1
|
Yokura-Yamada Y, Araki M, Maeda M. Ectopic expression of Id1 or Id3 inhibits transcription of the GATA-4 gene in P19CL6 cells under differentiation condition. Drug Discov Ther 2021; 15:189-196. [PMID: 34421098 DOI: 10.5582/ddt.2021.01069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Inhibitor of DNA binding (Id) is a dominant negative form of the E-box binding basic-helix-loop-helix (bHLH) transcription factor since it is devoid of the basic region required for DNA binding and forms an inactive hetero dimer with bHLH proteins. The E-box sequence located in the promoter region of the GATA-binding protein 4 (GATA-4) gene is essential for transcriptional activation in P19CL6 cells. These cells differentiate into cardiomyocytes and start to express GATA-4, which further triggers cardiac-specific gene expression. In this study, expression plasmids for Ids tagged with human influenza hemagglutinin (HA)-FLAG were constructed and introduced into P19CL6 cells. The stable clones expressing the recombinant Id proteins (Id1 or Id3) were isolated. The GATA-4 gene expression in these clones under differentiation condition in the presence of 1% dimethyl sulfoxide (DMSO) was repressed, with concomitant abolishment of the transcription of α-myosin heavy chain (α-MHC), which is a component of cardiac myofibrils. Thus, the increased expression of Id protein could affect GATA-4 gene expression and negatively regulate the differentiation of P19CL6 cells.
Collapse
Affiliation(s)
- Yumei Yokura-Yamada
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | - Masatomo Maeda
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Ito J, Minemura T, Wälchli S, Niimi T, Fujihara Y, Kuroda S, Takimoto K, Maturana AD. Id2 Represses Aldosterone-Stimulated Cardiac T-Type Calcium Channels Expression. Int J Mol Sci 2021; 22:3561. [PMID: 33808082 PMCID: PMC8037527 DOI: 10.3390/ijms22073561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Aldosterone excess is a cardiovascular risk factor. Aldosterone can directly stimulate an electrical remodeling of cardiomyocytes leading to cardiac arrhythmia and hypertrophy. L-type and T-type voltage-gated calcium (Ca2+) channels expression are increased by aldosterone in cardiomyocytes. To further understand the regulation of these channels expression, we studied the role of a transcriptional repressor, the inhibitor of differentiation/DNA binding protein 2 (Id2). We found that aldosterone inhibited the expression of Id2 in neonatal rat cardiomyocytes and in the heart of adult mice. When Id2 was overexpressed in cardiomyocytes, we observed a reduction in the spontaneous action potentials rate and an arrest in aldosterone-stimulated rate increase. Accordingly, Id2 siRNA knockdown increased this rate. We also observed that CaV1.2 (L-type Ca2+ channel) or CaV3.1, and CaV3.2 (T-type Ca2+ channels) mRNA expression levels and Ca2+ currents were affected by Id2 presence. These observations were further corroborated in a heart specific Id2- transgenic mice. Taken together, our results suggest that Id2 functions as a transcriptional repressor for L- and T-type Ca2+ channels, particularly CaV3.1, in cardiomyocytes and its expression is controlled by aldosterone. We propose that Id2 might contributes to a protective mechanism in cardiomyocytes preventing the presence of channels associated with a pathological state.
Collapse
Affiliation(s)
- Jumpei Ito
- Laboratory of Animal Cell Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan; (J.I.); (T.M.); (T.N.)
| | - Tomomi Minemura
- Laboratory of Animal Cell Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan; (J.I.); (T.M.); (T.N.)
| | - Sébastien Wälchli
- Translational Research Unit, Section for Cellular Therapy, Oslo University Hospital, 0379 Oslo, Norway;
| | - Tomoaki Niimi
- Laboratory of Animal Cell Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan; (J.I.); (T.M.); (T.N.)
| | - Yoshitaka Fujihara
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka 565-0871, Japan;
| | - Shun’ichi Kuroda
- Institute for Scientific and Industrial Researches, Osaka University, Osaka 567-0047, Japan;
| | - Koichi Takimoto
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan;
| | - Andrés D. Maturana
- Laboratory of Animal Cell Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan; (J.I.); (T.M.); (T.N.)
| |
Collapse
|
3
|
Inhibitor of DNA binding in heart development and cardiovascular diseases. Cell Commun Signal 2019; 17:51. [PMID: 31126344 PMCID: PMC6534900 DOI: 10.1186/s12964-019-0365-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023] Open
Abstract
Id proteins, inhibitors of DNA binding, are transcription regulators containing a highly conserved helix-loop-helix domain. During multiple stages of normal cardiogenesis, Id proteins play major roles in early development and participate in the differentiation and proliferation of cardiac progenitor cells and mature cardiomyocytes. The fact that a depletion of Ids can cause a variety of defects in cardiac structure and conduction function is further evidence of their involvement in heart development. Multiple signalling pathways and growth factors are involved in the regulation of Ids in a cell- and tissue- specific manner to affect heart development. Recent studies have demonstrated that Ids are related to multiple aspects of cardiovascular diseases, including congenital structural, coronary heart disease, and arrhythmia. Although a growing body of research has elucidated the important role of Ids, no comprehensive review has previously compiled these scattered findings. Here, we introduce and summarize the roles of Id proteins in heart development, with the hope that this overview of key findings might shed light on the molecular basis of consequential cardiovascular diseases. Furthermore, we described the future prospective researches needed to enable advancement in the maintainance of the proliferative capacity of cardiomyocytes. Additionally, research focusing on increasing embryonic stem cell culture adaptability will help to improve the future therapeutic application of cardiac regeneration.
