1
|
Maddur AA, Voehler M, Panizzi P, Meiler J, Bock PE, Verhamme IM. Mapping of the fibrinogen-binding site on the staphylocoagulase C-terminal repeat region. J Biol Chem 2021; 298:101493. [PMID: 34915025 PMCID: PMC8761706 DOI: 10.1016/j.jbc.2021.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/12/2023] Open
Abstract
Fibrin (Fbn) deposits are a hallmark of staphylocoagulase (SC)-positive endocarditis. Binding of the N terminus of Staphylococcus aureus SC to host prothrombin triggers formation of an active SC·prothrombin∗ complex that cleaves host fibrinogen to Fbn. In addition, the C-terminal domain of the prototypical SC contains one pseudorepeat (PR) and seven repeats (R1 → R7) that bind fibrinogen/Fbn fragment D (frag D) by a mechanism that is unclear. Here, we define affinities and stoichiometries of frag D binding to C-terminal SC constructs, using fluorescence equilibrium binding, NMR titration, alanine scanning, and native PAGE. We found that constructs containing the PR and single repeats bound frag D with KD ∼50 to 130 nM and a 1:1 stoichiometry, indicating a conserved binding site bridging the PR and each repeat. NMR titration of PR-R7 with frag D revealed that residues 22 to 49, bridging PR and R7, constituted the minimal peptide (MP) for binding, corroborated by alanine scanning, and binding of labeled MP to frag D. MP alignment with the PR-R and inter-repeat junctions identified critical conserved residues. Full-length PR-(R1 → R7) bound frag D with KD ∼20 nM and a stoichiometry of 1:5, whereas constructs containing the PR and various three repeats competed with PR-(R1 → R7) for frag D binding, with a 1:3 stoichiometry. These findings are consistent with binding at PR-R and R-R junctions with modest inter-repeat sequence variability. CD of PR-R7 and PR-(R1 → R7) suggested a disordered flexible structure, allowing binding of multiple fibrin(ogen) molecules. Taken together, these results provide insights into pathogen localization on host fibrin networks.
Collapse
Affiliation(s)
- Ashoka A. Maddur
- FUJIFILM Diosynth Biotechnologies, College Station, Texas, USA,For correspondence: Ingrid M. Verhamme; Ashoka A. Maddur
| | - Markus Voehler
- Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA,Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Paul E. Bock
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ingrid M. Verhamme
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA,For correspondence: Ingrid M. Verhamme; Ashoka A. Maddur
| |
Collapse
|
2
|
Panizzi P, Krohn-Grimberghe M, Keliher E, Ye YX, Grune J, Frodermann V, Sun Y, Muse CG, Bushey K, Iwamoto Y, van Leent MMT, Meerwaldt A, Toner YC, Munitz J, Maier A, Soultanidis G, Calcagno C, Pérez-Medina C, Carlucci G, Riddell KP, Barney S, Horne G, Anderson B, Maddur-Appajaiah A, Verhamme IM, Bock PE, Wojtkiewicz GR, Courties G, Swirski FK, Church WR, Walz PH, Tillson DM, Mulder WJM, Nahrendorf M. Multimodal imaging of bacterial-host interface in mice and piglets with Staphylococcus aureus endocarditis. Sci Transl Med 2021; 12:12/568/eaay2104. [PMID: 33148623 DOI: 10.1126/scitranslmed.aay2104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 05/05/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022]
Abstract
Acute bacterial endocarditis is a rapid, difficult to manage, and frequently lethal disease. Potent antibiotics often cannot efficiently kill Staphylococcus aureus that colonizes the heart's valves. S. aureus relies on virulence factors to evade therapeutics and the host's immune response, usurping the host's clotting system by activating circulating prothrombin with staphylocoagulase and von Willebrand factor-binding protein. An insoluble fibrin barrier then forms around the bacterial colony, shielding the pathogen from immune cell clearance. Targeting virulence factors may provide previously unidentified avenues to better diagnose and treat endocarditis. To tap into this unused therapeutic opportunity, we codeveloped therapeutics and multimodal molecular imaging to probe the host-pathogen interface. We introduced and validated a family of small-molecule optical and positron emission tomography (PET) reporters targeting active thrombin in the fibrin-rich environment of bacterial colonies. The imaging agents, based on the clinical thrombin inhibitor dabigatran, are bound to heart valve vegetations in mice. Using optical imaging, we monitored therapy with antibodies neutralizing staphylocoagulase and von Willebrand factor-binding protein in mice with S. aureus endocarditis. This treatment deactivated bacterial defenses against innate immune cells, decreased in vivo imaging signal, and improved survival. Aortic or tricuspid S. aureus endocarditis in piglets was also successfully imaged with clinical PET/magnetic resonance imaging. Our data map a route toward adjuvant immunotherapy for endocarditis and provide efficient tools to monitor this drug class for infectious diseases.
Collapse
Affiliation(s)
- Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Marvin Krohn-Grimberghe
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA.,University Heart Center Freiburg, 79106 Freiburg, Germany
| | - Edmund Keliher
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Yu-Xiang Ye
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Jana Grune
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Vanessa Frodermann
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Yuan Sun
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Charlotte G Muse
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | | | - Yoshiko Iwamoto
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Mandy M T van Leent
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anu Meerwaldt
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yohana C Toner
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jazz Munitz
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Maier
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Georgios Soultanidis
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Claudia Calcagno
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Pérez-Medina
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Centro Nacional de Investigaciones Cardivasculares, 28029 Madrid, Spain
| | - Giuseppe Carlucci
- Bernard and Irene Schwarz Center for Biomedical Imaging, New York University, New York, NY 10016, USA
| | - Kay P Riddell
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Sharron Barney
- Department of Clinical Science, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Glenn Horne
- Department of Clinical Science, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Brian Anderson
- Swine Research and Education Center, Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ashoka Maddur-Appajaiah
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Ingrid M Verhamme
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Paul E Bock
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Gregory R Wojtkiewicz
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Gabriel Courties
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Filip K Swirski
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | | | - Paul H Walz
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - D Michael Tillson
- Department of Clinical Science, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Willem J M Mulder
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, Netherlands
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA. .,Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
3
|
Monoclonal Antibodies Targeting Surface-Exposed and Secreted Proteins from Staphylococci. Vaccines (Basel) 2021; 9:vaccines9050459. [PMID: 34064471 PMCID: PMC8147999 DOI: 10.3390/vaccines9050459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 02/01/2023] Open
Abstract
Staphylococci (specifically Staphylococcus aureus and Staphylococcus epidermidis) are the causative agents of diseases ranging from superficial skin and soft tissue infections to severe conditions such as fatal pneumonia, bacteremia, sepsis and endocarditis. The widespread and indiscriminate use of antibiotics has led to serious problems of resistance to staphylococcal disease and has generated a renewed interest in alternative therapeutic agents such as vaccines and antibodies. Staphylococci express a large repertoire of surface and secreted virulence factors, which provide mechanisms (adhesion, invasion and biofilm development among others) for both bacterial survival in the host and evasion from innate and adaptive immunity. Consequently, the development of antibodies that target specific antigens would provide an effective protective strategy against staphylococcal infections. In this review, we report an update on efforts to develop anti-staphylococci monoclonal antibodies (and their derivatives: minibodies, antibody–antibiotic conjugates) and the mechanism by which such antibodies can help fight infections. We also provide an overview of mAbs used in clinical trials and highlight their therapeutic potential in various infectious contexts.
