1
|
Singha CJ, Krishna R. Molecular dynamics simulations, essential dynamics and MMPBSA to evaluate natural compounds as potential inhibitors for AccD6, a key drug target in the fatty acid biosynthesis pathway in Mycobacterium tuberculosis. J Mol Graph Model 2024; 134:108898. [PMID: 39486266 DOI: 10.1016/j.jmgm.2024.108898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Antibiotic resistance in Mycobacterium tuberculosis, the primary causative agent of the tuberculosis disease is an ever growing threat especially in developing and underdeveloped countries. Isoniazid is a commonly used first line anti-tuberculosis drug used during the first phase of tuberculosis treatment. However, due to its improper use, many strains of Mycobacterium tuberculosis have acquired resistance to the drug. Advancements in next generation sequencing technologies, such as transcriptomics have paved way for identifying alternative drug targets based on the differential expression pattern of genes. Therefore, this study makes use of RNA-Seq data of Mycobacterium tuberculosis isolates treated with different concentrations of isoniazid to identify genes that can be proposed as drug targets. From the differential expression analysis, it was observed that four genes were significantly upregulated under all the conditions. Among the four genes, accD6 was selected as the drug target for virtual screening and molecular dynamics studies, because of its role in fatty acid elongation and contribution to the synthesis of mycolic acids. The protein-protein interaction network and gene ontology based functional enrichment studies show an enrichment in fatty acid biosynthesis related pathways. Furthermore, virtual screening studies successfully screened the top three natural inhibitor molecules with satisfactory ADME properties and a better glide score than the reference compound, NCI-172033. The trajectory analysis, essential dynamics studies and MMPBSA analysis, concluded that among the hit molecules, NPC41982, a thiazole derivative showed the most promising results and can be considered as a potential drug candidate.
Collapse
Affiliation(s)
| | - Ramadas Krishna
- Department of Bioinformatics, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
2
|
Mokrousov I, Vinogradova T, Dogonadze M, Zabolotnykh N, Vyazovaya A, Vitovskaya M, Solovieva N, Ariel B. A multifaceted interplay between virulence, drug resistance, and the phylogeographic landscape of Mycobacterium tuberculosis. Microbiol Spectr 2023; 11:e0139223. [PMID: 37768091 PMCID: PMC10581221 DOI: 10.1128/spectrum.01392-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/06/2023] [Indexed: 09/29/2023] Open
Abstract
Latin-American Mediterranean (LAM) family is one of the most significant and global genotypes of Mycobacterium tuberculosis. Here, we used the murine model to study the virulence and lethality of the genetically and epidemiologically distinct LAM strains. The pathobiological characteristics of the four LAM strains (three drug resistant and one drug susceptible) and the susceptible reference strain H37Rv were studied in the C57BL/6 mouse model. The whole-genome sequencing was performed using the HiSeq Illumina platform, followed by bioinformatics and phylogenetic analysis. The susceptible strain H37Rv showed the highest virulence. Drug-susceptible LAM strain (spoligotype SIT264) was more virulent than three multidrug-resistant (MDR) strains (SIT252, SIT254, and SIT266). All three MDR isolates were low lethal, while the susceptible isolate and H37Rv were moderately/highly lethal. Putting the genomic, phenotypic, and virulence features of the LAM strains/spoligotypes in the context of their dynamic phylogeography over 20 years reveals three types of relationships between virulence, resistance, and transmission. First, the most virulent and more lethal drug-susceptible SIT264 increased its circulation in parts of Russia. Second, moderately virulent and pre-XDR SIT266 was prevalent in Belarus and continues to be visible in North-West Russia. Third, the low virulent and MDR strain SIT252 previously considered as emerging has disappeared from the population. These findings suggest that strain virulence impacts the transmission, irrespective of drug resistance properties. The increasing circulation of susceptible but more virulent and lethal strains implies that personalized TB treatment should consider not only resistance but also the virulence of the infecting M. tuberculosis strains. IMPORTANCE The study is multidisciplinary and investigates the epidemically/clinically important and global lineage of Mycobacterium tuberculosis, named Latin-American-Mediterranean (LAM), yet insufficiently studied with regard to its pathobiology. We studied different LAM strains (epidemic vs endemic and resistant vs susceptible) in the murine model and using whole-genome analysis. We also collected long-term, 20-year data on their prevalence in Eurasia. The findings are both expected and unexpected. (i) We observe that a drug-susceptible but highly virulent strain increased its prevalence. (ii) By contrast, the multidrug-resistant (MDR) but low-virulent, low-lethal strain (that we considered as emerging 15 years ago) has almost disappeared. (iii) Finally, an intermediate case is the MDR strain with moderate virulence that continues to circulate. We conclude that (i) the former and latter strains are the most hazardous and require close epidemiological monitoring, and (ii) personalized TB treatment should consider not only drug resistance but also the virulence of the infecting strains and development of anti-virulence drugs is warranted.
Collapse
Affiliation(s)
- Igor Mokrousov
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Tatiana Vinogradova
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Marine Dogonadze
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Natalia Zabolotnykh
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Anna Vyazovaya
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Maria Vitovskaya
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Natalia Solovieva
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Boris Ariel
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| |
Collapse
|
3
|
Medium-Chain-Length Fatty Acid Catabolism in Cupriavidus necator H16: Transcriptome Sequencing Reveals Differences from Long-Chain-Length Fatty Acid β-Oxidation and Involvement of Several Homologous Genes. Appl Environ Microbiol 2023; 89:e0142822. [PMID: 36541797 PMCID: PMC9888253 DOI: 10.1128/aem.01428-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The number of genes encoding β-oxidation enzymes in Cupriavidus necator H16 (synonym, Ralstonia eutropha H16) is high, but only the operons A0459-A0464 and A1526-A1531, each encoding four genes for β-oxidation enzymes, were expressed during growth with long-chain-length fatty acids (LCFAs). However, we observed that C. necator ΔA0459-A0464 ΔA1526-A1531 and C. necator H16 showed the same growth behavior during growth with decanoic acid and shorter FAs. The negative effect of the deletion of these two operons increased with an increasing chain length of the utilized FAs. Transcriptome sequencing (RNA-Seq) revealed the expression profiles of genes involved in the catabolism of medium-chain-length fatty acids (MCFAs) in C. necator H16. Operon A0459-A0464 was expressed only during growth with nonanoic acid, whereas operon A1526-A1531 was highly expressed during growth with octanoic and nonanoic acid. The gene clusters B1187-B1192 and B0751-B0759 showed a log2 fold change in expression of up to 4.29 and 4.02, respectively, during growth with octanoic acid and up to 8.82 and 5.50, respectively, with nonanoic acid compared to sodium gluconate-grown cells. Several acyl-CoA ligases catalyze the activation of MCFAs with coenzyme A (CoA), but fadD3 (A3288), involved in activation of LCFAs, was not detected. The expression profiles of C. necator strain ΔA0459-A0464 ΔA1526-A1531 showed that the growth with nonanoic acid resulted in the expression of further β-oxidation enzyme-encoding genes. Additional insights into the transport of FAs in C. necator H16 revealed the complexity and putative involvement of the DegV-like protein encoded by A0463 in the transport of odd-chain-length FAs and of siderophore biosynthesis in the transport mechanism. IMPORTANCE Although Cupriavidus necator H16 has been used in several studies to produce polyhydroxyalkanoates from various lipids, the fatty acid metabolism is poorly understood. The β-oxidation of long-chain-length FAs has been investigated, but the tremendous number of homologous genes encoding β-oxidation enzymes hides the potential for variances in the expressed genes for catabolism of shorter FAs. The catabolism of medium-chain-length FAs and connected pathways has not been investigated yet. As more sustainable substrates such as lipids and the production of fatty acids and fatty acid derivates become more critical with the dependency on fossil-based substances, understanding the complex metabolism in this highly diverse workhorse for biotechnology, C. necator, is inevitable. For further metabolic engineering and construction of production strains, we investigated the metabolism during growth on medium-chain-length FAs by RNA-Seq.
Collapse
|
4
|
Xu X, Dong B, Peng L, Gao C, He Z, Wang C, Zeng J. Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis. Front Microbiol 2022; 13:1056608. [PMID: 36620019 PMCID: PMC9810820 DOI: 10.3389/fmicb.2022.1056608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis possesses a dynamic cell envelope, which consists of a peptidoglycan layer, a mycolic acid layer, and an arabinogalactan polysaccharide. This envelope possesses a highly complex and unique structure representing a barrier that protects and assists the growth of M. tuberculosis and allows its adaptation to the host. It regulates the immune response of the host cells, causing their damage. Therefore, the cell envelope of M. tuberculosis is an attractive target for vaccine and drug development. The emergence of multidrug-resistant as well as extensively drug resistant tuberculosis and co-infection with HIV prevented an effective control of this disease. Thus, the discovery and development of new drugs is a major keystone for TB treatment and control. This review mainly summarizes the development of drug enzymes involved in the biosynthesis of the cell wall in M. tuberculosis, and other potential drug targets in this pathway, to provide more effective strategies for the development of new drugs.