Collapse
|
4
|
The interferon-inducible protein p202 promotes osteogenesis in mouse bone marrow stromal cells. Biosci Rep 2018; 38:BSR20171618. [PMID: 29853536 PMCID: PMC6019357 DOI: 10.1042/bsr20171618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 11/25/2022] Open
Abstract
In the present study, we explored the role of the interferon-inducible protein p202 in osteoblast differentiation of mouse bone marrow stromal cells (BMSCs). Both the mRNA and protein levels of p202 increased initially and decreased afterward in the course of BMSC osteogenesis. The intracellular distribution of this protein also changed in the differentiation process. p202 knockdown inhibited, while p202 overexpression enhanced, the osteoblast differentiation of BMSCs. This was identified by evaluation of expression of osteogenic markers, Alizarin Red S staining, and determination of alkaline phosphatase activity. Further study revealed that p202 disturbs the formation of Runx2/Ids complex and frees Runx2 to induce the differentiation process. The findings demonstrated that p202 plays a positive role in BMSC osteogenesis.
Collapse
|
5
|
Jian J, Wei W, Yin G, Hettinghouse A, Liu C, Shi Y. RNA-Seq analysis of interferon inducible p204-mediated network in anti-tumor immunity. Sci Rep 2018; 8:6495. [PMID: 29691417 PMCID: PMC5915582 DOI: 10.1038/s41598-018-24561-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
p204, a murine member of the interferon-inducible p200 protein family, and its human analogue, IFI16, have been shown to function as tumor suppressors in vitro, but the molecular events involved, in particular in vivo, remain unclear. Herein we induced the Lewis Lung carcinoma (LLC) murine model of human lung cancer in p204 null mice (KO) and their control littermates (WT). We compared the transcriptome in spleen from WT and p204 KO mice using a high-throughput RNA-sequencing array. A total 30.02 Gb of clean data were obtained, and overall Q30% was greater than 90.54%. More than 75% of clean data from 12 transcriptome samples were mapped to exons. The results showed that only 11 genes exhibited altered expression in untreated p204 KO mice relative to untreated WT mice, while 393 altered genes were identified in tumor-bearing p204 KO mice when compared with tumor-bearing WT mice. Further differentially expressed gene cluster and gene ontology consortium classification revealed that numerous cytokines and their receptors, chemoattractant molecules, and adhesion molecules were significantly induced in p204 KO mice. This study provides novel insights to the p204 network in anti-tumor immune response and also presents a foundation for future work concerning p204-mediated gene expressions and pathways.
Collapse
Affiliation(s)
- Jinlong Jian
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China.,Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA
| | - Wei Wei
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Guowei Yin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Yongxiang Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China.
| |
Collapse
|
6
|
p204 Is Required for Canonical Lipopolysaccharide-induced TLR4 Signaling in Mice. EBioMedicine 2018; 29:78-91. [PMID: 29472103 PMCID: PMC5925582 DOI: 10.1016/j.ebiom.2018.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 11/22/2022] Open
Abstract
p204, a murine member of an interferon-inducible p200 family, was reported to recognize intracellular viral and bacterial DNAs, however, its role in the innate immunity in vivo remains unknown due to the lack of p204-deficient animal models. In this study we first generated the p204−/− mice. Unexpectedly, p204 deficiency led to significant defect in extracellular LPS signaling in macrophages, as demonstrated by dramatic reductions of LPS-mediated IFN-β and pro-inflammatory cytokines. The serum levels of IFN-β and pro-inflammatory cytokines were also significantly reduced in p204−/− mice following LPS challenge. In addition, p204−/− mice were resistant to LPS-induced shock. LPS-activated NF-ĸB and IRF-3 pathways were all defective in p204-deficient macrophages. p204 binds to TLR4 through its Pyrin domain, and it is required for the dimerization of TLR4 following LPS-challenge. Collectively, p204 is a critical component of canonical LPS-TLR4 signaling pathway, and these studies also suggest that p204 could be a potential target to prevent and treat inflammatory and infectious diseases. p204 deficiency leads to significant defect in extracellular LPS signaling in macrophages. Serum levels of IFN-β and pro-inflammatory cytokines were also significantly reduced in p204-/- mice following LPS challenge. p204-/- mice were resistant to LPS-induced shock. p204 binds to TLR4 through its Pyrin domain, and it is required for the dimerization of TLR4 following LPS-challenge.
