1
|
Hu Y, Lopez VA, Xu H, Pfister JP, Song B, Servage KA, Sakurai M, Jones BT, Mendell JT, Wang T, Wu J, Lambowitz AM, Tomchick DR, Pawłowski K, Tagliabracci VS. Biochemical and structural insights into a 5' to 3' RNA ligase reveal a potential role in tRNA ligation. Proc Natl Acad Sci U S A 2024; 121:e2408249121. [PMID: 39388274 PMCID: PMC11494293 DOI: 10.1073/pnas.2408249121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
ATP-grasp superfamily enzymes contain a hand-like ATP-binding fold and catalyze a variety of reactions using a similar catalytic mechanism. More than 30 protein families are categorized in this superfamily, and they are involved in a plethora of cellular processes and human diseases. Here, we identify C12orf29 (RLIG1) as an atypical ATP-grasp enzyme that ligates RNA. Human RLIG1 and its homologs autoadenylate on an active site Lys residue as part of a reaction intermediate that specifically ligates RNA halves containing a 5'-phosphate and a 3'-hydroxyl. RLIG1 binds tRNA in cells and can ligate tRNA within the anticodon loop in vitro. Transcriptomic analyses of Rlig1 knockout mice revealed significant alterations in global tRNA levels in the brains of female mice, but not in those of male mice. Furthermore, crystal structures of a RLIG1 homolog from Yasminevirus bound to nucleotides revealed a minimal and atypical RNA ligase fold with a conserved active site architecture that participates in catalysis. Collectively, our results identify RLIG1 as an RNA ligase and suggest its involvement in tRNA biology.
Collapse
Affiliation(s)
- Yingjie Hu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Victor A. Lopez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Hengyi Xu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
- Department of Oncology, University of Texas at Austin, Austin, TX78712
| | - James P. Pfister
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Bing Song
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX75390
| | - Kelly A. Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Benjamin T. Jones
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Joshua T. Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Alan M. Lambowitz
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
- Department of Oncology, University of Texas at Austin, Austin, TX78712
| | - Diana R. Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Vincent S. Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
2
|
Ghosh S, Shuman S. Kinetic and structural insights into the requirement of fungal tRNA ligase for a 2'-phosphate end. RNA (NEW YORK, N.Y.) 2024; 30:1306-1314. [PMID: 39013577 PMCID: PMC11404444 DOI: 10.1261/rna.080120.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Fungal RNA ligase (LIG) is an essential tRNA splicing enzyme that joins 3'-OH,2'-PO4 and 5'-PO4 RNA ends to form a 2'-PO4,3'-5' phosphodiester splice junction. Sealing entails three divalent cation-dependent adenylate transfer steps. First, LIG reacts with ATP to form a covalent ligase-(lysyl-Nζ)-AMP intermediate and displace pyrophosphate. Second, LIG transfers AMP to the 5'-PO4 RNA terminus to form an RNA-adenylate intermediate (A5'pp5'RNA). Third, LIG directs the attack of an RNA 3'-OH on AppRNA to form the splice junction and displace AMP. A defining feature of fungal LIG vis-à-vis canonical polynucleotide ligases is the requirement for a 2'-PO4 to synthesize a 3'-5' phosphodiester bond. Fungal LIG consists of an N-terminal adenylyltransferase domain and a unique C-terminal domain. The C-domain of Chaetomium thermophilum LIG (CthLIG) engages a sulfate anion thought to be a mimetic of the terminal 2'-PO4 Here, we interrogated the contributions of the C-domain and the conserved sulfate ligands (His227, Arg334, Arg337) to ligation of a pRNA2'p substrate. We find that the C-domain is essential for end-joining but dispensable for ligase adenylylation. Mutations H227A, R334A, and R337A slowed the rate of step 2 RNA adenylation by 420-fold, 120-fold, and 60-fold, respectively, vis-à-vis wild-type CthLIG. An R334A-R337A double-mutation slowed step 2 by 580-fold. These results fortify the case for the strictly conserved His-Arg-Arg triad as the enforcer of the 2'-PO4 end-specificity of fungal tRNA ligases and as a target for small molecule interdiction of fungal tRNA splicing.
Collapse
Affiliation(s)
- Shreya Ghosh
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
3
|
Birch-Price Z, Hardy FJ, Lister TM, Kohn AR, Green AP. Noncanonical Amino Acids in Biocatalysis. Chem Rev 2024; 124:8740-8786. [PMID: 38959423 PMCID: PMC11273360 DOI: 10.1021/acs.chemrev.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.
Collapse
Affiliation(s)
| | | | | | | | - Anthony P. Green
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
4
|
Rousseau M, Oulavallickal T, Williamson A, Arcus V, Patrick WM, Hicks J. Characterisation and engineering of a thermophilic RNA ligase from Palaeococcus pacificus. Nucleic Acids Res 2024; 52:3924-3937. [PMID: 38421610 DOI: 10.1093/nar/gkae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
RNA ligases are important enzymes in molecular biology and are highly useful for the manipulation and analysis of nucleic acids, including adapter ligation in next-generation sequencing of microRNAs. Thermophilic RNA ligases belonging to the RNA ligase 3 family are gaining attention for their use in molecular biology, for example a thermophilic RNA ligase from Methanobacterium thermoautotrophicum is commercially available for the adenylation of nucleic acids. Here we extensively characterise a newly identified RNA ligase from the thermophilic archaeon Palaeococcus pacificus (PpaRnl). PpaRnl exhibited significant substrate adenylation activity but low ligation activity across a range of oligonucleotide substrates. Mutation of Lys92 in motif I to alanine, resulted in an enzyme that lacked adenylation activity, but demonstrated improved ligation activity with pre-adenylated substrates (ATP-independent ligation). Subsequent structural characterisation revealed that in this mutant enzyme Lys238 was found in two alternate positions for coordination of the phosphate tail of ATP. In contrast mutation of Lys238 in motif V to glycine via structure-guided engineering enhanced ATP-dependent ligation activity via an arginine residue compensating for the absence of Lys238. Ligation activity for both mutations was higher than the wild-type, with activity observed across a range of oligonucleotide substrates with varying sequence and secondary structure.
Collapse
Affiliation(s)
- Meghan Rousseau
- School of Science, The University of Waikato, Hamilton 3216, New Zealand
| | - Tifany Oulavallickal
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Adele Williamson
- School of Science, The University of Waikato, Hamilton 3216, New Zealand
| | - Vic Arcus
- School of Science, The University of Waikato, Hamilton 3216, New Zealand
| | - Wayne M Patrick
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Joanna Hicks
- Te Huataki Waiora School of Health, The University of Waikato, Hamilton 3216, New Zealand
| |
Collapse
|
5
|
Hu Y, Lopez VA, Xu H, Pfister JP, Song B, Servage KA, Sakurai M, Jones BT, Mendell JT, Wang T, Wu J, Lambowitz AM, Tomchick DR, Pawłowski K, Tagliabracci VS. Biochemical and structural insights into a 5' to 3' RNA ligase reveal a potential role in tRNA ligation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590974. [PMID: 38712170 PMCID: PMC11071452 DOI: 10.1101/2024.04.24.590974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
ATP-grasp superfamily enzymes contain a hand-like ATP-binding fold and catalyze a variety of reactions using a similar catalytic mechanism. More than 30 protein families are categorized in this superfamily, and they are involved in a plethora of cellular processes and human diseases. Here we identify C12orf29 as an atypical ATP-grasp enzyme that ligates RNA. Human C12orf29 and its homologs auto-adenylate on an active site Lys residue as part of a reaction intermediate that specifically ligates RNA halves containing a 5'-phosphate and a 3'-hydroxyl. C12orf29 binds tRNA in cells and can ligate tRNA within the anticodon loop in vitro. Genetic depletion of c12orf29 in female mice alters global tRNA levels in brain. Furthermore, crystal structures of a C12orf29 homolog from Yasminevirus bound to nucleotides reveal a minimal and atypical RNA ligase fold with a unique active site architecture that participates in catalysis. Collectively, our results identify C12orf29 as an RNA ligase and suggest its involvement in tRNA biology.
Collapse
Affiliation(s)
- Yingjie Hu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Victor A. Lopez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hengyi Xu
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, Texas 78712, USA
| | - James P. Pfister
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bing Song
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kelly A. Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Benjamin T. Jones
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joshua T. Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, Texas 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Alan M. Lambowitz
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Diana R. Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Vincent S. Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
6
|
Ahammed KS, van Hoof A. Fungi of the order Mucorales express a "sealing-only" tRNA ligase. RNA (NEW YORK, N.Y.) 2024; 30:354-366. [PMID: 38307611 PMCID: PMC10946435 DOI: 10.1261/rna.079957.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
Some eukaryotic pre-tRNAs contain an intron that is removed by a dedicated set of enzymes. Intron-containing pre-tRNAs are cleaved by tRNA splicing endonuclease, followed by ligation of the two exons and release of the intron. Fungi use a "heal and seal" pathway that requires three distinct catalytic domains of the tRNA ligase enzyme, Trl1. In contrast, humans use a "direct ligation" pathway carried out by RTCB, an enzyme completely unrelated to Trl1. Because of these mechanistic differences, Trl1 has been proposed as a promising drug target for fungal infections. To validate Trl1 as a broad-spectrum drug target, we show that fungi from three different phyla contain Trl1 orthologs with all three domains. This includes the major invasive human fungal pathogens, and these proteins can each functionally replace yeast Trl1. In contrast, species from the order Mucorales, including the pathogens Rhizopus arrhizus and Mucor circinelloides, have an atypical Trl1 that contains the sealing domain but lacks both healing domains. Although these species contain fewer tRNA introns than other pathogenic fungi, they still require splicing to decode three of the 61 sense codons. These sealing-only Trl1 orthologs can functionally complement defects in the corresponding domain of yeast Trl1 and use a conserved catalytic lysine residue. We conclude that Mucorales use a sealing-only enzyme together with unidentified nonorthologous healing enzymes for their heal and seal pathway. This implies that drugs that target the sealing activity are more likely to be broader-spectrum antifungals than drugs that target the healing domains.