Collapse
Affiliation(s)
- Xinyue Xu
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Baoyu Dong
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lijun Peng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chao Gao
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.,Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqun He
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Moopanar K, Nyide ANG, Senzani S, Mvubu NE. Clinical strains of Mycobacterium tuberculosis exhibit differential lipid metabolism-associated transcriptome changes in in vitro cholesterol and infection models. Pathog Dis 2022; 81:6889515. [PMID: 36509392 PMCID: PMC9936260 DOI: 10.1093/femspd/ftac046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Many studies have identified host-derived lipids, characterised by the abundance of cholesterol, as a major source of carbon nutrition for Mycobacterium tuberculosis during infection. Members of the Mycobacterium tuberculosis complex are biologically different with regards to degree of disease, host range, pathogenicity and transmission. Therefore, the current study aimed at elucidating transcriptome changes during early infection of pulmonary epithelial cells and on an in vitro cholesterol-rich minimal media, in M. tuberculosis clinical strains F15/LAM4/KZN and Beijing, and the laboratory H37Rv strain. Infection of pulmonary epithelial cells elicited the upregulation of fadD28 and hsaC in both the F15/LAM4/KZN and Beijing strains and the downregulation of several other lipid-associated genes. Growth curve analysis revealed F15/LAM4/KZN and Beijing to be slow growers in 7H9 medium and cholesterol-supplemented media. RNA-seq analysis revealed strain-specific transcriptomic changes, thereby affecting different metabolic processes in an in vitro cholesterol model. The differential expression of these genes suggests that the genetically diverse M. tuberculosis clinical strains exhibit strain-specific behaviour that may influence their ability to metabolise lipids, specifically cholesterol, which may account for phenotypic differences observed during infection.
Collapse
Affiliation(s)
- Kynesha Moopanar
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Asanda Nomfundo Graduate Nyide
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Sibusiso Senzani
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 1st floor, Doris Duke Medical Research Institute, Congella, Private Bag 7, Durban, 4013, South Africa
| | - Nontobeko Eunice Mvubu
- Corresponding author. Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa.Tel: +27 31 260 7404; E-mail:
| |
Collapse
|
6
|
Abstract
Antibiotic resistance is a serious public health concern, and new drugs are needed to ensure effective treatment of many bacterial infections. Bacterial type II fatty acid synthesis (FASII) is a vital aspect of bacterial physiology, not only for the formation of membranes but also to produce intermediates used in vitamin production. Nature has evolved a repertoire of antibiotics inhibiting different aspects of FASII, validating these enzymes as potential targets for new antibiotic discovery and development. However, significant obstacles have been encountered in the development of FASII antibiotics, and few FASII drugs have advanced beyond the discovery stage. Most bacteria are capable of assimilating exogenous fatty acids. In some cases they can dispense with FASII if fatty acids are present in the environment, making the prospects for identifying broad-spectrum drugs against FASII targets unlikely. Single-target, pathogen-specific FASII drugs appear the best option, but a major drawback to this approach is the rapid acquisition of resistance via target missense mutations. This complication can be mitigated during drug development by optimizing the compound design to reduce the potential impact of on-target missense mutations at an early stage in antibiotic discovery. The lessons learned from the difficulties in FASII drug discovery that have come to light over the last decade suggest that a refocused approach to designing FASII inhibitors has the potential to add to our arsenal of weapons to combat resistance to existing antibiotics.
Collapse
Affiliation(s)
- Christopher D Radka
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; ,
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; ,
| |
Collapse
|
7
|
Kriel NL, Newton-Foot M, Bennion OT, Aldridge BB, Mehaffy C, Belisle JT, Walzl G, Warren RM, Sampson SL, Gey van Pittius NC. Localization of EccA 3 at the growing pole in Mycobacterium smegmatis. BMC Microbiol 2022; 22:140. [PMID: 35590245 PMCID: PMC9118679 DOI: 10.1186/s12866-022-02554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Bacteria require specialized secretion systems for the export of molecules into the extracellular space to modify their environment and scavenge for nutrients. The ESX-3 secretion system is required by mycobacteria for iron homeostasis. The ESX-3 operon encodes for one cytoplasmic component (EccA3) and five membrane components (EccB3 – EccE3 and MycP3). In this study we sought to identify the sub-cellular location of EccA3 of the ESX-3 secretion system in mycobacteria. Results Fluorescently tagged EccA3 localized to a single pole in the majority of Mycobacterium smegmatis cells and time-lapse fluorescent microscopy identified this pole as the growing pole. Deletion of ESX-3 did not prevent polar localization of fluorescently tagged EccA3, suggesting that EccA3 unipolar localization is independent of other ESX-3 components. Affinity purification - mass spectrometry was used to identify EccA3 associated proteins which may contribute to the localization of EccA3 at the growing pole. EccA3 co-purified with fatty acid metabolism proteins (FAS, FadA3, KasA and KasB), mycolic acid synthesis proteins (UmaA, CmaA1), cell division proteins (FtsE and FtsZ), and cell shape and cell cycle proteins (MurS, CwsA and Wag31). Secretion system related proteins Ffh, SecA1, EccA1, and EspI were also identified. Conclusions Time-lapse microscopy demonstrated that EccA3 is located at the growing pole in M. smegmatis. The co-purification of EccA3 with proteins known to be required for polar growth, mycolic acid synthesis, the Sec secretion system (SecA1), and the signal recognition particle pathway (Ffh) also suggests that EccA3 is located at the site of active cell growth. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02554-6.
Collapse
Affiliation(s)
- Nastassja L Kriel
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Mae Newton-Foot
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Owen T Bennion
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Carolina Mehaffy
- Mycobacteria Research Laboratories, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - John T Belisle
- Mycobacteria Research Laboratories, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robin M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Samantha L Sampson
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nico C Gey van Pittius
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
8
|
Santamaria G, Ruiz-Rodriguez P, Renau-Mínguez C, Pinto FR, Coscollá M. In Silico Exploration of Mycobacterium tuberculosis Metabolic Networks Shows Host-Associated Convergent Fluxomic Phenotypes. Biomolecules 2022; 12:376. [PMID: 35327567 PMCID: PMC8945471 DOI: 10.3390/biom12030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is composed of several lineages characterized by a genome identity higher than 99%. Although the majority of the lineages are associated with humans, at least four lineages are adapted to other mammals, including different M. tuberculosis ecotypes. Host specificity is associated with higher virulence in its preferred host in ecotypes such as M. bovis. Deciphering what determines the preference of the host can reveal host-specific virulence patterns. However, it is not clear which genomic determinants might be influencing host specificity. In this study, we apply a combination of unsupervised and supervised classification methods on genomic data of ~27,000 M. tuberculosis clinical isolates to decipher host-specific genomic determinants. Host-specific genomic signatures are scarce beyond known lineage-specific mutations. Therefore, we integrated lineage-specific mutations into the iEK1011 2.0 genome-scale metabolic model to obtain lineage-specific versions of it. Flux distributions sampled from the solution spaces of these models can be accurately separated according to host association. This separation correlated with differences in cell wall processes, lipid, amino acid and carbon metabolic subsystems. These differences were observable when more than 95% of the samples had a specific growth rate significantly lower than the maximum achievable by the models. This suggests that these differences might manifest at low growth rate settings, such as the restrictive conditions M. tuberculosis suffers during macrophage infection.
Collapse
Affiliation(s)
- Guillem Santamaria
- ISysBio, University of Valencia-FISABIO Joint Unit, 46980 Paterna, Spain; (G.S.); (P.R.-R.); (C.R.-M.)