Effective anti-pathogenic responses, including production of type I IFNs and inflammatory response, are critical for host defense. p200 family members, including IFI16 and AIM2, have been reported to function as the sensors of pathogen components. However, investigation of their roles has largely focused on intracellular pathogen components, independent of extracellular pathogen receptors, such as TLRs. Here, we provide unexpected evidences demonstrating that p204, a murine counterpart of human IFI16, is required for extracellular but not intracellular LPS signaling. These results provide not only evidence of functional crosstalk and cooperation between intracellular p204 and extracellular LPS through TLR4 pathways in macrophage-mediated innate immunity, but also new insights into the mechanisms underlying p200 family proteins mediated antiviral and antibacterial infections.
Collapse
|
7
|
Li R, Tian C, Postlethwaite A, Jiao Y, Garcia-Godoy F, Pattanaik D, Wei D, Gu W, Li J. Rheumatoid arthritis and periodontal disease: What are the similarities and differences? Int J Rheum Dis 2018; 20:1887-1901. [DOI: 10.1111/1756-185x.13240] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rongbin Li
- Center of Integrative Research; The First Hospital of Qiqihaer City; Qiqihaer Heilongjiang China
- Department of Orthopedic Surgery and BME-Campbell Clinic; University of Tennessee Health Science Center; Memphis TN USA
| | - Cheng Tian
- Department of Orthopedic Surgery and BME-Campbell Clinic; University of Tennessee Health Science Center; Memphis TN USA
| | - Arnold Postlethwaite
- Division of Connective Tissue Diseases; Department of Medicine; University of Tennessee Health Science Center; Memphis TN USA
- Department of Veterans Affairs Medical Center; University of Tennessee Health Science Center; Memphis TN USA
| | - Yan Jiao
- Department of Orthopedic Surgery and BME-Campbell Clinic; University of Tennessee Health Science Center; Memphis TN USA
| | - Franklin Garcia-Godoy
- Bioscience Research Center; College of Dentistry; University of Tennessee Health Science Center; Memphis TN USA
| | - Debendra Pattanaik
- Division of Connective Tissue Diseases; Department of Medicine; University of Tennessee Health Science Center; Memphis TN USA
- Department of Veterans Affairs Medical Center; University of Tennessee Health Science Center; Memphis TN USA
| | - Dongmei Wei
- Center of Integrative Research; The First Hospital of Qiqihaer City; Qiqihaer Heilongjiang China
| | - Weikuan Gu
- Department of Orthopedic Surgery and BME-Campbell Clinic; University of Tennessee Health Science Center; Memphis TN USA
- Department of Veterans Affairs Medical Center; University of Tennessee Health Science Center; Memphis TN USA
| | - Jianwei Li
- Center of Integrative Research; The First Hospital of Qiqihaer City; Qiqihaer Heilongjiang China
| |
Collapse
|
8
|
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
9
|
Roschger C, Cabrele C. The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal 2017; 15:7. [PMID: 28122577 PMCID: PMC5267474 DOI: 10.1186/s12964-016-0161-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/29/2016] [Indexed: 01/15/2023] Open
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
10
|
Li H, Jiao Y, Zhang L, Wang C, Zhang X, Guo H, Xu H. The interferon-inducible protein p205 acts as an activator in osteoblast differentiation of mouse BMSCs. Differentiation 2016; 92:318-325. [DOI: 10.1016/j.diff.2016.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/08/2016] [Accepted: 02/26/2016] [Indexed: 01/03/2023]
|
11
|
Bouveret R, Waardenberg AJ, Schonrock N, Ramialison M, Doan T, de Jong D, Bondue A, Kaur G, Mohamed S, Fonoudi H, Chen CM, Wouters MA, Bhattacharya S, Plachta N, Dunwoodie SL, Chapman G, Blanpain C, Harvey RP. NKX2-5 mutations causative for congenital heart disease retain functionality and are directed to hundreds of targets. eLife 2015; 4. [PMID: 26146939 PMCID: PMC4548209 DOI: 10.7554/elife.06942] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/05/2015] [Indexed: 12/30/2022] Open
Abstract
We take a functional genomics approach to congenital heart disease mechanism. We used DamID to establish a robust set of target genes for NKX2-5 wild type and disease associated NKX2-5 mutations to model loss-of-function in gene regulatory networks. NKX2-5 mutants, including those with a crippled homeodomain, bound hundreds of targets including NKX2-5 wild type targets and a unique set of "off-targets", and retained partial functionality. NKXΔHD, which lacks the homeodomain completely, could heterodimerize with NKX2-5 wild type and its cofactors, including E26 transformation-specific (ETS) family members, through a tyrosine-rich homophilic interaction domain (YRD). Off-targets of NKX2-5 mutants, but not those of an NKX2-5 YRD mutant, showed overrepresentation of ETS binding sites and were occupied by ETS proteins, as determined by DamID. Analysis of kernel transcription factor and ETS targets show that ETS proteins are highly embedded within the cardiac gene regulatory network. Our study reveals binding and activities of NKX2-5 mutations on WT target and off-targets, guided by interactions with their normal cardiac and general cofactors, and suggest a novel type of gain-of-function in congenital heart disease.
