1
|
Shi Y, Ma J, Li S, Liu C, Liu Y, Chen J, Liu N, Liu S, Huang H. Sex difference in human diseases: mechanistic insights and clinical implications. Signal Transduct Target Ther 2024; 9:238. [PMID: 39256355 PMCID: PMC11387494 DOI: 10.1038/s41392-024-01929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 09/12/2024] Open
Abstract
Sex characteristics exhibit significant disparities in various human diseases, including prevalent cardiovascular diseases, cancers, metabolic disorders, autoimmune diseases, and neurodegenerative diseases. Risk profiles and pathological manifestations of these diseases exhibit notable variations between sexes. The underlying reasons for these sex disparities encompass multifactorial elements, such as physiology, genetics, and environment. Recent studies have shown that human body systems demonstrate sex-specific gene expression during critical developmental stages and gene editing processes. These genes, differentially expressed based on different sex, may be regulated by androgen or estrogen-responsive elements, thereby influencing the incidence and presentation of cardiovascular, oncological, metabolic, immune, and neurological diseases across sexes. However, despite the existence of sex differences in patients with human diseases, treatment guidelines predominantly rely on male data due to the underrepresentation of women in clinical trials. At present, there exists a substantial knowledge gap concerning sex-specific mechanisms and clinical treatments for diverse diseases. Therefore, this review aims to elucidate the advances of sex differences on human diseases by examining epidemiological factors, pathogenesis, and innovative progress of clinical treatments in accordance with the distinctive risk characteristics of each disease and provide a new theoretical and practical basis for further optimizing individualized treatment and improving patient prognosis.
Collapse
Affiliation(s)
- Yuncong Shi
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Jianshuai Ma
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Sijin Li
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Chao Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yuning Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Jie Chen
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ningning Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Zhang H, Shah A, Ravandi A. Cardiogenic shock-sex-specific risk factors and outcome differences. Can J Physiol Pharmacol 2024; 102:530-537. [PMID: 38663027 DOI: 10.1139/cjpp-2023-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Cardiogenic shock (CS) remains a high-mortality condition despite technological and therapeutic advances. One key to potentially improving CS prognosis is understanding patient heterogeneity and which patients may benefit most from different treatment options, a key element of which is sex differences. While cardiovascular diseases (CVDs) have historically been considered a male-dominant condition, the field is increasingly aware that females are also a substantial portion of the patient population. While estrogen has been implicated in protective roles against CVD and tissue hypoxia, its role in CS remains unclear. Clinically, female CS patients tend to be older, have more severe comorbidities and are more likely to have non-acute myocardial infarction etiologies with preserved ejection fractions. Female CS patients are more likely to receive pharmacotherapy while less likely to receive mechanical circulatory support. There is increased short-term mortality in females, although long-term mortality is similar between the sexes. More sex-specific and age-stratified research needs to be done to fully understand the relevant pathophysiological differences in CS, to better recognize and manage CS patients and reduce its mortality.
Collapse
Affiliation(s)
- Hannah Zhang
- Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Precision Cardiovascular Medicine Group, Institute of Cardiovascular Sciences, Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Ashish Shah
- Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Precision Cardiovascular Medicine Group, Institute of Cardiovascular Sciences, Boniface Hospital Research Centre, Winnipeg, MB, Canada
- Section of Cardiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Amir Ravandi
- Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Precision Cardiovascular Medicine Group, Institute of Cardiovascular Sciences, Boniface Hospital Research Centre, Winnipeg, MB, Canada
- Section of Cardiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Tanaka T, Guimaro MC, Nakamura H, Perez P, Ji Y, Michael DG, Afione SA, Zheng C, Goldsmith C, Swaim WD, Pedersen AML, Chiorini JA. Association of G protein-coupled receptor 78 with salivary dysfunction in male Sjögren's patients. Oral Dis 2024; 30:1173-1182. [PMID: 36652502 DOI: 10.1111/odi.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Sjögren's disease (SjD) has a strong sex bias, suggesting an association with sex hormones. Male SjD represents a distinct subset of the disease, but the pathogenic mechanisms of male SjD is poorly characterized. The aim of this study is to identify initiating events related to the development of gland hypofunction and autoimmunity in male SjD patients. MATERIALS AND METHODS Human minor salivary glands were transcriptomically analyzed with microarrays to detect differentially expressed genes in male SjD patients. Identified genes were tested on their involvement in the disease using conditional transgenic mice and gene-overexpressing cells. RESULTS GPR78, an orphan G protein-coupled receptor, was overexpressed in the salivary glands of male SjD patients compared with male healthy controls and female SjD patients. Male GPR78 transgenic mice developed salivary gland hypofunction with increased epithelial apoptosis, which was not seen in control or female transgenic mice. In cell culture, GPR78 overexpression decreased lysosomal integrity, leading to caspase-dependent apoptotic cell death. GPR78-induced cell death in vitro was inhibited by treatment with estradiol. CONCLUSION GPR78 overexpression can induce apoptosis and salivary gland hypofunction in male mice through lysosomal dysfunction and increased caspase-dependent apoptosis in salivary gland epithelium, which may drive disease in humans.
Collapse
Affiliation(s)
- Tsutomu Tanaka
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria C Guimaro
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Hiroyuki Nakamura
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Paola Perez
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Youngmi Ji
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Drew G Michael
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandra A Afione
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Changyu Zheng
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Corinne Goldsmith
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - William D Swaim
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Anne Marie Lynge Pedersen
- Oral Medicine and Oral Pathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John A Chiorini
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Shahid I, Avenatti E, Titus A, Al-Kindi S, Nasir K. Primary Prevention of Cardiovascular Disease in Women. Methodist Debakey Cardiovasc J 2024; 20:94-106. [PMID: 38495667 PMCID: PMC10941704 DOI: 10.14797/mdcvj.1313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 03/19/2024] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of mortality in women, necessitating innovative primary prevention strategies. Contemporary guidelines on primary prevention of CVD highlight the increasing prevalence of CVD risk factors and emphasize the significance of female-specific risk enhancers that substantially augment the future risk of CVD. These risk factors occur throughout a woman's life cycle, such as hormonal contraception, hypertensive disorders of pregnancy, and menopause, all of which confer an added layer of risk in women beyond the conventional risk factors. Despite this, current methods may not fully capture the nuanced vulnerabilities in women that increase their risk of CVD. In this review, we highlight gender-specific risk enhancers and subsequent prevention as well as strategies to improve primary prevention of CVD in women.
Collapse
Affiliation(s)
- Izza Shahid
- Houston Methodist Academic Institute, Houston, Texas, US
- Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, US
| | - Eleonora Avenatti
- Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, US
| | - Anoop Titus
- Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, US
| | - Sadeer Al-Kindi
- Houston Methodist Academic Institute, Houston, Texas, US
- Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, US
| | - Khurram Nasir
- Houston Methodist Academic Institute, Houston, Texas, US
- Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, US
| |
Collapse
|
5
|
George SA, Kiss A, Trampel KA, Obaid SN, Tang L, Efimov IR, Efimova T. Anthracycline cardiotoxicity is exacerbated by global p38β genetic ablation in a sexually dimorphic manner but unaltered by cardiomyocyte-specific p38α loss. Am J Physiol Heart Circ Physiol 2023; 325:H983-H997. [PMID: 37624097 DOI: 10.1152/ajpheart.00458.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
Severe cardiotoxic effects limit the efficacy of doxorubicin (DOX) as a chemotherapeutic agent. Activation of intracellular stress signaling networks, including p38 mitogen-activated protein kinase (MAPK), has been implicated in DOX-induced cardiotoxicity (DIC). However, the roles of the individual p38 isoforms in DIC remain incompletely elucidated. We recently reported that global p38δ deletion protected female but not male mice from DIC, whereas global p38γ deletion did not significantly modulate it. Here we studied the in vivo roles of p38α and p38β in acute DIC. Male and female mice with cardiomyocyte-specific deletion of p38α or global deletion of p38β and their wild-type counterparts were injected with DOX. Survival and health were tracked for 10 days postinjection. Cardiac function was assessed by echocardiography and electrocardiography and fibrosis by Picrosirius red staining. Expression and activation of signaling proteins and inflammatory markers were measured by Western blot, phosphorylation array, and chemokine/cytokine array. Global p38β deletion significantly aggravated DIC and worsened cardiac electrical and mechanical function deterioration in female mice. Mechanistically, DIC in p38β-null female mice correlated with increased autophagy, sustained hyperactivation of proapoptotic JNK signaling, as well as remodeling of a myocardial inflammatory environment. In contrast, cardiomyocyte-specific deletion of p38α improved survival of DOX30-treated male mice 5 days posttreatment but did not influence cardiac function in DOX-treated male or female mice. Our data highlight the sex- and isoform-specific roles of p38α and p38β MAPKs in DOX-induced cardiac injury and suggest a novel in vivo function of p38β in protecting female mice from DIC.NEW & NOTEWORTHY We show that p38α and p38β have distinct in vivo functions in a murine model of acute DIC. Specifically, although conditional cardiomyocyte-specific p38α deletion exhibited mild cardioprotective effects in male mice, p38β deletion exacerbated the DOX cardiotoxicity in female mice. Our findings caution against employing pyridinyl imidazole inhibitors that target both p38α and p38β isoforms as a cardioprotective strategy against DIC. Such an approach could have undesirable sex-dependent effects, including attenuating p38β-dependent cardioprotection in females.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
| | - Alexi Kiss
- Department of Anatomy and Cell Biology, George Washington University, Washington, District of Columbia, United States
- George Washington Cancer Center, Washington, District of Columbia, United States
| | - Katy Anne Trampel
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
| | - Sofian N Obaid
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
| | - Lichao Tang
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| | - Igor R Efimov
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
- George Washington Cancer Center, Washington, District of Columbia, United States
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
- Department of Anatomy and Cell Biology, George Washington University, Washington, District of Columbia, United States
- George Washington Cancer Center, Washington, District of Columbia, United States
| |
Collapse
|
6
|
Watts KM, Nichols W, Richardson WJ. Computational screen for sex-specific drug effects in a cardiac fibroblast signaling network model. Sci Rep 2023; 13:17068. [PMID: 37816826 PMCID: PMC10564891 DOI: 10.1038/s41598-023-44440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/08/2023] [Indexed: 10/12/2023] Open
Abstract
Heart disease is the leading cause of death in both men and women. Cardiac fibrosis is the uncontrolled accumulation of extracellular matrix proteins, which can exacerbate the progression of heart failure, and there are currently no drugs approved specifically to target matrix accumulation in the heart. Computational signaling network models (SNMs) can be used to facilitate discovery of novel drug targets. However, the vast majority of SNMs are not sex-specific and/or are developed and validated using data skewed towards male in vitro and in vivo samples. Biological sex is an important consideration in cardiovascular health and drug development. In this study, we integrate a cardiac fibroblast SNM with estrogen signaling pathways to create sex-specific SNMs. The sex-specific SNMs demonstrated high validation accuracy compared to in vitro experimental studies in the literature while also elucidating how estrogen signaling can modulate the effect of fibrotic cytokines via multi-pathway interactions. Further, perturbation analysis and drug screening uncovered several drug compounds predicted to generate divergent fibrotic responses in male vs. female conditions, which warrant further study in the pursuit of sex-specific treatment recommendations for cardiac fibrosis. Future model development and validation will require more generation of sex-specific data to further enhance modeling capabilities for clinically relevant sex-specific predictions of cardiac fibrosis and treatment.