Collapse
Affiliation(s)
- Khondakar Sayef Ahammed
- Department of Microbiology and Molecular Genetics, UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
7
|
Shuman S. RNA Repair: Hiding in Plain Sight. Annu Rev Genet 2023; 57:461-489. [PMID: 37722686 DOI: 10.1146/annurev-genet-071719-021856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Enzymes that phosphorylate, dephosphorylate, and ligate RNA 5' and 3' ends were discovered more than half a century ago and were eventually shown to repair purposeful site-specific endonucleolytic breaks in the RNA phosphodiester backbone. The pace of discovery and characterization of new candidate RNA repair activities in taxa from all phylogenetic domains greatly exceeds our understanding of the biological pathways in which they act. The key questions anent RNA break repair in vivo are (a) identifying the triggers, agents, and targets of RNA cleavage and (b) determining whether RNA repair results in restoration of the original RNA, modification of the RNA (by loss or gain at the ends), or rearrangements of the broken RNA segments (i.e., RNA recombination). This review provides a perspective on the discovery, mechanisms, and physiology of purposeful RNA break repair, highlighting exemplary repair pathways (e.g., tRNA restriction-repair and tRNA splicing) for which genetics has figured prominently in their elucidation.
Collapse
Affiliation(s)
- Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| |
Collapse
|
8
|
Kajimoto S, Ohashi M, Hagiwara Y, Takahashi D, Mihara Y, Motoyama T, Ito S, Nakano S. Enzymatic Conjugation of Modified RNA Fragments by Ancestral RNA Ligase AncT4_2. Appl Environ Microbiol 2022; 88:e0167922. [PMID: 36416557 PMCID: PMC9746290 DOI: 10.1128/aem.01679-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Oligonucleotide therapeutics have great potential as a next-generation approach to treating intractable diseases. Large quantities of modified DNA/RNA containing xenobiotic nucleic acids (XNAs) must be synthesized before clinical application. In this study, the ancestral RNA ligase AncT4_2 was designed by ancestral sequence reconstruction (ASR) to perform the conjugation reaction of modified RNA fragments. AncT4_2 had superior properties to native RNA ligase 2 from T4 phage (T4Rnl2), including high productivity, a >2.5-fold-higher turnover number, and >10°C higher thermostability. One remarkable point is the broad substrate selectivity of AncT4_2; the activity of AncT4_2 toward 17 of the modified RNA fragments was higher than that of T4Rnl2. The activity was estimated by measuring the conjugation reaction of two RNA strands, 3'-OH (12 bp) and 5'-PO4 (12 bp), in which the terminal and penultimate positions of the 3'-OH fragment and the first and second positions of the 5'-PO4 fragment were substituted by 2'-fluoro, 2'-O-methyl, 2'-O-methoxyethyl, and 2'-H, respectively. The enzymatic properties of AncT4_2 allowed the enzyme to conjugate large quantities of double-stranded RNA coding for patisiran (>400 μM level), which was formed by four RNA fragments containing 2'-OMe-substituted nucleic acids. Structural analysis of modeled AncT4_2 suggested that protein dynamics were changed by mutation to Gly or indel during ASR and that this may positively impact the conjugation of modified RNA fragments with the enzyme. AncT4_2 is expected to be a key biocatalyst in synthesizing RNA therapeutics by an enzymatic reaction. IMPORTANCE RNA therapeutics is one of the next-generation medicines for treating various diseases. Our designed ancestral RNA ligase AncT4_2 exhibited excellent enzymatic properties, such as high thermal stability, productivity, specific activity, and broad substrate selectivity compared to native enzymes. These advantages create the potential for AncT4_2 to be applied in conjugating the modified RNA fragments containing various xenobiotic nucleic acids. In addition, patisiran, a known polyneuropathy therapeutic, could be synthesized from four fragmented oligonucleotides at a preparative scale. Taken together, these findings indicate AncT4_2 could open the door to synthesizing RNA therapeutics by enzymatic reaction at large-scale production.
Collapse
Affiliation(s)
- Shohei Kajimoto
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Miwa Ohashi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Yusuke Hagiwara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Daisuke Takahashi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Yasuhiro Mihara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Tomoharu Motoyama
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
- PREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| |
Collapse
|
9
|
Gerber JL, Köhler S, Peschek J. Eukaryotic tRNA splicing - one goal, two strategies, many players. Biol Chem 2022; 403:765-778. [PMID: 35621519 DOI: 10.1515/hsz-2021-0402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/10/2022] [Indexed: 12/28/2022]
Abstract
Transfer RNAs (tRNAs) are transcribed as precursor molecules that undergo several maturation steps before becoming functional for protein synthesis. One such processing mechanism is the enzyme-catalysed splicing of intron-containing pre-tRNAs. Eukaryotic tRNA splicing is an essential process since intron-containing tRNAs cannot fulfil their canonical function at the ribosome. Splicing of pre-tRNAs occurs in two steps: The introns are first excised by a tRNA-splicing endonuclease and the exons are subsequently sealed by an RNA ligase. An intriguing complexity has emerged from newly identified tRNA splicing factors and their interplay with other RNA processing pathways during the past few years. This review summarises our current understanding of eukaryotic tRNA splicing and the underlying enzyme machinery. We highlight recent structural advances and how they have shaped our mechanistic understanding of tRNA splicing in eukaryotic cells. A special focus lies on biochemically distinct strategies for exon-exon ligation in fungi versus metazoans.
Collapse
Affiliation(s)
- Janina L Gerber
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany
| | - Sandra Köhler
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany
| | - Jirka Peschek
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
10
|
Liu Y, Takagi Y, Sugijanto M, Nguyen KDM, Hirata A, Hori H, Ho CK. Genetic and Functional Analyses of Archaeal ATP-Dependent RNA Ligase in C/D Box sRNA Circularization and Ribosomal RNA Processing. Front Mol Biosci 2022; 9:811548. [PMID: 35445080 PMCID: PMC9014305 DOI: 10.3389/fmolb.2022.811548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/08/2022] [Indexed: 11/24/2022] Open
Abstract
RNA ligases play important roles in repairing and circularizing RNAs post-transcriptionally. In this study, we generated an allelic knockout of ATP-dependent RNA ligase (Rnl) in the hyperthermophilic archaeon Thermococcus kodakarensis to identify its biological targets. A comparative analysis of circular RNA reveals that the Rnl-knockout strain represses circularization of C/D box sRNAs without affecting the circularization of tRNA and rRNA processing intermediates. Recombinant archaeal Rnl could circularize C/D box sRNAs with a mutation in the conserved C/D box sequence element but not when the terminal stem structures were disrupted, suggesting that proximity of the two ends could be critical for intramolecular ligation. Furthermore, T. kodakarensis accumulates aberrant RNA fragments derived from ribosomal RNA in the absence of Rnl. These results suggest that Rnl is responsible for C/D box sRNA circularization and may also play a role in ribosomal RNA processing.
Collapse
Affiliation(s)
- Yancheng Liu
- Human Biology Program, University of Tsukuba, Tsukuba, Japan
| | - Yuko Takagi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Milyadi Sugijanto
- Doctoral Program in Medical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Akira Hirata
- Department of Natural Science, Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - C. Kiong Ho
- Human Biology Program, University of Tsukuba, Tsukuba, Japan
- Doctoral Program in Medical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
11
|
Kroupova A, Ackle F, Asanović I, Weitzer S, Boneberg FM, Faini M, Leitner A, Chui A, Aebersold R, Martinez J, Jinek M. Molecular architecture of the human tRNA ligase complex. eLife 2021; 10:e71656. [PMID: 34854379 PMCID: PMC8668186 DOI: 10.7554/elife.71656] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/01/2021] [Indexed: 01/23/2023] Open
Abstract
RtcB enzymes are RNA ligases that play essential roles in tRNA splicing, unfolded protein response, and RNA repair. In metazoa, RtcB functions as part of a five-subunit tRNA ligase complex (tRNA-LC) along with Ddx1, Cgi-99, Fam98B, and Ashwin. The human tRNA-LC or its individual subunits have been implicated in additional cellular processes including microRNA maturation, viral replication, DNA double-strand break repair, and mRNA transport. Here, we present a biochemical analysis of the inter-subunit interactions within the human tRNA-LC along with crystal structures of the catalytic subunit RTCB and the N-terminal domain of CGI-99. We show that the core of the human tRNA-LC is assembled from RTCB and the C-terminal alpha-helical regions of DDX1, CGI-99, and FAM98B, all of which are required for complex integrity. The N-terminal domain of CGI-99 displays structural homology to calponin-homology domains, and CGI-99 and FAM98B associate via their N-terminal domains to form a stable subcomplex. The crystal structure of GMP-bound RTCB reveals divalent metal coordination geometry in the active site, providing insights into its catalytic mechanism. Collectively, these findings shed light on the molecular architecture and mechanism of the human tRNA ligase complex and provide a structural framework for understanding its functions in cellular RNA metabolism.
Collapse
Affiliation(s)
- Alena Kroupova
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Fabian Ackle
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Igor Asanović
- Max Perutz Labs, Vienna BioCenter (VBC)ViennaAustria
| | | | | | - Marco Faini
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | - Alessia Chui
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | | | - Martin Jinek
- Department of Biochemistry, University of ZurichZurichSwitzerland
| |
Collapse
|
12
|
Chen J, Chen Z, Yuan K, Huang Z, Mao M. Recombinant bacteriophage T4 Rnl1 impacts Streptococcus mutans biofilm formation. J Oral Microbiol 2020; 13:1860398. [PMID: 33456722 PMCID: PMC7782964 DOI: 10.1080/20002297.2020.1860398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bacteriophage T4 RNA ligase 1 (T4 Rnl1) can be stably expressed in many bacteria and has been reported to affect the bioactivity of the host bacteria. Recently, we constructed bacteriophage T4 Rnl1 expressing system in Streptococcus mutans, a crucial biofilm-forming and dental caries-causing oral pathogen. Here, we characterized the function of recombinant bacteriophage T4 Rnl1 in biofilm formation of S. mutans. The T4 Rnl1 mutant exhibited similar growth phenotype but resulted in a significant reduction of biofilm biomass compared to wild type strain and empty plasmid carrying strain. The abnormal biofilm of the T4 Rnl1 mutant harbored loose bacterial clusters with defective production and distribution of exopolysaccharides. Moreover, the expression of several biofilm formation-associated genes was dysregulated at mRNA level in the T4 Rnl1 mutant. These results reveal that the bacteriophage T4 Rnl1 exert antibiofilm activities against the cariogenic bacterium S. mutans, which impacts the spatial organization of the exopolysaccharides and further impairs the three-dimensional biofilm architecture. These findings implicate that manipulation of bacteriophage T4 Rnl1, a biological tool used for RNA ligation, will provide a promising approach to cariogenic biofilm control.