Collapse
Affiliation(s)
- Romaric Bouveret
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | | | - Nicole Schonrock
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | | | - Tram Doan
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Danielle de Jong
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Antoine Bondue
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Gurpreet Kaur
- European Molecular Biology Laboratory, Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | | | - Hananeh Fonoudi
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Chiann-Mun Chen
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Merridee A Wouters
- Bioinformatics, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Shoumo Bhattacharya
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Nicolas Plachta
- European Molecular Biology Laboratory, Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | | | - Gavin Chapman
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Cédric Blanpain
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| |
Collapse
|
12
|
Zhao H, Gonzalezgugel E, Cheng L, Richbourgh B, Nie L, Liu C. The roles of interferon-inducible p200 family members IFI16 and p204 in innate immune responses, cell differentiation and proliferation. Genes Dis 2015; 2:46-56. [PMID: 25815367 PMCID: PMC4372153 DOI: 10.1016/j.gendis.2014.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
p204 is a member of the interferon-inducible p200 family proteins in mice. The p200 family has been reported to be multifunctional regulators of cell proliferation, differentiation, apoptosis and senescence. Interferon-inducible protein 16 (IFI16) is regarded as the human ortholog of p204 in several studies. This is possibly due to the similarity of their structures. However the consistency of their functions is still elusive. Currently, an emerging focus has been placed upon the role of the p200 proteins as sensors for microbial DNA in innate immune responses and provides new insights into infections as well as autoimmune diseases. This review specially focuses on IFI16 and p204, the member of p200 family in human and murine respectively, and their pathophysiological roles in innate immune responses, cell differentiation and proliferation.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States ; Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, 250014, China
| | - Elena Gonzalezgugel
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Lei Cheng
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, 250014, China
| | - Brendon Richbourgh
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Lin Nie
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, 250014, China
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States ; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States
| |
Collapse
|
13
|
Maruyama Y, Arahara K, Kinoshita E, Arai K. AP-1-mediated expression of brain-specific class IVa β-tubulin in P19 embryonal carcinoma cells. J Vet Med Sci 2014; 76:1609-15. [PMID: 25649943 PMCID: PMC4300376 DOI: 10.1292/jvms.14-0343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of brain-specific
phenotypes increased in all trans retinoic acid (ATRA)-induced neural
differentiation of mouse P19 embryonal carcinoma cells. Among these phenotypes, expression
of class IVa β-tubulin isotype (TUBB4a) was particularly enhanced in neural
differentiation. Transient transfection assays employing a reporter construct found that
ATRA-mediated regulatory region of the TUBB4a gene lay in the region from −83 nt to +137
nt relative to the +1 transcription start site. Site-directed mutagenesis in the AP-1
binding site at −29/−17 suggested that the AP-1 binding site was a critical region for
ATRA-mediated TUBB4a expression. Chromatin immunoprecipitation experiments suggested
participation of JunD and activating transcription factor-2 (ATF2) in TUBB4a expression.
Additionally, exogenous induction of the dominant-negative (dn) type of JunD canceled
ATRA-induced upregulation of TUBB4a, and the dn type of ATF2 suppressed even the basal
activity. Further immunoblot study revealed an ATRA-mediated increase in JunD protein,
while a significant amount of ATF2 protein was constantly produced. These results suggest
that differentiation-mediated activation of JunD results in enhanced TUBB4a
expression.
Collapse
Affiliation(s)
- Yuka Maruyama
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | |
Collapse
|
14
|
Abstract
My Ph.D. thesis in the laboratory of Severo Ochoa at New York University School of Medicine in 1962 included the determination of the nucleotide compositions of codons specifying amino acids. The experiments were based on the use of random copolyribonucleotides (synthesized by polynucleotide phosphorylase) as messenger RNA in a cell-free protein-synthesizing system. At Yale University, where I joined the faculty, my co-workers and I first studied the mechanisms of protein synthesis. Thereafter, we explored the interferons (IFNs), which were discovered as antiviral defense agents but were revealed to be components of a highly complex multifunctional system. We isolated pure IFNs and characterized IFN-activated genes, the proteins they encode, and their functions. We concentrated on a cluster of IFN-activated genes, the p200 cluster, which arose by repeated gene duplications and which encodes a large family of highly multifunctional proteins. For example, the murine protein p204 can be activated in numerous tissues by distinct transcription factors. It modulates cell proliferation and the differentiation of a variety of tissues by binding to many proteins. p204 also inhibits the activities of wild-type Ras proteins and Ras oncoproteins.