Collapse
|
4
|
Maddur AA, Kroh HK, Aschenbrenner ME, Gibson BHY, Panizzi P, Sheehan JH, Meiler J, Bock PE, Verhamme IM. Specificity and affinity of the N-terminal residues in staphylocoagulase in binding to prothrombin. J Biol Chem 2020; 295:5614-5625. [PMID: 32156702 PMCID: PMC7186164 DOI: 10.1074/jbc.ra120.012588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Indexed: 11/06/2022] Open
Abstract
In Staphylococcus aureus-caused endocarditis, the pathogen secretes staphylocoagulase (SC), thereby activating human prothrombin (ProT) and evading immune clearance. A previous structural comparison of the SC(1-325) fragment bound to thrombin and its inactive precursor prethrombin 2 has indicated that SC activates ProT by inserting its N-terminal dipeptide Ile1-Val2 into the ProT Ile16 pocket, forming a salt bridge with ProT's Asp194, thereby stabilizing the active conformation. We hypothesized that these N-terminal SC residues modulate ProT binding and activation. Here, we generated labeled SC(1-246) as a probe for competitively defining the affinities of N-terminal SC(1-246) variants preselected by modeling. Using ProT(R155Q,R271Q,R284Q) (ProTQQQ), a variant refractory to prothrombinase- or thrombin-mediated cleavage, we observed variant affinities between ∼1 and 650 nm and activation potencies ranging from 1.8-fold that of WT SC(1-246) to complete loss of function. Substrate binding to ProTQQQ caused allosteric tightening of the affinity of most SC(1-246) variants, consistent with zymogen activation through occupation of the specificity pocket. Conservative changes at positions 1 and 2 were well-tolerated, with Val1-Val2, Ile1-Ala2, and Leu1-Val2 variants exhibiting ProTQQQ affinity and activation potency comparable with WT SC(1-246). Weaker binding variants typically had reduced activation rates, although at near-saturating ProTQQQ levels, several variants exhibited limiting rates similar to or higher than that of WT SC(1-246). The Ile16 pocket in ProTQQQ appears to favor nonpolar, nonaromatic residues at SC positions 1 and 2. Our results suggest that SC variants other than WT Ile1-Val2-Thr3 might emerge with similar ProT-activating efficiency.
Collapse
Affiliation(s)
- Ashoka A Maddur
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561.
| | - Heather K Kroh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561
| | - Mary E Aschenbrenner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561
| | - Breanne H Y Gibson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama 36849
| | - Jonathan H Sheehan
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232; Institute for Drug Discovery, Departments of Chemistry and Computer Science, Leipzig University Medical School, SAC 04103 Leipzig, Germany
| | - Paul E Bock
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561
| | - Ingrid M Verhamme
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561.
| |
Collapse
|
5
|
Qu S, Liu Y, Hu Q, Han Y, Hao Z, Shen J, Zhu K. Programmable antibiotic delivery to combat methicillin-resistant Staphylococcus aureus through precision therapy. J Control Release 2020; 321:710-717. [PMID: 32135225 DOI: 10.1016/j.jconrel.2020.02.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022]
Abstract
The rapid dissemination of life-threatening multidrug-resistant bacterial pathogens calls for the development of new antibacterial agents and alternative strategies. The virulence factor secreted by bacteria plays a crucial role in the sophisticated processes during infections. Inspired by the unique capacity of many bacteria inducing clotting of plasma to initiate colonization, we propose a programmable antibiotic delivery system for precision therapy using methicillin-resistant S. aureus (MRSA) as a model. Coagulase utilized by MRSA to directly cleave fibrinogen into fibrin, is an ideal target not only for tracking bacterial status but for triggering the collapse of fibrinogen functionalized porous microspheres. Subsequently, staphylokinase, another virulence factor of MRSA, catalyzed hydrolysis of fibrin to further release the encapsulated antibiotics from microspheres. Our sequential triggered-release system exhibits high selectivity to distinguish live or dead MRSA from other pathogenic bacteria. Furthermore, such programmable microspheres clear 99% MRSA in 4 h, and show increased efficiency in a wound healing model in rats. Our study provides a programmable drug delivery system to precisely target bacterial pathogens using their intrinsic enzymatic cascades. This programmable platform with reduced selective stress of antibiotics on microbiota sheds light on the potential therapy for future clinical applications.
Collapse
Affiliation(s)
- Shaoqi Qu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiao Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yiming Han
- College of Engineering, Peking University, Beijing 100871, China
| | - Zhihui Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, China.
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Thomas S, Liu W, Arora S, Ganesh V, Ko YP, Höök M. The Complex Fibrinogen Interactions of the Staphylococcus aureus Coagulases. Front Cell Infect Microbiol 2019; 9:106. [PMID: 31041195 PMCID: PMC6476931 DOI: 10.3389/fcimb.2019.00106] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/27/2019] [Indexed: 11/22/2022] Open
Abstract
The two coagulases, von Willebrand factor binding protein (vWbp) and Coagulase (Coa), are critical virulence factors in several animal models of invasive Staphylococcus aureus (S. aureus) infections. These proteins are part of an intricate system of proteins that S. aureus uses to assemble a fibrinogen (Fg)/fibrin protective shield surrounding itself. This shield allows the microorganism to evade clearance by the host phagocytic cells. The coagulases can non-proteolytically activate the zymogen prothrombin to convert Fg to fibrin and promote the Fg/fibrin shield formation. The coagulases also bind directly to Fg and the interaction between Coa and Fg has been previously characterized in some detail. However, the mechanism(s) by which vWbp interacts with Fg remains unclear. Here, we show that vWbp and Coa have distinct interactions with Fg, despite being structurally similar. Coa binds with a significantly higher affinity to soluble Fg than to Fg coated on a plastic surface, whereas vWbp demonstrates no preference between the two forms of Fg. The two coagulases appear to target different sites on Fg, as they do not compete with each other in binding to Fg. Similar to Coa, both the N- and C-terminal halves of vWbp (vWbp-N, vWbp-C, respectively) harbor Fg-binding activities. The higher affinity Fg-binding activity resides in vWbp-N; whereas, the C-terminal region of Coa encompasses the major Fg-binding activity. Peptides constituting the previously identified Coa/Efb1 Fg-binding motif fail to inhibit vWbp-C from binding to Fg, indicating that vWbp-C lacks a functional homolog to this motif. Interestingly, the N-terminal prothrombin-binding domains of both coagulases recognize the Fg β-chain, but they appear to interact with different sequence motifs in the host protein. Collectively, our data provide insight into the complex interactions between Fg and the S. aureus coagulases.