Collapse
Affiliation(s)
- Juxiu Chen
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhanyi Chen
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keyong Yuan
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengwei Huang
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengying Mao
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Unciuleac MC, Goldgur Y, Shuman S. Caveat mutator: alanine substitutions for conserved amino acids in RNA ligase elicit unexpected rearrangements of the active site for lysine adenylylation. Nucleic Acids Res 2020; 48:5603-5615. [PMID: 32315072 PMCID: PMC7261155 DOI: 10.1093/nar/gkaa238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 11/25/2022] Open
Abstract
Naegleria gruberi RNA ligase (NgrRnl) exemplifies the Rnl5 family of adenosine triphosphate (ATP)-dependent polynucleotide ligases that seal 3′-OH RNA strands in the context of 3′-OH/5′-PO4 nicked duplexes. Like all classic ligases, NgrRnl forms a covalent lysyl–AMP intermediate. A two-metal mechanism of lysine adenylylation was established via a crystal structure of the NgrRnl•ATP•(Mn2+)2 Michaelis complex. Here we conducted an alanine scan of active site constituents that engage the ATP phosphates and the metal cofactors. We then determined crystal structures of ligase-defective NgrRnl-Ala mutants in complexes with ATP/Mn2+. The unexpected findings were that mutations K170A, E227A, K326A and R149A (none of which impacted overall enzyme structure) triggered adverse secondary changes in the active site entailing dislocations of the ATP phosphates, altered contacts to ATP, and variations in the numbers and positions of the metal ions that perverted the active sites into off-pathway states incompatible with lysine adenylylation. Each alanine mutation elicited a distinctive off-pathway distortion of the ligase active site. Our results illuminate a surprising plasticity of the ligase active site in its interactions with ATP and metals. More broadly, they underscore a valuable caveat when interpreting mutational data in the course of enzyme structure-function studies.
Collapse
Affiliation(s)
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
14
|
Banerjee A, Ghosh S, Goldgur Y, Shuman S. Structure and two-metal mechanism of fungal tRNA ligase. Nucleic Acids Res 2019; 47:1428-1439. [PMID: 30590734 PMCID: PMC6379707 DOI: 10.1093/nar/gky1275] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Fungal tRNA ligase (Trl1) is an essential enzyme that repairs RNA breaks with 2′,3′-cyclic-PO4 and 5′-OH ends inflicted during tRNA splicing and non-canonical mRNA splicing in the fungal unfolded protein response. Trl1 is composed of C-terminal cyclic phosphodiesterase (CPD) and central GTP-dependent polynucleotide kinase (KIN) domains that heal the broken ends to generate the 3′-OH,2′-PO4 and 5′-PO4 termini required for sealing by an N-terminal ATP-dependent ligase domain (LIG). Here we report crystal structures of the Trl1-LIG domain from Chaetomium thermophilum at two discrete steps along the reaction pathway: the covalent LIG-(lysyl-Nζ)–AMP•Mn2+ intermediate and a LIG•ATP•(Mn2+)2 Michaelis complex. The structures highlight a two-metal mechanism whereby a penta-hydrated metal complex stabilizes the transition state of the ATP α phosphate and a second metal bridges the β and γ phosphates to help orient the pyrophosphate leaving group. A LIG-bound sulfate anion is a plausible mimetic of the essential RNA terminal 2′-PO4. Trl1-LIG has a distinctive C-terminal domain that instates fungal Trl1 as the founder of an Rnl6 clade of ATP-dependent RNA ligase. We discuss how the Trl1-LIG structure rationalizes the large body of in vivo structure–function data for Saccharomyces cerevisiae Trl1.
Collapse
Affiliation(s)
- Ankan Banerjee
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Shreya Ghosh
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
15
|
Peschek J, Walter P. tRNA ligase structure reveals kinetic competition between non-conventional mRNA splicing and mRNA decay. eLife 2019; 8:44199. [PMID: 31237564 PMCID: PMC6592678 DOI: 10.7554/elife.44199] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/11/2019] [Indexed: 01/11/2023] Open
Abstract
Yeast tRNA ligase (Trl1) is an essential trifunctional enzyme that catalyzes exon-exon ligation during tRNA biogenesis and the non-conventional splicing of HAC1 mRNA during the unfolded protein response (UPR). The UPR regulates the protein folding capacity of the endoplasmic reticulum (ER). ER stress activates Ire1, an ER-resident kinase/RNase, which excises an intron from HAC1 mRNA followed by exon-exon ligation by Trl1. The spliced product encodes for a potent transcription factor that drives the UPR. Here we report the crystal structure of Trl1 RNA ligase domain from Chaetomium thermophilum at 1.9 Å resolution. Structure-based mutational analyses uncovered kinetic competition between RNA ligation and degradation during HAC1 mRNA splicing. Incompletely processed HAC1 mRNA is degraded by Xrn1 and the Ski/exosome complex. We establish cleaved HAC1 mRNA as endogenous substrate for ribosome-associated quality control. We conclude that mRNA decay and surveillance mechanisms collaborate in achieving fidelity of non-conventional mRNA splicing during the UPR.
Collapse
Affiliation(s)
- Jirka Peschek
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Peter Walter
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
16
|
Becker HF, L'Hermitte-Stead C, Myllykallio H. Diversity of circular RNAs and RNA ligases in archaeal cells. Biochimie 2019; 164:37-44. [PMID: 31212038 DOI: 10.1016/j.biochi.2019.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/13/2019] [Indexed: 01/16/2023]
Abstract
Circular RNAs (circRNAs) differ structurally from other types of RNAs and are resistant against exoribonucleases. Although they have been detected in all domains of life, it remains unclear how circularization affects or changes functions of these ubiquitous nucleic acid circles. The biogenesis of circRNAs has been mostly described as a backsplicing event, but in archaea, where RNA splicing is a rare phenomenon, a second pathway for circRNA formation was described in the cases of rRNAs processing, tRNA intron excision, and Box C/D RNAs formation. At least in some archaeal species, circRNAs are formed by a ligation step catalyzed by an atypic homodimeric RNA ligase belonging to Rnl3 family. In this review, we describe archaeal circRNA transcriptomes obtained using high throughput sequencing technologies on Sulfolobus solfataricus, Pyrococcus abyssi and Nanoarchaeum equitans cells. We will discuss the distribution of circular RNAs among the different RNA categories and present the Rnl3 ligase family implicated in the circularization activity. Special focus is given for the description of phylogenetic distributions, protein structures, and substrate specificities of archaeal RNA ligases.
Collapse
Affiliation(s)
- Hubert F Becker
- LOB, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France; Sorbonne Université, Faculté des Sciences et Ingénierie, 75005, Paris, France.
| | | | - Hannu Myllykallio
- LOB, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| |
Collapse
|
17
|
Sosson M, Pfeffer D, Richert C. Enzyme-free ligation of dimers and trimers to RNA primers. Nucleic Acids Res 2019; 47:3836-3845. [PMID: 30869145 PMCID: PMC6486630 DOI: 10.1093/nar/gkz160] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 01/19/2023] Open
Abstract
The template-directed formation of phosphodiester bonds between two nucleic acid components is a pivotal process in biology. To induce such a reaction in the absence of enzymes is a challenge. This challenge has been met for the extension of a primer with mononucleotides, but the ligation of short oligonucleotides (dimers or trimers) has proven difficult. Here we report a method for ligating dimers and trimers of ribonucleotides using in situ activation in aqueous buffer. All 16 different dimers and two trimers were tested. Binding studies by NMR showed low millimolar dissociation constants for complexes between representative dimers and hairpins mimicking primer-template duplexes, confirming that a weak template effect is not the cause of the poor ligating properties of these short oligomers. Rather, cyclization was found to compete with ligation, with up to 90% of dimer being converted to the cyclic form during the course of an assay. This side reaction is strongly sequence dependent and more pronounced for dimers than for trimers. Under optimized reaction conditions, high yields were observed with strongly pairing purines at the 3'-terminus. These results show that short oligomers of ribonucleotides are competent reactants in enzyme-free copying.
Collapse
Affiliation(s)
- Marilyne Sosson
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Daniel Pfeffer
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
18
|
Unciuleac MC, Goldgur Y, Shuman S. Structures of ATP-bound DNA ligase D in a closed domain conformation reveal a network of amino acid and metal contacts to the ATP phosphates. J Biol Chem 2019; 294:5094-5104. [PMID: 30718283 PMCID: PMC6442053 DOI: 10.1074/jbc.ra119.007445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/01/2019] [Indexed: 01/07/2023] Open
Abstract
DNA ligases are the sine qua non of genome integrity and essential for DNA replication and repair in all organisms. DNA ligases join 3'-OH and 5'-PO4 ends via a series of three nucleotidyl transfer steps. In step 1, ligase reacts with ATP or NAD+ to form a covalent ligase-(lysyl-Nζ)-AMP intermediate and release pyrophosphate (PPi) or nicotinamide mononucleotide. In step 2, AMP is transferred from ligase-adenylate to the 5'-PO4 DNA end to form a DNA-adenylate intermediate (AppDNA). In step 3, ligase catalyzes attack by a DNA 3'-OH on the DNA-adenylate to seal the two ends via a phosphodiester bond and release AMP. Eukaryal, archaeal, and many bacterial and viral DNA ligases are ATP-dependent. The catalytic core of ATP-dependent DNA ligases consists of an N-terminal nucleotidyltransferase domain fused to a C-terminal OB domain. Here we report crystal structures at 1.4-1.8 Å resolution of Mycobacterium tuberculosis LigD, an ATP-dependent DNA ligase dedicated to nonhomologous end joining, in complexes with ATP that highlight large movements of the OB domain (∼50 Å), from a closed conformation in the ATP complex to an open conformation in the covalent ligase-AMP intermediate. The LigD·ATP structures revealed a network of amino acid contacts to the ATP phosphates that stabilize the transition state and orient the PPi leaving group. A complex with ATP and magnesium suggested a two-metal mechanism of lysine adenylylation driven by a catalytic Mg2+ that engages the ATP α phosphate and a second metal that bridges the ATP β and γ phosphates.