- BioISI—Biosciences & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Paula Ruiz-Rodriguez
- ISysBio, University of Valencia-FISABIO Joint Unit, 46980 Paterna, Spain; (G.S.); (P.R.-R.); (C.R.-M.)
| | - Chantal Renau-Mínguez
- ISysBio, University of Valencia-FISABIO Joint Unit, 46980 Paterna, Spain; (G.S.); (P.R.-R.); (C.R.-M.)
| | - Francisco R. Pinto
- BioISI—Biosciences & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Mireia Coscollá
- ISysBio, University of Valencia-FISABIO Joint Unit, 46980 Paterna, Spain; (G.S.); (P.R.-R.); (C.R.-M.)
| |
Collapse
|
9
|
Joshi H, Kandari D, Bhatnagar R. Insights into the molecular determinants involved in Mycobacterium tuberculosis persistence and their therapeutic implications. Virulence 2021; 12:2721-2749. [PMID: 34637683 PMCID: PMC8565819 DOI: 10.1080/21505594.2021.1990660] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
The establishment of persistent infections and the reactivation of persistent bacteria to active bacilli are the two hurdles in effective tuberculosis treatment. Mycobacterium tuberculosis, an etiologic tuberculosis agent, adapts to numerous antibiotics and resists the host immune system causing a disease of public health concern. Extensive research has been employed to combat this disease due to its sheer ability to persist in the host system, undetected, waiting for the opportunity to declare itself. Persisters are a bacterial subpopulation that possesses transient tolerance to high doses of antibiotics. There are certain inherent mechanisms that facilitate the persister cell formation in Mycobacterium tuberculosis, some of those had been characterized in the past namely, stringent response, transcriptional regulators, energy production pathways, lipid metabolism, cell wall remodeling enzymes, phosphate metabolism, and proteasome protein degradation. This article reviews the recent advancements made in various in vitro persistence models that assist to unravel the mechanisms involved in the persister cell formation and to hunt for the possible preventive or treatment measures. To tackle the persister population the immunodominant proteins that express specifically at the latent phase of infection can be used for diagnosis to distinguish between the active and latent tuberculosis, as well as to select potential drug or vaccine candidates. In addition, we discuss the genes engaged in the persistence to get more insights into resuscitation and persister cell formation. The in-depth understanding of persistent cells of mycobacteria can certainly unravel novel ways to target the pathogen and tackle its persistence.
Collapse
Affiliation(s)
- Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Amity University of Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
10
|
Wang P, Wang X, Yin Y, He M, Tan W, Gao W, Wen J. Increasing the Ascomycin Yield by Relieving the Inhibition of Acetyl/Propionyl-CoA Carboxylase by the Signal Transduction Protein GlnB. Front Microbiol 2021; 12:684193. [PMID: 34122395 PMCID: PMC8187598 DOI: 10.3389/fmicb.2021.684193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Ascomycin (FK520) is a multifunctional antibiotic produced by Streptomyces hygroscopicus var. ascomyceticus. In this study, we demonstrated that the inactivation of GlnB, a signal transduction protein belonging to the PII family, can increase the production of ascomycin by strengthening the supply of the precursors malonyl-CoA and methylmalonyl-CoA, which are produced by acetyl-CoA carboxylase and propionyl-CoA carboxylase, respectively. Bioinformatics analysis showed that Streptomyces hygroscopicus var. ascomyceticus contains two PII family signal transduction proteins, GlnB and GlnK. Protein co-precipitation experiments demonstrated that GlnB protein could bind to the α subunit of acetyl-CoA carboxylase, and this binding could be disassociated by a sufficient concentration of 2-oxoglutarate. Coupled enzyme activity assays further revealed that the interaction between GlnB protein and the α subunit inhibited both the activity of acetyl-CoA carboxylase and propionyl-CoA carboxylase, and this inhibition could be relieved by 2-oxoglutarate in a concentration-dependent manner. Because GlnK protein can act redundantly to maintain metabolic homeostasis under the control of the global nitrogen regulator GlnR, the deletion of GlnB protein enhanced the supply of malonyl-CoA and methylmalonyl-CoA by restoring the activity of acetyl-CoA carboxylase and propionyl-CoA carboxylase, thereby improving the production of ascomycin to 390 ± 10 mg/L. On this basis, the co-overexpression of the β and ε subunits of propionyl-CoA carboxylase further increased the ascomycin yield to 550 ± 20 mg/L, which was 1.9-fold higher than that of the parent strain FS35 (287 ± 9 mg/L). Taken together, this study provides a novel strategy to increase the production of ascomycin, providing a reference for improving the yield of other antibiotics.
Collapse
Affiliation(s)
- Pan Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Xin Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Ying Yin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Mingliang He
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Wei Tan
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Wenting Gao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
11
|
Swain SS, Sharma D, Hussain T, Pati S. Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerg Microbes Infect 2021; 9:1651-1663. [PMID: 32573374 PMCID: PMC7473167 DOI: 10.1080/22221751.2020.1785334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nowadays, drug-resistant tuberculosis (DR-TB) and co-infected tuberculosis (CI-TB) strains are the leading cause for the enhancement of long-term morbidity and unpredicted mortality rates from this ghoulish acid fast-bacterium infection, globally. Unfortunately, the lack of/ample lethargic towards the development of compelling anti-TB regimens with a large-scale prevalence rate is a great challenge towards control of the pandemic situation. Indeed, the recent improvement in genomic studies for early diagnosis and understanding the mechanisms of drug resistance, as well as the identification of newer drug targets is quite remarkable and promising. Mainly, identification of such genetic factors, chromosomal mutations and associated pathways gives new ray of hope in current anti-TB drug discovery. This focused review provides molecular insights into the updated drug resistance mechanisms with encoded bacilli genetic factors as a novel target and potential source of development with screened-out newer anti-TB agents towards the control of MDR-TB soon.
Collapse
Affiliation(s)
- Shasank S Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Divakar Sharma
- CRF, Mass Spectrometry Laboratory, Kusuma School of Biological Sciences (KSBS), Indian Institute of Technology-Delhi (IIT-D), Delhi, India
| | - Tahziba Hussain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Sanghamitra Pati
- Division of Public Health and Research, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| |
Collapse
|
12
|
AccR, a TetR Family Transcriptional Repressor, Coordinates Short-Chain Acyl Coenzyme A Homeostasis in Streptomyces avermitilis. Appl Environ Microbiol 2020; 86:AEM.00508-20. [PMID: 32303550 DOI: 10.1128/aem.00508-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Malonyl coenzyme A (malonyl-CoA) and methylmalonyl-CoA are the most common extender units for the biosynthesis of fatty acids and polyketides in Streptomyces, an industrially important producer of polyketides. Carboxylation of acetyl- and propionyl-CoAs is an essential source of malonyl- and methylmalonyl-CoAs; therefore, acyl-CoA carboxylases (ACCases) play key roles in primary and secondary metabolism. The regulation of the expression of ACCases in Streptomyces spp. has not been investigated previously. We characterized a TetR family transcriptional repressor, AccR, that mediates intracellular acetyl-, propionyl-, methylcrotonyl-, malonyl-, and methylmalonyl-CoA levels by controlling the transcription of genes that encode the main ACCase and enzymes associated with branched-chain amino acid metabolism in S. avermitilis AccR bound to a 16-nucleotide palindromic binding motif (GTTAA-N6-TTAAC) in promoter regions and repressed the transcription of the accD1A1-hmgL-fadE4 operon, echA8, echA9, and fadE2, which are involved in the production and assimilation of acetyl- and propionyl-CoAs. Methylcrotonyl-, propionyl-, and acetyl-CoAs acted as effectors to release AccR from its target DNA, resulting in enhanced transcription of target genes by derepression. The affinity of methylcrotonyl- and propionyl-CoAs to AccR was stronger than that of acetyl-CoA. Deletion of accR resulted in increased concentrations of short-chain acyl-CoAs (acetyl-, propionyl-, malonyl-, and methylmalonyl-CoAs), leading to enhanced avermectin production. Avermectin production was increased by 14.5% in an accR deletion mutant of the industrial high-yield strain S. avermitilis A8. Our findings clarify the regulatory mechanisms that maintain the homeostasis of short-chain acyl-CoAs in Streptomyces IMPORTANCE Acyl-CoA carboxylases play key roles in primary and secondary metabolism. However, the regulation of ACCase genes transcription in Streptomyces spp. remains unclear. Here, we demonstrated that AccR responded to intracellular acetyl-, propionyl-, and methylcrotonyl-CoA availability and mediated transcription of the genes related to production and assimilation of these compounds in S. avermitilis When intracellular concentrations of these compounds are low, AccR binds to target genes and represses their transcription, resulting in low production of malonyl- and methylmalonyl-CoAs. When intracellular acetyl-, propionyl-, and methylcrotonyl-CoA concentrations are high, these compounds bind to AccR to dissociate AccR from target DNA, promoting the conversion of these compounds to malonyl- and methylmalonyl-CoAs. This investigation revealed how AccR coordinates short-chain acyl-CoA homeostasis in Streptomyces.
Collapse
|
13
|
Tiwari D, Park SW, Essawy MM, Dawadi S, Mason A, Nandakumar M, Zimmerman M, Mina M, Ho HP, Engelhart CA, Ioerger T, Sacchettini JC, Rhee K, Ehrt S, Aldrich CC, Dartois V, Schnappinger D. Targeting protein biotinylation enhances tuberculosis chemotherapy. Sci Transl Med 2019; 10:10/438/eaal1803. [PMID: 29695454 PMCID: PMC6151865 DOI: 10.1126/scitranslmed.aal1803] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 07/28/2017] [Accepted: 10/03/2017] [Indexed: 12/28/2022]
Abstract
Successful drug treatment for tuberculosis (TB) depends on the unique contributions of its component drugs. Drug resistance poses a threat to the efficacy of individual drugs and the regimens to which they contribute. Biologically and chemically validated targets capable of replacing individual components of current TB chemotherapy are a major unmet need in TB drug development. We demonstrate that chemical inhibition of the bacterial biotin protein ligase (BPL) with the inhibitor Bio-AMS (5'-[N-(d-biotinoyl)sulfamoyl]amino-5'-deoxyadenosine) killed Mycobacterium tuberculosis (Mtb), the bacterial pathogen causing TB. We also show that genetic silencing of BPL eliminated the pathogen efficiently from mice during acute and chronic infection with Mtb Partial chemical inactivation of BPL increased the potency of two first-line drugs, rifampicin and ethambutol, and genetic interference with protein biotinylation accelerated clearance of Mtb from mouse lungs and spleens by rifampicin. These studies validate BPL as a potential drug target that could serve as an alternate frontline target in the development of new drugs against Mtb.