Collapse
Affiliation(s)
- Kelsey M Watts
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA.
| | - Wesley Nichols
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - William J Richardson
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
7
|
Fernández-Aroca D, García-Flores N, Frost S, Jiménez-Suárez J, Rodríguez-González A, Fernández-Aroca P, Sabater S, Andrés I, Garnés-García C, Belandia B, Cimas F, Villar D, Ruiz-Hidalgo M, Sánchez-Prieto R. MAPK11 (p38β) is a major determinant of cellular radiosensitivity by controlling ionizing radiation-associated senescence: An in vitro study. Clin Transl Radiat Oncol 2023; 41:100649. [PMID: 37346275 PMCID: PMC10279794 DOI: 10.1016/j.ctro.2023.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Background and purpose MAPKs are among the most relevant signalling pathways involved in coordinating cell responses to different stimuli. This group includes p38MAPKs, constituted by 4 different proteins with a high sequence homology: MAPK14 (p38α), MAPK11 (p38β), MAPK12 (p38γ) and MAPK13 (p38δ). Despite their high similarity, each member shows unique expression patterns and even exclusive functions. Thus, analysing protein-specific functions of MAPK members is necessary to unequivocally uncover the roles of this signalling pathway. Here, we investigate the possible role of MAPK11 in the cell response to ionizing radiation (IR). Materials and methods We developed MAPK11/14 knockdown through shRNA and CRISPR interference gene perturbation approaches and analysed the downstream effects on cell responses to ionizing radiation in A549, HCT-116 and MCF-7 cancer cell lines. Specifically, we assessed IR toxicity by clonogenic assays; DNA damage response activity by immunocytochemistry; apoptosis and cell cycle by flow cytometry (Annexin V and propidium iodide, respectively); DNA repair by comet assay; and senescence induction by both X-Gal staining and gene expression of senescence-associated genes by RT-qPCR. Results Our findings demonstrate a critical role of MAPK11 in the cellular response to IR by controlling the associated senescent phenotype, and without observable effects on DNA damage response, apoptosis, cell cycle or DNA damage repair. Conclusion Our results highlight MAPK11 as a novel mediator of the cellular response to ionizing radiation through the control exerted onto IR-associated senescence.
Collapse
Affiliation(s)
- D.M. Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
| | - N. García-Flores
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
| | - S. Frost
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - J. Jiménez-Suárez
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
| | - A. Rodríguez-González
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - P. Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
| | - S. Sabater
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Albacete, Albacete, España
| | - I. Andrés
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Albacete, Albacete, España
| | - C. Garnés-García
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
| | - B. Belandia
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM). Madrid, España. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, España
| | - F.J. Cimas
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
- Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, España
| | - D. Villar
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - M.J. Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
- Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, España
| | - R. Sánchez-Prieto
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM). Madrid, España. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, España
| |
Collapse
|
8
|
Zhu XZ, Qiu Z, Lei SQ, Leng Y, Li WY, Xia ZY. The Role of P53 in Myocardial Ischemia-Reperfusion Injury. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07480-x. [PMID: 37389674 DOI: 10.1007/s10557-023-07480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE P53 is one of the key tumor suppressors. In normal cells, p53 is maintained at low levels by the ubiquitination of the ubiquitinated ligase MDM2. In contrast, under stress conditions such as DNA damage and ischemia, the interaction between p53 and MDM2 is blocked and activated by phosphorylation and acetylation, thereby mediating the trans-activation of p53 through its target genes to regulate a variety of cellular responses. Previous studies have shown that the expression of p53 is negligible in normal myocardium, tends to increase in myocardial ischemia and is maximally induced in ischemia-reperfused myocardium, demonstrating a possible key role of p53 in the development of MIRI. In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and describe the therapeutic agents targeting the relevant targets to provide new strategies for the prevention and treatment of MIRI. METHODS We collected 161 relevant papers mainly from Pubmed and Web of Science (search terms "p53" and "myocardial ischemia-reperfusion injury"). After that, we selected pathway studies related to p53 and classified them according to their contents. We eventually analyzed and summarized them. RESULTS AND CONCLUSION In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and validate its status as an important intermediate affecting MIRI. On the one hand, p53 is regulated and modified by multiple factors, especially non-coding RNAs; on the other hand, p53 regulates apoptosis, programmed necrosis, autophagy, iron death and oxidative stress in MIRI through multiple pathways. More importantly, several studies have reported medications targeting p53-related therapeutic targets. These medications are expected to be effective options for the alleviation of MIRI, but further safety and clinical studies are needed to convert them into clinical applications.
Collapse
Affiliation(s)
- Xi-Zi Zhu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Wen-Yuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
9
|
Watts KM, Nichols W, Richardson WJ. Computational Screen for Sex-Specific Drug Effects in a Cardiac Fibroblast Network Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536523. [PMID: 37090681 PMCID: PMC10120687 DOI: 10.1101/2023.04.11.536523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Heart disease is the leading cause of death in both men and women. Cardiac fibrosis is the uncontrolled accumulation of extracellular matrix proteins which can exacerbate the progression of heart failure, and there are currently no drugs approved specifically to target matrix accumulation in the heart. Computational signaling network models (SNMs) can be used to facilitate discovery of novel drug targets. However, the vast majority of SNMs are not sex-specific and/or are developed and validated using data skewed towards male in vitro and in vivo samples. Biological sex is an important consideration in cardiovascular health and drug development. In this study, we integrate a previously constructed cardiac fibroblast SNM with estrogen signaling pathways to create sex-specific SNMs. The sex-specific SNMs maintained previously high validation when compared to in vitro experimental studies in the literature. A sex-specific perturbation analysis and drug screen uncovered several potential pathways that warrant further study in the pursuit of sex-specific treatment recommendations for cardiac fibrosis.
Collapse
Affiliation(s)
- Kelsey M Watts
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Wesley Nichols
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - William J Richardson
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
10
|
Ahluwalia A, Hoa N, Moreira D, Aziz D, Singh K, Patel KN, Levin ER. Membrane Estrogen Receptor β Is Sufficient to Mitigate Cardiac Cell Pathology. Endocrinology 2022; 164:6867852. [PMID: 36461668 DOI: 10.1210/endocr/bqac200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Estrogen acting through estrogen receptor β (ERβ) has been shown to oppose the stimulation of cardiac myocytes and cardiac fibroblasts that results in cardiac hypertrophy and fibrosis. Previous work has implicated signal transduction from ERβ as being important to the function of estrogen in this regard. Here we address whether membrane ERβ is sufficient to oppose key mechanisms by which angiotensin II (AngII) stimulates cardiac cell pathology. To do this we first defined essential structural elements within ERβ that are necessary for membrane or nuclear localization in cells. We previously determined that cysteine 418 is the site of palmitoylation of ERβ that is required and sufficient for cell membrane localization in mice and is the same site in humans. Here we determined in Chinese hamster ovarian (CHO) cells, and mouse and rat myocytes and cardiac fibroblasts, the effect on multiple aspects of signal transduction by expressing wild-type (WT ) or a C418A-mutant ERβ. To test the importance of the nuclear receptor, we determined a 4-amino acid deletion in the E domain of ERβ that strongly blocked nuclear localization. Using these tools, we expressed WT and mutant ERβ constructs into cardiomyocytes and cardiac fibroblasts from ERβ-deleted mice. We determined the ability of estrogen to mitigate cell pathology stimulated by AngII and whether the membrane ERβ is necessary and sufficient.