Collapse
Affiliation(s)
| | - Yehuda Goldgur
- Structural Biology Programs, Sloan Kettering Institute, New York, New York 10065
| | - Stewart Shuman
- From the Molecular Biology and , To whom correspondence should be addressed:
Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10065. E-mail:
| |
Collapse
|
19
|
Argyropoulos C, Etheridge A, Sakhanenko N, Galas D. Modeling bias and variation in the stochastic processes of small RNA sequencing. Nucleic Acids Res 2017; 45:e104. [PMID: 28369495 PMCID: PMC5499834 DOI: 10.1093/nar/gkx199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/15/2017] [Indexed: 01/01/2023] Open
Abstract
The use of RNA-seq as the preferred method for the discovery and validation of small RNA biomarkers has been hindered by high quantitative variability and biased sequence counts. In this paper we develop a statistical model for sequence counts that accounts for ligase bias and stochastic variation in sequence counts. This model implies a linear quadratic relation between the mean and variance of sequence counts. Using a large number of sequencing datasets, we demonstrate how one can use the generalized additive models for location, scale and shape (GAMLSS) distributional regression framework to calculate and apply empirical correction factors for ligase bias. Bias correction could remove more than 40% of the bias for miRNAs. Empirical bias correction factors appear to be nearly constant over at least one and up to four orders of magnitude of total RNA input and independent of sample composition. Using synthetic mixes of known composition, we show that the GAMLSS approach can analyze differential expression with greater accuracy, higher sensitivity and specificity than six existing algorithms (DESeq2, edgeR, EBSeq, limma, DSS, voom) for the analysis of small RNA-seq data.
Collapse
Affiliation(s)
- Christos Argyropoulos
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Alton Etheridge
- Pacific Northwest Research Institute, Seattle, WA 98122, USA
| | | | - David Galas
- Pacific Northwest Research Institute, Seattle, WA 98122, USA
| |
Collapse
|
20
|
Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD +-dependent polynucleotide ligases. Proc Natl Acad Sci U S A 2017; 114:2592-2597. [PMID: 28223499 DOI: 10.1073/pnas.1619220114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Polynucleotide ligases comprise a ubiquitous superfamily of nucleic acid repair enzymes that join 3'-OH and 5'-PO4 DNA or RNA ends. Ligases react with ATP or NAD+ and a divalent cation cofactor to form a covalent enzyme-(lysine-Nζ)-adenylate intermediate. Here, we report crystal structures of the founding members of the ATP-dependent RNA ligase family (T4 RNA ligase 1; Rnl1) and the NAD+-dependent DNA ligase family (Escherichia coli LigA), captured as their respective Michaelis complexes, which illuminate distinctive catalytic mechanisms of the lysine adenylylation reaction. The 2.2-Å Rnl1•ATP•(Mg2+)2 structure highlights a two-metal mechanism, whereby: a ligase-bound "catalytic" Mg2+(H2O)5 coordination complex lowers the pKa of the lysine nucleophile and stabilizes the transition state of the ATP α phosphate; a second octahedral Mg2+ coordination complex bridges the β and γ phosphates; and protein elements unique to Rnl1 engage the γ phosphate and associated metal complex and orient the pyrophosphate leaving group for in-line catalysis. By contrast, the 1.55-Å LigA•NAD+•Mg2+ structure reveals a one-metal mechanism in which a ligase-bound Mg2+(H2O)5 complex lowers the lysine pKa and engages the NAD+ α phosphate, but the β phosphate and the nicotinamide nucleoside of the nicotinamide mononucleotide (NMN) leaving group are oriented solely via atomic interactions with protein elements that are unique to the LigA clade. The two-metal versus one-metal dichotomy demarcates a branchpoint in ligase evolution and favors LigA as an antibacterial drug target.
Collapse
|
21
|
Arisaka F, Yap ML, Kanamaru S, Rossmann MG. Molecular assembly and structure of the bacteriophage T4 tail. Biophys Rev 2016; 8:385-396. [PMID: 28510021 DOI: 10.1007/s12551-016-0230-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/03/2016] [Indexed: 11/24/2022] Open
Abstract
The tail of bacteriophage T4 undergoes large structural changes upon infection while delivering the phage genome into the host cell. The baseplate is located at the distal end of the contractile tail and plays a central role in transmitting the signal to the tail sheath that the tailfibers have been adsorbed by a host bacterium. This then triggers the sheath contraction. In order to understand the mechanism of assembly and conformational changes of the baseplate upon infection, we have determined the structure of an in vitro assembled baseplate through the three-dimensional reconstruction of cryo-electron microscopy images to a resolution of 3.8 Å from electron micrographs. The atomic structure was fitted to the baseplate structure before and after sheath contraction in order to elucidate the conformational changes that occur after bacteriophage T4 has attached itself to a cell surface. The structure was also used to investigate the protease digestion of the assembly intermediates and the mutation sites of the tail genes, resulting in a number of phenotypes.
Collapse
Affiliation(s)
- Fumio Arisaka
- Life Science Research Center, School of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa, 252-0880, Japan.
| | - Moh Lan Yap
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Shuji Kanamaru
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259, Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
22
|
Remus BS, Schwer B, Shuman S. Characterization of the tRNA ligases of pathogenic fungi Aspergillus fumigatus and Coccidioides immitis. RNA (NEW YORK, N.Y.) 2016; 22:1500-9. [PMID: 27492257 PMCID: PMC5029449 DOI: 10.1261/rna.057455.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/30/2016] [Indexed: 05/06/2023]
Abstract
Yeast tRNA ligase (Trl1) is an essential trifunctional enzyme that repairs RNA breaks with 2',3'-cyclic-PO4 and 5'-OH ends. Trl1 is composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase domains that heal the broken ends to generate the 3'-OH, 2'-PO4, and 5'-PO4 termini required for sealing by an N-terminal ligase domain. Trl1 enzymes are found in all human fungal pathogens and they are promising targets for antifungal drug discovery because: (i) their domain structures and biochemical mechanisms are unique compared to the mammalian RtcB-type tRNA splicing enzyme; and (ii) there are no obvious homologs of the Trl1 ligase domain in mammalian proteomes. Here we characterize the tRNA ligases of two human fungal pathogens: Coccidioides immitis and Aspergillus fumigatus The biological activity of CimTrl1 and AfuTrl1 was verified by showing that their expression complements a Saccharomyces cerevisiae trl1Δ mutant. Purified recombinant AfuTrl1 and CimTrl1 proteins were catalytically active in joining 2',3'-cyclic-PO4 and 5'-OH ends in vitro, either as full-length proteins or as a mixture of separately produced healing and sealing domains. The biochemical properties of CimTrl1 and AfuTrl1 are similar to those of budding yeast Trl1, particularly with respect to their preferential use of GTP as the phosphate donor for the polynucleotide kinase reaction. Our findings provide genetic and biochemical tools to screen for inhibitors of tRNA ligases from pathogenic fungi.
Collapse
Affiliation(s)
- Barbara S Remus
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Beate Schwer
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
23
|
Gu H, Yoshinari S, Ghosh R, Ignatochkina AV, Gollnick PD, Murakami KS, Ho CK. Structural and mutational analysis of archaeal ATP-dependent RNA ligase identifies amino acids required for RNA binding and catalysis. Nucleic Acids Res 2016; 44:2337-47. [PMID: 26896806 PMCID: PMC4797309 DOI: 10.1093/nar/gkw094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/08/2016] [Indexed: 11/15/2022] Open
Abstract
An ATP-dependent RNA ligase from Methanobacterium thermoautotrophicum (MthRnl) catalyzes intramolecular ligation of single-stranded RNA to form a closed circular RNA via covalent ligase-AMP and RNA-adenylylate intermediate. Here, we report the X-ray crystal structures of an MthRnl•ATP complex as well as the covalent MthRnl–AMP intermediate. We also performed structure-guided mutational analysis to survey the functions of 36 residues in three component steps of the ligation pathway including ligase-adenylylation (step 1), RNA adenylylation (step 2) and phosphodiester bond synthesis (step 3). Kinetic analysis underscored the importance of motif 1a loop structure in promoting phosphodiester bond synthesis. Alanine substitutions of Thr117 or Arg118 favor the reverse step 2 reaction to deadenylate the 5′-AMP from the RNA-adenylate, thereby inhibiting step 3 reaction. Tyr159, Phe281 and Glu285, which are conserved among archaeal ATP-dependent RNA ligases and are situated on the surface of the enzyme, are required for RNA binding. We propose an RNA binding interface of the MthRnl based on the mutational studies and two sulfate ions that co-crystallized at the active site cleft in the MthRnl–AMP complex.
Collapse
Affiliation(s)
- Huiqiong Gu
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - Shigeo Yoshinari
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - Raka Ghosh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Anna V Ignatochkina
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Paul D Gollnick
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - C Kiong Ho
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA Department of Infection Biology, Graduate School of Comprehensive Human Sciences, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
24
|
Structure and two-metal mechanism of a eukaryal nick-sealing RNA ligase. Proc Natl Acad Sci U S A 2015; 112:13868-73. [PMID: 26512110 DOI: 10.1073/pnas.1516536112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ATP-dependent RNA ligases are agents of RNA repair that join 3'-OH and 5'-PO4 RNA ends. Naegleria gruberi RNA ligase (NgrRnl) exemplifies a family of RNA nick-sealing enzymes found in bacteria, viruses, and eukarya. Crystal structures of NgrRnl at three discrete steps along the reaction pathway-covalent ligase-(lysyl-Nζ)-AMP•Mn(2+) intermediate; ligase•ATP•(Mn(2+))2 Michaelis complex; and ligase•Mn(2+) complex-highlight a two-metal mechanism of nucleotidyl transfer, whereby (i) an enzyme-bound "catalytic" metal coordination complex lowers the pKa of the lysine nucleophile and stabilizes the transition state of the ATP α phosphate; and (ii) a second metal coordination complex bridges the β- and γ-phosphates. The NgrRnl N domain is a distinctively embellished oligonucleotide-binding (OB) fold that engages the γ-phosphate and associated metal complex and orients the pyrophosphate leaving group for in-line catalysis with stereochemical inversion at the AMP phosphate. The unique domain architecture of NgrRnl fortifies the theme that RNA ligases have evolved many times, and independently, by fusions of a shared nucleotidyltransferase domain to structurally diverse flanking modules. The mechanistic insights to lysine adenylylation gained from the NgrRnl structures are likely to apply broadly to the covalent nucleotidyltransferase superfamily of RNA ligases, DNA ligases, and RNA capping enzymes.