Collapse
Affiliation(s)
- Sheila Thomas
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Wen Liu
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Vannakambodi Ganesh
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Ya-Ping Ko
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| |
Collapse
|
7
|
Davis RW, Brannen AD, Hossain MJ, Monsma S, Bock PE, Nahrendorf M, Mead D, Lodes M, Liles MR, Panizzi P. Complete genome of Staphylococcus aureus Tager 104 provides evidence of its relation to modern systemic hospital-acquired strains. BMC Genomics 2016; 17:179. [PMID: 26940863 PMCID: PMC4778325 DOI: 10.1186/s12864-016-2433-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/03/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) infections range in severity due to expression of certain virulence factors encoded on mobile genetic elements (MGE). As such, characterization of these MGE, as well as single nucleotide polymorphisms, is of high clinical and microbiological importance. To understand the evolution of these dangerous pathogens, it is paramount to define reference strains that may predate MGE acquisition. One such candidate is S. aureus Tager 104, a previously uncharacterized strain isolated from a patient with impetigo in 1947. RESULTS We show here that S. aureus Tager 104 can survive in the bloodstream and infect naïve organs. We also demonstrate a procedure to construct and validate the assembly of S. aureus genomes, using Tager 104 as a proof-of-concept. In so doing, we bridged confounding gap regions that limited our initial attempts to close this 2.82 Mb genome, through integration of data from Illumina Nextera paired-end, PacBio RS, and Lucigen NxSeq mate-pair libraries. Furthermore, we provide independent confirmation of our segmental arrangement of the Tager 104 genome by the sole use of Lucigen NxSeq libraries filled by paired-end MiSeq reads and alignment with SPAdes software. Genomic analysis of Tager 104 revealed limited MGE, and a νSaβ island configuration that is reminiscent of other hospital acquired S. aureus genomes. CONCLUSIONS Tager 104 represents an early-branching ancestor of certain hospital-acquired strains. Combined with its earlier isolation date and limited content of MGE, Tager 104 can serve as a viable reference for future comparative genome studies.
Collapse
Affiliation(s)
- Richard W Davis
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA.
| | - Andrew D Brannen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA.
| | - Mohammad J Hossain
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA.
| | - Scott Monsma
- Lucigen Corporation, 2905 Parmenter St, Middleton, WI, 53562, USA.
| | - Paul E Bock
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge St., Boston, MA, 02114, USA.
| | - David Mead
- Lucigen Corporation, 2905 Parmenter St, Middleton, WI, 53562, USA.
| | - Michael Lodes
- Lucigen Corporation, 2905 Parmenter St, Middleton, WI, 53562, USA.
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA.
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA.
| |
Collapse
|
8
|
Verhamme IM, Bock PE. Rapid binding of plasminogen to streptokinase in a catalytic complex reveals a three-step mechanism. J Biol Chem 2014; 289:28006-18. [PMID: 25138220 DOI: 10.1074/jbc.m114.589077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rapid kinetics demonstrate a three-step pathway of streptokinase (SK) binding to plasminogen (Pg), the zymogen of plasmin (Pm). Formation of a fluorescently silent encounter complex is followed by two conformational tightening steps reported by fluorescence quenches. Forward reactions were defined by time courses of biphasic quenching during complex formation between SK or its COOH-terminal Lys(414) deletion mutant (SKΔK414) and active site-labeled [Lys]Pg ([5-(acetamido)fluorescein]-D-Phe-Phe-Arg-[Lys]Pg ([5F]FFR-[Lys]Pg)) and by the SK dependences of the quench rates. Active site-blocked Pm rapidly displaced [5F]FFR-[Lys]Pg from the complex. The encounter and final SK ·[5F]FFR-[Lys]Pg complexes were weakened similarly by SK Lys(414) deletion and blocking of lysine-binding sites (LBSs) on Pg kringles with 6-aminohexanoic acid or benzamidine. Forward and reverse rates for both tightening steps were unaffected by 6-aminohexanoic acid, whereas benzamidine released constraints on the first conformational tightening. This indicated that binding of SK Lys(414) to Pg kringle 4 plays a role in recognition of Pg by SK. The substantially lower affinity of the final SK · Pg complex compared with SK · Pm is characterized by a ∼ 25-fold weaker encounter complex and ∼ 40-fold faster off-rates for the second conformational step. The results suggest that effective Pg encounter requires SK Lys(414) engagement and significant non-LBS interactions with the protease domain, whereas Pm binding additionally requires contributions of other lysines. This difference may be responsible for the lower affinity of the SK · Pg complex and the expression of a weaker "pro"-exosite for binding of a second Pg in the substrate mode compared with SK · Pm.
Collapse
Affiliation(s)
- Ingrid M Verhamme
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Paul E Bock
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
9
|
Panizzi P, Stone JR, Nahrendorf M. Endocarditis and molecular imaging. J Nucl Cardiol 2014; 21:486-95. [PMID: 24797384 PMCID: PMC4106242 DOI: 10.1007/s12350-014-9902-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - James R. Stone
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge St., Boston, MA 02114, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge St., Boston, MA 02114, USA
| |
Collapse
|
10
|
Eggleston H, Panizzi P. Molecular imaging of bacterial infections in vivo: the discrimination of infection from inflammation. INFORMATICS (MDPI) 2014; 1:72-99. [PMID: 26985401 PMCID: PMC4790455 DOI: 10.3390/informatics1010072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imaging by definition is the visualization of molecular and cellular processes within a given system. The modalities and reagents described here represent a diverse array spanning both pre-clinical and clinical applications. Innovations in probe design and technologies would greatly benefit therapeutic outcomes by enhancing diagnostic accuracy and assessment of acute therapy. Opportunistic pathogens continue to pose a worldwide threat, despite advancements in treatment strategies, which highlights the continued need for improved diagnostics. In this review, we present a summary of the current clinical protocol for the imaging of a suspected infection, methods currently in development to optimize this imaging process, and finally, insight into endocarditis as a model of infectious disease in immediate need of improved diagnostic methods.