Collapse
Affiliation(s)
- Divya Tiwari
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Maram M Essawy
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, 8-174 WDH, Minneapolis, MN 55455, USA
| | - Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, 8-174 WDH, Minneapolis, MN 55455, USA
| | - Alan Mason
- Public Health Research Institute, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ 07103, USA
| | - Madhumitha Nandakumar
- Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Matthew Zimmerman
- Public Health Research Institute, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ 07103, USA
| | - Marizel Mina
- Public Health Research Institute, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ 07103, USA
| | - Hsin Pin Ho
- Public Health Research Institute, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ 07103, USA
| | - Curtis A Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Thomas Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Kyu Rhee
- Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, 8-174 WDH, Minneapolis, MN 55455, USA
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ 07103, USA. .,Department of Medicine, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ 07103, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
14
|
Liu XX, Shen MJ, Liu WB, Ye BC. Transcriptional and post-translational regulation of AccD6 in Mycobacterium smegmatis. FEMS Microbiol Lett 2019; 365:4953417. [PMID: 29590418 DOI: 10.1093/femsle/fny074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/23/2018] [Indexed: 12/12/2022] Open
Abstract
AccD6 is an important component of acetyl-CoA/propionyl-CoA carboxylase, which acts as a key role in mycolic acid synthesis and short chain fatty acyl-coenzyme A metabolism. In this study, we demonstrated that AccD6 of Mycobacterium smegmatis associates with AccA3 (α subunit of acetyl-CoA carboxylase, MSMEG_1807) and AccE (ε subunit, MSMEG_1812) to form the acetyl-CoA (propionyl-CoA) carboxylase. Results showed that the MSMEG_4331 subunit is a regulator that interacts with the promoter region of accD6 to inhibit its transcription. Transcription of accD6 was reduced by 50% in the mutant M. smegmatis strain overexpressing MSMEG_4331. Moreover, the activity of AccD6 was inhibited by acylation (such as acetylation and propionylation). These results demonstrate that AccD6 of M. smegmatis is regulated at both the transcriptional and post-translational levels. Our findings highlight the novel regulatory mechanism underlying mycolic acid biosynthesis in mycobacteria.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Rd. 130, Shanghai 200237, China
| | - Meng-Jia Shen
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Rd. 130, Shanghai 200237, China
| | - Wei-Bing Liu
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Rd. 130, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Rd. 130, Shanghai 200237, China.,School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, China
| |
Collapse
|
15
|
A novel multidomain acyl-CoA carboxylase in Saccharopolyspora erythraea provides malonyl-CoA for de novo fatty acid biosynthesis. Sci Rep 2019; 9:6725. [PMID: 31040353 PMCID: PMC6491548 DOI: 10.1038/s41598-019-43223-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/17/2019] [Indexed: 11/08/2022] Open
Abstract
Acetyl-CoA carboxylases (ACCs) are enzyme complexes generally composed of three catalytic domains and distributed in all organisms. In prokaryotes and plastids of most plants, these domains are encoded in distinct subunits forming heteromeric complexes. Distinctively, cytosolic ACCs from eukaryotes and plastids of graminaceous monocots, are organized in a single multidomain polypeptide. Until now, no multidomain ACCs had been discovered in bacteria. Here, we show that a putative multidomain ACC in Saccharopolyspora erythraea is encoded by the sace_4237 gene, representing the first prokaryotic ACC homodimeric multidomain complex described. The SACE_4237 complex has both acetyl-CoA and propionyl-CoA carboxylase activities. Importantly, we demonstrate that sace_4237 is essential for S. erythraea survival as determined by the construction of a sace_4237 conditional mutant. Altogether, our results show that this prokaryotic homodimeric multidomain ACC provides malonyl-CoA for de novo fatty acid biosynthesis. Furthermore, the data presented here suggests that evolution of these enzyme complexes, from single domain subunits to eukaryotic multidomain ACCs, occurred in bacteria through domain fusion.
Collapse
|
16
|
Ghiraldi-Lopes LD, Campanerut-Sá PAZ, Meneguello JE, Seixas FAV, Lopes-Ortiz MA, Scodro RBL, Pires CTA, da Silva RZ, Siqueira VLD, Nakamura CV, Cardoso RF. Proteomic profile of Mycobacterium tuberculosis after eupomatenoid-5 induction reveals potential drug targets. Future Microbiol 2017; 12:867-879. [DOI: 10.2217/fmb-2017-0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: We investigated a proteome profile, protein–protein interaction and morphological changes of Mycobacterium tuberculosis after different times of eupomatenoid-5 (EUP-5) induction to evaluate the cellular response to the drug-induced damages. Methods: The bacillus was induced to sub-minimal inhibitory concentration of EUP-5 at 12 h, 24 h and 48 h. The proteins were separated by 2D gel electrophoresis, identified by LC/MS-MS. Scanning electron microscopy and Search Tool for the Retrieval of Interacting Genes/Proteins analyses were performed. Results: EUP-5 impacts mainly in M. tuberculosis proteins of intermediary metabolism and interactome suggests a multisite disturbance that contributes to bacilli death. Scanning electron microscopy revealed the loss of bacillary form. Conclusion: Some of the differentially expressed proteins have the potential to be drug targets such as citrate synthase (Rv0896), phosphoglycerate kinase (Rv1437), ketol-acid reductoisomerase (Rv3001c) and ATP synthase alpha chain (Rv1308).
Collapse
Affiliation(s)
- Luciana D Ghiraldi-Lopes
- Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Paula AZ Campanerut-Sá
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Jean E Meneguello
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Flávio AV Seixas
- Department of Biochemistry, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Mariana A Lopes-Ortiz
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Uningá University Center, Rod PR 317, 6114, 87035-510, Maringá, Paraná, Brazil
| | - Regiane BL Scodro
- Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Claudia TA Pires
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Rosi Z da Silva
- State University of Ponta Grossa, Avenida General Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Paraná, Brazil
| | - Vera LD Siqueira
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Celso V Nakamura
- Postgraduate Program in Pharmaceutical Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Rosilene F Cardoso
- Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| |
Collapse
|
17
|
Bennett M, Högbom M. Crystal structure of the essential biotin-dependent carboxylase AccA3 from Mycobacterium tuberculosis. FEBS Open Bio 2017; 7:620-626. [PMID: 28469974 PMCID: PMC5407890 DOI: 10.1002/2211-5463.12212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/10/2022] Open
Abstract
Biotin‐dependent acetyl‐CoA carboxylases catalyze the committed step in type II fatty acid biosynthesis, the main route for production of membrane phospholipids in bacteria, and are considered a key target for antibacterial drug discovery. Here we describe the first structure of AccA3, an essential component of the acetyl‐CoA carboxylase system in Mycobacterium tuberculosis (MTb). The structure, sequence comparisons, and modeling of ligand‐bound states reveal that the ATP cosubstrate‐binding site shows distinct differences compared to other bacterial and eukaryotic biotin carboxylases, including all human homologs. This suggests the possibility to design MTb AccA3 subtype‐specific inhibitors. Database Coordinates and structure factors have been deposited in the Protein Data Bank with the accession number 5MLK.
Collapse
Affiliation(s)
- Matthew Bennett
- Department of Biochemistry and Biophysics; Arrhenius Laboratories for Natural Sciences; Stockholm University; Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics; Arrhenius Laboratories for Natural Sciences; Stockholm University; Sweden
| |
Collapse
|
18
|
Lyonnet BB, Diacovich L, Gago G, Spina L, Bardou F, Lemassu A, Quémard A, Gramajo H. Functional reconstitution of the Mycobacterium tuberculosis long-chain acyl-CoA carboxylase from multiple acyl-CoA subunits. FEBS J 2017; 284:1110-1125. [PMID: 28222482 PMCID: PMC5393044 DOI: 10.1111/febs.14046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/25/2017] [Accepted: 02/17/2017] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis produces a large number of structurally diverse lipids that have been implicated in the pathogenicity, persistence and antibiotic resistance of this organism. Most building blocks involved in the biosynthesis of all these lipids are generated by acyl-CoA carboxylases whose subunit composition and physiological roles have not yet been clearly established. Inconclusive data in the literature refer to the exact protein composition and substrate specificity of the enzyme complex that produces the long-chain α-carboxy-acyl-CoAs, which are substrates involved in the last step of condensation mediated by the polyketide synthase 13 to synthesize mature mycolic acids. Here we have successfully reconstituted the long-chain acyl-CoA carboxylase (LCC) complex from its purified components, the α subunit (AccA3), the ε subunit (AccE5) and the two β subunits (AccD4 and AccD5), and demonstrated that the four subunits are essential for its activity. Furthermore, we also showed by substrate competition experiments and the use of a specific inhibitor that the AccD5 subunit's role in the carboxylation of the long acyl-CoAs, as part of the LCC complex, was structural rather than catalytic. Moreover, AccD5 was also able to carboxylate its natural substrates, acetyl-CoA and propionyl-CoA, in the context of the LCC enzyme complex. Thus, the supercomplex formed by these four subunits has the potential to generate the main substrates, malonyl-CoA, methylmalonyl-CoA and α-carboxy-C24-26 -CoA, used as condensing units for the biosynthesis of all the lipids present in this pathogen.