Collapse
|
25
|
Unciuleac MC, Shuman S. Characterization of a novel eukaryal nick-sealing RNA ligase from Naegleria gruberi. RNA (NEW YORK, N.Y.) 2015; 21:824-832. [PMID: 25740837 PMCID: PMC4408790 DOI: 10.1261/rna.049197.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
The proteome of the amoebo-flagellate protozoan Naegleria gruberi is rich in candidate RNA repair enzymes, including 15 putative RNA ligases, one of which, NgrRnl, is a eukaryal homolog of Deinococcus radiodurans RNA ligase, DraRnl. Here we report that purified recombinant NgrRnl seals nicked 3'-OH/5'-PO4 duplexes in which the 3'-OH strand is RNA. It does so via the "classic" ligase pathway, entailing reaction with ATP to form a covalent NgrRnl-AMP intermediate, transfer of AMP to the nick 5'-PO4, and attack of the RNA 3'-OH on the adenylylated nick to form a 3'-5' phosphodiester. Unlike members of the four known families of ATP-dependent RNA ligases, NgrRnl lacks a carboxy-terminal appendage to its nucleotidyltransferase domain. Instead, it contains a defining amino-terminal domain that we show is important for 3'-OH/5'-PO4 nick-sealing and ligase adenylylation, but dispensable for phosphodiester synthesis at a preadenylylated nick. We propose that NgrRnl, DraRnl, and their homologs from diverse bacteria, viruses, and unicellular eukarya comprise a new "Rnl5 family" of nick-sealing ligases with a signature domain organization.
Collapse
Affiliation(s)
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
26
|
Genetic diversity of Microcystis cyanophages in two different freshwater environments. Arch Microbiol 2014; 196:401-9. [PMID: 24671440 DOI: 10.1007/s00203-014-0980-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/13/2014] [Accepted: 03/15/2014] [Indexed: 01/21/2023]
Abstract
Bacteriophages rapidly diversify their genes through co-evolution with their hosts. We hypothesize that gene diversification of phages leads to locality in phages genome. To test this hypothesis, we investigated the genetic diversity and composition of Microcystis cyanophages using 104 sequences of Ma-LMM01-type cyanophages from two geographically distant sampling sites. The intergenetic region between the ribonucleotide reductase genes nrdA and nrdB was used as the genetic marker. This region contains the host-derived auxiliary metabolic genes nblA, an unknown function gene g04, and RNA ligase gene g03. The sequences obtained were conserved in the Ma-LMM01 gene order and contents. Although the genetic diversity of the sequences was high, it varied by gene. The genetic diversity of nblA was the lowest, suggesting that nblA is a highly significant gene that does not allow mutation. In contrast, g03 sequences had many point mutations. RNA ligase is involved in the counter-host's phage defense mechanism, suggesting that phage defense also plays an important role for rapid gene diversification. The maximum parsimony network and phylogenic analysis showed the sequences from the two sampling sites were distinct. These findings suggest Ma-LMM01-type phages rapidly diversify their genomes through co-evolution with hosts in each location and eventually provided locality of their genomes.
Collapse
|
27
|
Effects of 3'-OH and 5'-PO4 base mispairs and damaged base lesions on the fidelity of nick sealing by Deinococcus radiodurans RNA ligase. J Bacteriol 2014; 196:1704-12. [PMID: 24532777 DOI: 10.1128/jb.00020-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deinococcus radiodurans RNA ligase (DraRnl) is the founding member of a family of end-joining enzymes encoded by diverse microbes and viruses. DraRnl ligates 3'-OH, 5'-PO4 nicks in double-stranded nucleic acids in which the nick 3'-OH end is RNA. Here we gauge the effects of 3'-OH and 5'-PO4 base mispairs and damaged base lesions on the rate of nick sealing. DraRnl is indifferent to the identity of the 3'-OH nucleobase, provided that it is correctly paired. With 3'-OH mispairs, the DraRnl sealing rate varies widely, with G-T and A-C mispairs being the best substrates and G-G, G-A, and A-A mispairs being the worst. DraRnl accepts 3' A-8-oxoguanine (oxoG) to be correctly paired, while it discriminates against U-oxoG and G-oxoG mispairs. DraRnl displays high activity and low fidelity in sealing 3'-OH ends opposite an 8-oxoadenine lesion. It prefers 3'-OH adenosine when sealing opposite an abasic template site. With 5'-PO4 mispairs, DraRnl seals a 5' T-G mispair as well as it does a 5' C-G pair; in most other respects, the ligation fidelity at 5' mispairs is similar to that at 3' mispairs. DraRnl accepts a 5' A-oxoG end to be correctly paired, yet it is more tolerant of 5' T-oxoG and 5' G-oxoG mispairs than the equivalent configurations on the 3' side of the nick. At 5' nucleobase-abasic site nicks, DraRnl prefers to ligate when the nucleobase is a purine. The biochemical properties of DraRnl are compatible with its participation in the templated repair of RNA damage or in the sealing of filled DNA gaps that have a 3' ribopatch.
Collapse
|
28
|
Raabe CA, Tang TH, Brosius J, Rozhdestvensky TS. Biases in small RNA deep sequencing data. Nucleic Acids Res 2013; 42:1414-26. [PMID: 24198247 PMCID: PMC3919602 DOI: 10.1093/nar/gkt1021] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
High-throughput RNA sequencing (RNA-seq) is considered a powerful tool for novel gene discovery and fine-tuned transcriptional profiling. The digital nature of RNA-seq is also believed to simplify meta-analysis and to reduce background noise associated with hybridization-based approaches. The development of multiplex sequencing enables efficient and economic parallel analysis of gene expression. In addition, RNA-seq is of particular value when low RNA expression or modest changes between samples are monitored. However, recent data uncovered severe bias in the sequencing of small non-protein coding RNA (small RNA-seq or sRNA-seq), such that the expression levels of some RNAs appeared to be artificially enhanced and others diminished or even undetectable. The use of different adapters and barcodes during ligation as well as complex RNA structures and modifications drastically influence cDNA synthesis efficacies and exemplify sources of bias in deep sequencing. In addition, variable specific RNA G/C-content is associated with unequal polymerase chain reaction amplification efficiencies. Given the central importance of RNA-seq to molecular biology and personalized medicine, we review recent findings that challenge small non-protein coding RNA-seq data and suggest approaches and precautions to overcome or minimize bias.
Collapse
Affiliation(s)
- Carsten A Raabe
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Strasse 56, 48149 Muenster, Germany and Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Penang, Malaysia
| | | | | | | |
Collapse
|
29
|
Lloyd AJ, Potter NJ, Fishwick CWG, Roper DI, Dowson CG. Adenosine tetraphosphoadenosine drives a continuous ATP-release assay for aminoacyl-tRNA synthetases and other adenylate-forming enzymes. ACS Chem Biol 2013; 8:2157-63. [PMID: 23898887 DOI: 10.1021/cb400248f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aminoacyl-tRNA synthetases are essential for the correct linkage of amino acids to cognate tRNAs to maintain the fidelity of protein synthesis. Tractable, continuous assays are valuable for characterizing the functions of synthetases and for their exploitation as drug targets. We have exploited the unexplored ability of these enzymes to consume adenosine tetraphosphoadenosine (diadenosine 5',5‴ P(1) P(4) tetraphosphate; Ap4A) and produce ATP to develop such an assay. We have used this assay to probe the stereoselectivity of isoleucyl-tRNA(Ile) and Valyl-tRNA(Val) synthetases and the impact of tRNA on editing by isoleucyl-tRNA(Ile) synthetase (IleRS) and to identify analogues of intermediates of these enzymes that might allow targeting of multiple synthetases. We further report the utility of Ap4A-based assays for identification of synthetase inhibitors with nanomolar to millimolar affinities. Finally, we demonstrate the broad application of Ap4A utilization with a continuous Ap4A-driven RNA ligase assay.
Collapse
Affiliation(s)
- Adrian J. Lloyd
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry,
West Midlands CV4 7AL, U.K
| | | | | | - David I. Roper
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry,
West Midlands CV4 7AL, U.K
| | - Christopher G. Dowson
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry,
West Midlands CV4 7AL, U.K
| |
Collapse
|
30
|
Klaiman D, Steinfels-Kohn E, Kaufmann G. A DNA break inducer activates the anticodon nuclease RloC and the adaptive immunity in Acinetobacter baylyi ADP1. Nucleic Acids Res 2013; 42:328-39. [PMID: 24062157 PMCID: PMC3874168 DOI: 10.1093/nar/gkt851] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Double-stranded DNA breaks (DSB) cause bacteria to augment expression of DNA repair and various stress response proteins. A puzzling exception educes the anticodon nuclease (ACNase) RloC, which resembles the DSB responder Rad50 and the antiviral, translation-disabling ACNase PrrC. While PrrC's ACNase is regulated by a DNA restriction-modification (R-M) protein and a phage anti-DNA restriction peptide, RloC has an internal ACNase switch comprising a putative DSB sensor and coupled ATPase. Further exploration of RloC's controls revealed, first, that its ACNase is stabilized by the activating DNA and hydrolysed nucleotide. Second, DSB inducers activated RloC's ACNase in heterologous contexts as well as in a natural host, even when R-M deficient. Third, the DSB-induced activation of the indigenous RloC led to partial and temporary disruption of tRNA(Glu) and tRNA(Gln). Lastly, accumulation of CRISPR-derived RNA that occurred in parallel raises the possibility that the adaptive immunity and RloC provide the genotoxicated host with complementary protection from impending infections.