Collapse
Affiliation(s)
- Amrita Ahluwalia
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Neil Hoa
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Debbie Moreira
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Daniel Aziz
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Karanvir Singh
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Khushin N Patel
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
- Department of Medicine, University of California, Irvine, Irvine, California 92717, USA
- Department of Biochemistry, University of California, Irvine, Irvine, California 92717, USA
| |
Collapse
|
11
|
Valipour M, Irannejad H, Emami S. Application of emetine in SARS-CoV-2 treatment: regulation of p38 MAPK signaling pathway for preventing emetine-induced cardiac complications. Cell Cycle 2022; 21:2379-2386. [DOI: 10.1080/15384101.2022.2100575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Mehdi Valipour
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
12
|
Lee CC, Chen SY, Lee TM. 17β-Oestradiol facilitates M2 macrophage skewing and ameliorates arrhythmias in ovariectomized female infarcted rats. J Cell Mol Med 2022; 26:3396-3409. [PMID: 35514058 PMCID: PMC9189348 DOI: 10.1111/jcmm.17344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 02/13/2022] [Accepted: 03/25/2022] [Indexed: 11/27/2022] Open
Abstract
Epidemiological studies have suggested a lower incidence of arrhythmia‐induced sudden cardiac death in women than in men. 17β‐oestradiol (E2) has been reported to have a post‐myocardial infarction antiarrhythmic effect, although the mechanisms have yet to be elucidated. We investigated whether E2‐mediated antioxidation regulates macrophage polarization and affects cardiac sympathetic reinnervation in rats after MI. Ovariectomized Wistar rats were randomly assigned to placebo pellets, E2 treatment, or E2 treatment +3‐morpholinosydnonimine (a peroxynitrite generator) and followed for 4 weeks. The infarct sizes were similar among the infarcted groups. At Day 3 after infarction, post‐infarction was associated with increased superoxide levels, which were inhibited by administering E2. E2 significantly increased myocardial IL‐10 levels and the percentage of regulatory M2 macrophages compared with the ovariectomized infarcted alone group as assessed by immunohistochemical staining, Western blot and RT‐PCR. Nerve growth factor colocalized with both M1 and M2 macrophages at the magnitude significantly higher in M1 compared with M2. At Day 28 after infarction, E2 was associated with attenuated myocardial norepinephrine levels and sympathetic hyperinnervation. These effects of E2 were functionally translated in inhibiting fatal arrhythmias. The beneficial effect of E2 on macrophage polarization and sympathetic hyperinnervation was abolished by 3‐morpholinosydnonimine. Our results indicated that E2 polarized macrophages into the M2 phenotype by inhibiting the superoxide pathway, leading to attenuated nerve growth factor‐induced sympathetic hyperinnervation after myocardial infarction.
Collapse
Affiliation(s)
| | - Syue-Yi Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
13
|
den Ruijter HM, Kararigas G. Estrogen and Cardiovascular Health. Front Cardiovasc Med 2022; 9:886592. [PMID: 35433883 PMCID: PMC9005843 DOI: 10.3389/fcvm.2022.886592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 01/03/2023] Open
Affiliation(s)
- Hester M. den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- *Correspondence: Georgios Kararigas
| |
Collapse
|
14
|
Adekunle AO, Adzika GK, Mprah R, Ndzie Noah ML, Adu-Amankwaah J, Rizvi R, Akhter N, Sun H. Predominance of Heart Failure With Preserved Ejection Fraction in Postmenopausal Women: Intra- and Extra-Cardiomyocyte Maladaptive Alterations Scaffolded by Estrogen Deficiency. Front Cell Dev Biol 2021; 9:685996. [PMID: 34660569 PMCID: PMC8511782 DOI: 10.3389/fcell.2021.685996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) remains a public health concern as it is associated with high morbidity and death rates. In particular, heart failure with preserved ejection fraction (HFpEF) represents the dominant (>50%) form of HF and mostly occurring among postmenopausal women. Hence, the initiation and progression of the left ventricular diastolic dysfunctions (LVDD) (a typically clinical manifestation of HFpEF) in postmenopausal women have been attributed to estrogen deficiency and the loss of its residue cardioprotective effects. In this review, from a pathophysiological and immunological standpoint, we discuss the probable multiple pathomechanisms resulting in HFpEF, which are facilitated by estrogen deficiency. The initial discussions recap estrogen and estrogen receptors (ERs) and β-adrenergic receptors (βARs) signaling under physiological/pathological states to facilitate cardiac function/dysfunction, respectively. By reconciling these prior discussions, attempts were made to explain how the loss of estrogen facilitates the disruptions both ERs and βARs-mediated signaling responsible for; the modulation of intra-cardiomyocyte calcium homeostasis, maintenance of cardiomyocyte cytoskeletal and extracellular matrix, the adaptive regulation of coronary microvascular endothelial functions and myocardial inflammatory responses. By scaffolding the disruption of these crucial intra- and extra-cardiomyocyte physiological functions, estrogen deficiency has been demonstrated to cause LVDD and increase the incidence of HFpEF in postmenopausal women. Finally, updates on the advancements in treatment interventions for the prevention of HFpEF were highlighted.
Collapse
Affiliation(s)
| | | | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | | | | | - Nazma Akhter
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
15
|
Hajializadeh Z, Khaksari M. The protective effects of 17-β estradiol and SIRT1 against cardiac hypertrophy: a review. Heart Fail Rev 2021; 27:725-738. [PMID: 34537933 DOI: 10.1007/s10741-021-10171-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/27/2022]
Abstract
One of the major causes of morbidity and mortality worldwide is cardiac hypertrophy (CH), which leads to heart failure. Sex differences in CH can be caused by sex hormones or their receptors. The incidence of CH increases in postmenopausal women due to the decrease in female sex hormone 17-β estradiol (E2) during menopause. E2 and its receptors inhibit CH in humans and animal models. Silent information regulator 1 (SIRT1) is a NAD+-dependent HDAC (histone deacetylase) and plays a major role in biological processes, such as inflammation, apoptosis, and oxidative stress responses. Probably SIRT1 because of these effects, is one of the main suppressors of CH and has a cardioprotective effect. On the other hand, estrogen and its agonists are highly efficient in modulating SIRT1 expression. In the present study, we review the protective effects of E2 and SIRT1 against CH.
Collapse
Affiliation(s)
- Zahra Hajializadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
16
|
Poret JM, Guidry JJ, Simon L, Molina PE. Chronic binge alcohol and ovariectomy dysregulate omental adipose tissue metaboproteome in simian immunodeficiency virus-infected female macaques. Physiol Genomics 2021; 53:358-371. [PMID: 34252326 DOI: 10.1152/physiolgenomics.00001.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Effective antiretroviral therapy (ART) has significantly reduced mortality of people living with HIV (PLWH), and the prevalence of at-risk alcohol use is higher among PLWH. Increased survival and aging of PLWH is associated with increased prevalence of metabolic comorbidities especially among menopausal women, and adipose tissue metabolic dysregulation may be a significant contributing factor. We examined the differential effects of chronic binge alcohol (CBA) administration and ovariectomy (OVX) on the omental adipose tissue (OmAT) proteome in a subset of simian immunodeficiency virus (SIV)-infected macaques of a longitudinal parent study. Quantitative discovery-based proteomics identified 1,429 differentially expressed proteins. Ingenuity Pathway Analysis (IPA) was used to calculate z-scores, or activation predictions, for functional pathways and diseases. Results revealed that protein changes associated with functional pathways centered around the "OmAT metaboproteome profile." Based on z-scores, CBA did not affect functional pathways of metabolic disease but dysregulated proteins involved in adenosine monophosphate-activated protein kinase (AMPK) signaling and lipid metabolism. OVX-mediated proteome changes were predicted to promote pathways involved in glucose- and lipid-associated metabolic disease. Proteins involved in apoptosis, necrosis, and reactive oxygen species (ROS) pathways were also predicted to be activated by OVX and these were predicted to be inhibited by CBA. These results provide evidence for the role of ovarian hormone loss in mediating OmAT metaboproteome dysregulation in SIV and suggest that CBA modifies OVX-associated changes. In the context of OVX, CBA administration produced larger metabolic and cellular effects, which we speculate may reflect a protective role of estrogen against CBA-mediated adipose tissue injury in female SIV-infected macaques.
Collapse
Affiliation(s)
- Jonquil M Poret
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jessie J Guidry
- Department of Biochemistry and The Proteomic Core Facility, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
17
|
Protective Effects of Estrogen on Cardiovascular Disease Mediated by Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5523516. [PMID: 34257804 PMCID: PMC8260319 DOI: 10.1155/2021/5523516] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
Perimenopause is an important stage of female senescence. Epidemiological investigation has shown that the incidence of cardiovascular disease in premenopausal women is lower than that in men, and the incidence of cardiovascular disease in postmenopausal women is significantly higher than that in men. This phenomenon reveals that estrogen has a definite protective effect on the cardiovascular system. In the cardiovascular system, oxidative stress is considered important in the pathogenesis of atherosclerosis, myocardial dysfunction, cardiac hypertrophy, heart failure, and myocardial ischemia. From the perspective of oxidative stress, estrogen plays a regulatory role in the cardiovascular system through the estrogen receptor, providing strategies for the treatment of menopausal women with cardiovascular diseases.
Collapse
|
18
|
Katopodis P, Kerslake R, Zikopoulos A, Beri N, Anikin V. p38β - MAPK11 and its role in female cancers. J Ovarian Res 2021; 14:84. [PMID: 34174910 PMCID: PMC8236201 DOI: 10.1186/s13048-021-00834-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background The p38MAPK family of Mitogen Activated Protein Kinases are a group of signalling molecules involved in cell growth, survival, proliferation and differentiation. The widely studied p38α isoform is ubiquitously expressed and is implicated in a number of cancer pathologies, as are p38γ and p38δ. However, the mechanistic role of the isoform, p38β, remains fairly elusive. Recent studies suggest a possible role of p38β in both breast and endometrial cancer with research suggesting involvement in bone metastasis and cancer cell survival. Female tissue specific cancers such as breast, endometrial, uterine and ovary account for over 3,000,000 cancer related incidents annually; advancements in therapeutics and treatment however require a deeper understanding of the molecular aetiology associated with these diseases. This study provides an overview of the MAPK signalling molecule p38β (MAPK11) in female cancers using an in-silico approach. Methods A detailed gene expression and methylation analysis was performed using datasets from cBioportal, CanSar and MEXPRESS. Breast, Uterine Endometrial, Cervical, Ovarian and Uterine Carcinosarcoma TCGA cancer datasets were used and analysed. Results Data using cBioportal and CanSAR suggest that expression of p38β is lower in cancers: BRCA, UCEC, UCS, CESC and OV compared to normal tissue. Methylation data from SMART and MEXPRESS indicate significant probe level variation of CpG island methylation status of the gene MAPK11. Analysis of the genes’ two CpG islands shows that the gene was hypermethylated in the CpG1 with increased methylation seen in BRCA, CESC and UCEC cancer data sets with a slight increase of expression recorded in cancer samples. CpG2 exhibited hypomethylation with no significant difference between samples and high levels of expression. Further analysis from MEXPRESS revealed no significance between probe methylation and altered levels of expression. In addition, no difference in the expression of BRCA oestrogen/progesterone/HER2 status was seen. Conclusion This data provides an overview of the expression of p38β in female tissue specific cancers, showing a decrease in expression of the gene in BRCA, UCEC, CESC, UCS and OV, increasing the understanding of p38β MAPK expression and offering insight for future in-vitro investigation and therapeutic application. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00834-9.
