1
|
Navas LE, Zahn M, Bajwa H, Grigg JC, Wolf ME, Chan ACK, Murphy MEP, McGeehan JE, Eltis LD. Characterization of a phylogenetically distinct extradiol dioxygenase involved in the bacterial catabolism of lignin-derived aromatic compounds. J Biol Chem 2022; 298:101871. [PMID: 35346686 PMCID: PMC9062432 DOI: 10.1016/j.jbc.2022.101871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 10/28/2022] Open
Abstract
The actinobacterium Rhodococcus jostii RHA1 grows on a remarkable variety of aromatic compounds and has been studied for applications ranging from the degradation of polychlorinated biphenyls to the valorization of lignin, an underutilized component of biomass. In RHA1, the catabolism of two classes of lignin-derived compounds, alkylphenols and alkylguaiacols, involves a phylogenetically distinct extradiol dioxygenase, AphC, previously misannotated as BphC, an enzyme involved in biphenyl catabolism. To better understand the role of AphC in RHA1 catabolism, we first showed that purified AphC had highest apparent specificity for 4-propylcatechol (kcat/KM ∼106 M-1 s-1), and its apparent specificity for 4-alkylated substrates followed the trend for alkylguaiacols: propyl > ethyl > methyl > phenyl > unsubstituted. We also show AphC only poorly cleaved 3-phenylcatechol, the preferred substrate of BphC. Moreover, AphC and BphC cleaved 3-phenylcatechol and 4-phenylcatechol with different regiospecificities, likely due to the substrates' binding mode. A crystallographic structure of the AphC·4-ethylcatechol binary complex to 1.59 Å resolution revealed that the catechol is bound to the active site iron in a bidentate manner and that the substrate's alkyl side chain is accommodated by a hydrophobic pocket. Finally, we show RHA1 grows on a mixture of 4-ethylguaiacol and guaiacol, simultaneously catabolizing these substrates through meta-cleavage and ortho-cleavage pathways, respectively, suggesting that the specificity of AphC helps to prevent the routing of catechol through the Aph pathway. Overall, this study contributes to our understanding of the bacterial catabolism of aromatic compounds derived from lignin, and the determinants of specificity in extradiol dioxygenases.
Collapse
Affiliation(s)
- Laura E Navas
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Michael Zahn
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Harbir Bajwa
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Megan E Wolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Anson C K Chan
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - John E McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
Engineering Arabidopsis long-chain acyl-CoA synthetase 9 variants with enhanced enzyme activity. Biochem J 2019; 476:151-164. [DOI: 10.1042/bcj20180787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 11/17/2022]
Abstract
Abstract
Long-chain acyl-CoA synthetase (LACS, EC 6.2.1.3) catalyzes the ATP-dependent activation of free fatty acid to form acyl-CoA, which, in turn, serves as the major acyl donor for various lipid metabolic pathways. Increasing the size of acyl-CoA pool by enhancing LACS activity appears to be a useful approach to improve the production and modify the composition of fatty acid-derived compounds, such as triacylglycerol. In the present study, we aimed to improve the enzyme activity of Arabidopsis thaliana LACS9 (AtLACS9) by introducing random mutations into its cDNA using error-prone PCR. Two AtLACS9 variants containing multiple amino acid residue substitutions were identified with enhanced enzyme activity. To explore the effect of each amino acid residue substitution, single-site mutants were generated and the amino acid substitutions C207F and D238E were found to be primarily responsible for the increased activity of the two variants. Furthermore, evolutionary analysis revealed that the beneficial amino acid site C207 is conserved among LACS9 from plant eudicots, whereas the other beneficial amino acid site D238 might be under positive selection. Together, our results provide valuable information for the production of LACS variants for applications in the metabolic engineering of lipid biosynthesis in oleaginous organisms.