Collapse
Affiliation(s)
- Bernardo Bazet Lyonnet
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina, France
| | - Lautaro Diacovich
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina, France
| | - Gabriela Gago
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina, France
| | - Lucie Spina
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Département Tuberculose et Biologie des Infections, 205 route de Narbonne BP64182, F-31077 Toulouse, France
- Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Fabienne Bardou
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Département Tuberculose et Biologie des Infections, 205 route de Narbonne BP64182, F-31077 Toulouse, France
- Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Anne Lemassu
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Département Tuberculose et Biologie des Infections, 205 route de Narbonne BP64182, F-31077 Toulouse, France
- Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Annaïk Quémard
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Département Tuberculose et Biologie des Infections, 205 route de Narbonne BP64182, F-31077 Toulouse, France
- Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina, France
| |
Collapse
|
19
|
Pawelczyk J, Viljoen A, Kremer L, Dziadek J. The influence of AccD5 on AccD6 carboxyltransferase essentiality in pathogenic and non-pathogenic Mycobacterium. Sci Rep 2017; 7:42692. [PMID: 28205597 PMCID: PMC5311964 DOI: 10.1038/srep42692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/12/2017] [Indexed: 01/27/2023] Open
Abstract
Malonyl-coenzyme A (CoA) is a crucial extender unit for the synthesis of mycolic and other fatty acids in mycobacteria, generated in a reaction catalyzed by acetyl-CoA carboxylase. We previously reported on the essentiality of accD6Mtb encoding the functional acetyl-CoA carboxylase subunit in Mycobacterium tuberculosis. Strikingly, the homologous gene in the fast-growing, non-pathogenic Mycobacterium smegmatis - (accD6Msm) appeared to be dispensable, and its deletion did not influence the cell lipid content. Herein, we demonstrate that, despite the difference in essentiality, accD6Msm and accD6Mtb encode proteins of convergent catalytic activity in vivo. To identify an alternative, AccD6-independent, malonyl-CoA synthesis pathway in M. smegmatis, a complex genetic approach combined with lipid analysis was applied to screen all five remaining carboxyltransferase genes (accD1-accD5) with respect to their involvement in mycolic acid biosynthesis and ability to utilize acetyl-CoA as the substrate for carboxylation. This approach revealed that AccD1Msm, AccD2Msm and AccD3Msm are not essential for mycolic acid biosynthesis. Furthermore, we confirmed in vivo the function of AccD4Msm as an essential, long-chain acyl-CoA carboxyltransferase, unable to carboxylate short-chain substrate. Finally, our comparative studies unambiguously demonstrated between-species difference in in vivo ability of AccD5 carboxyltransferase to utilize acetyl-CoA that influences AccD6 essentiality in pathogenic and non-pathogenic mycobacteria.
Collapse
Affiliation(s)
- Jakub Pawelczyk
- Institute for Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, Montpellier, France.,INSERM, CPBS, 34293 Montpellier, France
| | - Jaroslaw Dziadek
- Institute for Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
20
|
Quémard A. New Insights into the Mycolate-Containing Compound Biosynthesis and Transport in Mycobacteria. Trends Microbiol 2016; 24:725-738. [DOI: 10.1016/j.tim.2016.04.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/14/2016] [Accepted: 04/29/2016] [Indexed: 12/15/2022]
|
21
|
Cabruja M, Lyonnet BB, Millán G, Gramajo H, Gago G. Analysis of coenzyme A activated compounds in actinomycetes. Appl Microbiol Biotechnol 2016; 100:7239-48. [PMID: 27270600 DOI: 10.1007/s00253-016-7635-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/06/2016] [Accepted: 05/14/2016] [Indexed: 10/21/2022]
Abstract
Acyl-CoAs are crucial compounds involved in essential metabolic pathways such as the Krebs cycle and lipid, carbohydrate, and amino acid metabolisms, and they are also key signal molecules involved in the transcriptional regulation of lipid biosynthesis in many organisms. In this study, we took advantage of the high selectivity of mass spectrometry and developed an ion-pairing reverse-phase high-pressure liquid chromatography electrospray ionization high-resolution mass spectrometry (IP-RP-HPLC/ESI-HRMS) method to carry on a comprehensive analytical determination of the wide range of fatty acyl-CoAs present in actinomycetes. The advantage of using a QTOF spectrometer resides in the excellent mass accuracy over a wide dynamic range and measurements of the true isotope pattern that can be used for molecular formula elucidation of unknown analytes. As a proof of concept, we used this assay to determine the composition of the fatty acyl-CoA pools in Mycobacterium, Streptomyces, and Corynebacterium species, revealing an extraordinary difference in fatty acyl-CoA amounts and species distribution between the three genera and between the two species of mycobacteria analyzed, including the presence of different chain-length carboxy-acyl-CoAs, key substrates of mycolic acid biosynthesis. The method was also used to analyze the impact of two fatty acid synthase inhibitors on the acyl-CoA profile of Mycobacterium smegmatis, which showed some unexpected low levels of C24 acyl-CoAs in the isoniazid-treated cells. This robust, sensitive, and reliable method should be broadly applicable in the studies of the wide range of bacteria metabolisms in which acyl-CoA molecules participate.
Collapse
Affiliation(s)
- Matías Cabruja
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, (2000), Argentina
| | - Bernardo Bazet Lyonnet
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, (2000), Argentina
| | - Gustavo Millán
- Laboratory of Mass Spectrometry, Centro Científico Tecnológico Rosario, CONICET, Rosario, Argentina
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, (2000), Argentina.
| | - Gabriela Gago
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, (2000), Argentina.
| |
Collapse
|
22
|
Ehebauer MT, Zimmermann M, Jakobi AJ, Noens EE, Laubitz D, Cichocki B, Marrakchi H, Lanéelle MA, Daffé M, Sachse C, Dziembowski A, Sauer U, Wilmanns M. Characterization of the mycobacterial acyl-CoA carboxylase holo complexes reveals their functional expansion into amino acid catabolism. PLoS Pathog 2015; 11:e1004623. [PMID: 25695631 PMCID: PMC4347857 DOI: 10.1371/journal.ppat.1004623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/11/2014] [Indexed: 01/22/2023] Open
Abstract
Biotin-mediated carboxylation of short-chain fatty acid coenzyme A esters is a key
step in lipid biosynthesis that is carried out by multienzyme complexes to extend
fatty acids by one methylene group. Pathogenic mycobacteria have an unusually high
redundancy of carboxyltransferase genes and biotin carboxylase genes, creating
multiple combinations of protein/protein complexes of unknown overall composition and
functional readout. By combining pull-down assays with mass spectrometry, we
identified nine binary protein/protein interactions and four validated holo
acyl-coenzyme A carboxylase complexes. We investigated one of these - the AccD1-AccA1
complex from Mycobacterium tuberculosis with hitherto unknown
physiological function. Using genetics, metabolomics and biochemistry we found that
this complex is involved in branched amino-acid catabolism with methylcrotonyl
coenzyme A as the substrate. We then determined its overall architecture by electron
microscopy and found it to be a four-layered dodecameric arrangement that matches the
overall dimensions of a distantly related methylcrotonyl coenzyme A holo complex. Our
data argue in favor of distinct structural requirements for biotin-mediated
γ-carboxylation of α−β unsaturated acid esters and will
advance the categorization of acyl-coenzyme A carboxylase complexes. Knowledge about
the underlying structural/functional relationships will be crucial to make the target
category amenable for future biomedical applications. Tuberculosis is deadly human disease caused by infection with the bacterium
Mycobacterium tuberculosis. This pathogen has a complex
metabolism with many genes required for the synthesis of components of its unique
cell envelope. We have investigated a family of closely related genes coding for
different acyl CoA carboxylase enzyme complexes with previously unexplained genetic
redundancy that have been thought to have an involvement in the synthesis of these
cell envelope components. We identified five functional multienzyme complexes. Of the
two complexes with hitherto unknown function we chose to investigate, one
specifically and to our surprise it is required for the degradation of the amino acid
leucine. To our knowledge this is the first demonstration that mycobacteria have a
specific pathway for leucine degradation and thus broaden the functional diversity
associated with acyl CoA carboxylase coding genes.