Collapse
Affiliation(s)
- Periklis Katopodis
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK. .,Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, London, UB9 6JH, UK.
| | - Rachel Kerslake
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Athanasios Zikopoulos
- Obstetrics and Gynaecology Department, Royal Cornwall Hospitals NHS Foundation Trust, Royal Cornwall Hospital, Truro, TR1 3LJ, UK
| | - Nefeli Beri
- Department of Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Vladimir Anikin
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, London, UB9 6JH, UK.,Department of Oncology and Reconstructive Surgery, Sechenov First Moscow State Medical University, Moscow, Russian Federation, 119146
| |
Collapse
|
19
|
Najjar RS, Turner CG, Wong BJ, Feresin RG. Berry-Derived Polyphenols in Cardiovascular Pathologies: Mechanisms of Disease and the Role of Diet and Sex. Nutrients 2021; 13:nu13020387. [PMID: 33513742 PMCID: PMC7911141 DOI: 10.3390/nu13020387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) prevalence, pathogenesis, and manifestation is differentially influenced by biological sex. Berry polyphenols target several signaling pathways pertinent to CVD development, including inflammation, oxidative stress, and cardiac and vascular remodeling, and there are innate differences in these pathways that also vary by sex. There is limited research systematically investigating sex differences in berry polyphenol effects on these pathways, but there are fundamental findings at this time that suggest a sex-specific effect. This review will detail mechanisms within these pathological pathways, how they differ by sex, and how they may be individually targeted by berry polyphenols in a sex-specific manner. Because of the substantial polyphenolic profile of berries, berry consumption represents a promising interventional tool in the treatment and prevention of CVD in both sexes, but the mechanisms in which they function within each sex may vary.
Collapse
Affiliation(s)
- Rami S. Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
| | - Casey G. Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30302, USA; (C.G.T.); (B.J.W.)
| | - Brett J. Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30302, USA; (C.G.T.); (B.J.W.)
| | - Rafaela G. Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
- Correspondence:
| |
Collapse
|
20
|
Kaplan A, Abidi E, Habeichi NJ, Ghali R, Alawasi H, Fakih C, Zibara K, Kobeissy F, Husari A, Booz GW, Zouein FA. Gender-biased kidney damage in mice following exposure to tobacco cigarette smoke: More protection in premenopausal females. Physiol Rep 2021; 8:e14339. [PMID: 31981316 PMCID: PMC6981307 DOI: 10.14814/phy2.14339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple clinical studies documented renal damage in chronic cigarette smokers (CS) irrespective of their age and gender. Premenopausal female smokers are known to exert a certain cardiovascular and renal protection with undefined mechanisms. Given the multiple demographic variables within clinical studies, this experimental study was designed to be the first to assess whether gender‐biased CS‐induced kidney damage truly exists between premenopausal female and age‐matched C57Bl6J male mice when compared to their relative control groups. Following 6 weeks of CS exposure, cardiac function, inflammatory marker production, fibrosis formation, total and glomerular ROS levels, and glomerulotubular homeostasis were assessed in both genders. Although both CS‐exposed male and female mice exhibited comparable ROS fold change relative to their respective control groups, CS‐exposed male mice showed a more pronounced fibrotic deposition, inflammation, and glomerulotubular damage profile. However, the protection observed in CS‐exposed female group was not absolute. CS‐exposed female mice exhibited a significant increase in fibrosis, ROS production, and glomerulotubular alteration but with a pronounced anti‐inflammatory profile when compared to their relative control groups. Although both CS‐exposed genders presented with altered glomerulotubular homeostasis, the alteration phenotype between genders was different. CS‐exposed males showed a significant decrease in Bowman's space along with reduced tubular diameter consistent with an endocrinization pattern of chronic tubular atrophy, suggestive of an advanced stage of glomerulotubular damage. CS‐exposed female group, on the other hand, displayed glomerular hypertrophy with a mild tubular dilatation profile suggestive of an early stage of glomerulotubular damage that generally precedes collapse. In conclusion, both genders are prone to CS‐induced kidney damage with pronounced female protection due to a milder damage slope.
Collapse
Affiliation(s)
- Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Emna Abidi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada J Habeichi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rana Ghali
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiam Alawasi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Christina Fakih
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Kazem Zibara
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmad Husari
- Department of Internal Medicine, Respiratory Diseases and Sleep Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
21
|
Li D, Wu Q, Xu W, Zheng H, Tong Y, Li Y. Dietary manganese intake is inversely associated with depressive symptoms in midlife women: A cross-sectional study. J Affect Disord 2020; 276:914-919. [PMID: 32739710 DOI: 10.1016/j.jad.2020.07.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/16/2020] [Accepted: 07/05/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND To study the association of manganese intake from diet with depressive symptoms in midlife women. METHODS Data for this cross-sectional study were retrieved from baseline assessment of the Study of Women's Health Across the Nation (SWAN). Linear regression, logistic regression and restricted cubic spline models were performed to examine the association of manganese intake with depressive symptoms. RESULTS A total of 2993 midlife women aged 42-52 years were included in the present study. In premenopausal women, manganese intake was inversely associated with CES-D score and after adjustment for total caloric intake, age, race/ethnicity, education, income, financial strain, physical activity, BMI, vasomotor symptoms, chronic stress and use of antidepressant, estradiol, testosterone and sex hormone binding globulin using linear regression. The fully adjusted regression coefficient 95% confidence intervals (CIs) were -0.533 (-0.993, -0.074). Similarly, manganese intake was inversely associated with depressive symptoms (CES-D scores≥16) using logistic regression adjusted same confounders. The fully adjusted odds ratios (ORs) with 95% CI of depressive symptoms were 0.512 (0.287-0.913) in quartile 4 compared with quartile 1 for manganese intake. However, in early perimenopausal women, no statistically significant difference was observed between manganese intake and depressive symptoms after adjustment for same confounders that adjusted in premenopausal women. LIMITATIONS This was a cross-sectional study, limiting causal inferences. Assessment of CES-D was based on a self-report scale. CONCLUSION Manganese intake may be inversely associated with depression symptoms in premenopausal women, but not in early perimenopausal women.
Collapse
Affiliation(s)
- Di Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qing Wu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wanzhou Xu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hongyun Zheng
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
22
|
Roche O, Fernández-Aroca DM, Arconada-Luque E, García-Flores N, Mellor LF, Ruiz-Hidalgo MJ, Sánchez-Prieto R. p38β and Cancer: The Beginning of the Road. Int J Mol Sci 2020; 21:ijms21207524. [PMID: 33053909 PMCID: PMC7589630 DOI: 10.3390/ijms21207524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway is implicated in cancer biology and has been widely studied over the past two decades as a potential therapeutic target. Most of the biological and pathological implications of p38MAPK signaling are often associated with p38α (MAPK14). Recently, several members of the p38 family, including p38γ and p38δ, have been shown to play a crucial role in several pathologies including cancer. However, the specific role of p38β (MAPK11) in cancer is still elusive, and further investigation is needed. Here, we summarize what is currently known about the role of p38β in different types of tumors and its putative implication in cancer therapy. All evidence suggests that p38β might be a key player in cancer development, and could be an important therapeutic target in several pathologies, including cancer.
Collapse
Affiliation(s)
- Olga Roche
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
- Departamento de Ciencias Médicas, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Diego M. Fernández-Aroca
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - Elena Arconada-Luque
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - Natalia García-Flores
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - Liliana F. Mellor
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - María José Ruiz-Hidalgo
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Departamento de Ciencias Médicas, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Consejo Superior de Investigaciones Cientificas, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-915-854-420
| |
Collapse
|
23
|
Dong Z, Li X, Huang S, Zhang N, Guo Y, Wang Z. Vitellogenins and choriogenins are biomarkers for monitoring Oryzias curvinotus juveniles exposed to 17 β - estradiol. Comp Biochem Physiol C Toxicol Pharmacol 2020; 236:108800. [PMID: 32450338 DOI: 10.1016/j.cbpc.2020.108800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 01/10/2023]
Abstract
The effect of estrogens on Oryzias curvinotus juveniles were investigated by sequencing the transcriptome of O. curvinotus juveniles exposed to 17 β - estradiol for 24 h. A total of 69,071,524 and 71,210,528 raw reads were obtained for the control group (NC) and 17 β - estradiol exposure group (E2), respectively. After de novo assembly, total 133,210 unigenes were identified, and 85,837 unigenes (64.44% of 133,210) were annotated. Analysis of the transcriptome showed that exposure to 2 μg/L 17 β - estradiol led to the up-regulation of 19 genes and down-regulation of 18 genes. The eef1b and rps4x was most suitable as controls for quantitative real-time PCR (qPCR) using Reffinder. Different expression genes enrichment analysis found that exposed to 2 μg/L 17 β - estradiol affected various physiological processes, including spliceosome, phototransduction, amino sugar and nuclear sugar metabolism, hypotaurine metabolism, and renin-angiotensin system, etc. Exposing O. curvinotus juveniles to increasing concentrations of 17 β - estradiol (2 ng/L, 20 ng/L, 200 ng/L and 2 μg/L) led to significant up-regulation of vitellogenins (vtgs) and choriogenins (chgs) mRNA expression. The present study is the first high-throughput transcriptome sequencing of O. curvinotus juveniles, which will be useful for future functional analysis of genes related to environmental estrogen exposed, and development of biomarkers.