Collapse
Affiliation(s)
- Daniel Klaiman
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
31
|
Desai KK, Bingman CA, Phillips GN, Raines RT. Structures of the noncanonical RNA ligase RtcB reveal the mechanism of histidine guanylylation. Biochemistry 2013; 52:2518-25. [PMID: 23560983 DOI: 10.1021/bi4002375] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RtcB is an atypical RNA ligase that joins either 2',3'-cyclic phosphate or 3'-phosphate termini to 5'-hydroxyl termini. In contrast to typical RNA ligases, which rely on ATP and Mg(II), catalysis by RtcB is dependent on GTP and Mn(II) with ligation proceeding through a covalent RtcB-histidine-GMP intermediate. Here, we present three structures of Pyrococcus horikoshii RtcB complexes that capture snapshots along the entire guanylylation pathway. These structures show that prior to binding GTP, a single manganese ion (Mn1) is bound to RtcB. To capture the step immediately preceding RtcB guanylylation, we determined a structure of RtcB in complex with Mn(II) and the unreactive GTP analogue guanosine 5'-(α-thio)triphosphate (GTPαS). This structure shows that Mn1 is poised to stabilize the pentavalent transition state of guanylylation while a second manganese ion (Mn2) is coordinated to a nonbridging oxygen of the γ-phosphoryl group. The pyrophosphate leaving group of GTPαS is oriented apically to His404 with the ε-nitrogen poised for in-line attack on the α-phosphorus atom. The structure of RtcB in complex with GTPαS also reveals the network of hydrogen bonds that recognize GTP and illuminates the significant conformational changes that accompany the binding of this cofactor. Finally, a structure of the enzymic histidine-GMP intermediate depicts the end of the guanylylation pathway. The ensuing molecular description of the RtcB guanylylation pathway shows that RtcB and classical ATP- and Mg(II)-dependent nucleic acid ligases have converged upon a similar two-metal mechanism for formation of the nucleotidylated enzyme intermediate.
Collapse
Affiliation(s)
- Kevin K Desai
- Department of Biochemistry, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Computational simulations of essential biological systems in pathogenic organisms are increasingly being used to reveal structural and dynamical features for targets of interest. At the same time, increased research efforts, especially from academia, have been directed toward drug discovery for neglected tropical diseases. Although these diseases cripple large populations in less fortunate parts of the world, either very few new drugs are being developed or the available treatments for them have severe side effects, including death. This chapter walks readers through a computational investigation used to find novel inhibitors to target one of these neglected diseases, African sleeping sickness (human African trypanosomiasis). Such studies may suggest novel small-molecule compounds that could be considered as part of an early-stage drug discovery effort. As an example target protein of interest, we focus on the essential protein RNA-editing ligase 1 (REL1) in Trypanosoma brucei, the causative agent of human African trypanosomiasis.
Collapse
Affiliation(s)
- Ozlem Demir
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
33
|
Swift RV, Ong CD, Amaro RE. Magnesium-induced nucleophile activation in the guanylyltransferase mRNA capping enzyme. Biochemistry 2012. [PMID: 23205906 DOI: 10.1021/bi301224b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mRNA guanylyltransferase, or mRNA capping enzyme, cotranscriptionally caps the 5'-end of nascent mRNA with GMP during the second reaction in a set of three enzymatic reactions that result in the formation of an N7-methylguanosine cap during mRNA maturation. The mRNA capping enzyme is characterized, in part, by a conserved lysine nucleophile that attacks the α-phosphorus atom of GTP, forming a lysine-GMP intermediate. Experiments have firmly established that magnesium is required for efficient intermediate formation but have provided little insight into the requirement's molecular origins. Using empirical and thermodynamic integration pK(a) estimates, along with conventional molecular dynamics simulations, we show that magnesium binding likely activates the lysine nucleophile by increasing its acidity and by biasing the deprotonated nucleophile into conformations conducive to intermediate formation. These results provide additional functional understanding of an important enzyme in the mRNA transcript life cycle and allow functional analogies to be drawn that affect our understanding of the metal dependence of related superfamily members.
Collapse
Affiliation(s)
- Robert V Swift
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
34
|
Park YJ, Budiarto T, Wu M, Pardon E, Steyaert J, Hol WGJ. The structure of the C-terminal domain of the largest editosome interaction protein and its role in promoting RNA binding by RNA-editing ligase L2. Nucleic Acids Res 2012; 40:6966-77. [PMID: 22561373 PMCID: PMC3413154 DOI: 10.1093/nar/gks369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 12/20/2022] Open
Abstract
Trypanosomatids, such as the sleeping sickness parasite Trypanosoma brucei, contain a ∼ 20S RNA-editing complex, also called the editosome, which is required for U-insertion/deletion editing of mitochondrial mRNAs. The editosome contains a core of 12 proteins including the large interaction protein A1, the small interaction protein A6, and the editing RNA ligase L2. Using biochemical and structural data, we identified distinct domains of T. brucei A1 which specifically recognize A6 and L2. We provide evidence that an N-terminal domain of A1 interacts with the C-terminal domain of L2. The C-terminal domain of A1 appears to be required for the interaction with A6 and also plays a key role in RNA binding by the RNA-editing ligase L2 in trans. Three crystal structures of the C-terminal domain of A1 have been elucidated, each in complex with a nanobody as a crystallization chaperone. These structures permitted the identification of putative dsRNA recognition sites. Mutational analysis of conserved residues of the C-terminal domain identified Arg703, Arg731 and Arg734 as key requirements for RNA binding. The data show that the editing RNA ligase activity is modulated by a novel mechanism, i.e. by the trans-acting RNA binding C-terminal domain of A1.
Collapse
Affiliation(s)
- Young-Jun Park
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Tanya Budiarto
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Meiting Wu
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Els Pardon
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jan Steyaert
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Wim G. J. Hol
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
35
|
Samai P, Shuman S. Kinetic analysis of DNA strand joining by Chlorella virus DNA ligase and the role of nucleotidyltransferase motif VI in ligase adenylylation. J Biol Chem 2012; 287:28609-18. [PMID: 22745124 DOI: 10.1074/jbc.m112.380428] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlorella virus DNA ligase (ChVLig) is an instructive model for mechanistic studies of the ATP-dependent DNA ligase family. ChVLig seals 3'-OH and 5'-PO(4) termini via three chemical steps: 1) ligase attacks the ATP α phosphorus to release PP(i) and form a covalent ligase-adenylate intermediate; 2) AMP is transferred to the nick 5'-phosphate to form DNA-adenylate; 3) the 3'-OH of the nick attacks DNA-adenylate to join the polynucleotides and release AMP. Each chemical step requires Mg(2+). Kinetic analysis of nick sealing by ChVLig-AMP revealed that the rate constant for phosphodiester synthesis (k(step3) = 25 s(-1)) exceeds that for DNA adenylylation (k(step2) = 2.4 s(-1)) and that Mg(2+) binds with similar affinity during step 2 (K(d) = 0.77 mM) and step 3 (K(d) = 0.87 mM). The rates of DNA adenylylation and phosphodiester synthesis respond differently to pH, such that step 3 becomes rate-limiting at pH ≤ 6.5. The pH profiles suggest involvement of one and two protonation-sensitive functional groups in catalysis of steps 2 and 3, respectively. We suggest that the 5'-phosphate of the nick is the relevant protonation-sensitive moiety and that a dianionic 5'-phosphate is necessary for productive step 2 catalysis. Motif VI, located at the C terminus of the OB-fold domain of ChVLig, is a conserved feature of ATP-dependent DNA ligases and GTP-dependent mRNA capping enzymes. Presteady state and burst kinetic analysis of the effects of deletion and missense mutations highlight the catalytic contributions of ChVLig motif VI, especially the Asp-297 carboxylate, exclusively during the ligase adenylylation step.
Collapse
Affiliation(s)
- Poulami Samai
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | |
Collapse
|
36
|
Klaiman D, Steinfels-Kohn E, Krutkina E, Davidov E, Kaufmann G. The wobble nucleotide-excising anticodon nuclease RloC is governed by the zinc-hook and DNA-dependent ATPase of its Rad50-like region. Nucleic Acids Res 2012; 40:8568-78. [PMID: 22730290 PMCID: PMC3458546 DOI: 10.1093/nar/gks593] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The conserved bacterial anticodon nuclease (ACNase) RloC and its phage-excluding homolog PrrC comprise respective ABC-adenosine triphosphatase (ATPase) and ACNase N- and C-domains but differ in three key attributes. First, prrC is always linked to an ACNase silencing, DNA restriction–modification (R–M) locus while rloC rarely features such linkage. Second, RloC excises its substrate’s wobble nucleotide, a lesion expected to impede damage reversal by phage transfer RNA (tRNA) repair enzymes that counteract the nick inflicted by PrrC. Third, a distinct coiled-coil/zinc-hook (CC/ZH) insert likens RloC’s N-region to the universal DNA damage checkpoint/repair protein Rad50. Previous work revealed that ZH mutations activate RloC’s ACNase. Data shown here suggest that RloC has an internal ACNase silencing/activating switch comprising its ZH and DNA-break-responsive ATPase. The existence of this control may explain the lateral transfer of rloC without an external silencer and supports the proposed role of RloC as an antiviral contingency acting when DNA restriction is alleviated under genotoxic stress. We also discuss RloC’s possible evolution from a PrrC-like ancestor.
