonzali
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Mariscoglio 34, Pisa 56124, Italy; E-Mails: (V.B.); (B.G.); (S.G.); (G.N.); (E.P.); (S.P.); (C.P.); (A.S.)
| | - Elena Loreti
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, Pisa 56100, Italy; E-Mail:
| | - Leonardo Magneschi
- Institute of Plant Biochemistry and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany; E-Mail:
| | - Giacomo Novi
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Mariscoglio 34, Pisa 56124, Italy; E-Mails: (V.B.); (B.G.); (S.G.); (G.N.); (E.P.); (S.P.); (C.P.); (A.S.)
| | - Eleonora Paparelli
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Mariscoglio 34, Pisa 56124, Italy; E-Mails: (V.B.); (B.G.); (S.G.); (G.N.); (E.P.); (S.P.); (C.P.); (A.S.)
| | - Sandro Parlanti
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Mariscoglio 34, Pisa 56124, Italy; E-Mails: (V.B.); (B.G.); (S.G.); (G.N.); (E.P.); (S.P.); (C.P.); (A.S.)
| | - Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Mariscoglio 34, Pisa 56124, Italy; E-Mails: (V.B.); (B.G.); (S.G.); (G.N.); (E.P.); (S.P.); (C.P.); (A.S.)
| | - Antonietta Santaniello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Mariscoglio 34, Pisa 56124, Italy; E-Mails: (V.B.); (B.G.); (S.G.); (G.N.); (E.P.); (S.P.); (C.P.); (A.S.)
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Mariscoglio 34, Pisa 56124, Italy; E-Mails: (V.B.); (B.G.); (S.G.); (G.N.); (E.P.); (S.P.); (C.P.); (A.S.)
| |
Collapse
|
39
|
van Lis R, Baffert C, Couté Y, Nitschke W, Atteia A. Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate:ferredoxin oxidoreductase that functions with FDX1. PLANT PHYSIOLOGY 2013; 161:57-71. [PMID: 23154536 PMCID: PMC3532286 DOI: 10.1104/pp.112.208181] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/11/2012] [Indexed: 05/24/2023]
Abstract
Eukaryotic algae have long been known to live in anoxic environments, but interest in their anaerobic energy metabolism has only recently gained momentum, largely due to their utility in biofuel production. Chlamydomonas reinhardtii figures remarkably in this respect, because it efficiently produces hydrogen and its genome harbors many genes for anaerobic metabolic routes. Central to anaerobic energy metabolism in many unicellular eukaryotes (protists) is pyruvate:ferredoxin oxidoreductase (PFO), which decarboxylates pyruvate and forms acetyl-coenzyme A with concomitant reduction of low-potential ferredoxins or flavodoxins. Here, we report the biochemical properties of the homodimeric PFO of C. reinhardtii expressed in Escherichia coli. Electron paramagnetic resonance spectroscopy of the recombinant enzyme (Cr-rPFO) showed three distinct [4Fe-4S] iron-sulfur clusters and a thiamine pyrophosphate radical upon reduction by pyruvate. Purified Cr-rPFO exhibits a specific decarboxylase activity of 12 µmol pyruvate min⁻¹ mg⁻¹ protein using benzyl viologen as electron acceptor. Despite the fact that the enzyme is very oxygen sensitive, it localizes to the chloroplast. Among the six known chloroplast ferredoxins (FDX1-FDX6) in C. reinhardtii, FDX1 and FDX2 were the most efficient electron acceptors from Cr-rPFO, with comparable apparent K(m) values of approximately 4 µm. As revealed by immunoblotting, anaerobic conditions that lead to the induction of CrPFO did not increase levels of either FDX1 or FDX2. FDX1, being by far the most abundant ferredoxin, is thus likely the partner of PFO in C. reinhardtii. This finding postulates a direct link between CrPFO and hydrogenase and provides new opportunities to better study and engineer hydrogen production in this protist.