Collapse
Affiliation(s)
- Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| | - Xueyou Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| | - Shunkai Huang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| | - Ning Zhang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
24
|
Is Cardiac Diastolic Dysfunction a Part of Post-Menopausal Syndrome? JACC-HEART FAILURE 2020; 7:192-203. [PMID: 30819374 DOI: 10.1016/j.jchf.2018.12.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/14/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022]
Abstract
Post-menopausal women exhibit an exponential increase in the incidence of heart failure with preserved ejection fraction compared with men of the same age, which indicates a potential role of hormonal changes in subclinical and clinical diastolic dysfunction. This paper reviews the preclinical evidence that demonstrates the involvement of estrogen in many regulatory molecular pathways of cardiac diastolic function and the clinical data that investigates the effect of estrogen on diastolic function in post-menopausal women. Published reports show that estrogen deficiency influences both early diastolic relaxation via calcium homeostasis and the late diastolic compliance associated with cardiac hypertrophy and fibrosis. Because of the high risk of diastolic dysfunction and heart failure with preserved ejection fraction in post-menopausal women and the positive effects of estrogen on preserving cardiac function, further clinical studies are needed to clarify the role of endogenous estrogen or hormone replacement in mitigating the onset and progression of heart failure with preserved ejection fraction in women.
Collapse
|
25
|
Manrique-Acevedo C, Chinnakotla B, Padilla J, Martinez-Lemus LA, Gozal D. Obesity and cardiovascular disease in women. Int J Obes (Lond) 2020; 44:1210-1226. [PMID: 32066824 PMCID: PMC7478041 DOI: 10.1038/s41366-020-0548-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
As the prevalence of obesity continues to grow worldwide, the health and financial burden of obesity-related comorbidities grows too. Cardiovascular disease (CVD) is clearly associated with increased adiposity. Importantly, women are at higher risk of CVD when obese and insulin resistant, in particular at higher risk of developing heart failure with preserved ejection fraction and ischemic heart disease. Increased aldosterone and mineralocorticoid receptor activation, aberrant estrogenic signaling and elevated levels of androgens are among some of the proposed mechanisms explaining the heightened CVD risk. In addition to traditional cardiovascular risk factors, understanding nontraditional risk factors specific to women, like excess weight gain during pregnancy, preeclampsia, gestational diabetes, and menopause are central to designing personalized interventions aimed to curb the epidemic of CVD. In the present review, we examine the available evidence supporting a differential cardiovascular impact of increased adiposity in women compared with men and the proposed pathophysiological mechanisms behind these differences. We also discuss women-specific cardiovascular risk factors associated with obesity and insulin resistance.
Collapse
Affiliation(s)
- Camila Manrique-Acevedo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Bhavana Chinnakotla
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Department of Child Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
26
|
Tunc E, Eve AA, Madak-Erdogan Z. Coronary Microvascular Dysfunction and Estrogen Receptor Signaling. Trends Endocrinol Metab 2020; 31:228-238. [PMID: 31787492 DOI: 10.1016/j.tem.2019.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Chest pain with non-obstructive coronary artery disease (NOCAD) occurs more frequently in women than in men and is mainly related to coronary microvascular disease (CMD). The majority of CMD patients are postmenopausal women, suggesting a role for lack of estrogens in the development and progression of CMD. Patients are often discharged without a clear treatment plan due to the limited understanding of etiology and diagnostic parameters of CMD and have significantly higher rates of future cardiovascular events. Thus, there is a need for a better understanding of the underlying biology, and CMD-specific diagnostic tests and therapies. In this article, we reviewed recent studies on CMD, estrogen action in coronary microvasculature, and diagnosis and treatment options for CMD in postmenopausal women.
Collapse
Affiliation(s)
- Elif Tunc
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Alicia Arredondo Eve
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
27
|
Menopause-Related Estrogen Decrease and the Pathogenesis of HFpEF. J Am Coll Cardiol 2020; 75:1074-1082. [DOI: 10.1016/j.jacc.2019.12.049] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 01/27/2023]
|
28
|
KITTNAR O. Selected Sex Related Differences in Pathophysiology of Cardiovascular System. Physiol Res 2020; 69:21-31. [DOI: 10.33549/physiolres.934068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The annual incidence of cardiovascular diseases is age-dependently increasing both in men and women, however, the prevalence is higher in men until midlife. The higher incidence of cardiovascular disease in men than in women of similar age, and the menopause-associated increase in cardiovascular disease in women, has led to speculation that gender-related differences in sex hormones might have a key role in the development and evolution of cardiovascular disease. There are several suggested pathways in which gender and sex hormones can affect human cardiovascular system to produce original sexually different pathophysiology between women and men. Sex steroid hormones and their receptors are critical determinants of cardiovascular gender differences. Also arterial blood pressure is typically lower in women than in men what could be explained particularly by greater synthesis of nitric oxide (NO) in women. Female cardiomyocytes have a greater survival advantage when challenged with oxidative stress, suggesting that female hormones may play an important role in antioxidative protection of myocardium. It was also demonstrated in animal models that combination of XX chromosomes versus an XY chromosomes enhances sex differences in higher HDL cholesterol. Women were found to have reduced sympathetic activity (reflected by lower total peripheral resistance) and pulmonary artery pressure and enhanced parasympathetic activity relative to men. Similarly, men were found to have higher plasma norepinephrine levels than women. Regarding differences between the sexes in electrophysiology of the heart, two principle mechanisms have been proposed to explain them: hormonal effects on the expression or function of ion channels or, conversely, differences in autonomic tone. To improve diagnosis and treatment of cardiovascular diseases, greater focus on understanding the molecular and cellular physiology of the sex steroid hormones and their receptors in the cardiovascular system will be required.
Collapse
Affiliation(s)
- O. KITTNAR
- Institute of Physiology of the First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
29
|
Casin KM, Kohr MJ. An emerging perspective on sex differences: Intersecting S-nitrosothiol and aldehyde signaling in the heart. Redox Biol 2020; 31:101441. [PMID: 32007450 PMCID: PMC7212482 DOI: 10.1016/j.redox.2020.101441] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease is the leading cause of the death for both men and women. Although baseline heart physiology and the response to disease are known to differ by sex, little is known about sex differences in baseline molecular signaling, especially with regard to redox biology. In this review, we describe current research on sex differences in cardiac redox biology with a focus on the regulation of nitric oxide and aldehyde signaling. Furthermore, we argue for a new perspective on cardiovascular sex differences research, one that focuses on baseline redox biology without the elimination or disruption of sex hormones.
Collapse
Affiliation(s)
- Kevin M Casin
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
30
|
MLN4924 Exerts a Neuroprotective Effect against Oxidative Stress via Sirt1 in Spinal Cord Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7283639. [PMID: 31178972 PMCID: PMC6501157 DOI: 10.1155/2019/7283639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/01/2019] [Accepted: 03/04/2019] [Indexed: 12/16/2022]
Abstract
Oxidative stress is a leading contributor to spinal cord ischemia-reperfusion (SCIR) injury. Recently, MLN4924, a potent and selective inhibitor of the NEDD8-activating enzyme, was shown to exert a neuroprotective effect against oxidative stress in vitro. However, it is unknown whether MLN4924 plays a protective role against SCIR injury. In the present study, we found that MLN4924 treatment significantly attenuated oxidative stress and neuronal cell death induced by H2O2 in SH-SY-5Y neural cells and during rat SCIR injury. Furthermore, MLN4924 administration restored neurological and motor functions in rats with SCIR injury. Mechanistically, we found that MLN4924 protects against H2O2- and SCIR injury-induced neurodegeneration by regulating sirtuin 1 (Sirt1) expression. Collectively, these findings demonstrate the neuroprotective role of MLN4924 against oxidative stress in SCIR injury via Sirt1.
Collapse
|
31
|
Singh N, Siddarth M, Ghosh R, Tripathi AK, Banerjee BD. Heptachlor-induced epithelial to mesenchymal transition in HK-2 cells mediated via TGF-β1/Smad signalling. Hum Exp Toxicol 2019; 38:567-577. [DOI: 10.1177/0960327119828136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study investigated the effect of heptachlor-induced oxidative stress (OS) on transforming growth factor (TGF)-β1-mediated epithelial to mesenchymal transition (EMT) in human renal proximal tubular epithelial (HK-2) cells. Following treatment of HK-2 cells with an increasing concentration of heptachlor (0.01–10 µM) for 24 h, the intracellular reactive oxygen species and malondialdehyde level increased, whereas the glutathione-s-hydroxylase (GSH) level declined significantly in a dose-dependent manner. Pretreatment with N-acetyl cysteine attenuates the heptachlor-induced OS. In this study, we have shown that heptachlor-induced OS regulates the mRNA expression of TGF-β1-mediated Smad signalling genes accompanied by increased nuclear localization of phosphorylated Smad-2 and phosphorylated Smad-3. Furthermore, the m-RNA and protein level of epithelial marker, that is, E-cadherin decreased while the mesenchymal marker, that is, α-smooth muscle actin increased in heptachlor exposed HK-2 cells. In conclusion, heptachlor-induced OS might be responsible for the activation of TGF-β1/Smad signalling which ultimately leads to renal damage by means of EMT.