Collapse
Affiliation(s)
- Daniel Klaiman
- Department of Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
37
|
Chakravarty AK, Shuman S. The sequential 2',3'-cyclic phosphodiesterase and 3'-phosphate/5'-OH ligation steps of the RtcB RNA splicing pathway are GTP-dependent. Nucleic Acids Res 2012; 40:8558-67. [PMID: 22730297 PMCID: PMC3458531 DOI: 10.1093/nar/gks558] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The RNA ligase RtcB splices broken RNAs with 5′-OH and either 2′,3′-cyclic phosphate or 3′-phosphate ends. The 3′-phosphate ligase activity requires GTP and entails the formation of covalent RtcB-(histidinyl)-GMP and polynucleotide-(3′)pp(5′)G intermediates. There are currently two models for how RtcB executes the strand sealing step. Scheme 1 holds that the RNA 5′-OH end attacks the 3′-phosphorus of the N(3′)pp(5′)G end to form a 3′,5′-phosphodiester and release GMP. Scheme 2 posits that the N(3′)pp(5′)G end is converted to a 2′,3′-cyclic phosphodiester, which is then attacked directly by the 5′-OH RNA end to form a 3′,5′-phosphodiester. Here we show that the sealing of a 2′,3′-cyclic phosphate end by RtcB requires GTP, is contingent on formation of the RtcB–GMP adduct, and involves a kinetically valid RNA(3′)pp(5′)G intermediate. Moreover, we find that RtcB catalyzes the hydrolysis of a 2′,3′-cyclic phosphate to a 3′-phosphate at a rate that is at least as fast as the rate of ligation. These results weigh in favor of scheme 1. The cyclic phosphodiesterase activity of RtcB depends on GTP and the formation of the RtcB–GMP adduct, signifying that RtcB guanylylation precedes the cyclic phosphodiesterase and 3′-phosphate ligase steps of the RNA splicing pathway.
Collapse
Affiliation(s)
- Anupam K Chakravarty
- Molecular Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
38
|
Zhang C, Chan CM, Wang P, Huang RH. Probing the substrate specificity of the bacterial Pnkp/Hen1 RNA repair system using synthetic RNAs. RNA (NEW YORK, N.Y.) 2012; 18:335-344. [PMID: 22190744 PMCID: PMC3264919 DOI: 10.1261/rna.030502.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 11/09/2011] [Indexed: 05/31/2023]
Abstract
Ribotoxins cleave essential RNAs involved in protein synthesis as a strategy for cell killing. RNA repair systems exist in nature to counteract the lethal actions of ribotoxins, as first demonstrated by the RNA repair system from bacteriophage T4 25 yr ago. Recently, we found that two bacterial proteins, named Pnkp and Hen1, form a stable complex and are able to repair ribotoxin-cleaved tRNAs in vitro. However, unlike the well-studied T4 RNA repair system, the natural RNA substrates of the bacterial Pnkp/Hen1 RNA repair system are unknown. Here we present comprehensive RNA repair assays with the recombinant Pnkp/Hen1 proteins from Anabaena variabilis using a total of 33 different RNAs as substrates that might mimic various damaged forms of RNAs present in living cells. We found that unlike the RNA repair system from bacteriophage T4, the bacterial Pnkp/Hen1 RNA repair system exhibits broad substrate specificity. Based on the experimental data presented here, a model of preferred RNA substrates of the Pnkp/Hen1 repair system is proposed.
Collapse
Affiliation(s)
- Can Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Chio Mui Chan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Pei Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Raven H. Huang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
39
|
The adenylyltransferase domain of bacterial Pnkp defines a unique RNA ligase family. Proc Natl Acad Sci U S A 2012; 109:2296-301. [PMID: 22308407 DOI: 10.1073/pnas.1116827109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pnkp is the end-healing and end-sealing component of an RNA repair system present in diverse bacteria from ten different phyla. To gain insight to the mechanism and evolution of this repair system, we determined the crystal structures of the ligase domain of Clostridium thermocellum Pnkp in three functional states along the reaction pathway: apoenzyme, ligase • ATP substrate complex, and covalent ligase-AMP intermediate. The tertiary structure is composed of a classical ligase nucleotidyltransferase module that is embellished by a unique α-helical insert module and a unique C-terminal α-helical module. Structure-guided mutational analysis identified active site residues essential for ligase adenylylation. Pnkp defines a new RNA ligase family with signature structural and functional properties.
Collapse
|
40
|
Klaiman D, Kaufmann G. Phage T4-induced dTTP accretion bolsters a tRNase-based host defense. Virology 2011; 414:97-101. [PMID: 21481433 DOI: 10.1016/j.virol.2011.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/12/2011] [Accepted: 03/18/2011] [Indexed: 01/21/2023]
Abstract
The anticodon nuclease (ACNase) PrrC is silenced in Escherichia coli by an associated DNA restriction-modification protein, activated by the phage T4-encoded anti-DNA restriction factor Stp and counteracted by T4's tRNA repair enzymes polynucleotide kinase and RNA ligase 1. Hence, only tRNA repair-deficient phages succumb to PrrC's restriction. PrrC's ABC-ATPase motor domains are implicated in driving its activation by hydrolyzing GTP and in stabilizing the activated ACNase by avidly binding dTTP. The latter effect has been associated with dTTP's accumulation early in T4 infection when PrrC is activated. In agreement, delayed dTTP accumulation caused by dCMP deaminase deficiency coincided with impaired manifestation of PrrC's ACNase activity. This impairment did not suffice to suppress the PrrC-mediated restriction of tRNA repair deficient phage but was synthetically suppressive with a leaky stp mutation that only partly impairs PrrC's activation. Presumably, ability to gauge dTTP's changing level helps confine PrrC's toxicity to its viral target.
Collapse
Affiliation(s)
- Daniel Klaiman
- Department of Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
41
|
Samai P, Shuman S. Functional dissection of the DNA interface of the nucleotidyltransferase domain of chlorella virus DNA ligase. J Biol Chem 2011; 286:13314-26. [PMID: 21335605 DOI: 10.1074/jbc.m111.226191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Chlorella virus DNA ligase (ChVLig) has pluripotent biological activity and an intrinsic nick-sensing function. ChVLig consists of three structural modules that envelop nicked DNA as a C-shaped protein clamp: a nucleotidyltransferase (NTase) domain and an OB domain (these two are common to all DNA ligases) as well as a distinctive β-hairpin latch module. The NTase domain, which performs the chemical steps of ligation, binds the major groove flanking the nick and the minor groove on the 3'-OH side of the nick. Here we performed a structure-guided mutational analysis of the NTase domain, surveying the effects of 35 mutations in 19 residues on ChVLig activity in vivo and in vitro, including biochemical tests of the composite nick sealing reaction and of the three component steps of the ligation pathway (ligase adenylylation, DNA adenylylation, and phosphodiester synthesis). The results highlight (i) key contacts by Thr-84 and Lys-173 to the template DNA strand phosphates at the outer margins of the DNA ligase footprint; (ii) essential contacts of Ser-41, Arg-42, Met-83, and Phe-75 with the 3'-OH strand at the nick; (iii) Arg-176 phosphate contacts at the nick and with ATP during ligase adenylylation; (iv) the role of Phe-44 in forming the protein clamp around the nicked DNA substrate; and (v) the importance of adenine-binding residue Phe-98 in all three steps of ligation. Kinetic analysis of single-turnover nick sealing by ChVLig-AMP underscored the importance of Phe-75-mediated distortion of the nick 3'-OH nucleoside in the catalysis of DNA 5'-adenylylation (step 2) and phosphodiester synthesis (step 3). Induced fit of the nicked DNA into a distorted conformation when bound within the ligase clamp may account for the nick-sensing capacity of ChVLig.
Collapse
Affiliation(s)
- Poulami Samai
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | |
Collapse
|
42
|
Swift RV, Amaro RE. Discovery and design of DNA and RNA ligase inhibitors in infectious microorganisms. Expert Opin Drug Discov 2009; 4:1281-1294. [PMID: 20354588 DOI: 10.1517/17460440903373617] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND: Members of the nucleotidyltransferase superfamily known as DNA and RNA ligases carry out the enzymatic process of polynucleotide ligation. These guardians of genomic integrity share a three-step ligation mechanism, as well as common core structural elements. Both DNA and RNA ligases have experienced a surge of recent interest as chemotherapeutic targets for the treatment of a range of diseases, including bacterial infection, cancer, and the diseases caused by the protozoan parasites known as trypanosomes. OBJECTIVE: In this review, we will focus on efforts targeting pathogenic microorganisms; specifically, bacterial NAD(+)-dependent DNA ligases, which are promising broad-spectrum antibiotic targets, and ATP-dependent RNA editing ligases from Trypanosoma brucei, the species responsible for the devastating neurodegenerative disease, African sleeping sickness. CONCLUSION: High quality crystal structures of both NAD(+)-dependent DNA ligase and the Trypanosoma brucei RNA editing ligase have facilitated the development of a number of promising leads. For both targets, further progress will require surmounting permeability issues and improving selectivity and affinity.
Collapse
Affiliation(s)
- Robert V Swift
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
43
|
Tanaka N, Shuman S. Structure-activity relationships in human RNA 3'-phosphate cyclase. RNA (NEW YORK, N.Y.) 2009; 15:1865-1874. [PMID: 19690099 PMCID: PMC2743044 DOI: 10.1261/rna.1771509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 07/13/2009] [Indexed: 05/28/2023]
Abstract
RNA 3'-phosphate cyclase (Rtc) enzymes are a widely distributed family that catalyze the synthesis of RNA 2',3' cyclic phosphate ends via an ATP-dependent pathway comprising three nucleotidyl transfer steps: reaction of Rtc with ATP to form a covalent Rtc-(histidinyl-N)-AMP intermediate and release PP(i); transfer of AMP from Rtc1 to an RNA 3'-phosphate to form an RNA(3')pp(5')A intermediate; and attack by the terminal nucleoside O2' on the 3'-phosphate to form an RNA 2',3' cyclic phosphate product and release AMP. Here we used the crystal structure of Escherichia coli RtcA to guide a mutational analysis of the human RNA cyclase Rtc1. An alanine scan defined seven conserved residues as essential for the Rtc1 RNA cyclization and autoadenylylation reactions. Structure-activity relationships were clarified by conservative substitutions. Our results are consistent with a mechanism of adenylate transfer in which attack of the Rtc1 His320 nucleophile on the ATP alpha phosphorus is facilitated by proper orientation of the PP(i) leaving group via contacts to Arg21, Arg40, and Arg43. We invoke roles for Tyr294 in binding the adenine base and Glu14 in binding the divalent cation cofactor. We find that Rtc1 forms a stable binary complex with a 3'-phosphate terminated RNA, but not with an otherwise identical 3'-OH terminated RNA. Mutation of His320 had little impact on RNA 3'-phosphate binding, signifying that covalent adenylylation of Rtc1 is not a prerequisite for end recognition.