Collapse
|
40
|
Noth J, Krawietz D, Hemschemeier A, Happe T. Pyruvate:ferredoxin oxidoreductase is coupled to light-independent hydrogen production in Chlamydomonas reinhardtii. J Biol Chem 2012; 288:4368-77. [PMID: 23258532 DOI: 10.1074/jbc.m112.429985] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In anaerobiosis, the green alga Chlamydomonas reinhardtii evolves molecular hydrogen (H(2)) as one of several fermentation products. H(2) is generated mostly by the [Fe-Fe]-hydrogenase HYDA1, which uses plant type ferredoxin PETF/FDX1 (PETF) as an electron donor. Dark fermentation of the alga is mainly of the mixed acid type, because formate, ethanol, and acetate are generated by a pyruvate:formate lyase pathway similar to Escherichia coli. However, C. reinhardtii also possesses the pyruvate:ferredoxin oxidoreductase PFR1, which, like pyruvate:formate lyase and HYDA1, is localized in the chloroplast. PFR1 has long been suggested to be responsible for the low but significant H(2) accumulation in the dark because the catalytic mechanism of pyruvate:ferredoxin oxidoreductase involves the reduction of ferredoxin. With the aim of proving the biochemical feasibility of the postulated reaction, we have heterologously expressed the PFR1 gene in E. coli. Purified recombinant PFR1 is able to transfer electrons from pyruvate to HYDA1, using the ferredoxins PETF and FDX2 as electron carriers. The high reactivity of PFR1 toward oxaloacetate indicates that in vivo, fermentation might also be coupled to an anaerobically active glyoxylate cycle. Our results suggest that C. reinhardtii employs a clostridial type H(2) production pathway in the dark, especially because C. reinhardtii PFR1 was also able to allow H(2) evolution in reaction mixtures containing Clostridium acetobutylicum 2[4Fe-4S]-ferredoxin and [Fe-Fe]-hydrogenase HYDA.
Collapse
Affiliation(s)
- Jens Noth
- Ruhr Universität Bochum, Fakultät für Biologie und Biotechnologie, AG Photobiotechnologie, 44801 Bochum, Germany
| | | | | | | |
Collapse
|
41
|
Burgess SJ, Tredwell G, Molnàr A, Bundy JG, Nixon PJ. Artificial microRNA-mediated knockdown of pyruvate formate lyase (PFL1) provides evidence for an active 3-hydroxybutyrate production pathway in the green alga Chlamydomonas reinhardtii. J Biotechnol 2012; 162:57-66. [DOI: 10.1016/j.jbiotec.2012.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 04/02/2012] [Accepted: 05/30/2012] [Indexed: 12/17/2022]
|
42
|
Atteia A, van Lis R, Tielens AGM, Martin WF. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:210-23. [PMID: 22902601 DOI: 10.1016/j.bbabio.2012.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/30/2012] [Accepted: 08/05/2012] [Indexed: 12/25/2022]
Abstract
Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Ariane Atteia
- Unité de Bioénergétique et Ingénierie des Protéines-UMR 7281, CNRS-Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | | | | | | |
Collapse
|
43
|
Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugière S, Hippler M, Ferro M, Bruley C, Peltier G, Vallon O, Cournac L. PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol 2012; 29:3625-39. [PMID: 22826458 DOI: 10.1093/molbev/mss178] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a prime model for deciphering processes occurring in the intracellular compartments of the photosynthetic cell. Organelle-specific proteomic studies have started to delineate its various subproteomes, but sequence-based prediction software is necessary to assign proteins subcellular localizations at whole genome scale. Unfortunately, existing tools are oriented toward land plants and tend to mispredict the localization of nuclear-encoded algal proteins, predicting many chloroplast proteins as mitochondrion targeted. We thus developed a new tool called PredAlgo that predicts intracellular localization of those proteins to one of three intracellular compartments in green algae: the mitochondrion, the chloroplast, and the secretory pathway. At its core, a neural network, trained using carefully curated sets of C. reinhardtii proteins, divides the N-terminal sequence into overlapping 19-residue windows and scores the probability that they belong to a cleavable targeting sequence for one of the aforementioned organelles. A targeting prediction is then deduced for the protein, and a likely cleavage site is predicted based on the shape of the scoring function along the N-terminal sequence. When assessed on an independent benchmarking set of C. reinhardtii sequences, PredAlgo showed a highly improved discrimination capacity between chloroplast- and mitochondrion-localized proteins. Its predictions matched well the results of chloroplast proteomics studies. When tested on other green algae, it gave good results with Chlorophyceae and Trebouxiophyceae but tended to underpredict mitochondrial proteins in Prasinophyceae. Approximately 18% of the nuclear-encoded C. reinhardtii proteome was predicted to be targeted to the chloroplast and 15% to the mitochondrion.