Collapse
Affiliation(s)
- Peter Lengyel
- From the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
15
|
Xiao J, Sun B, Cai GP. Transient expression of interferon-inducible p204 in the early stage is required for adipogenesis in 3T3-L1 cells. Endocrinology 2010; 151:3141-53. [PMID: 20444940 DOI: 10.1210/en.2009-1381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A member of the interferon-inducible p200 family of proteins, p204, has recently been reported to function in the development of many mesoderm-derived tissues, such as bone, muscle, and cartilage. However, no published study has yet investigated the role of p204 in adipogenesis. Our preliminary experiments showed that p204 can be found in 3T3-L1 preadipocytes, and its expression was up-regulated in a differentiation-dependent manner. As such, we hypothesized that p204 is associated with adipogenesis and focused on the influence of p204 on adipogenesis. In the present study, we investigated the transient elevated expression and cytoplasm-to-nucleus translocation of p204 in the early stage of adipogenesis. To determine the effect of p204 on adipogenesis, p204-siRNA and expression vector were produced for p204 suppression and overexpression, respectively. The knockdown of p204 resulted in a significantly depressed adipocyte differentiation, whereas p204 overexpression promoted adipocyte differentiation. The mRNA expression of adipogenic markers, such as peroxisome-proliferator-activated receptor (PPAR)gamma, CCAAT/enhancer-binding-protein (C/EBP)alpha, lipoprotein lipase, and adipsin, was decreased by p204 suppression and increased by p204 overexpression. A coimmunoprecipitation assay coupled with an indirect immunofluorescence assay also indicated that p204 interacted and colocalized with C/EBPdelta in the nucleus. Furthermore, the knockdown of p204 disrupted the interaction between p204 and C/EBPdelta and partially suppressed the PPARgamma transcriptional activity by dissociating C/EBPdelta with the PPARgamma promoter element. Collectively, our data indicate that the transient expression of p204 in the early stage is indispensable for adipocyte differentiation. Disruption of p204 expression patterns at this stage leads to irreversible damage in fat formation.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | |
Collapse
|
16
|
Lengyel P, Liu CJ. The p200 family protein p204 as a modulator of cell proliferation and differentiation: a brief survey. Cell Mol Life Sci 2009; 67:335-40. [PMID: 19921484 DOI: 10.1007/s00018-009-0195-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/20/2009] [Accepted: 10/26/2009] [Indexed: 12/30/2022]
Abstract
The expression of the murine p200 family protein p204 in numerous tissues can be activated by a variety of distinct, tissue-specific transcription factors. p204 modulates cell proliferation, cell cycling, and the differentiation of various tissues, including skeletal muscle myotubes, beating cardiac myocytes, osteoblasts, chondrocytes, and macrophages. This protein modulates these processes in various ways, such as by (1) blocking ribosomal RNA synthesis in the nucleolus, (2) inhibiting Ras signaling in the cytoplasm, (3) promoting the activity of particular transcription factors in the nucleus by forming complexes with them, and (4) overcoming the block of the activity of other transcription factors by inhibitor of differentiation (Id) proteins. Much remains to be learned about p204, particularly with respect to its expected involvement in the differentiation of several as yet unexplored tissues.
Collapse
Affiliation(s)
- Peter Lengyel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8024, USA.
| | | |
Collapse
|
17
|
Luan Y, Lengyel P, Liu CJ. p204, a p200 family protein, as a multifunctional regulator of cell proliferation and differentiation. Cytokine Growth Factor Rev 2008; 19:357-69. [PMID: 19027346 DOI: 10.1016/j.cytogfr.2008.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The interferon-inducible p200 family comprises a group of homologous mouse and human proteins. Most of these have an N-terminal DAPIN domain and one or two partially conserved, 200 amino acid long C-terminal domains (designated as 200X domain). These proteins play important roles in the regulation of cell proliferation, tissue differentiation, apoptosis and senescence. p200 family proteins are involved also in autoimmunity and the control of tumor growth. These proteins function by binding to various target proteins (e.g. transcription factors, signaling proteins, oncoproteins and tumor suppressor proteins) and modulating target activity. This review concentrates on p204, a murine member of the family and its roles in regulating cell proliferation, cell and tissue differentiation (e.g. of skeletal muscle myotubes, beating cardiac myocytes, osteoblasts, chondrocytes and macrophages) and signaling by Ras proteins. The expression of p204 in various tissues as promoted by tissue-specific transcription factors, its distribution among subcellular compartments, and the controls of these features are also discussed.