Collapse
Affiliation(s)
- Heather Eggleston
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849
| |
Collapse
|
11
|
Kroh HK, Bock PE. Effect of zymogen domains and active site occupation on activation of prothrombin by von Willebrand factor-binding protein. J Biol Chem 2012; 287:39149-57. [PMID: 23012355 DOI: 10.1074/jbc.m112.415562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prothrombin is conformationally activated by von Willebrand factor-binding protein (vWbp) from Staphylococcus aureus through insertion of the NH(2)-terminal residues of vWbp into the prothrombin catalytic domain. The rate of prothrombin activation by vWbp(1-263) is controlled by a hysteretic kinetic mechanism initiated by substrate binding. The present study evaluates activation of prothrombin by full-length vWbp(1-474) through activity progress curve analysis. Additional interactions from the COOH-terminal half of vWbp(1-474) strengthened the initial binding of vWbp to prothrombin, resulting in higher activity and an ∼100-fold enhancement in affinity. The affinities of vWbp(1-263) or vWbp(1-474) were compared by equilibrium binding to the prothrombin derivatives prethrombin 1, prethrombin 2, thrombin, meizothrombin, and meizothrombin(des-fragment 1) and their corresponding active site-blocked analogs. Loss of fragment 1 in prethrombin 1 enhanced affinity for both vWbp(1-263) and vWbp(1-474), with a 30-45% increase in Gibbs free energy, implicating a regulatory role for fragment 1 in the activation mechanism. Active site labeling of all prothrombin derivatives with D-Phe-Pro-Arg-chloromethyl ketone, analogous to irreversible binding of a substrate, decreased their K(D) values for vWbp into the subnanomolar range, reflecting the dependence of the activating conformational change on substrate binding. The results suggest a role for prothrombin domains in the pathophysiological activation of prothrombin by vWbp, and may reveal a function for autocatalysis of the vWbp·prothrombin complexes during initiation of blood coagulation.
Collapse
Affiliation(s)
- Heather K Kroh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
12
|
Tormoen GW, Cianchetti FA, Bock PE, McCarty OJT. Development of coagulation factor probes for the identification of procoagulant circulating tumor cells. Front Oncol 2012; 2:110. [PMID: 22973554 PMCID: PMC3434442 DOI: 10.3389/fonc.2012.00110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/15/2012] [Indexed: 12/16/2022] Open
Abstract
Metastatic cancer is associated with a hypercoagulable state, and pathological venous thromboembolic disease is a significant source of morbidity and the second leading cause of death in patients with cancer. Here we aimed to develop a novel labeling strategy to detect and quantify procoagulant circulating tumor cells (CTCs) from patients with metastatic cancer. We hypothesize that the enumeration of procoagulant CTCs may be prognostic for the development of venous thrombosis in patients with cancer. Our approach is based on the observation that cancer cells are capable of initiating and facilitating cell-mediated coagulation in vitro, whereby activated coagulation factor complexes assemble upon cancer cell membrane surfaces. Binding of fluorescently labeled, active site-inhibited coagulation factors VIIa, Xa, and IIa to the metastatic breast cancer cell line, MDA-MB-231, non-metastatic colorectal cell line, SW480, or metastatic colorectal cell line, SW620, was characterized in a purified system, in anticoagulated blood and plasma, and in plasma under conditions of coagulation. We conclude that a CTC labeling strategy that utilizes coagulation factor-based fluorescent probes may provide a functional assessment of the procoagulant potential of CTCs, and that this strategy is amenable to current CTC detection platforms.
Collapse
Affiliation(s)
- Garth W Tormoen
- Department of Biomedical Engineering, Oregon Health and Science University Portland, OR, USA
| | | | | | | |
Collapse
|
13
|
DeDent A, Kim HK, Missiakas D, Schneewind O. Exploring Staphylococcus aureus pathways to disease for vaccine development. Semin Immunopathol 2012; 34:317-33. [PMID: 22130613 PMCID: PMC3539746 DOI: 10.1007/s00281-011-0299-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 10/28/2011] [Indexed: 12/21/2022]
Abstract
Staphylococcus aureus is a commensal of the human skin or nares and a pathogen that frequently causes skin and soft tissue infections as well as bacteremia and sepsis. Recent efforts in understanding the molecular mechanisms of pathogenesis revealed key virulence strategies of S. aureus in host tissues: bacterial scavenging of iron, induction of coagulation pathways to promote staphylococcal agglutination in the vasculature, and suppression of innate and adaptive immune responses. Advances in all three areas have been explored for opportunities in vaccine design in an effort to identify the critical protective antigens of S. aureus. Human clinical trials with specific subunit vaccines have failed, yet provide important insights for the design of future trials that must address the current epidemic of S. aureus infections with drug-resistant isolates (MRSA, methicillin-resistant S. aureus).
Collapse
Affiliation(s)
- Andrea DeDent
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
14
|
Newell-Caito JL, Laha M, Tharp AC, Creamer JI, Xu H, Maddur AA, Tans G, Bock PE. Notecarin D binds human factor V and factor Va with high affinity in the absence of membranes. J Biol Chem 2011; 286:38286-38297. [PMID: 21911491 DOI: 10.1074/jbc.m111.247122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Notecarin D (NotD) is a prothrombin (ProT) activator in the venom of the tiger snake, Notechis scutatus, and a factor Xa (FXa) homolog. NotD binds specifically to the FXa binding site expressed on factor V (FV) upon activation to factor Va (FVa) by thrombin. NotD active site-labeled with 5-fluorescein ([5F]FFR-NotD) binds FV and FVa with remarkably high affinity in the absence of phospholipids (K(D) 12 and ≤ 0.01 nm, respectively). In the presence of membranes, the affinity of [5F]FFR-NotD for FVa is similar, but increased ∼55-fold for FV. Binding of FXa active site-labeled with Oregon Green to FV and FVa in the presence of phospholipids is ∼5,000- and ∼80-fold weaker than [5F]FFR-NotD, respectively. NotD reports FVa and not FV binding by a 3-fold increase in tripeptide substrate hydrolysis, demonstrating allosteric regulation by FVa. The NotD·FVa·membrane complex activates ProT with K(m)((app)) similar to prothrombinase, and ∼85-fold weaker without membranes. Active site-blocked NotD exhibits potent anticoagulant activity in plasma thrombin generation assays, representing inhibition of productive prothrombinase assembly and possible disruption of FXa inhibition by the tissue factor pathway inhibitor. The results show that high affinity binding of NotD to FVa is membrane-independent, unlike the strict membrane dependence of FXa for high affinity FVa binding.