Collapse
Affiliation(s)
- N Singh
- Department of Biochemistry, University College of Medical Sciences (University of Delhi) and Guru Teg Bahadur Hospital, Dilshad Garden, Delhi, India
| | - M Siddarth
- Multidisciplinary Research Unit, University College of Medical Sciences (University of Delhi) and Guru Teg Bahadur Hospital, Dilshad Garden, Delhi, India
| | - R Ghosh
- Department of Biochemistry, University College of Medical Sciences (University of Delhi) and Guru Teg Bahadur Hospital, Dilshad Garden, Delhi, India
| | - AK Tripathi
- Department of Biochemistry, University College of Medical Sciences (University of Delhi) and Guru Teg Bahadur Hospital, Dilshad Garden, Delhi, India
| | - BD Banerjee
- Department of Biochemistry, University College of Medical Sciences (University of Delhi) and Guru Teg Bahadur Hospital, Dilshad Garden, Delhi, India
| |
Collapse
|
32
|
Rattanasopa C, Kirk JA, Bupha-Intr T, Papadaki M, de Tombe PP, Wattanapermpool J. Estrogen but not testosterone preserves myofilament function from doxorubicin-induced cardiotoxicity by reducing oxidative modifications. Am J Physiol Heart Circ Physiol 2019; 316:H360-H370. [PMID: 30499711 PMCID: PMC6397386 DOI: 10.1152/ajpheart.00428.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here, we aimed to explore sex differences and the impact of sex hormones on cardiac contractile properties in doxorubicin (DOX)-induced cardiotoxicity. Male and female Sprague-Dawley rats were subjected to sham surgery or gonadectomy and then treated or untreated with DOX (2 mg/kg) every other week for 10 wk. Estrogen preserved maximum active tension (Tmax) with DOX exposure, whereas progesterone and testosterone did not. The effects of sex hormones and DOX correlated with both altered myosin heavy chain isoform expression and myofilament protein oxidation, suggesting both as possible mechanisms. However, acute treatment with oxidative stress (H2O2) or a reducing agent (DTT) indicated that the effects on Tmax were mediated by reversible myofilament oxidative modifications and not only changes in myosin heavy chain isoforms. There were also sex differences in the DOX impact on myofilament Ca2+ sensitivity. DOX increased Ca2+ sensitivity in male rats only in the absence of testosterone and in female rats only in the presence of estrogen. Conversely, DOX decreased Ca2+ sensitivity in female rats in the absence of estrogen. In most instances, this mechanism was through altered phosphorylation of troponin I at Ser23/Ser24. However, there was an additional DOX-induced, estrogen-dependent, irreversible (by DTT) mechanism that altered Ca2+ sensitivity. Our data demonstrate sex differences in cardiac contractile responses to chronic DOX treatment. We conclude that estrogen protects against chronic DOX treatment in the heart, preserving myofilament function. NEW & NOTEWORTHY We identified sex differences in cardiotoxic effects of chronic doxorubicin (DOX) exposure on myofilament function. Estrogen, but not testosterone, decreases DOX-induced oxidative modifications on myofilaments to preserve maximum active tension. In rats, DOX exposure increased Ca2+ sensitivity in the presence of estrogen but decreased Ca2+ sensitivity in the absence of estrogen. In male rats, the DOX-induced shift in Ca2+ sensitivity involved troponin I phosphorylation; in female rats, this was through an estrogen-dependent mechanism.
Collapse
Affiliation(s)
- Chutima Rattanasopa
- 1Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jonathan A. Kirk
- 2Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Tepmanas Bupha-Intr
- 1Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Maria Papadaki
- 2Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Pieter P. de Tombe
- 2Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | | |
Collapse
|
33
|
Females Are More Resistant to Ischemia-Reperfusion-induced Intestinal Injury Than Males. Ann Surg 2019; 272:1070-1079. [DOI: 10.1097/sla.0000000000003167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Ventura-Clapier R, Piquereau J, Veksler V, Garnier A. Estrogens, Estrogen Receptors Effects on Cardiac and Skeletal Muscle Mitochondria. Front Endocrinol (Lausanne) 2019; 10:557. [PMID: 31474941 PMCID: PMC6702264 DOI: 10.3389/fendo.2019.00557] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondria are unique organelles present in almost all cell types. They are involved not only in the supply of energy to the host cell, but also in multiple biochemical and biological processes like calcium homeostasis, production, and regulation of reactive oxygen species (ROS), pH control, or cell death. The importance of mitochondria in cell biology and pathology is increasingly recognized. Being maternally inherited, mitochondria exhibit a tissue-specificity, because most of the mitochondrial proteins are encoded by the nuclear genome. This renders them exquisitely well-adapted to the physiology of the host cell. It is thus not surprising that mitochondria show a sexual dimorphism and that they are also prone to the influence of sex chromosomes and sex hormones. Estrogens affect mitochondria through multiple processes involving membrane and nuclear estrogen receptors (ERs) as well as more direct effects. Moreover, estrogen receptors have been identified within mitochondria. The effects of estrogens on mitochondria comprise protein content and specific activity of mitochondrial proteins, phospholipid content of membranes, oxidant and anti-oxidant capacities, oxidative phosphorylation, and calcium retention capacities. Herein we will briefly review the life cycle and functions of mitochondria, the importance of estrogen receptors and the effects of estrogens on heart and skeletal muscle mitochondria.
Collapse
|
35
|
Chaudhari S, Cushen SC, Osikoya O, Jaini PA, Posey R, Mathis KW, Goulopoulou S. Mechanisms of Sex Disparities in Cardiovascular Function and Remodeling. Compr Physiol 2018; 9:375-411. [PMID: 30549017 DOI: 10.1002/cphy.c180003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epidemiological studies demonstrate disparities between men and women in cardiovascular disease prevalence, clinical symptoms, treatments, and outcomes. Enrollment of women in clinical trials is lower than men, and experimental studies investigating molecular mechanisms and efficacy of certain therapeutics in cardiovascular disease have been primarily conducted in male animals. These practices bias data interpretation and limit the implication of research findings in female clinical populations. This review will focus on the biological origins of sex differences in cardiovascular physiology, health, and disease, with an emphasis on the sex hormones, estrogen and testosterone. First, we will briefly discuss epidemiological evidence of sex disparities in cardiovascular disease prevalence and clinical manifestation. Second, we will describe studies suggesting sexual dimorphism in normal cardiovascular function from fetal life to older age. Third, we will summarize and critically discuss the current literature regarding the molecular mechanisms underlying the effects of estrogens and androgens on cardiac and vascular physiology and the contribution of these hormones to sex differences in cardiovascular disease. Fourth, we will present cardiovascular disease risk factors that are positively associated with the female sex, and thus, contributing to increased cardiovascular risk in women. We conclude that inclusion of both men and women in the investigation of the role of estrogens and androgens in cardiovascular physiology will advance our understanding of the mechanisms underlying sex differences in cardiovascular disease. In addition, investigating the role of sex-specific factors in the development of cardiovascular disease will reduce sex and gender disparities in the treatment and diagnosis of cardiovascular disease. © 2019 American Physiological Society. Compr Physiol 9:375-411, 2019.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Paresh A Jaini
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rachel Posey
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
36
|
Saeed A, Kampangkaew J, Nambi V. Prevention of Cardiovascular Disease in Women. Methodist Debakey Cardiovasc J 2018; 13:185-192. [PMID: 29744010 DOI: 10.14797/mdcj-13-4-185] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality among women worldwide. The pathophysiological basis of cardiovascular health among men and women is not identical. This leads to variable cardiovascular responses to stimulus and presentation of cardiovascular disease symptoms, both of which can have a direct effect on treatment outcomes. Traditionally, the enrollment of women in clinical trials has been minimal, resulting in a lack of gender-specific analysis of clinical trial data and, therefore, the absence of concrete risk factor assessment among women. However, scientific progress in the past decade has identified a spectrum of risk factors for cardiovascular diseases that may be specific to women. These risk factors, which may include menopause, hypertensive disease of pregnancy, and depression, confer additional risk in women besides the traditional risk factors. The current state of knowledge and awareness about these risk factors is suboptimal at this time. Therefore, although the treatment of cardiovascular diseases is similar in both genders, appropriate risk stratification may be limited in women compared to men. The purpose of this review is to describe the recent trends in identifying female-specific risk factors for cardiovascular diseases, their utility in risk stratification, and current pharmacological options for women with regard to cardiovascular disease prevention.
Collapse
Affiliation(s)
- Anum Saeed
- BAYLOR COLLEGE OF MEDICINE, HOUSTON, TEXAS
| | | | - Vijay Nambi
- MICHAEL E. DEBAKEY VA MEDICAL CENTER, HOUSTON, TEXAS.,BAYLOR COLLEGE OF MEDICINE, HOUSTON, TEXAS
| |
Collapse
|
37
|
Hoa N, Ge L, Korach KS, Levin ER. Estrogen receptor beta maintains expression of KLF15 to prevent cardiac myocyte hypertrophy in female rodents. Mol Cell Endocrinol 2018; 470:240-250. [PMID: 29127073 PMCID: PMC6242344 DOI: 10.1016/j.mce.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022]
Abstract
Maintaining a healthy, anti-hypertrophic state in the heart prevents progression to cardiac failure. In humans, angiotensin II (AngII) indirectly and directly stimulates hypertrophy and progression, while estrogens acting through estrogen receptor beta (ERβ) inhibit these AngII actions. The KLF15 transcription factor has been purported to provide anti-hypertrophic action. In cultured neonatal rat cardiomyocytes, we found AngII inhibited KLF1 expression and nuclear localization, substantially prevented by estradiol (E2) or β-LGND2 (β-LGND2), an ERβ agonist. AngII stimulation of transforming growth factor beta expression in the myocytes activated p38α kinase via TAK1 kinase, inhibiting KLF15 expression. All was comparably reduced by E2 or β-LGND2. Knockdown of KLF15 in the myocytes induced myocyte hypertrophy and limited the anti-hypertrophic actions of E2 and β-LGND2. Key aspects were confirmed in an in-vivo model of cardiac hypertrophy. Our findings define additional anti-hypertrophic effects of ERβ supporting testing specific receptor agonists in humans to prevent progression of cardiac disease.