Collapse
Affiliation(s)
- Yi Luan
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, 10003, United States
| | | | | |
Collapse
|
18
|
Liu Z, Li T, Liu Y, Jia Z, Li Y, Zhang C, Chen P, Ma K, Affara N, Zhou C. WNT signaling promotes Nkx2.5 expression and early cardiomyogenesis via downregulation of Hdac1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:300-11. [PMID: 18851995 DOI: 10.1016/j.bbamcr.2008.08.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/17/2008] [Accepted: 08/28/2008] [Indexed: 02/06/2023]
Abstract
The cardiac transcription factor NKX2.5 plays a crucial role in cardiomyogenesis, but its mechanism of regulation is still unclear. Recently, epigenetic regulation has become increasingly recognized as important in differentiation and development. In this study, we used P19CL6 cells to investigate the regulation of Nkx2.5 expression by methylation and acetylation during cardiomyocyte differentiation. During the early stage of differentiation, Nkx2.5 expression was upregulated, but the methylation status of the Nkx2.5 promoter did not undergo significant change; while the acetylation levels of histones H3 and H4 were increased, accompanied by a significant reduction in Hdac1 expression. Suppression of Hdac1 activity stimulated cardiac differentiation accompanied by increased expression of cardiac-specific genes and cell cycle arrest. Overexpression of Hdac1 inhibited cardiomyocyte formation and downregulated the expressions of Gata4 and Nkx2.5. Mimicking induction of the WNT pathway inhibited Hdac1 expression with upregulated Nkx2.5 expression. WNT3a and WNT3 downregulated the expression of Hdac1, contrary to the effect of SFRP2 and GSK3beta. Cotransfection of beta-catenin and Lef1 significantly downregulated the expression of Hdac1. Our data suggest that WNT signaling pathway plays important roles in the regulation of Hdac1 during the early stage of cardiomyocyte differentiation and that the downregulation of Hdac1 promotes cardiac differentiation.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing, 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cbfa1-dependent expression of an interferon-inducible p204 protein is required for chondrocyte differentiation. Cell Death Differ 2008; 15:1760-71. [DOI: 10.1038/cdd.2008.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
20
|
Lengyel P. From RNase L to the Multitalented p200 Family Proteins: An Exploration of the Modes of Interferon Action. J Interferon Cytokine Res 2008; 28:273-81. [DOI: 10.1089/jir.2008.3993.hp] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Peter Lengyel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
21
|
Lim JY, Kim WH, Kim J, Park SI. Induction of Id2 expression by cardiac transcription factors GATA4 and Nkx2.5. J Cell Biochem 2008; 103:182-94. [PMID: 17559079 DOI: 10.1002/jcb.21396] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inhibitor of differentiation/DNA binding (Id) proteins function as a regulator of helix-loop-helix proteins participating in cell lineage commitment and differentiation. Here, we observed a marked induction of Id2 during cardiomyocyte differentiation from P19CL6 murine embryonic teratocarcinoma stem cells, prompting us to investigate the upstream regulatory mechanism of Id2 induction. Computer analysis of Id2 promoter and subsequent electrophoretic mobility shift assay revealed several binding sites for GATA4 and Nkx2.5 within the Id2 promoter. By further deletion and mutation analysis of the respective binding site, we identified that two motifs located at -497/-502 and -264/-270 were functionally important for Id2 promoter activation by GATA4 and Nkx2.5, respectively. Overexpression of GATA4 and/or Nkx2.5 induced not only Id2 promoter activity but also Id2 protein expression. Additionally, Id proteins significantly inhibit the GATA4 and Nkx2.5-dependent transcription, suggesting Id proteins may play a regulatory role in cardiogenesis. Collectively, our results demonstrate that GATA4 and Nkx2.5 could be one of the upstream regulators of Id2.
Collapse
Affiliation(s)
- Joong-Yeon Lim
- Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health, 194, Tongillo, Eunpyeong-gu, Seoul 122-701, Korea
| | | | | | | |
Collapse
|
22
|
Luan Y, Yu XP, Yang N, Frenkel S, Chen L, Liu CJ. p204 protein overcomes the inhibition of core binding factor alpha-1-mediated osteogenic differentiation by Id helix-loop-helix proteins. Mol Biol Cell 2008; 19:2113-26. [PMID: 18287524 DOI: 10.1091/mbc.e07-10-1057] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Id proteins play important roles in osteogenic differentiation; however, the molecular mechanism remains unknown. In this study, we established that inhibitor of differentiation (Id) proteins, including Id1, Id2, and Id3, associate with core binding factor alpha-1 (Cbfa1) to cause diminished transcription of the alkaline phosphatase (ALP) and osteocalcin (OCL) gene, leading to less ALP activity and osteocalcin (OCL) production. Id acts by inhibiting the sequence-specific binding of Cbfa1 to DNA and by decreasing the expression of Cbfa1 in cells undergoing osteogenic differentiation. p204, an interferon-inducible protein that interacts with both Cbfa1 and Id2, overcame the Id2-mediated inhibition of Cbfa1-induced ALP activity and OCL production. We show that 1) p204 disturbed the binding of Id2 to Cbfa1 and enabled Cbfa1 to bind to the promoters of its target genes and 2) that p204 promoted the translocation from nucleus to the cytoplasm and accelerated the degradation of Id2 by ubiquitin-proteasome pathway during osteogenesis. Nucleus export signal (NES) of p204 is required for the p204-enhanced cytoplasmic translocation and degradation of Id2, because a p204 mutant lacking NES lost these activities. Together, Cbfa1, p204, and Id proteins form a regulatory circuit and act in concert to regulate osteoblast differentiation.