Collapse
Affiliation(s)
- Jennifer L Newell-Caito
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561
| | - Malabika Laha
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561
| | - Anthony C Tharp
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561
| | - Jonathan I Creamer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561
| | - Hong Xu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561
| | - Ashoka A Maddur
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561
| | - Guido Tans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, 6200MD Maastricht, The Netherlands
| | - Paul E Bock
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561.
| |
Collapse
|
15
|
In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat Med 2011; 17:1142-6. [PMID: 21857652 PMCID: PMC3169740 DOI: 10.1038/nm.2423] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 02/18/2011] [Indexed: 12/30/2022]
Abstract
Coagulase-positive Staphylococcus aureus (S. aureus) is the major causal pathogen of acute endocarditis, a rapidly progressing, destructive infection of the heart valves. Bacterial colonization occurs at sites of endothelial damage, where (together with fibrin and platelets) it initiates the formation of abnormal growths known as vegetations. Here we report that an engineered analog of prothrombin detected S. aureus in endocarditic vegetations via noninvasive fluorescence or PET imaging. These prothrombin derivatives bound to staphylocoagulase and intercalated into growing bacterial vegetations. We also present evidence for bacterial quorum sensing in the regulation of staphylocoagulase expression by S. aureus. Staphylocoagulase expression was limited to the growing edge of mature vegetations, where it was exposed to the host and co-localized with the imaging probe. When endocarditis was induced with an S. aureus strain with genetic deletion of coagulases, survival of mice improved, highlighting the role of staphylocoagulase as a virulence factor.
Collapse
|
16
|
Kroh HK, Panizzi P, Tchaikovski S, Baird TR, Wei N, Krishnaswamy S, Tans G, Rosing J, Furie B, Furie BC, Bock PE. Active site-labeled prothrombin inhibits prothrombinase in vitro and thrombosis in vivo. J Biol Chem 2011; 286:23345-56. [PMID: 21531712 DOI: 10.1074/jbc.m111.230292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse and human prothrombin (ProT) active site specifically labeled with D-Phe-Pro-Arg-CH(2)Cl (FPR-ProT) inhibited tissue factor-initiated thrombin generation in platelet-rich and platelet-poor mouse and human plasmas. FPR-prethrombin 1 (Pre 1), fragment 1 (F1), fragment 1.2 (F1.2), and FPR-thrombin produced no significant inhibition, demonstrating the requirement for all three ProT domains. Kinetics of inhibition of ProT activation by the inactive ProT(S195A) mutant were compatible with competitive inhibition as an alternate nonproductive substrate, although FPR-ProT deviated from this mechanism, implicating a more complex process. FPR-ProT exhibited ∼10-fold more potent anticoagulant activity compared with ProT(S195A) as a result of conformational changes in the ProT catalytic domain that induce a more proteinase-like conformation upon FPR labeling. Unlike ProT and ProT(S195A), the pathway of FPR-ProT cleavage by prothrombinase was redirected from meizothrombin toward formation of the FPR-prethrombin 2 (Pre 2)·F1.2 inhibitory intermediate. Localization of ProT labeled with Alexa Fluor® 660 tethered through FPR-CH(2)Cl ([AF660]FPR-ProT) during laser-induced thrombus formation in vivo in murine arterioles was examined in real time wide-field and confocal fluorescence microscopy. [AF660]FPR-ProT bound rapidly to the vessel wall at the site of injury, preceding platelet accumulation, and subsequently to the thrombus proximal, but not distal, to the vessel wall. [AF660]FPR-ProT inhibited thrombus growth, whereas [AF660]FPR-Pre 1, lacking the F1 membrane-binding domain did not bind or inhibit. Labeled F1.2 localized similarly to [AF660]FPR-ProT, indicating binding to phosphatidylserine-rich membranes, but did not inhibit thrombosis. The studies provide new insight into the mechanism of ProT activation in vivo and in vitro, and the properties of a unique exosite-directed prothrombinase inhibitor.
Collapse
Affiliation(s)
- Heather K Kroh
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Engineering streptokinase for generation of active site-labeled plasminogen analogs. Anal Biochem 2011; 415:105-15. [PMID: 21570944 DOI: 10.1016/j.ab.2011.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/07/2011] [Accepted: 04/15/2011] [Indexed: 01/18/2023]
Abstract
We previously demonstrated that streptokinase (SK) can be used to generate active site-labeled fluorescent analogs of plasminogen (Pg) by virtue of its nonproteolytic activation of the zymogen. The method is versatile and allows stoichiometric and active site-specific incorporation of any one of many molecular probes. The limitation of the labeling approach is that it is both time-consuming and low yield. Here we demonstrate an improved method for the preparation of labeled Pg analogs by the use of an engineered SK mutant fusion protein with both COOH- and NH(2)-terminal His(6) tags. The NH(2)-terminal tag is followed by a tobacco etch virus proteinase cleavage site to ensure that the SK Ile(1) residue, essential for conformational activation of Pg, is preserved. The SK COOH-terminal Lys(414) residue and residues Arg253-Leu260 in the SK β-domain were deleted to prevent cleavage by plasmin (Pm) and to disable Pg substrate binding to the SK·Pg(∗)/Pm catalytic complexes, respectively. Near elimination of Pm generation with the SKΔ(R253-L260)ΔK414-His(6) mutant increased the yield of labeled Pg 2.6-fold and reduced the time required more than 2-fold. The versatility of the labeling method was extended to the application of Pg labeled with a near-infrared probe to quantitate Pg receptors on immune cells by flow cytometry.
Collapse
|
18
|
Hasumi K, Yamamichi S, Harada T. Small-molecule modulators of zymogen activation in the fibrinolytic and coagulation systems. FEBS J 2010; 277:3675-87. [PMID: 20718867 DOI: 10.1111/j.1742-4658.2010.07783.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The coagulation and fibrinolytic systems are central to the hemostatic mechanism, which works promptly on vascular injury and tissue damage. The rapid response is generated by specific molecular interactions between components in these systems. Thus, the regulation mechanism of the systems is programmed in each component, as exemplified by the elegant processes in zymogen activation. This review describes recently identified small molecules that modulate the activation of zymogens in the fibrinolytic and coagulation systems.
Collapse
Affiliation(s)
- Keiji Hasumi
- Department of Applied Biological Science, Tokyo Noko University, Tokyo, Japan.
| | | | | |
Collapse
|
19
|
Nicolaes GAF, Bock PE, Segers K, Wildhagen KCAA, Dahlbäck B, Rosing J. Inhibition of thrombin formation by active site mutated (S360A) activated protein C. J Biol Chem 2010; 285:22890-900. [PMID: 20484050 DOI: 10.1074/jbc.m110.131029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activated protein C (APC) down-regulates thrombin formation through proteolytic inactivation of factor Va (FVa) by cleavage at Arg(506) and Arg(306) and of factor VIIIa (FVIIIa) by cleavage at Arg(336) and Arg(562). To study substrate recognition by APC, active site-mutated APC (APC(S360A)) was used, which lacks proteolytic activity but exhibits anticoagulant activity. Experiments in model systems and in plasma show that APC(S360A), and not its zymogen protein C(S360A), expresses anticoagulant activities by competing with activated coagulation factors X and IX for binding to FVa and FVIIIa, respectively. APC(S360A) bound to FVa with a K(D) of 0.11 +/- 0.05 nm and competed with active site-labeled Oregon Green activated coagulation factor X for binding to FVa. The binding of APC(S360A) to FVa was not affected by protein S but was inhibited by prothrombin. APC(S360A) binding to FVa was critically dependent upon the presence of Arg(506) and not Arg(306) and additionally required an active site accessible to substrates. Inhibition of FVIIIa activity by APC(S360A) was >100-fold less efficient than inhibition of FVa. Our results show that despite exosite interactions near the Arg(506) cleavage site, binding of APC(S360A) to FVa is almost completely dependent on Arg(506) interacting with APC(S360A) to form a nonproductive Michaelis complex. Because docking of APC to FVa and FVIIIa constitutes the first step in the inactivation of the cofactors, we hypothesize that the observed anticoagulant activity may be important for in vivo regulation of thrombin formation.