Collapse
Affiliation(s)
- Neil Hoa
- Division of Endocrinology, Department of Veterans Affairs Medical Center, Long Beach, CA, 90822, USA
| | - Lisheng Ge
- Division of Endocrinology, Department of Veterans Affairs Medical Center, Long Beach, CA, 90822, USA
| | | | - Ellis R Levin
- Division of Endocrinology, Department of Veterans Affairs Medical Center, Long Beach, CA, 90822, USA; Department of Medicine, University of California, Irvine, CA, 92717, USA; Department of Biochemistry, University of California, Irvine, CA, 92717, USA.
| |
Collapse
|
38
|
Pokrzywinski KL, Biel TG, Rosen ET, Bonanno JL, Aryal B, Mascia F, Moshkelani D, Mog S, Rao VA. Doxorubicin-induced cardiotoxicity is suppressed by estrous-staged treatment and exogenous 17β-estradiol in female tumor-bearing spontaneously hypertensive rats. Biol Sex Differ 2018; 9:25. [PMID: 29907135 PMCID: PMC6003183 DOI: 10.1186/s13293-018-0183-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 05/28/2018] [Indexed: 12/04/2022] Open
Abstract
Background Doxorubicin (DOX), an anthracycline therapeutic, is widely used to treat a variety of cancer types and known to induce cardiomyopathy in a time and dose-dependent manner. Postmenopausal and hypertensive females are two high-risk groups for developing adverse effects following DOX treatment. This may suggest that endogenous reproductive hormones can in part suppress DOX-induced cardiotoxicity. Here, we investigated if the endogenous fluctuations in 17β-estradiol (E2) and progesterone (P4) can in part suppress DOX-induced cardiomyopathy in SST-2 tumor-bearing spontaneously hypersensitive rats (SHRs) and evaluate if exogenous administration of E2 and P4 can suppress DOX-induced cardiotoxicity in tumor-bearing ovariectomized SHRs (ovaSHRs). Methods Vaginal cytology was performed on all animals to identify the stage of the estrous cycle. Estrous-staged SHRs received a single injection of saline, DOX, dexrazoxane (DRZ), or DOX combined with DRZ. OvaSHRs were implanted with time-releasing pellets that contained a carrier matrix (control), E2, P4, Tamoxifen (Tam), and combinations of E2 with P4 and Tam. Hormone pellet-implanted ovaSHRs received a single injection of saline or DOX. Cardiac troponin I (cTnI), E2, and P4 serum concentrations were measured before and after treatment in all animals. Cardiac damage and function were further assessed by echocardiography and histopathology. Weight, tumor size, and uterine width were measured for all animals. Results In SHRs, estrous-staged DOX treatment altered acute estrous cycling that ultimately resulted in prolonged diestrus. Twelve days after DOX administration, all SHRs had comparable endogenous circulating E2. Thirteen days after DOX treatment, SHRs treated during proestrus had decreased cardiac output and increased cTnI as compared to animals treated during estrus and diestrus. DOX-induced tumor reduction was not affected by estrous-staged treatments. In ovaSHRs, exogenous administration of E2 suppressed DOX-induced cardiotoxicity, while P4-implanted ovaSHRs were partly resistant. However, ovaSHRs treated with E2 and P4 did not have cardioprotection against DOX-induced damage. Conclusions This study demonstrates that estrous-staged treatments can alter the extent of cardiac damage caused by DOX in female SHRs. The study also supports that exogenous E2 can suppress DOX-induced myocardial damage in ovaSHRs. Electronic supplementary material The online version of this article (10.1186/s13293-018-0183-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaytee L Pokrzywinski
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Bldg., Silver Spring, MD, 20993, USA
| | - Thomas G Biel
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Bldg., Silver Spring, MD, 20993, USA
| | - Elliot T Rosen
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Bldg., Silver Spring, MD, 20993, USA
| | - Julia L Bonanno
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Bldg., Silver Spring, MD, 20993, USA
| | - Baikuntha Aryal
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Bldg., Silver Spring, MD, 20993, USA
| | - Francesca Mascia
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Bldg., Silver Spring, MD, 20993, USA
| | - Delaram Moshkelani
- Division of Process Assessment III, Office of Process and Facilities, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Steven Mog
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - V Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Bldg., Silver Spring, MD, 20993, USA.
| |
Collapse
|
39
|
Toedebusch R, Belenchia A, Pulakat L. Diabetic Cardiomyopathy: Impact of Biological Sex on Disease Development and Molecular Signatures. Front Physiol 2018; 9:453. [PMID: 29773993 PMCID: PMC5943496 DOI: 10.3389/fphys.2018.00453] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetic cardiomyopathy refers to a unique set of heart-specific pathological variables induced by hyperglycemia and insulin resistance. Given that cardiovascular disease (CVD) is the leading cause of death in the world, and type 2 diabetes incidence continues to rise, understanding the complex interplay between these two morbidities and developing novel therapeutic strategies is vital. Two hallmark characteristics specific to diabetic cardiomyopathy are diastolic dysfunction and cardiac structural mal-adaptations, arising from cardiac cellular responses to the complex toxicity induced by hyperglycemia with or without hyperinsulinemia. While type 2 diabetes is more prevalent in men compared to women, cardiovascular risk is higher in diabetic women than in diabetic men, suggesting that diabetic women take a steeper path to cardiomyopathy and heart failure. Accumulating evidence from randomized clinical trials indicate that although pre-menopausal women have lower risk of CVDs, compared to age-matched men, this advantage is lost in diabetic pre-menopausal women, which suggests estrogen availability does not protect from increased cardiovascular risk. Notably, few human studies have assessed molecular and cellular mechanisms regarding similarities and differences in the progression of diabetic cardiomyopathy in men versus women. Additionally, most pre-clinical rodent studies fail to include female animals, leaving a void in available data to truly understand the impact of biological sex differences in diabetes-induced dysfunction of cardiovascular cells. Elegant reviews in the past have discussed in detail the roles of estrogen-mediated signaling in cardiovascular protection, sex differences associated with telomerase activity in the heart, and cardiac responses to exercise. In this review, we focus on the emerging cellular and molecular markers that define sex differences in diabetic cardiomyopathy based on the recent clinical and pre-clinical evidence. We also discuss miR-208a, MED13, and AT2R, which may provide new therapeutic targets with hopes to develop novel treatment paradigms to treat diabetic cardiomyopathy uniquely between men and women.
Collapse
Affiliation(s)
- Ryan Toedebusch
- Cardiovascular Medicine Division, Department of Medicine, University of Missouri, Columbia, MO, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Anthony Belenchia
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Lakshmi Pulakat
- Cardiovascular Medicine Division, Department of Medicine, University of Missouri, Columbia, MO, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
40
|
Li B, Hu J, Chen X. MicroRNA-30b protects myocardial cell function in patients with acute myocardial ischemia by targeting plasminogen activator inhibitor-1. Exp Ther Med 2018; 15:5125-5132. [PMID: 29805539 DOI: 10.3892/etm.2018.6039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/18/2018] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to determine the expression of plasminogen activator inhibitor-1 (PAI-1) and microRNA (miR)-30b in the blood of patients with acute myocardial ischemia (AMI) and in the blood and myocardial tissue of mice with AMI. In addition, the present study aimed to identify the mechanism of action of miR-30b in AMI. A total of 36 patients with AMI were included in the present study and 28 healthy subjects were included as a control. Peripheral blood was collected from all subjects. For animal experiments, mice in the AMI group received an intraperitoneal injection of pituitrin (20 U/kg), whereas mice in the negative control group received an intraperitoneal injection of the same volume of saline. Blood and myocardial tissue was collected from all mice for analysis. Reverse transcription-quantitative polymerase chain reaction was performed to determine the expression of PAI-1 mRNA and miR-30b in the serum and myocardial tissue. An enzyme-linked immunosorbent assay was performed to measure the expression of PAI-1 protein in the serum of humans and mice, whereas western blotting was performed to determine the expression of PAI-1 protein in mouse myocardial tissue. Catalase, glutathione peroxidase and superoxide dismutase activity was measured using an automatic biochemical analyzer. A dual luciferase assay was performed to identify the interactions between PAI-1 mRNA and miR-30b. The results indicated that patients with AMI have higher PAI-1 levels and lower miR-30b expression in the peripheral blood compared with healthy subjects. AMI damaged the myocardium tissue of mice and reduced catalase, glutathione peroxidase and superoxide dismutase activity. Mice that have undergone AMI exhibit increased PAI-1 levels but decreased miR-30b expression in the peripheral blood and myocardial tissues. It was also demonstrated that miR-30b is able to bind to the 3'-untranslated region of PAI-1 mRNA to regulate its expression. The present study demonstrates that patients with AMI exhibit decreased miR-30b expression and elevated PAI-1 expression in the peripheral blood. miR-30b may therefore inhibit the damage to myocardial cells that occurs following AMI and protect myocardial cell function by targeting PAI-1 expression.