Collapse
Affiliation(s)
| | | | - Arjen J. Jakobi
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg,
Germany
- European Molecular Biology Laboratory, Structural Biology and Computational
Biology Programme, Heidelberg, Germany
| | - Elke E. Noens
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg,
Germany
| | - Daniel Laubitz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw,
Poland
- Department of Genetics & Biotechnology, Warsaw University, Warsaw,
Poland
| | - Bogdan Cichocki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw,
Poland
- Department of Genetics & Biotechnology, Warsaw University, Warsaw,
Poland
| | - Hedia Marrakchi
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de
Biologie Structurale, Tuberculosis & Infection Biology Department, Toulouse,
France; Université Paul Sabatier, Toulouse, France
| | - Marie-Antoinette Lanéelle
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de
Biologie Structurale, Tuberculosis & Infection Biology Department, Toulouse,
France; Université Paul Sabatier, Toulouse, France
| | - Mamadou Daffé
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de
Biologie Structurale, Tuberculosis & Infection Biology Department, Toulouse,
France; Université Paul Sabatier, Toulouse, France
| | - Carsten Sachse
- European Molecular Biology Laboratory, Structural Biology and Computational
Biology Programme, Heidelberg, Germany
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw,
Poland
- Department of Genetics & Biotechnology, Warsaw University, Warsaw,
Poland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich,
Switzerland
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg,
Germany
- Center for Structural Systems Biology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
23
|
Fan S, Li D, Fleming J, Hong Y, Chen T, Zhou L, Bi L, Wang D, Zhang X, Chen G. Purification and X-ray crystallographic analysis of 7-keto-8-aminopelargonic acid (KAPA) synthase from Mycobacterium smegmatis. Acta Crystallogr F Struct Biol Commun 2014; 70:1372-5. [PMID: 25286942 PMCID: PMC4188082 DOI: 10.1107/s2053230x14018317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/11/2014] [Indexed: 11/10/2022] Open
Abstract
7-Keto-8-aminopelargonic acid synthase (KAPA synthase; BioF) is an essential enzyme for mycobacterial growth that catalyses the first committed step in the biotin-synthesis pathway. It is a pyridoxal 5'-phosphate (PLP)-dependent enzyme and is a potential drug target. Here, the cloning, expression, purification and crystallization of KAPA synthase from Mycobacterium smegmatis (MsBioF) and the characterization of MsBioF crystals using X-ray diffraction are described. The crystals diffracted to 2.3 Å resolution and belonged to the monoclinic space group P21, with unit-cell parameters a = 70.88, b = 91.68, c = 109.84 Å, β = 97.8°. According to the molecular weight of MsBioF, the unit-cell parameters and the self-rotation function map, four molecules are present in each asymmetric unit with a VM value of 2.06 Å(3) Da(-1) and a solvent content of 40.20%.
Collapse
Affiliation(s)
- Shanghua Fan
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, 27 Shanda Nan Road, Jinan, Shandong 250100, People’s Republic of China
| | - Defeng Li
- National Laboratory of Biomacromolecules and Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Joy Fleming
- National Laboratory of Biomacromolecules and Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Yuan Hong
- National Laboratory of Biomacromolecules and Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Tao Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, People’s Republic of China
| | - Lin Zhou
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, People’s Republic of China
| | - Lijun Bi
- National Laboratory of Biomacromolecules and Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Dacheng Wang
- National Laboratory of Biomacromolecules and Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Xianen Zhang
- National Laboratory of Biomacromolecules and Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, 27 Shanda Nan Road, Jinan, Shandong 250100, People’s Republic of China
| |
Collapse
|
24
|
Abstract
ABSTRACT
Mycolic acids are major and specific long-chain fatty acids that represent essential components of the
Mycobacterium tuberculosis
cell envelope. They play a crucial role in the cell wall architecture and impermeability, hence the natural resistance of mycobacteria to most antibiotics, and represent key factors in mycobacterial virulence. Biosynthesis of mycolic acid precursors requires two types of fatty acid synthases (FASs), the eukaryotic-like multifunctional enzyme FAS I and the acyl carrier protein (ACP)–dependent FAS II systems, which consists of a series of discrete mono-functional proteins, each catalyzing one reaction in the pathway. Unlike FAS II synthases of other bacteria, the mycobacterial FAS II is incapable of
de novo
fatty acid synthesis from acetyl-coenzyme A, but instead elongates medium-chain-length fatty acids previously synthesized by FAS I, leading to meromycolic acids. In addition, mycolic acid subspecies with defined biological properties can be distinguished according to the chemical modifications decorating the meromycolate. Nearly all the genetic components involved in both elongation and functionalization of the meromycolic acid have been identified and are generally clustered in distinct transcriptional units. A large body of information has been generated on the enzymology of the mycolic acid biosynthetic pathway and on their genetic and biochemical/structural characterization as targets of several antitubercular drugs. This chapter is a comprehensive overview of mycolic acid structure, function, and biosynthesis. Special emphasis is given to recent work addressing the regulation of mycolic acid biosynthesis, adding new insights to our understanding of how pathogenic mycobacteria adapt their cell wall composition in response to environmental changes.
Collapse
|
25
|
Structure, activity, and inhibition of the Carboxyltransferase β-subunit of acetyl coenzyme A carboxylase (AccD6) from Mycobacterium tuberculosis. Antimicrob Agents Chemother 2014; 58:6122-32. [PMID: 25092705 DOI: 10.1128/aac.02574-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Mycobacterium tuberculosis, the carboxylation of acetyl coenzyme A (acetyl-CoA) to produce malonyl-CoA, a building block in long-chain fatty acid biosynthesis, is catalyzed by two enzymes working sequentially: a biotin carboxylase (AccA) and a carboxyltransferase (AccD). While the exact roles of the three different biotin carboxylases (AccA1 to -3) and the six carboxyltransferases (AccD1 to -6) in M. tuberculosis are still not clear, AccD6 in complex with AccA3 can synthesize malonyl-CoA from acetyl-CoA. A series of 10 herbicides that target plant acetyl-CoA carboxylases (ACC) were tested for inhibition of AccD6 and for whole-cell activity against M. tuberculosis. From the tested herbicides, haloxyfop, an arylophenoxypropionate, showed in vitro inhibition of M. tuberculosis AccD6, with a 50% inhibitory concentration (IC50) of 21.4 ± 1 μM. Here, we report the crystal structures of M. tuberculosis AccD6 in the apo form (3.0 Å) and in complex with haloxyfop-R (2.3 Å). The structure of M. tuberculosis AccD6 in complex with haloxyfop-R shows two molecules of the inhibitor bound on each AccD6 subunit. These results indicate the potential for developing novel therapeutics for tuberculosis based on herbicides with low human toxicity.
Collapse
|
26
|
Bazet Lyonnet B, Diacovich L, Cabruja M, Bardou F, Quémard A, Gago G, Gramajo H. Pleiotropic effect of AccD5 and AccE5 depletion in acyl-coenzyme A carboxylase activity and in lipid biosynthesis in mycobacteria. PLoS One 2014; 9:e99853. [PMID: 24950047 PMCID: PMC4064979 DOI: 10.1371/journal.pone.0099853] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/18/2014] [Indexed: 11/19/2022] Open
Abstract
Mycobacteria contain a large variety of fatty acids which are used for the biosynthesis of several complex cell wall lipids that have been implicated in the ability of the organism to resist host defenses. The building blocks for the biosynthesis of all these lipids are provided by a fairly complex set of acyl-CoA carboxylases (ACCases) whose subunit composition and roles within these organisms have not yet been clearly established. Previous biochemical and structural studies provided strong evidences that ACCase 5 from Mycobacterium tuberculosis is formed by the AccA3, AccD5 and AccE5 subunits and that this enzyme complex carboxylates acetyl-CoA and propionyl-CoA with a clear substrate preference for the latest. In this work we used a genetic approach to unambiguously demonstrate that the products of both accD5 and accE5 genes are essential for the viability of Mycobacterium smegmatis. By obtaining a conditional mutant on the accD5-accE5 operon, we also demonstrated that the main physiological role of this enzyme complex was to provide the substrates for fatty acid and mycolic acid biosynthesis. Furthermore, enzymatic and biochemical analysis of the conditional mutant provided strong evidences supporting the notion that AccD5 and/or AccE5 have an additional role in the carboxylation of long chain acyl-CoA prior to mycolic acid condensation. These studies represent a significant step towards a better understanding of the roles of ACCases in mycobacteria and confirm ACCase 5 as an interesting target for the development of new antimycobacterial drugs.