Collapse
Affiliation(s)
- Yi Luan
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The murine p200 family protein, p204, modulates cell proliferation and tissue differentiation. Many of its activities are exerted in the nucleus. However, in cardiac myocytes, p204 accumulated in the cytoplasm. A yeast two-hybrid assay revealed a p204-cytoplasmic Ras protein interaction. This was confirmed (i) by coimmunoprecipitation of p204 with Ras in mouse heart extract and with endogenous or ectopic H-Ras and K-Ras in cell lysates as well as (ii) by binding of purified H-Ras-GTP to purified p204 in vitro. p204 inhibited (i) the cleavage of RasGTP to RasGDP by RasGAP; (ii) the binding to RasGTP of Raf-1, phosphatidylinositol 3-kinase, and Ral-GDS, effectors of Ras signaling; and (iii) activation by the Ras pathway of the phosphorylation and thus activation of downstream targets (e.g. MEK, Akt, and p38 MAPK). Oncogenic Ras expression triggered the phosphorylation and translocation of p204 from the nucleus to the cytoplasm. This is expected to increase the interaction between the two proteins. Translocation triggered by Ras oncoprotein was blocked by the LY294002 inhibitor of phosphatidylinositol 3-kinase. Ras did not promote phosphorylation or translocation to the cytoplasm of mutated p204 in which serine 179 was replaced by alanine. p204 overexpression inhibited the anchorage-independent proliferation of cells expressing Ras(Q61L) oncoprotein. Ras oncoprotein triggered in MEF3T3 cells the rearrangement of the actin cytoskeleton and the enhancement of cell migration through a membrane. Overexpression of p204 inhibited both. Ras oncoprotein or activated, wild-type Ras was described to increase Egr-1 transcription factor expression. We report that a sequence in the gene encoding p204 bound Egr-1, and Egr-1 activated p204 expression. Ras oncoprotein or activated wild-type Ras increased the expression in 3T3 cells of p204 together with that of Egr-1. Furthermore, the activation of expression of a single copy of K-ras oncogene in cultured murine embryonic cells induced the expression of a high level of p204 as well as its distribution between the nuclei and the cytoplasm. Thus, p204 may serve as a negative feedback inhibitor of Ras activity.
Collapse
Affiliation(s)
- Bo Ding
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8024, USA
| | | |
Collapse
|
24
|
Hua H, Sarvetnick N. Expression of Id1 in adult, regenerating and developing pancreas. Endocrine 2007; 32:280-6. [PMID: 18322823 DOI: 10.1007/s12020-008-9036-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 12/20/2007] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
Abstract
Several key transcription factors are necessary for alpha cell development in the pancreas. In this study, we describe the expression of Inhibition of DNA-binding protein 1 (Id1) in the developing as well as the normal adult pancreas. We found co-expression of Id1 with bone morphogenetic protein (BMP) receptor in alpha cells. Inhibition of BMP4 signaling with a specific neutralizing antibody slightly decreases the proportion of glucagon cells in the adult pancreas but had a significant effect in a model of pancreas regeneration. In late embryonic pancreas, Id1 co-localized with GATA4, a transcription factor known for its critical function in glucagon cell development. However, in early postnatal period, the expression of Id1 and GATA4 diverged with Id1 identified in glucagon cells and GATA4 restricted to the acinar pancreas.
Collapse
Affiliation(s)
- Hong Hua
- Department of Immunology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, IMM-23, La Jolla, CA 92037, USA
| | | |
Collapse
|
25
|
Moskowitz IPG, Kim JB, Moore ML, Wolf CM, Peterson MA, Shendure J, Nobrega MA, Yokota Y, Berul C, Izumo S, Seidman JG, Seidman CE. A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell 2007; 129:1365-76. [PMID: 17604724 DOI: 10.1016/j.cell.2007.04.036] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 12/15/2006] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
The cardiac conduction system is an anatomically discrete segment of specialized myocardium that initiates and propagates electrical impulses to coordinate myocardial contraction. To define the molecular composition of the mouse ventricular conduction system we used microdissection and transcriptional profiling by serial analysis of gene expression (SAGE). Conduction-system-specific expression for Id2, a member of the Id gene family of transcriptional repressors, was identified. Analyses of Id2-deficient mice demonstrated structural and functional conduction system abnormalities, including left bundle branch block. A 1.2 kb fragment of the Id2 promoter proved sufficient for cooperative regulation by Nkx2-5 and Tbx5 in vitro and for conduction-system-specific gene expression in vivo. Furthermore, compound haploinsufficiency of Tbx5 and Nkx2-5 or Tbx5 and Id2 prevented embryonic specification of the ventricular conduction system. We conclude that a molecular pathway including Tbx5, Nkx2-5, and Id2 coordinates specification of ventricular myocytes into the ventricular conduction system lineage.