Collapse
Affiliation(s)
- Naoko Tanaka
- Sloan-Kettering Institute, New York, New York 10065, USA
| | | |
Collapse
|
44
|
Wang LK, Zhu H, Shuman S. Structure-guided Mutational Analysis of the Nucleotidyltransferase Domain of Escherichia coli DNA Ligase (LigA). J Biol Chem 2009; 284:8486-94. [PMID: 19150981 PMCID: PMC2659207 DOI: 10.1074/jbc.m808476200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/18/2008] [Indexed: 01/24/2023] Open
Abstract
NAD(+)-dependent DNA ligases (LigA) are ubiquitous in bacteria, where they are essential for growth and present attractive targets for antimicrobial drug discovery. LigA has a distinctive modular structure in which a nucleotidyltransferase catalytic domain is flanked by an upstream NMN-binding module and by downstream OB-fold, zinc finger, helix-hairpin-helix, and BRCT domains. Here we conducted a structure-function analysis of the nucleotidyltransferase domain of Escherichia coli LigA, guided by the crystal structure of the LigA-DNA-adenylate intermediate. We tested the effects of 29 alanine and conservative mutations at 15 amino acids on ligase activity in vitro and in vivo. We thereby identified essential functional groups that coordinate the reactive phosphates (Arg(136)), contact the AMP adenine (Lys(290)), engage the phosphodiester backbone flanking the nick (Arg(218), Arg(308), Arg(97) plus Arg(101)), or stabilize the active domain fold (Arg(171)). Finer analysis of the mutational effects revealed step-specific functions for Arg(136), which is essential for the reaction of LigA with NAD(+) to form the covalent ligase-AMP intermediate (step 1) and for the transfer of AMP to the nick 5'-PO(4) to form the DNA-adenylate intermediate (step 2) but is dispensable for phosphodiester formation at a preadenylylated nick (step 3).
Collapse
Affiliation(s)
- Li Kai Wang
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | | | |
Collapse
|
45
|
Swift RV, Durrant J, Amaro RE, McCammon JA. Toward understanding the conformational dynamics of RNA ligation. Biochemistry 2009; 48:709-19. [PMID: 19133737 PMCID: PMC2651658 DOI: 10.1021/bi8018114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Members of the genus Trypanosoma, which include the pathogenic species Trypanosoma brucei and Trypanosoma cruzi, edit their post-transcriptional mitochondrial RNA via a multiprotein complex called the editosome. In T. brucei, the RNA is nicked prior to uridylate insertion and deletion. Following editing, nicked RNA is religated by one of two RNA-editing ligases (TbREL). This study describes a recent 70 ns molecular dynamics simulation of TbREL1, an ATP-dependent RNA-editing ligase of the nucleotidyltransferase superfamily that is required for the survival of T. brucei insect and bloodstream forms. In this work, a model of TbREL1 in complex with its full double-stranded RNA (dsRNA) substrate is created on the basis of the homologous relation between TbREL1 and T4 Rnl2. The simulation captures TbREL1 dynamics in the state immediately preceding RNA ligation, providing insights into the functional dynamics and catalytic mechanism of the kinetoplastid ligation reaction. Important features of RNA binding and specificity are revealed for kinetoplastid ligases and the broader nucleotidyltransferase superfamily.
Collapse
Affiliation(s)
- Robert V Swift
- Department of Chemistry and Biochemistry, NSF Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California 92093-0365, USA
| | | | | | | |
Collapse
|
46
|
Torchia C, Takagi Y, Ho CK. Archaeal RNA ligase is a homodimeric protein that catalyzes intramolecular ligation of single-stranded RNA and DNA. Nucleic Acids Res 2008; 36:6218-27. [PMID: 18829718 PMCID: PMC2577357 DOI: 10.1093/nar/gkn602] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
RNA ligases participate in repair, splicing and editing pathways that either reseal broken RNAs or alter their primary structure. Here, we report the characterization of an RNA ligase from the thermophilic archaeon, Methanobacterium thermoautotrophicum. The 381-amino acid Methanobacterium RNA ligase (MthRnl) catalyzes intramolecular ligation of 5′-PO4 single-strand RNA to form a covalently closed circular RNA molecule through ligase-adenylylate and RNA-adenylylate (AppRNA) intermediates. At the optimal temperature of 65°C, AppRNA was predominantly ligated to a circular product. In contrast, at 35°C, phosphodiester bond formation was suppressed and the majority of the AppRNA was deadenylylated. Sedimentation analysis indicates that MthRnl is a homodimer in solution. The C-terminal 127-amino acid segment is required for dimerization, is itself capable of oligomeization and acts in trans to inhibit the ligation activity of native MthRnl. MthRnl can also join single-stranded DNA to form a circular molecule. The lack of specificity for RNA and DNA by MthRnl may exemplify an undifferentiated ancestral stage in the evolution of ATP-dependent ligases.
Collapse
Affiliation(s)
- Christopher Torchia
- Department of Biological Sciences and Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
47
|
Monomeric linear RNA of citrus exocortis viroid resulting from processing in vivo has 5'-phosphomonoester and 3'-hydroxyl termini: implications for the RNase and RNA ligase involved in replication. J Virol 2008; 82:10321-5. [PMID: 18701598 DOI: 10.1128/jvi.01229-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the family Pospiviroidae, like Citrus exocortis viroid (CEVd), replicate through an RNA-based asymmetric rolling-circle mechanism in which oligomeric plus-strand [(+)] RNA intermediates are cleaved to monomeric linear (ml) RNA and then circularized. Here we show, by rapid amplification of 5' and 3' cDNA ends and in vitro ligation assays, that ml CEVd (+) RNA resulting from cleavage of a dimeric transcript transgenically expressed in Arabidopsis thaliana contains 5'-phosphomonoester and 3'-hydroxyl termini. The nature of these termini and the double-stranded structure previously proposed as the substrate for cleavage in vivo suggest that a type III RNase catalyzes cleavage and an RNA ligase distinct from tRNA ligase promotes circularization.
Collapse
|
48
|
Nandakumar J, Schwer B, Schaffrath R, Shuman S. RNA repair: an antidote to cytotoxic eukaryal RNA damage. Mol Cell 2008; 31:278-86. [PMID: 18657509 DOI: 10.1016/j.molcel.2008.05.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/10/2008] [Accepted: 05/02/2008] [Indexed: 02/05/2023]
Abstract
RNA healing and sealing enzymes drive informational and stress response pathways entailing repair of programmed 2',3' cyclic PO(4)/5'-OH breaks. Fungal, plant, and phage tRNA ligases use different strategies to discriminate the purposefully broken ends of the anticodon loop. Whereas phage ligase recognizes the tRNA fold, yeast and plant ligases do not and are instead hardwired to seal only the tRNA 3'-OH, 2'-PO(4) ends formed by healing of a cyclic phosphate. tRNA anticodon damage inflicted by secreted ribotoxins such as fungal gamma-toxin underlies a rudimentary innate immune system. Yeast cells are susceptible to gamma-toxin because the sealing domain of yeast tRNA ligase is unable to rectify a break at the modified wobble base of tRNA(Glu(UUC)). Plant andphage tRNA repair enzymes protect yeast from gamma-toxin because they are able to reverse the damage. Our studies underscore how a ribotoxin exploits an Achilles' heel in the target cell's tRNA repair system.
Collapse
|
49
|
Abstract
The conserved bacterial protein RloC, a distant homologue of the tRNALys anticodon nuclease (ACNase) PrrC, is shown here to act as a wobble nucleotide-excising and Zn++-responsive tRNase. The more familiar PrrC is silenced by a genetically linked type I DNA restriction-modification (R-M) enzyme, activated by a phage anti-DNA restriction factor and counteracted by phage tRNA repair enzymes. RloC shares PrrC's ABC ATPase motifs and catalytic ACNase triad but features a distinct zinc-hook/coiled-coil insert that renders its ATPase domain similar to Rad50 and related DNA repair proteins. Geobacillus kaustophilus RloC expressed in Escherichia coli exhibited ACNase activity that differed from PrrC's in substrate preference and ability to excise the wobble nucleotide. The latter specificity could impede reversal by phage tRNA repair enzymes and account perhaps for RloC's more frequent occurrence. Mutagenesis and functional assays confirmed RloC's catalytic triad assignment and implicated its zinc hook in regulating the ACNase function. Unlike PrrC, RloC is rarely linked to a type I R-M system but other genomic attributes suggest their possible interaction in trans. As DNA damage alleviates type I DNA restriction, we further propose that these related perturbations prompt RloC to disable translation and thus ward off phage escaping DNA restriction during the recovery from DNA damage.
Collapse
Affiliation(s)
- Elena Davidov
- Department of Biochemistry, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
50
|
Brooks MA, Meslet-Cladiére L, Graille M, Kuhn J, Blondeau K, Myllykallio H, van Tilbeurgh H. The structure of an archaeal homodimeric ligase which has RNA circularization activity. Protein Sci 2008; 17:1336-45. [PMID: 18511537 DOI: 10.1110/ps.035493.108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The genome of Pyrococcus abyssi contains two open reading frames encoding proteins which had been previously predicted to be DNA ligases, Pab2002 and Pab1020. We show that while the former is indeed a DNA ligase, Pab1020 had no effect on the substrate deoxyoligo-ribonucleotides tested. Instead, Pab1020 catalyzes the nucleotidylation of oligo-ribonucleotides in an ATP-dependent reaction, suggesting that it is an RNA ligase. We have solved the structure of Pab1020 in complex with the ATP analog AMPPNP by single-wavelength anomalous dispersion (SAD), elucidating a structure with high structural similarity to the catalytic domains of two RNA ligases from the bacteriophage T4. Additional carboxy-terminal domains are also present, and one of these mediates contacts with a second protomer, which is related by noncrystallographic symmetry, generating a homodimeric structure. These C-terminal domains are terminated by short domain swaps which themselves end within 5 A of the active sites of the partner molecules. Additionally, we show that the protein is indeed capable of circularizing RNA molecules in an ATP-dependent reaction. These structural and biochemical results provide an insight into the potential physiological roles of Pab1020.
Collapse
Affiliation(s)
- Mark Adrian Brooks
- IBBMC-CNRS, Université de Paris-Sud, CNRS-UMR8619, IFR115, 91405 Orsay, France
| | | | | | | | | | | | | |
Collapse
|