Collapse
Affiliation(s)
- Bernardo Bazet Lyonnet
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lautaro Diacovich
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Matías Cabruja
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Fabienne Bardou
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Département Tuberculose et Biologie des Infections, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Annaïk Quémard
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Département Tuberculose et Biologie des Infections, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Gabriela Gago
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail: (GG); (HG)
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail: (GG); (HG)
| |
Collapse
|
27
|
Xu WX, Zhang L, Mai JT, Peng RC, Yang EZ, Peng C, Wang HH. The Wag31 protein interacts with AccA3 and coordinates cell wall lipid permeability and lipophilic drug resistance in Mycobacterium smegmatis. Biochem Biophys Res Commun 2014; 448:255-60. [PMID: 24792177 DOI: 10.1016/j.bbrc.2014.04.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
Mycobacterium tuberculosis, especially drug resistant tuberculosis, is a serious threat to global human health. Compared with other bacterial pathogens, M. tuberculosis gains stronger natural drug resistance from its unusually lipid-rich cell wall. As a DivIVA homolog, Wag31 has been demonstrated to be closely involved in peptidoglycan synthesis, cell growth and cell division. Previous research rarely investigated the role of Wag31 in drug resistance. In this study, we found Wag31 knock-down in Mycobacterium smegmatis resulted in a co-decrease of the resistance to four lipophilic drugs (rifampicin, novobiocin, erythromycin and clofazimine) and an increase in the cell permeability to lipophilic molecules. Six proteins (AccA3, AccD4 and AccD5, Fas, InhA and MmpL3) that are involved in fatty acid and mycolic acid synthesis were identified in the Wag31 interactome through Co-Immunoprecipitation. The Wag31-AccA3 interaction was confirmed by the pull-down assay. AccA3 overexpression resulted in a decrease in lipid permeability and an increase in the resistance of rifampicin and novobiocin. It confirmed the close relationship of lipophilic drug resistance, lipid permeability and the Wag31-AccA3 interaction. These results demonstrated that Wag31 maintained the resistance to lipophilic drugs and that Wag31 could play a role in controlling the lipid permeability of the cell wall through the Wag31-AccA3 interaction.
Collapse
Affiliation(s)
- Wen-xi Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, PR China.
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, PR China.
| | - Jun-tao Mai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, PR China.
| | - Ru-chao Peng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, PR China.
| | - En-zhuo Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, PR China.
| | - Chao Peng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, PR China.
| | - Hong-hai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, PR China.
| |
Collapse
|
28
|
Mycolic acids: structures, biosynthesis, and beyond. ACTA ACUST UNITED AC 2013; 21:67-85. [PMID: 24374164 DOI: 10.1016/j.chembiol.2013.11.011] [Citation(s) in RCA: 367] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/04/2013] [Accepted: 11/27/2013] [Indexed: 11/24/2022]
Abstract
Mycolic acids are major and specific lipid components of the mycobacterial cell envelope and are essential for the survival of members of the genus Mycobacterium that contains the causative agents of both tuberculosis and leprosy. In the alarming context of the emergence of multidrug-resistant, extremely drug-resistant, and totally drug-resistant tuberculosis, understanding the biosynthesis of these critical determinants of the mycobacterial physiology is an important goal to achieve, because it may open an avenue for the development of novel antimycobacterial agents. This review focuses on the chemistry, structures, and known inhibitors of mycolic acids and describes progress in deciphering the mycolic acid biosynthetic pathway. The functional and key biological roles of these molecules are also discussed, providing a historical perspective in this dynamic area.
Collapse
|
29
|
Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 2012; 70:863-91. [PMID: 22869039 DOI: 10.1007/s00018-012-1096-0] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/07/2012] [Accepted: 07/09/2012] [Indexed: 12/14/2022]
Abstract
Biotin-dependent carboxylases include acetyl-CoA carboxylase (ACC), propionyl-CoA carboxylase (PCC), 3-methylcrotonyl-CoA carboxylase (MCC), geranyl-CoA carboxylase, pyruvate carboxylase (PC), and urea carboxylase (UC). They contain biotin carboxylase (BC), carboxyltransferase (CT), and biotin-carboxyl carrier protein components. These enzymes are widely distributed in nature and have important functions in fatty acid metabolism, amino acid metabolism, carbohydrate metabolism, polyketide biosynthesis, urea utilization, and other cellular processes. ACCs are also attractive targets for drug discovery against type 2 diabetes, obesity, cancer, microbial infections, and other diseases, and the plastid ACC of grasses is the target of action of three classes of commercial herbicides. Deficiencies in the activities of PCC, MCC, or PC are linked to serious diseases in humans. Our understanding of these enzymes has been greatly enhanced over the past few years by the crystal structures of the holoenzymes of PCC, MCC, PC, and UC. The structures reveal unanticipated features in the architectures of the holoenzymes, including the presence of previously unrecognized domains, and provide a molecular basis for understanding their catalytic mechanism as well as the large collection of disease-causing mutations in PCC, MCC, and PC. This review will summarize the recent advances in our knowledge on the structure and function of these important metabolic enzymes.
Collapse
|
30
|
Bergeret F, Gavalda S, Chalut C, Malaga W, Quémard A, Pedelacq JD, Daffé M, Guilhot C, Mourey L, Bon C. Biochemical and structural study of the atypical acyltransferase domain from the mycobacterial polyketide synthase Pks13. J Biol Chem 2012; 287:33675-90. [PMID: 22825853 DOI: 10.1074/jbc.m111.325639] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pks13 is a type I polyketide synthase involved in the final biosynthesis step of mycolic acids, virulence factors, and essential components of the Mycobacterium tuberculosis envelope. Here, we report the biochemical and structural characterization of a 52-kDa fragment containing the acyltransferase domain of Pks13. This fragment retains the ability to load atypical extender units, unusually long chain acyl-CoA with a predilection for carboxylated substrates. High resolution crystal structures were determined for the apo, palmitoylated, and carboxypalmitoylated forms. Structural conservation with type I polyketide synthases and related fatty-acid synthases also extends to the interdomain connections. Subtle changes could be identified both in the active site and in the upstream and downstream linkers in line with the organization displayed by this singular polyketide synthase. More importantly, the crystallographic analysis illustrated for the first time how a long saturated chain can fit in the core structure of an acyltransferase domain through a dedicated channel. The structures also revealed the unexpected binding of a 12-mer peptide that might provide insight into domain-domain interaction.
Collapse
Affiliation(s)
- Fabien Bergeret
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
AccD6, a key carboxyltransferase essential for mycolic acid synthesis in Mycobacterium tuberculosis, is dispensable in a nonpathogenic strain. J Bacteriol 2011; 193:6960-72. [PMID: 21984794 DOI: 10.1128/jb.05638-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Acetyl coenzyme A carboxylase (ACC) is a key enzyme providing a substrate for mycolic acid biosynthesis. Although in vitro studies have demonstrated that the protein encoded by accD6 (Rv2247) may be a functional carboxyltransferase subunit of ACC in Mycobacterium tuberculosis, the in vivo function and regulation of accD6 in slow- and fast-growing mycobacteria remain elusive. Here, directed mutagenesis demonstrated that although accD6 is essential for M. tuberculosis, it can be deleted in Mycobacterium smegmatis without affecting its cell envelope integrity. Moreover, we showed that although it is part of the type II fatty acid synthase operon, the accD6 gene of M. tuberculosis, but not that of M. smegmatis, possesses its own additional promoter (P(acc)). The expression level of accD6(Mtb) placed only under the control of P(acc) is 10-fold lower than that in wild-type M. tuberculosis but is sufficient to sustain cell viability. Importantly, this limited expression level affects growth, mycolic acid content, and cell morphology. These results provide the first in vivo evidence for AccD6 as a key player in the mycolate biosynthesis of M. tuberculosis, implicating AccD6 as the essential ACC subunit in pathogenic mycobacteria and an excellent target for new antitubercular compounds. Our findings also highlight important differences in the mechanism of acetyl carboxylation between pathogenic and nonpathogenic mycobacterial species.