Collapse
|
3
|
George KW, Hay AG. Bacterial strategies for growth on aromatic compounds. ADVANCES IN APPLIED MICROBIOLOGY 2016; 74:1-33. [PMID: 21459192 DOI: 10.1016/b978-0-12-387022-3.00005-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Although the biodegradation of aromatic compounds has been studied for over 40 years, there is still much to learn about the strategies bacteria employ for growth on novel substrates. Elucidation of these strategies is crucial for predicting the environmental fate of aromatic pollutants and will provide a framework for the development of engineered bacteria and degradation pathways. In this chapter, we provide an overview of studies that have advanced our knowledge of bacterial adaptation to aromatic compounds. We have divided these strategies into three broad categories: (1) recruitment of catabolic genes, (2) expression of "repair" or detoxification proteins, and (3) direct alteration of enzymatic properties. Specific examples from the literature are discussed, with an eye toward the molecular mechanisms that underlie each strategy.
Collapse
Affiliation(s)
- Kevin W George
- Field of Environmental Toxicology, Cornell University Ithaca, New York, USA; Department of Microbiology, Wing Hall, Cornell University Ithaca, New York, USA
| | | |
Collapse
|
4
|
Guo F, Zhang C, Bie X, Zhao H, Diao H, Lu F, Lu Z. Improving the thermostability and activity of lipoxygenase from Anabaena sp. PCC 7120 by directed evolution and site-directed mutagenesis. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Fang L, Xu Z, Wang GS, Ji FY, Mei CX, Liu J, Wu GM. Directed evolution of an LBP/CD14 inhibitory peptide and its anti-endotoxin activity. PLoS One 2014; 9:e101406. [PMID: 25025695 PMCID: PMC4098906 DOI: 10.1371/journal.pone.0101406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 06/06/2014] [Indexed: 11/23/2022] Open
Abstract
Background LPS-binding protein (LBP) and its ligand CD14 are located upstream of the signaling pathway for LPS-induced inflammation. Blocking LBP and CD14 binding might prevent LPS-induced inflammation. In previous studies, we obtained a peptide analog (MP12) for the LBP/CD14 binding site and showed that this peptide analog had anti-endotoxin activity. In this study, we used in vitro directed evolution for this peptide analog to improve its in vivo and in vitro anti-endotoxin activity. Methods We used error-prone PCR (ep-PCR) and induced mutations in the C-terminus of LBP and attached the PCR products to T7 phages to establish a mutant phage display library. The positive clones that competed with LBP for CD14 binding was obtained by screening. We used both in vivo and in vitro experiments to compare the anti-endotoxin activities of a polypeptide designated P1 contained in a positive clone and MP12. Results 11 positive clones were obtained from among target phages. Sequencing showed that 9 positive clones had a threonine (T) to methionine (M) mutation in amino acid 287 of LBP. Compared to polypeptide MP12, polypeptide P1 significantly inhibited LPS-induced TNF-α expression and NF-κB activity in U937 cells (P<0.05). Compared to MP12, P1 significantly improved arterial oxygen pressure, an oxygenation index, and lung pathology scores in LPS-induced ARDS rats (P<0.05). Conclusion By in vitro directed evolution of peptide analogs for the LBP/CD14 binding site, we established a new polypeptide (P1) with a threonine (T)-to-methionine (M) mutation in amino acid 287 of LBP. This polypeptide had high anti-endotoxin activity in vitro and in vivo, which suggested that amino acid 287 in the C-terminus of LBP may play an important role in LBP binding with CD14.
Collapse
Affiliation(s)
- Li Fang
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhi Xu
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Guan-song Wang
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Fu-yun Ji
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chun-xia Mei
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Juan Liu
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Guo-ming Wu
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
6
|
Improvement of biocatalysts for industrial and environmental purposes by saturation mutagenesis. Biomolecules 2013; 3:778-811. [PMID: 24970191 PMCID: PMC4030971 DOI: 10.3390/biom3040778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/22/2013] [Accepted: 09/23/2013] [Indexed: 11/16/2022] Open
Abstract
Laboratory evolution techniques are becoming increasingly widespread among protein engineers for the development of novel and designed biocatalysts. The palette of different approaches ranges from complete randomized strategies to rational and structure-guided mutagenesis, with a wide variety of costs, impacts, drawbacks and relevance to biotechnology. A technique that convincingly compromises the extremes of fully randomized vs. rational mutagenesis, with a high benefit/cost ratio, is saturation mutagenesis. Here we will present and discuss this approach in its many facets, also tackling the issue of randomization, statistical evaluation of library completeness and throughput efficiency of screening methods. Successful recent applications covering different classes of enzymes will be presented referring to the literature and to research lines pursued in our group. The focus is put on saturation mutagenesis as a tool for designing novel biocatalysts specifically relevant to production of fine chemicals for improving bulk enzymes for industry and engineering technical enzymes involved in treatment of waste, detoxification and production of clean energy from renewable sources.