Collapse
Affiliation(s)
- Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200MD Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
20
|
Berny MA, Munnix ICA, Auger JM, Schols SEM, Cosemans JMEM, Panizzi P, Bock PE, Watson SP, McCarty OJT, Heemskerk JWM. Spatial distribution of factor Xa, thrombin, and fibrin(ogen) on thrombi at venous shear. PLoS One 2010; 5:e10415. [PMID: 20454680 PMCID: PMC2861630 DOI: 10.1371/journal.pone.0010415] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 03/31/2010] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The generation of thrombin is a critical process in the formation of venous thrombi. In isolated plasma under static conditions, phosphatidylserine (PS)-exposing platelets support coagulation factor activation and thrombin generation; however, their role in supporting coagulation factor binding under shear conditions remains unclear. We sought to determine where activated factor X (FXa), (pro)thrombin, and fibrin(ogen) are localized in thrombi formed under venous shear. METHODOLOGY/PRINCIPAL FINDINGS Fluorescence microscopy was used to study the accumulation of platelets, FXa, (pro)thrombin, and fibrin(ogen) in thrombi formed in vitro and in vivo. Co-perfusion of human blood with tissue factor resulted in formation of visible fibrin at low, but not at high shear rate. At low shear, platelets demonstrated increased Ca(2+) signaling and PS exposure, and supported binding of FXa and prothrombin. However, once cleaved, (pro)thrombin was observed on fibrin fibers, covering the whole thrombus. In vivo, wild-type mice were injected with fluorescently labeled coagulation factors and venous thrombus formation was monitored in mesenteric veins treated with FeCl(3). Thrombi formed in vivo consisted of platelet aggregates, focal spots of platelets binding FXa, and large areas binding (pro)thrombin and fibrin(ogen). CONCLUSIONS/SIGNIFICANCE FXa bound in a punctate manner to thrombi under shear, while thrombin and fibrin(ogen) distributed ubiquitously over platelet-fibrin thrombi. During thrombus formation under venous shear, thrombin may relocate from focal sites of formation (on FXa-binding platelets) to dispersed sites of action (on fibrin fibers).
Collapse
Affiliation(s)
- Michelle A. Berny
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Imke C. A. Munnix
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Jocelyn M. Auger
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Saskia E. M. Schols
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | | | - Peter Panizzi
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Paul E. Bock
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Steve P. Watson
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Johan W. M. Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
21
|
Bøtkjaer KA, Byszuk AA, Andersen LM, Christensen A, Andreasen PA, Blouse GE. Nonproteolytic induction of catalytic activity into the single-chain form of urokinase-type plasminogen activator by dipeptides. Biochemistry 2009; 48:9606-17. [PMID: 19705874 DOI: 10.1021/bi900510f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serine proteases are initially synthesized as single-chain proenzymes with activities that are many orders of magnitude lower than those of the mature enzyme. Proteolytic cleavage of an exposed loop liberates a new amino terminus that inserts into a hydrophobic pocket and forms a stabilizing salt bridge with a ubiquitously conserved aspartate residue, resulting in a conformational change organizing the mature oxyanion hole. In a decisive 1976 work, Huber and Bode [Bode, W., and Huber, R. (1976) FEBS Lett. 68, 231-236] demonstrated that peptides sequentially similar to the new amino terminus in combination with a catalytic site inhibitor could specifically induce a trypsin-like conformation in trypsinogen. We now demonstrate that an Ile-Ile or Ile-Val dipeptide can induce limited enzyme activity in the single-chain zymogen form of urokinase-type plasminogen activator (uPA) or its K158A variant, which cannot be activated proteolytically. Furthermore, the slow formation of a covalent serpin-protease complex between single-chain uPA and PAI-1 is significantly accelerated in the presence of specific dipeptide sequences. The technique of using a dipeptide mimic as a surrogate for the liberated amino terminus further provides a novel means by which to covalently label the immature active site of single-chain uPA with a fluorescent probe, permitting fluorescence approaches for direct observations of conformational changes within the protease domain during zymogen activation. These data demonstrate the structural plasticity of the protease domain, reinforce the notion of "molecular sexuality", and provide a novel way of studying conformational changes of zymogens during proteolytic activation.
Collapse
|
22
|
Von Willebrand factor-binding protein is a hysteretic conformational activator of prothrombin. Proc Natl Acad Sci U S A 2009; 106:7786-91. [PMID: 19416890 DOI: 10.1073/pnas.0811750106] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Von Willebrand factor-binding protein (VWbp), secreted by Staphylococcus aureus, displays secondary structural homology to the 3-helix bundle, D1 and D2 domains of staphylocoagulase (SC), a potent conformational activator of the blood coagulation zymogen, prothrombin (ProT). In contrast to the classical proteolytic activation mechanism of trypsinogen-like serine proteinase zymogens, insertion of the first 2 residues of SC into the NH(2)-terminal binding cleft on ProT (molecular sexuality) induces rapid conformational activation of the catalytic site. Based on plasma-clotting assays, the target zymogen for VWbp may be ProT, but this has not been verified, and the mechanism of ProT activation is unknown. We demonstrate that VWbp activates ProT conformationally in a mechanism requiring its Val(1)-Val(2) residues. By contrast to SC, full time-course kinetic studies of ProT activation by VWbp demonstrate that it activates ProT by a substrate-dependent, hysteretic kinetic mechanism. VWbp binds weakly to ProT (K(D) 2.5 microM) to form an inactive complex, which is activated through a slow conformational change by tripeptide chromogenic substrates and its specific physiological substrate, identified here as fibrinogen (Fbg). This mechanism increases the specificity of ProT activation by delaying it in a slow reversible process, with full activation requiring binding of Fbg through an exosite expressed on the activated ProT*.VWbp complex. The results suggest that this unique mechanism regulates pathological fibrin (Fbn) deposition to VWF-rich areas during S. aureus endocarditis.