Collapse
|
44
|
Swirsky Whitney LA, Novi G, Perata P, Loreti E. Distinct mechanisms regulating gene expression coexist within the fermentative pathways in Chlamydomonas reinhardtii. ScientificWorldJournal 2012; 2012:565047. [PMID: 22792045 PMCID: PMC3385630 DOI: 10.1100/2012/565047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/21/2012] [Indexed: 12/12/2022] Open
Abstract
Under dark anoxia, the unicellular green algae Chlamydomonas reinhardtii may produce hydrogen by means of its hydrogenase enzymes, in particular HYD1, using reductants derived from the degradation of intercellular carbon stores. Other enzymes belonging to the fermentative pathways compete for the same reductants. A complete understanding of the mechanisms determining the activation of one pathway rather than another will help us engineer Chlamydomonas for fermentative metabolite production, including hydrogen. We examined the expression pattern of the fermentative genes PDC3, LDH1, ADH2, PFL1, and PFR1 in response to day-night cycles, continuous light, continuous darkness, and low or high oxygen availability, which are all conditions that vary on a regular basis in Chlamydomonas' natural environment. We found that all genes except PFL1 show daily fluctuations in expression, and that PFR1 differentiated itself from the others in that it is clearly responsive to low oxygen, where as PDC3, LDH1, and ADH2 are primarily under diurnal regulation. Our results provide evidence that there exist at least three different regulatory mechanisms within the fermentative pathways and suggest that the fermentative pathways are not redundant but rather that availability of a variety of pathways allows for a differential metabolic response to different environmental conditions.
Collapse
|
45
|
Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 2012; 76:444-95. [PMID: 22688819 PMCID: PMC3372258 DOI: 10.1128/mmbr.05024-11] [Citation(s) in RCA: 511] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified.
Collapse
Affiliation(s)
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jaap J. van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Katrin Henze
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Christian Woehle
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Sven B. Gould
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Re-Young Yu
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Mark van der Giezen
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Aloysius G. M. Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
46
|
Magneschi L, Catalanotti C, Subramanian V, Dubini A, Yang W, Mus F, Posewitz MC, Seibert M, Perata P, Grossman AR. A mutant in the ADH1 gene of Chlamydomonas reinhardtii elicits metabolic restructuring during anaerobiosis. PLANT PHYSIOLOGY 2012; 158:1293-305. [PMID: 22271746 PMCID: PMC3291268 DOI: 10.1104/pp.111.191569] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/21/2012] [Indexed: 05/20/2023]
Abstract
The green alga Chlamydomonas reinhardtii has numerous genes encoding enzymes that function in fermentative pathways. Among these, the bifunctional alcohol/acetaldehyde dehydrogenase (ADH1), highly homologous to the Escherichia coli AdhE enzyme, is proposed to be a key component of fermentative metabolism. To investigate the physiological role of ADH1 in dark anoxic metabolism, a Chlamydomonas adh1 mutant was generated. We detected no ethanol synthesis in this mutant when it was placed under anoxia; the two other ADH homologs encoded on the Chlamydomonas genome do not appear to participate in ethanol production under our experimental conditions. Pyruvate formate lyase, acetate kinase, and hydrogenase protein levels were similar in wild-type cells and the adh1 mutant, while the mutant had significantly more pyruvate:ferredoxin oxidoreductase. Furthermore, a marked change in metabolite levels (in addition to ethanol) synthesized by the mutant under anoxic conditions was observed; formate levels were reduced, acetate levels were elevated, and the production of CO(2) was significantly reduced, but fermentative H(2) production was unchanged relative to wild-type cells. Of particular interest is the finding that the mutant accumulates high levels of extracellular glycerol, which requires NADH as a substrate for its synthesis. Lactate production is also increased slightly in the mutant relative to the control strain. These findings demonstrate a restructuring of fermentative metabolism in the adh1 mutant in a way that sustains the recycling (oxidation) of NADH and the survival of the mutant (similar to wild-type cell survival) during dark anoxic growth.