Collapse
|
7
|
Hupert-Kocurek K, Stawicka A, Wojcieszyńska D, Guzik U. Cloning and mutagenesis of catechol 2,3-dioxygenase gene from the gram-positive Planococcus sp. strain S5. J Mol Microbiol Biotechnol 2013; 23:381-90. [PMID: 23921803 DOI: 10.1159/000351511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this study, the catechol 2,3-dioxygenase gene that encodes a 307- amino-acid protein was cloned from Planococcus sp. S5. The protein was identified to be a member of the superfamily I, subfamily 2A of extradiol dioxygenases. In order to study residues and regions affecting the enzyme's catalytic parameters, the c23o gene was randomly mutated by error-prone PCR. The wild-type enzyme and mutants containing substitutions within either the C-terminal or both domains were functionally produced in Escherichia coli and their activity towards catechol was characterized. The C23OB65 mutant with R296Q substitution showed significant tolerance to acidic pH with an optimum at pH 5.0. In addition, it showed activity more than 1.5 as high as that of the wild type enzyme and its Km was 2.5 times lower. It also showed altered sensitivity to substrate inhibition. The results indicate that residue at position 296 plays a role in determining pH dependence of the enzyme and its activity. Lower activity toward catechol was shown for mutants C23OB58 and C23OB81. Despite lower activity, these mutants showed higher affinity to catechol and were more sensitive to substrate concentration than nonmutated enzyme.
Collapse
Affiliation(s)
- Katarzyna Hupert-Kocurek
- Department of Biochemistry, Faculty of Biology and Environment Protection, University of Silesia in Katowice, Katowice, Poland
| | | | | | | |
Collapse
|
8
|
Sylvestre M. Prospects for using combined engineered bacterial enzymes and plant systems to rhizoremediate polychlorinated biphenyls. Environ Microbiol 2012; 15:907-15. [PMID: 23106850 DOI: 10.1111/1462-2920.12007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/06/2012] [Accepted: 09/26/2012] [Indexed: 01/17/2023]
Abstract
The fate of polychlorinated biphenyls (PCBs) in soil is driven by a combination of interacting biological processes. Several investigations have brought evidence that the rhizosphere provides a remarkable ecological niche to enhance the PCB degradation process by rhizobacteria. The bacterial oxidative enzymes involved in PCB degradation have been investigated extensively and novel engineered enzymes exhibiting enhanced catalytic activities toward more persistent PCBs have been described. Furthermore, recent studies suggest that approaches involving processes based on plant-microbe associations are very promising to remediate PCB-contaminated sites. In this review emphasis will be placed on the current state of knowledge regarding the strategies that are proposed to engineer the enzymes of the PCB-degrading bacterial oxidative pathway and to design PCB-degrading plant-microbe systems to remediate PCB-contaminated soil.
Collapse
Affiliation(s)
- Michel Sylvestre
- Institut National de la Recherche Scientifique, INRS-Instittut Armand-Frappier, Laval, Quebec, Canada, H7V1B7.