Collapse
|
23
|
Blouse GE, Bøtkjaer KA, Deryugina E, Byszuk AA, Jensen JM, Mortensen KK, Quigley JP, Andreasen PA. A novel mode of intervention with serine protease activity: targeting zymogen activation. J Biol Chem 2008; 284:4647-57. [PMID: 19047064 DOI: 10.1074/jbc.m804922200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine proteases are secreted from cells as single-chain zymogens, typically having activities orders of magnitude lower than those of the mature two-chain enzymes. Activation occurs by a conformational change initiated by cleavage of a specific peptide bond. We have derived a monoclonal antibody (mAb-112) which binds with subnanomolar affinity to pro-uPA, the zymogen form of urokinase-type plasminogen activator (uPA). We mapped the epitope of the antibody to the autolysis loop, one of the structural elements known to change conformation during zymogen activation. A mechanistic evaluation with biophysical methods elucidated a novel bifunctional inhibitory mechanism whereby mAb-112 not only delays the proteolytic conversion of single-chain pro-uPA into the two-chain form but also subsequently averts the conformational transition to a mature protease by sequestering the two-chain form in a zymogen-like, noncatalytic state. Functional studies employing two variants of human HT-1080 cells, exhibiting high and low levels of dissemination in a chorioallantoic membrane assay, demonstrate that mAb-112 is an effective inhibitor of tumor cell intravasation. These findings show that pharmacological interference with zymogen activation is a plausible and robust means to regulate uPA activity and the downstream effects of plasminogen activation in the spread of cancer and other processes of pathological tissue remodeling. A strategy that targets regions related to pro-enzyme activation likely provide a unique inhibitor-protease interaction surface and is, thus, expected to enhance the chances of engineering high inhibitor specificity. Our results provide new information about the structural flexibility underlying the equilibrium between active and inactive forms of serine proteases.
Collapse
Affiliation(s)
- Grant E Blouse
- Department of Molecular Biology, University of Aarhus, 10C Gustav Wied's Vej, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Borbas KE, Kee HL, Holten D, Lindsey JS. A compact water-soluble porphyrin bearing an iodoacetamido bioconjugatable site. Org Biomol Chem 2008; 6:187-94. [DOI: 10.1039/b715072e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Hacisalihoglu A, Panizzi P, Bock PE, Camire RM, Krishnaswamy S. Restricted active site docking by enzyme-bound substrate enforces the ordered cleavage of prothrombin by prothrombinase. J Biol Chem 2007; 282:32974-82. [PMID: 17848548 PMCID: PMC2292459 DOI: 10.1074/jbc.m706529200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The preferred pathway for prothrombin activation by prothrombinase involves initial cleavage at Arg(320) to produce meizothrombin, which is then cleaved at Arg(271) to liberate thrombin. Exosite binding drives substrate affinity and is independent of the bond being cleaved. The pathway for cleavage is determined by large differences in V(max) for cleavage at the two sites within intact prothrombin. By fluorescence binding studies in the absence of catalysis, we have assessed the ability of the individual cleavage sites to engage the active site of Xa within prothrombinase at equilibrium. Using a panel of recombinant cleavage site mutants, we show that in intact prothrombin, the Arg(320) site effectively engages the active site in a 1:1 interaction between substrate and enzyme. In contrast, the Arg(271) site binds to the active site poorly in an interaction that is approximately 600-fold weaker. Perceived substrate affinity is independent of active site engagement by either cleavage site. We further show that prior cleavage at the 320 site or the stabilization of the uncleaved zymogen in a proteinase-like state facilitates efficient docking of Arg(271) at the active site of prothrombinase. Therefore, we establish direct relationships between docking of either cleavage site at the active site of the catalyst, the V(max) for cleavage at that site, substrate conformation, and the resulting pathway for prothrombin cleavage. Exosite tethering of the substrate in either the zymogen or proteinase conformation dictates which cleavage site can engage the active site of the catalyst and enforces the sequential cleavage of prothrombin by prothrombinase.
Collapse
Affiliation(s)
| | - Peter Panizzi
- Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232
| | - Paul E. Bock
- Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232
| | - Rodney M. Camire
- Joseph Stokes Research Institute, Children’s Hospital of Philadelphia
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sriram Krishnaswamy
- Joseph Stokes Research Institute, Children’s Hospital of Philadelphia
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- To whom correspondence should be addressed: 310 Abramson, 3615 Civic Center Blvd., Philadelphia, PA 19104. Tel.: 215-590-3346; Fax: 215-590-2320; E-mail:
| |
Collapse
|
26
|
Abstract
The specificity of blood coagulation proteinases for substrate, inhibitor, and effector recognition is mediated by exosites on the surfaces of the catalytic domains, physically separated from the catalytic site. Some thrombin ligands bind specifically to either exosite I or II, while others engage both exosites. The involvement of different, overlapping constellations of exosite residues enables binding of structurally diverse ligands. The flexibility of the thrombin structure is central to the mechanism of complex formation and the specificity of exosite interactions. Encounter complex formation is driven by electrostatic ligand-exosite interactions, followed by conformational rearrangement to a stable complex. Exosites on some zymogens are in low affinity proexosite states and are expressed concomitant with catalytic site activation. The requirement for exosite expression controls the specificity of assembly of catalytic complexes on the coagulation pathway, such as the membrane-bound factor Xa*factor Va (prothrombinase) complex, and prevents premature assembly. Substrate recognition by prothrombinase involves a two-step mechanism with initial docking of prothrombin to exosites, followed by a conformational change to engage the FXa catalytic site. Prothrombin and its activation intermediates bind prothrombinase in two alternative conformations determined by the zymogen to proteinase transition that are hypothesized to involve prothrombin (pro)exosite I interactions with FVa, which underpin the sequential activation pathway. The role of exosites as the major source of substrate specificity has stimulated development of exosite-targeted anticoagulants for treatment of thrombosis.