Collapse
Affiliation(s)
- Leonardo Magneschi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Thiergart T, Landan G, Schenk M, Dagan T, Martin WF. An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biol Evol 2012; 4:466-85. [PMID: 22355196 PMCID: PMC3342870 DOI: 10.1093/gbe/evs018] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To test the predictions of competing and mutually exclusive hypotheses for the origin of eukaryotes, we identified from a sample of 27 sequenced eukaryotic and 994 sequenced prokaryotic genomes 571 genes that were present in the eukaryote common ancestor and that have homologues among eubacterial and archaebacterial genomes. Maximum-likelihood trees identified the prokaryotic genomes that most frequently contained genes branching as the sister to the eukaryotic nuclear homologues. Among the archaebacteria, euryarchaeote genomes most frequently harbored the sister to the eukaryotic nuclear gene, whereas among eubacteria, the α-proteobacteria were most frequently represented within the sister group. Only 3 genes out of 571 gave a 3-domain tree. Homologues from α-proteobacterial genomes that branched as the sister to nuclear genes were found more frequently in genomes of facultatively anaerobic members of the rhiozobiales and rhodospirilliales than in obligate intracellular ricketttsial parasites. Following α-proteobacteria, the most frequent eubacterial sister lineages were γ-proteobacteria, δ-proteobacteria, and firmicutes, which were also the prokaryote genomes least frequently found as monophyletic groups in our trees. Although all 22 higher prokaryotic taxa sampled (crenarchaeotes, γ-proteobacteria, spirochaetes, chlamydias, etc.) harbor genes that branch as the sister to homologues present in the eukaryotic common ancestor, that is not evidence of 22 different prokaryotic cells participating at eukaryote origins because prokaryotic “lineages” have laterally acquired genes for more than 1.5 billion years since eukaryote origins. The data underscore the archaebacterial (host) nature of the eukaryotic informational genes and the eubacterial (mitochondrial) nature of eukaryotic energy metabolism. The network linking genes of the eukaryote ancestor to contemporary homologues distributed across prokaryotic genomes elucidates eukaryote gene origins in a dialect cognizant of gene transfer in nature.
Collapse
Affiliation(s)
- Thorsten Thiergart
- Institute of Molecular Evolution, Heinrich-Heine University Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
48
|
AMP-forming acetyl coenzyme A synthetase in the outermost membrane of the hyperthermophilic crenarchaeon Ignicoccus hospitalis. J Bacteriol 2012; 194:1572-81. [PMID: 22247508 DOI: 10.1128/jb.06130-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ignicoccus hospitalis, a hyperthermophilic, chemolithoautotrophic crenarchaeon was found to possess a new CO(2) fixation pathway, the dicarboxylate/4-hydroxybutyrate cycle. The primary acceptor molecule for this pathway is acetyl coenzyme A (acetyl-CoA), which is regenerated in the cycle via the characteristic intermediate 4-hydroxybutyrate. In the presence of acetate, acetyl-CoA can alternatively be formed in a one-step mechanism via an AMP-forming acetyl-CoA synthetase (ACS). This enzyme was identified after membrane preparation by two-dimensional native PAGE/SDS-PAGE, followed by matrix-assisted laser desorption ionization-time of flight tandem mass spectrometry and N-terminal sequencing. The ACS of I. hospitalis exhibits a molecular mass of ∼690 kDa with a monomeric molecular mass of 77 kDa. Activity tests on isolated membranes and bioinformatic analyses indicated that the ACS is a constitutive membrane-associated (but not an integral) protein complex. Unexpectedly, immunolabeling on cells of I. hospitalis and other described Ignicoccus species revealed that the ACS is localized at the outermost membrane. This perfectly coincides with recent results that the ATP synthase and the H(2):sulfur oxidoreductase complexes are also located in the outermost membrane of I. hospitalis. These results imply that the intermembrane compartment of I. hospitalis is not only the site of ATP synthesis but may also be involved in the primary steps of CO(2) fixation.
Collapse
|
49
|
Tsaousis AD, Leger MM, Stairs CAW, Roger AJ. The Biochemical Adaptations of Mitochondrion-Related Organelles of Parasitic and Free-Living Microbial Eukaryotes to Low Oxygen Environments. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-1896-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Terashima M, Specht M, Hippler M. The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features. Curr Genet 2011; 57:151-68. [PMID: 21533645 DOI: 10.1007/s00294-011-0339-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 01/12/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has emerged to be an important model organism for the study of oxygenic eukaryotic photosynthesis as well as other processes occurring in the chloroplast. However, the chloroplast proteome in C. reinhardtii has only recently been comprehensively characterized, made possible by proteomics emerging as an accessible and powerful tool over the last decade. In this review, we introduce a compiled list of 996 experimentally chloroplast-localized proteins for C. reinhardtii, stemming largely from our previous proteomic dataset comparing chloroplasts and mitochondria samples to localize proteins. In order to get a taste of some cellular functions taking place in the C. reinhardtii chloroplast, we will focus this review particularly on metabolic differences between chloroplasts of C. reinhardtii and higher plants. Areas that will be covered are photosynthesis, chlorophyll biosynthesis, carbon metabolism, fermentative metabolism, ferredoxins and ferredoxin-interacting proteins.
Collapse
Affiliation(s)
- Mia Terashima
- Department of Biology, Institute of Plant Biology and Biotechnology, University of Münster, Hindenburgplatz 55, 48143, Münster, Germany
| | | | | |
Collapse
|