| |
Collapse
|
9
|
Machonkin TE, Doerner AE. Substrate Specificity of Sphingobium chlorophenolicum 2,6-Dichlorohydroquinone 1,2-Dioxygenase. Biochemistry 2011; 50:8899-913. [DOI: 10.1021/bi200855m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Timothy E. Machonkin
- Department of Chemistry, Whitman College, 345 Boyer Avenue, Walla Walla, Washington
99362, United States
| | - Amy E. Doerner
- Department of Chemistry, Whitman College, 345 Boyer Avenue, Walla Walla, Washington
99362, United States
| |
Collapse
|
10
|
Abstract
Bacteria construct elaborate nanostructures, obtain nutrients and energy from diverse sources, synthesize complex molecules, and implement signal processing to react to their environment. These complex phenotypes require the coordinated action of multiple genes, which are often encoded in a contiguous region of the genome, referred to as a gene cluster. Gene clusters sometimes contain all of the genes necessary and sufficient for a particular function. As an evolutionary mechanism, gene clusters facilitate the horizontal transfer of the complete function between species. Here, we review recent work on a number of clusters whose functions are relevant to biotechnology. Engineering these clusters has been hindered by their regulatory complexity, the need to balance the expression of many genes, and a lack of tools to design and manipulate DNA at this scale. Advances in synthetic biology will enable the large-scale bottom-up engineering of the clusters to optimize their functions, wake up cryptic clusters, or to transfer them between organisms. Understanding and manipulating gene clusters will move towards an era of genome engineering, where multiple functions can be "mixed-and-matched" to create a designer organism.
Collapse
Affiliation(s)
- Michael Fischbach
- Department of Bioengineering and Therapeutic Sciences, University of California – San Francisco, MC 2530, Room 308C, 1700 4 Street, (415) 514-9435
| | - Christopher A. Voigt
- Department of Pharmaceutical Chemistry, University of California – San Francisco, MC 2540, Room 408C, 1700 4 Street, San Francisco, CA 94158, (415) 502-7050
| |
Collapse
|
11
|
Sylvestre M, Macek T, Mackova M. Transgenic plants to improve rhizoremediation of polychlorinated biphenyls (PCBs). Curr Opin Biotechnol 2009; 20:242-7. [PMID: 19250817 DOI: 10.1016/j.copbio.2009.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/22/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
Recent investigations have shown that the three components of the biphenyl dioxygenase and the 2,3-dihydroxybiphenyl dioxygenase can be produced actively in transgenic plants. Both enzymes catalyze critical steps of the bacterial polychlorinated biphenyl (PCB) degrading pathway. On the basis of these observations, optimized plant-microbe bioremediation processes in which transgenic plants would initiate PCB metabolism and release the metabolites for further degradation by rhizobacteria has been proposed. Since this is still a relatively new approach for PCB remediation, its successful application will require efforts first, to engineer improved PCB-degrading enzymes; second, to co-ordinately express these enzymes' components in plants; and third, to better understand the mechanisms by which plants and rhizobacteria interact to degrade organic pollutants.
Collapse
Affiliation(s)
- Michel Sylvestre
- Institut national de la recherche scientifique, INRS-Institut Armand-Frappier, Laval, Québec, Canada.
| | | | | |
Collapse
|
12
|
Hu D, Henderson K, Coats J. Fate of Transformation Products of Synthetic Chemicals. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2009. [DOI: 10.1007/698_2_018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
13
|
Abstract
Ring-cleaving dioxygenases catalyze the oxygenolytic fission of catecholic compounds, a critical step in the aerobic degradation of aromatic compounds by bacteria. Two classes of these enzymes have been identified, based on the mode of ring cleavage: intradiol dioxygenases utilize non-heme Fe(III) to cleave the aromatic nucleus ortho to the hydroxyl substituents; and extradiol dioxygenases utilize non-heme Fe(II) or other divalent metal ions to cleave the aromatic nucleus meta to the hydroxyl substituents. Recent genomic, structural, spectroscopic, and kinetic studies have increased our understanding of the distribution, evolution, and mechanisms of these enzymes. Overall, extradiol dioxygenases appear to be more versatile than their intradiol counterparts. Thus, the former cleave a wider variety of substrates, have evolved on a larger number of structural scaffolds, and occur in a wider variety of pathways, including biosynthetic pathways and pathways that degrade non-aromatic compounds. The catalytic mechanisms of the two enzymes proceed via similar iron-alkylperoxo intermediates. The ability of extradiol enzymes to act on a variety of non-catecholic compounds is consistent with proposed differences in the breakdown of this iron-alkylperoxo intermediate in the two enzymes, involving alkenyl migration in extradiol enzymes and acyl migration in intradiol enzymes. Nevertheless, despite recent advances in our understanding of these fascinating enzymes, the major determinant of the mode of ring cleavage remains unknown.