Collapse
Affiliation(s)
- Bin Li
- Department of Cardiac Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Jie Hu
- Department of Cardiac Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Xingpeng Chen
- Department of Cardiac Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| |
Collapse
|
41
|
Chun Yang X, Hui Zhao D, Bond Lau W, Qiang Liu K, Yu Tian J, Chao Cheng Z, Liang Ma X, Hua Liu J, Fan Q. lncRNA ENSMUST00000134285 Increases MAPK11 Activity, Regulating Aging-Related Myocardial Apoptosis. J Gerontol A Biol Sci Med Sci 2018; 73:1010-1017. [PMID: 29415197 DOI: 10.1093/gerona/gly020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/31/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xiao Chun Yang
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Disease, China
| | - Dong Hui Zhao
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Disease, China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ke Qiang Liu
- Thoracic Surgery, PLA Army General Hospital, Beijing, China
| | - Jia Yu Tian
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Disease, China
| | - Zi Chao Cheng
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Disease, China
| | - Xin Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jing Hua Liu
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Disease, China
| | - Qian Fan
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Disease, China
| |
Collapse
|
42
|
Lead-induced DNA damage and cell apoptosis in human renal proximal tubular epithelial cell: Attenuation viaN-acetyl cysteine and tannic acid. J Biochem Mol Toxicol 2018; 32:e22038. [DOI: 10.1002/jbt.22038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 11/07/2022]
|
43
|
Tang ZP, Zhao W, Du JK, Ni X, Zhu XY, Lu JQ. miR-494 Contributes to Estrogen Protection of Cardiomyocytes Against Oxidative Stress via Targeting (NF-κB) Repressing Factor. Front Endocrinol (Lausanne) 2018; 9:215. [PMID: 29867756 PMCID: PMC5960695 DOI: 10.3389/fendo.2018.00215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/16/2018] [Indexed: 11/13/2022] Open
Abstract
Oxidative stress plays a pivotal role in the initiation and progression of cardiac diseases. Estrogens have been demonstrated to exert pleiotropic cardioprotective effects, among which antioxidative stress is one of the key effects linking estrogens to cardioprotection. By using a microRNAs (miRs) microarray screening approach, we discovered an increase in miR-494, which is known to exert cardioprotective effects, in estrogen-treated cardiomyocytes. We hypothesized that the upregulation of miR-494 might contribute to estrogen-mediated cardioprotection against oxidative stress. We found that E2 stimulates miR-494 expression via ERα in both cardiomyocytes and the myocardium of female mice. The miR-494 inhibitor attenuated the protective effect of 17β-estradiol (E2) against oxidative stress-induced injury in cardiomyocytes. By contrast, the miR-494 mimic protected cardiomyocytes against oxidative stress-induced cardiomyocyte injury. Using real-time PCR, western blot and dual-luciferase reporter gene analyses, we identified nuclear factor kappa B (NF-κB) repressing factor (NKRF) as the miR-494 target in cardiomyocytes. E2 was found to inhibit NKRF, thus activating NF-κB through a miR-494-dependent mechanism. In addition, the protective effects of E2 and miR-494 against oxidative stress in cardiomyocytes were eliminated by the NF-κB inhibitor. In summary, this study demonstrates for the first time that estrogen inhibits NKRF expression through ERα-mediated upregulation of miR-494 in cardiomyocytes, leading to the activation of NF-κB, which in turn results in an increase in antioxidative defense. ERα-mediated upregulation of miR-494 may contribute to estrogen protection of cardiomyocytes against oxidative stress.
Collapse
Affiliation(s)
- Zhi-Ping Tang
- The Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Department of Physiology, Second Military Medical University, Shanghai, China
- Research Laboratory of Burn and Trauma, PLA 181 Hospital, Guilin, China
| | - Wei Zhao
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Jian-kui Du
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Xin Ni
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Xiao-Yan Zhu
- Department of Physiology, Second Military Medical University, Shanghai, China
- *Correspondence: Xiao-Yan Zhu, ; Jian-Qiang Lu,
| | - Jian-Qiang Lu
- The Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Xiao-Yan Zhu, ; Jian-Qiang Lu,
| |
Collapse
|
44
|
Hydrogen Sulfide Inhibits Autophagic Neuronal Cell Death by Reducing Oxidative Stress in Spinal Cord Ischemia Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8640284. [PMID: 28685010 PMCID: PMC5480044 DOI: 10.1155/2017/8640284] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/01/2017] [Accepted: 04/23/2017] [Indexed: 11/25/2022]
Abstract
Autophagy is upregulated in spinal cord ischemia reperfusion (SCIR) injury; however, its expression mechanism is largely unknown; moreover, whether autophagy plays a neuroprotective or neurodegenerative role in SCIR injury remains controversial. To explore these issues, we created an SCIR injury rat model via aortic arch occlusion. Compared with normal controls, autophagic cell death was upregulated in neurons after SCIR injury. We found that autophagy promoted neuronal cell death during SCIR, shown by a significant number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling- (TUNEL-) positive cells colabeled with the autophagy marker microtubule-associated protein 1 light chain 3, while the autophagy inhibitor 3-methyladenine reduced the number of TUNEL-positive cells and restored neurological and motor function. Additionally, we showed that oxidative stress was the main trigger of autophagic neuronal cell death after SCIR injury and N-acetylcysteine inhibited autophagic cell death and restored neurological and motor function in SCIR injury. Finally, we found that hydrogen sulfide (H2S) inhibited autophagic cell death significantly by reducing oxidative stress in SCIR injury via the AKT-the mammalian target of rapamycin (mTOR) pathway. These findings reveal that oxidative stress induces autophagic cell death and that H2S plays a neuroprotective role by reducing oxidative stress in SCIR.
Collapse
|
45
|
17β-Estradiol and/or estrogen receptor alpha blocks isoproterenol-induced calcium accumulation and hypertrophy via GSK3β/PP2A/NFAT3/ANP pathway. Mol Cell Biochem 2017; 434:181-195. [DOI: 10.1007/s11010-017-3048-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022]
|
46
|
17β-Estradiol enhances sulforaphane cardioprotection against oxidative stress. J Nutr Biochem 2017; 42:26-36. [DOI: 10.1016/j.jnutbio.2016.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/06/2016] [Accepted: 12/28/2016] [Indexed: 11/19/2022]
|
47
|
Yang J, Han J, Li Y, Dong B. Esculetin inhibits the apoptosis in H9c2 cardiomyocytes via the MAPK signaling pathway following hypoxia/reoxygenation injury. Pharmacotherapy 2017. [DOI: 10.1016/j.biopha.2017.01.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol Rev 2017; 97:1-37. [PMID: 27807199 DOI: 10.1152/physrev.00021.2015] [Citation(s) in RCA: 417] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Major differences between men and women exist in epidemiology, manifestation, pathophysiology, treatment, and outcome of cardiovascular diseases (CVD), such as coronary artery disease, pressure overload, hypertension, cardiomyopathy, and heart failure. Corresponding sex differences have been studied in a number of animal models, and mechanistic investigations have been undertaken to analyze the observed sex differences. We summarize the biological mechanisms of sex differences in CVD focusing on three main areas, i.e., genetic mechanisms, epigenetic mechanisms, as well as sex hormones and their receptors. We discuss relevant subtypes of sex hormone receptors, as well as genomic and nongenomic, activational and organizational effects of sex hormones. We describe the interaction of sex hormones with intracellular signaling relevant for cardiovascular cells and the cardiovascular system. Sex, sex hormones, and their receptors may affect a number of cellular processes by their synergistic action on multiple targets. We discuss in detail sex differences in organelle function and in biological processes. We conclude that there is a need for a more detailed understanding of sex differences and their underlying mechanisms, which holds the potential to design new drugs that target sex-specific cardiovascular mechanisms and affect phenotypes. The comparison of both sexes may lead to the identification of protective or maladaptive mechanisms in one sex that could serve as a novel therapeutic target in one sex or in both.
Collapse
Affiliation(s)
- Vera Regitz-Zagrosek
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Georgios Kararigas
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
49
|
Signaling Pathways in Cardiac Myocyte Apoptosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9583268. [PMID: 28101515 PMCID: PMC5215135 DOI: 10.1155/2016/9583268] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/20/2016] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation.
Collapse
|
50
|
Estrogen Protects the Female Heart from Ischemia/Reperfusion Injury through Manganese Superoxide Dismutase Phosphorylation by Mitochondrial p38β at Threonine 79 and Serine 106. PLoS One 2016; 11:e0167761. [PMID: 27930699 PMCID: PMC5145184 DOI: 10.1371/journal.pone.0167761] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/18/2016] [Indexed: 12/02/2022] Open
Abstract
A collective body of evidence indicates that estrogen protects the heart from myocardial ischemia/reperfusion (I/R) injury, but the underlying mechanism remains incompletely understood. We have previously delineated a novel mechanism of how 17β-estradiol (E2) protects cultured neonatal rat cardiomyocytes from hypoxia/reoxygenation (H/R) by identifying a functionally active mitochondrial pool of p38β and E2-driven upregulation of manganese superoxide dismutase (MnSOD) activity via p38β, leading to the suppression of reactive oxygen species (ROS) and apoptosis. Here we investigate these cytoprotective actions of E2 in vivo. Left coronary artery ligation and reperfusion was used to produce I/R injury in ovariectomized (OVX) female mice and in estrogen receptor (ER) null female mice. E2 treatment in OVX mice reduced the left ventricular infarct size accompanied by increased activity of mitochondrial p38β and MnSOD. I/R-induced infarct size in ERα knockout (ERKO), ERβ knockout (BERKO) and ERα and β double knockout (DERKO) female mice was larger than that in wild type (WT) mice, with little difference among ERKO, BERKO, and DERKO. Loss of both ERα and ERβ led to reduced activity of mitochondrial p38β and MnSOD at baseline and after I/R. The physical interaction between mitochondrial p38β and MnSOD in the heart was detected by co-immunoprecipitation (co-IP). Threonine 79 (T79) and serine 106 (S106) of MnSOD were identified to be phosphorylated by p38β in kinase assays. Overexpression of WT MnSOD in cardiomyocytes reduced ROS generation during H/R, while point mutation of T79 and S106 of MnSOD to alanine abolished its antioxidative function. We conclude that the protective effects of E2 and ER against cardiac I/R injury involve the regulation of MnSOD via posttranslational modification of the dismutase by p38β.
Collapse
|