Collapse
Affiliation(s)
- P E Bock
- Department of Pathology, Vanderbilt University, Nashville, TN 37232-2561, USA.
| | | | | |
Collapse
|
27
|
Kretz CA, Stafford AR, Fredenburgh JC, Weitz JI. HD1, a thrombin-directed aptamer, binds exosite 1 on prothrombin with high affinity and inhibits its activation by prothrombinase. J Biol Chem 2006; 281:37477-85. [PMID: 17046833 DOI: 10.1074/jbc.m607359200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Incorporation of prothrombin into the prothrombinase complex is essential for rapid thrombin generation at sites of vascular injury. Prothrombin binds directly to anionic phospholipid membrane surfaces where it interacts with the enzyme, factor Xa, and its cofactor, factor Va. We demonstrate that HD1, a thrombin-directed aptamer, binds prothrombin and thrombin with similar affinities (K(d) values of 86 and 34 nm, respectively) and attenuates prothrombin activation by prothrombinase by over 90% without altering the activation pathway. HD1-mediated inhibition of prothrombin activation by prothrombinase is factor Va-dependent because (a) the inhibitory activity of HD1 is lost if factor Va is omitted from the prothrombinase complex and (b) prothrombin binding to immobilized HD1 is reduced by factor Va. These data suggest that HD1 competes with factor Va for prothrombin binding. Kinetic analyses reveal that HD1 produces a 2-fold reduction in the k(cat) for prothrombin activation by prothrombinase and a 6-fold increase in the K(m), highlighting the contribution of the factor Va-prothrombin interaction to prothrombin activation. As a high affinity, prothrombin exosite 1-directed ligand, HD1 inhibits prothrombin activation more efficiently than Hir(54-65)(SO(3)(-)). These findings suggest that exosite 1 on prothrombin exists as a proexosite only for ligands whose primary target is thrombin rather than prothrombin.
Collapse
Affiliation(s)
- Colin A Kretz
- Department of Medicine, McMaster University, and Henderson Research Centre, Hamilton, Ontario L8V 1C3, Canada
| | | | | | | |
Collapse
|
28
|
Panizzi P, Friedrich R, Fuentes-Prior P, Richter K, Bock PE, Bode W. Fibrinogen substrate recognition by staphylocoagulase.(pro)thrombin complexes. J Biol Chem 2005; 281:1179-87. [PMID: 16230339 PMCID: PMC2291351 DOI: 10.1074/jbc.m507956200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin generation and fibrinogen (Fbg) clotting are the ultimate proteolytic reactions in the blood coagulation pathway. Staphylocoagulase (SC), a protein secreted by the human pathogen Staphylococcus aureus, activates prothrombin (ProT) without proteolysis. The SC.(pro)thrombin complex recognizes Fbg as a specific substrate, converting it directly into fibrin. The crystal structure of a fully active SC fragment containing residues 1-325 (SC-(1-325)) bound to human prethrombin 2 showed previously that SC inserts its Ile(1)-Val(2) N terminus into the Ile(16) pocket of prethrombin 2, inducing a functional active site in the cognate zymogen conformationally. Exosite I of alpha-thrombin, the Fbg recognition site, and proexosite I on ProT are blocked by domain 2 of SC-(1-325). In the present studies, active site-labeled fluorescent ProT analogs were used to quantitate Fbg binding to the SC-(1-325).ProT complex. Fbg binding and cleavage are mediated by expression of a new Fbg-binding exosite on the SC-(1-325).ProT complex, resulting in formation of an (SC-(1-325).ProT)(2).Fbg pentameric complex with a dissociation constant of 8-34 nm. In both crystal structures, the SC-(1-325).(pre)thrombin complexes form dimers, with both proteinases/zymogens facing each other over a large U-shaped cleft, through which the Fbg substrate could thread. On this basis, a molecular model of the pentameric (SC-(1-325).thrombin)(2).Fbg encounter complex was generated, which explains the coagulant properties and efficient Fbg conversion. The results provide new insight into the mechanism that mediates high affinity Fbg binding and cleavage as a substrate of SC.(pro)thrombin complexes, a process that is central to the molecular pathology of S. aureus endocarditis.
Collapse
Affiliation(s)
- Peter Panizzi
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Rainer Friedrich
- Proteinase Research Group, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Pablo Fuentes-Prior
- Cardiovascular Research Center, Institut Català de Ciències Cardiovasculars-Consejo Superior de Investigaciones Cientificas, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Klaus Richter
- Department of Biotechnology, Technical University Munich, D-85747 Garching, Germany
| | - Paul E. Bock
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- To whom correspondence should be addressed: Dept. of Pathology, Vanderbilt University School of Medicine, C3321A Medical Center North, Nashville, TN 37232-2561. Tel.: 615-343-9863; Fax: 615-322-1855; E-mail:
| | - Wolfram Bode
- Proteinase Research Group, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
29
|
Friedrich R, Panizzi P, Kawabata SI, Bode W, Bock PE, Fuentes-Prior P. Structural basis for reduced staphylocoagulase-mediated bovine prothrombin activation. J Biol Chem 2005; 281:1188-95. [PMID: 16230338 PMCID: PMC2292465 DOI: 10.1074/jbc.m507957200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylocoagulase (SC) is a protein secreted by the human pathogen, Staphylococcus aureus, that activates human prothrombin (ProT) by inducing a conformational change. SC-bound ProT efficiently clots fibrinogen, thus bypassing the physiological blood coagulation pathway. The crystal structure of a fully active SC fragment, SC-(1-325), bound to human prethrombin 2 showed that the SC-(1-325) N terminus inserts into the Ile(16) pocket of prethrombin 2, thereby inducing expression of a functional catalytic site in the cognate zymogen without peptide bond cleavage. As shown here, SC-(1-325) binds to bovine and human ProT with similar affinity but activates the bovine zymogen only very poorly. By contrast to the approximately 2-fold difference in chromogenic substrate kinetic constants between human thrombin and the SC-(1-325).human (pro)thrombin complexes, SC-(1-325).bovine ProT shows a 3,500-fold lower k(cat)/K(m) compared with free bovine thrombin, because of a 47-fold increase in K(m) and a 67-fold decrease in k(cat). The SC-(1-325).bovine ProT complex is approximately 5,800-fold less active compared with its human counterpart. Comparison of human and bovine fibrinogen as substrates of human and bovine thrombin and the SC-(1-325).(pro)thrombin complexes indicates that the species specificity of SC-(1-325) cofactor activity is determined primarily by differences in conformational activation of bound ProT. These results suggest that the catalytic site in the SC-(1-325).bovine ProT complex is incompletely formed. The current crystal structure of SC-(1-325).bovine thrombin reveals that SC would dock similarly to the bovine proenzyme, whereas the bovine (pro)thrombin-characteristic residues Arg(144) and Arg(145) would likely interfere with insertion of the SC N terminus, thus explaining the greatly reduced activation of bovine ProT.
Collapse
Affiliation(s)
- Rainer Friedrich
- Proteinase Research Group, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Peter Panizzi
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561
| | | | - Wolfram Bode
- Proteinase Research Group, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Paul E. Bock
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561
- To whom correspondence should be addressed: Dept. of Pathology, Vanderbilt University School of Medicine, C3321A Medical Center North, Nashville, TN 37232-2561. Tel.: 615-343-9863; Fax: 615-322-1855; E-mail:
| | - Pablo Fuentes-Prior
- Cardiovascular Research Center, Institut Català de Ciències Cardiovasculars-Consejo Superior de Investigaciones Cientificas, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| |
Collapse
|