Collapse
|
26
|
Luan Y, Yu XP, Xu K, Ding B, Yu J, Huang Y, Yang N, Lengyel P, Di Cesare PE, Liu CJ. The retinoblastoma protein is an essential mediator of osteogenesis that links the p204 protein to the Cbfa1 transcription factor thereby increasing its activity. J Biol Chem 2007; 282:16860-70. [PMID: 17439944 DOI: 10.1074/jbc.m610943200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone formation requires the coordinated activity of numerous proteins including the transcription factor core-binding factor alpha1 (Cbfa1). Deregulation of Cbfa1 results in metabolic bone diseases including osteoporosis and osteopetrosis. The retinoblastoma protein (pRb) that is required for osteogenesis binds Cbfa1. We reported earlier that the p200 family protein p204, which is known to be involved in the differentiation of skeletal muscle myotubes, cardiac myocytes, and macrophages, also serves as a cofactor of Cbfa1 and promotes osteogenesis. In this study we established that suppression of p204 expression by an adenovirus construct encoding p204 antisense RNA inhibited osteoblast-specific gene activation by Cbfa1 in an osteogenesis assay involving the pluripotent C2C12 mesenchymal cell line. Using protein-protein interaction assays we established that Cbfa1, pRb, and p204 form a ternary complex in which pRb serves as a linker connecting p204 and Cbfa1. Chromatin immunoprecipitation assays revealed the binding of such a p204-pRb-Cbfa1 transcription factor complex to the promoter of the osteocalcin gene. The pRb requirement of the stimulation of Cbfa1 activity by p204 was established in experiments involving p204 mutants lacking one or two pRb binding (LXCXE) motifs. Such mutants failed to enhance the Cbfa1-dependent transactivation of gene expression as well as osteogenesis. Furthermore, as revealed in reporter gene and in vitro osteogenesis assays p204 synergized with pRb in the stimulation of Cbfa1-dependent gene activation and osteoblast differentiation.
Collapse
Affiliation(s)
- Yi Luan
- Department of Orthopedic Surgery, New York University Medical Center, New York, New York 10003, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Iavarone A, Lasorella A. ID proteins as targets in cancer and tools in neurobiology. Trends Mol Med 2006; 12:588-94. [PMID: 17071138 DOI: 10.1016/j.molmed.2006.10.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 10/10/2006] [Accepted: 10/20/2006] [Indexed: 10/24/2022]
Abstract
In eukaryotic organisms, ID proteins are key regulators of development when they function to preserve the stem cell state and prevent lineage determination. By fueling several key features of tumor progression (deregulated proliferation, invasiveness, angiogenesis and metastasis), ID proteins contribute to multiple steps of tumorigenesis. Through oncogenic processes that lead to their aberrant activation in tumors, ID proteins transfer the phenotypic traits of embryonic stem cells to cancer cells. However, ID proteins have recently emerged as highly specialized factors in post-mitotic neurons. The elevated expression of ID proteins arrests neurons in the axon growth mode and prevents cessation of axonal elongation. Here, we discuss how unique properties of ID proteins in cancer cells and neurons pave the way to unexpected therapeutic opportunities.
Collapse
Affiliation(s)
- Antonio Iavarone
- Institute for Cancer Genetics, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
28
|
Ding B, Liu CJ, Huang Y, Hickey RP, Yu J, Kong W, Lengyel P. p204 Is Required for the Differentiation of P19 Murine Embryonal Carcinoma Cells to Beating Cardiac Myocytes. J Biol Chem 2006; 281:14882-92. [PMID: 16556595 DOI: 10.1074/jbc.m511747200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Among 10 adult mouse tissues tested, the p204 protein levels were highest in heart and skeletal muscle. We described previously that the MyoD-inducible p204 protein is required for the differentiation of cultured murine C2C12 skeletal muscle myoblasts to myotubes. Here we report that p204 was also required for the differentiation of cultured P19 murine embryonal carcinoma stem cells to beating cardiac myocytes. As shown by others, this process can be triggered by dimethyl sulfoxide (DMSO). We established that DMSO induced the formation of 204RNA and p204. Ectopic p204 could partially substitute for DMSO in inducing differentiation, whereas ectopic 204 antisense RNA inhibited the differentiation. Experiments with reporter constructs, including regulatory regions from the Ifi204 gene (encoding p204) in P19 cells and in cultured newborn rat cardiac myocytes, as well as chromatin coimmunoprecipitations with transcription factors, revealed that p204 expression was synergistically transactivated by the cardiac Gata4, Nkx2.5, and Tbx5 transcription factors. Furthermore, ectopic p204 triggered the expression of Gata4 and Nkx2.5 in P19 cells. p204 contains a nuclear export signal and was partially translocated to the cytoplasm during the differentiation. p204 from which the nuclear export signal was deleted was not translocated, and it did not induce differentiation. The various mechanisms by which p204 promoted the differentiation are reported in the accompanying article (Ding, B., Liu, C., Huang, Y., Yu, J., Kong, W., and Lengyel, P. (2006) J. Biol. Chem. 281, 14893-14906).
Collapse
Affiliation(s)
- Bo Ding
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520-8024, USA
| | | | | | | | | | | | | |
Collapse
|