Collapse
Affiliation(s)
- Frédéric H Vaillancourt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
14
|
Suenaga H, Ohnuki T, Miyazaki K. Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds. Environ Microbiol 2007; 9:2289-97. [PMID: 17686025 DOI: 10.1111/j.1462-2920.2007.01342.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A metagenomic approach was taken to retrieve catabolic operons for aromatic compounds from activated sludge used to treat coke plant wastewater. Metagenomic DNA extracted from the sludge was cloned into fosmids and the resulting Escherichia coli library was screened for extradiol dioxygenases (EDOs) using catechol as a substrate, yielding 91 EDO-positive clones. Based on their substrate specificity for various catecholic compounds, 38 clones were subjected to sequence analysis. Each insert contained at least one EDO gene, and a total of 43 EDO genes were identified. More than half of these belonged to new EDO subfamilies: I.1.C (2 clones), I.2.G (20 clones), I.3.M (2 clones) and I.3.N (1 clone). The fact that novel I.2.G family genes were over-represented in these clones suggested that these genes play a specific role in environmental aromatic degradation. The I.2.G clones were further classified into six groups based on single-nucleotide polymorphisms (SNPs). Based on the combination of the SNPs, the evolutionary lineage of the genes was reconstructed; further, taking the activities of the clones into account, potential adaptive mutations were identified. The metagenomic approach was thus used to retrieve novel EDO genes as well as to gain insights into the gene evolution of EDOs.
Collapse
Affiliation(s)
- Hikaru Suenaga
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
15
|
Leungsakul T, Johnson GR, Wood TK. Protein engineering of the 4-methyl-5-nitrocatechol monooxygenase from Burkholderia sp. strain DNT for enhanced degradation of nitroaromatics. Appl Environ Microbiol 2006; 72:3933-9. [PMID: 16751499 PMCID: PMC1489588 DOI: 10.1128/aem.02966-05] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
4-Methyl-5-nitrocatechol (4M5NC) monooxygenase (DntB) from Burkholderia sp. strain DNT catalyzes the second step of 2,4-dinitrotoluene degradation by converting 4M5NC to 2-hydroxy-5-methylquinone with the concomitant removal of the nitro group. DntB is a flavoprotein that has a very narrow substrate range. Here, error-prone PCR was used to create variant DntB M22L/L380I, which accepts the two new substrates 4-nitrophenol (4NP) and 3-methyl-4-nitrophenol (3M4NP). At 300 microM of 4NP, the initial rate of the variant expressing M22L/L380I enzyme (39 +/- 6 nmol/min/mg protein) was 10-fold higher than that of the wild-type enzyme (4 +/- 2 nmol/min/mg protein). The values of kcat/Km of the purified wild-type DntB enzyme and purified variant M22L/L380I were 40 and 450 (s(-1) M(-1)), respectively, which corroborates that the variant M22L/L380I enzyme has 11-fold-higher efficiency than the wild-type enzyme for 4NP degradation. In addition, the variant M22L/L380I enzyme has fourfold-higher activity toward 3M4NP; at 300 microM, the initial nitrite release rate of M22L/L380I enzyme was 17 +/- 4 nmol/min/mg protein, while that of the wild-type enzyme was 4.4 +/- 0.7 nmol/min/mg protein. Saturation mutagenesis was also used to further investigate the role of the individual amino acid residues at positions M22, L380, and M22/L380 simultaneously. Mutagenesis at the individual positions M22L and L380I did not show appreciable enhancement in 4NP activity, which suggested that these two sites should be mutated together; simultaneous saturation mutagenesis led to the identification of the variant M22S/L380V, with 20% enhanced degradation of 4NP compared to the variant M22L/L380I. This is the first report of protein engineering for nitrite removal by a flavoprotein.
Collapse
Affiliation(s)
- Thammajun Leungsakul
- Artie McFerrin Department of Chemical Engineering, 220 Jack E. Brown Building, Texas A&M University, College Station, TX 77843-3122, USA
| | | | | |
Collapse
|