Collapse
|
32
|
Woong Park S, Klotzsche M, Wilson DJ, Boshoff HI, Eoh H, Manjunatha U, Blumenthal A, Rhee K, Barry CE, Aldrich CC, Ehrt S, Schnappinger D. Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression. PLoS Pathog 2011; 7:e1002264. [PMID: 21980288 PMCID: PMC3182931 DOI: 10.1371/journal.ppat.1002264] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 07/28/2011] [Indexed: 12/04/2022] Open
Abstract
In the search for new drug targets, we evaluated the biotin synthetic pathway of Mycobacterium tuberculosis (Mtb) and constructed an Mtb mutant lacking the biotin biosynthetic enzyme 7,8-diaminopelargonic acid synthase, BioA. In biotin-free synthetic media, ΔbioA did not produce wild-type levels of biotinylated proteins, and therefore did not grow and lost viability. ΔbioA was also unable to establish infection in mice. Conditionally-regulated knockdown strains of Mtb similarly exhibited impaired bacterial growth and viability in vitro and in mice, irrespective of the timing of transcriptional silencing. Biochemical studies further showed that BioA activity has to be reduced by approximately 99% to prevent growth. These studies thus establish that de novo biotin synthesis is essential for Mtb to establish and maintain a chronic infection in a murine model of TB. Moreover, these studies provide an experimental strategy to systematically rank the in vivo value of potential drug targets in Mtb and other pathogens. We evaluated the biotin synthetic pathway of Mycobacterium tuberculosis (Mtb) as a new drug target by first generating an Mtb deletion mutant, ΔbioA, in which the biotin biosynthetic enzyme 7,8-diaminopelargonic acid synthase (BioA) has been inactivated. This mutant grew in the presence of biotin or des-thiobiotin, but not with an intermediate of the biotin biosynthesis pathway that requires BioA to be converted into biotin. Without exogenous biotin or des-thiobiotin, ΔbioA, was unable to produce biotinylated proteins, which are required for the biosynthesis of fatty acids, and thus died in biotin-free media. Using a regulatable promoter and different ribosome binding sequences we next constructed tightly controlled TetON mutants, in which expression of BioA could be induced with tetracyclines, but was inhibited in their absence. Characterization of these mutants during infections demonstrated that de novo biotin synthesis is not only required to establish infections but also to maintain bacterial persistence. Inhibition of BioA or other enzymes of the biotin biosynthesis pathways could thus be used to kill Mtb during both acute and chronic infections. Biochemical and immunological analyses of different Mtb mutants indicate that drugs targeting BioA would have to inactive approximately 99% of its activity to be effective.
Collapse
Affiliation(s)
- Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Marcus Klotzsche
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Daniel J. Wilson
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Helena I. Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Hyungjin Eoh
- Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | | | - Antje Blumenthal
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Clifton E. Barry
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Courtney C. Aldrich
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (SE); (DS)
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (SE); (DS)
| |
Collapse
|
33
|
Purushothaman S, Annamalai K, Tyagi AK, Surolia A. Diversity in functional organization of class I and class II biotin protein ligase. PLoS One 2011; 6:e16850. [PMID: 21390227 PMCID: PMC3048393 DOI: 10.1371/journal.pone.0016850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 01/16/2011] [Indexed: 11/28/2022] Open
Abstract
The cell envelope of Mycobacterium tuberculosis
(M.tuberculosis) is composed of a variety of lipids
including mycolic acids, sulpholipids, lipoarabinomannans, etc., which impart
rigidity crucial for its survival and pathogenesis. Acyl CoA carboxylase (ACC)
provides malonyl-CoA and methylmalonyl-CoA, committed precursors for fatty acid
and essential for mycolic acid synthesis respectively. Biotin Protein Ligase
(BPL/BirA) activates apo-biotin carboxyl carrier protein (BCCP) by biotinylating
it to an active holo-BCCP. A minimal peptide (Schatz), an efficient substrate
for Escherichia coli BirA, failed to serve as substrate for
M. tuberculosis Biotin Protein Ligase
(MtBPL). MtBPL specifically biotinylates
homologous BCCP domain, MtBCCP87, but not
EcBCCP87. This is a unique feature of
MtBPL as EcBirA lacks such a stringent
substrate specificity. This feature is also reflected in the lack of
self/promiscuous biotinylation by MtBPL. The N-terminus/HTH
domain of EcBirA has the self-biotinable lysine residue that is
inhibited in the presence of Schatz peptide, a peptide designed to act as a
universal acceptor for EcBirA. This suggests that when biotin
is limiting, EcBirA preferentially catalyzes, biotinylation of
BCCP over self-biotinylation. R118G mutant of EcBirA showed
enhanced self and promiscuous biotinylation but its homologue, R69A
MtBPL did not exhibit these properties. The catalytic
domain of MtBPL was characterized further by limited
proteolysis. Holo-MtBPL is protected from proteolysis by
biotinyl-5′ AMP, an intermediate of MtBPL catalyzed
reaction. In contrast, apo-MtBPL is completely digested by
trypsin within 20 min of co-incubation. Substrate selectivity and inability to
promote self biotinylation are exquisite features of MtBPL and
are a consequence of the unique molecular mechanism of an enzyme adapted for the
high turnover of fatty acid biosynthesis.
Collapse
Affiliation(s)
| | | | - Anil K. Tyagi
- Department of Biochemistry, University of
Delhi South Campus, New Delhi, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of
Science, Bangalore, India
- National Institute of Immunology, Aruna Asaf
Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
34
|
Gago G, Diacovich L, Arabolaza A, Tsai SC, Gramajo H. Fatty acid biosynthesis in actinomycetes. FEMS Microbiol Rev 2011; 35:475-97. [PMID: 21204864 DOI: 10.1111/j.1574-6976.2010.00259.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation for elucidating the type II FAS pathways in other bacteria (White et al., 2005). However, fatty acid biosynthesis is more diverse in the phylum Actinobacteria: Mycobacterium, possess both FAS systems while Streptomyces species have only the multienzyme FAS II system and Corynebacterium species exclusively FAS I. In this review, we present an overview of the genome organization, biochemical properties and physiological relevance of the two FAS systems in the three genera of actinomycetes mentioned above. We also address in detail the biochemical and structural properties of the acyl-CoA carboxylases (ACCases) that catalyzes the first committed step of fatty acid synthesis in actinomycetes, and discuss the molecular bases of their substrate specificity and the structure-based identification of new ACCase inhibitors with antimycobacterial properties.
Collapse
Affiliation(s)
- Gabriela Gago
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | |
Collapse
|
35
|
Nickel J, Irzik K, van Ooyen J, Eggeling L. The TetR-type transcriptional regulator FasR of Corynebacterium glutamicum controls genes of lipid synthesis during growth on acetate. Mol Microbiol 2011; 78:253-65. [PMID: 20923423 DOI: 10.1111/j.1365-2958.2010.07337.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The addition of fatty acids to either Escherichia coli or Bacillus subtilis elicits an elaborate cellular response of the lipid metabolism. We found that in Corynebacterium glutamicum the expression of accD1 encoding the β-subunit of the essential acetyl-CoA carboxylase is repressed in acetate-grown cells without the addition of fatty acids. The TetR-type transcriptional regulator NCgl2404, termed FasR, was identified and deleted. During growth on acetate, but not on glucose, 17 genes are differentially expressed in the deletion mutant, among them accD1, and fasA and fasB both encoding fatty acid synthases, which were upregulated. Determination of the 5' ends of accD1, fasA, fasB and accBC together with the use of isolated FasR protein identified the FasR binding site, fasO, which is located within the accD1 and fasA transcript initiation site thus blocking transcription by RNA polymerase binding directly. The identified fasO motif is present in C. efficiens or C. diphtheriae, too, and it is actually similarly positioned in these bacteria within the 5' ends of the accD1 and fasA transcripts, and a fasR orthologue is also present. The identification of the FasR-fasO system in Corynebacteriaceae might indicate a conserved transcriptional control of the unique lipid synthesis in these mycolic acid-containing bacteria.
Collapse
Affiliation(s)
- Jens Nickel
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | | | | |
Collapse
|
36
|
Demirev AV, Khanal A, Sedai BR, Lim SK, Na MK, Nam DH. The role of acyl-coenzyme A carboxylase complex in lipstatin biosynthesis of Streptomyces toxytricini. Appl Microbiol Biotechnol 2010; 87:1129-39. [PMID: 20437235 PMCID: PMC2886142 DOI: 10.1007/s00253-010-2587-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 11/30/2022]
Abstract
Streptomyces toxytricini produces lipstatin, a specific inhibitor of pancreatic lipase, which is derived from two fatty acid moieties with eight and 14 carbon atoms. The pccB gene locus in 10.6 kb fragment of S. toxytricini chromosomal DNA contains three genes for acyl-coenzyme A carboxylase (ACCase) complex accA3, pccB, and pccE that are presumed to be involved in secondary metabolism. The pccB gene encoding a β subunit of ACCase [carboxyltransferase (CT)] was identified upstream of pccE gene for a small protein of ε subunit. The accA3 encoding the α subunit of ACCase [biotin carboxylase (BC)] was also identified downstream of pccB gene. When the pccB and pccE genes were inactivated by homologous recombination, the lipstatin production was reduced as much as 80%. In contrast, the accumulation of another compound, tetradeca-5.8-dienoic acid (the major lipstatin precursor), was 4.5-fold increased in disruptant compared with wild-type. It implies that PccB of S. toxytricini is involved in the activation of octanoic acid to hexylmalonic acid for lipstatin biosynthesis.
Collapse
Affiliation(s)
| | - Anamika Khanal
- Faculty of Pharmacy, Yeungnam University, Gyongsan, 712-749 Korea
| | - Bhishma R. Sedai
- Faculty of Pharmacy, Yeungnam University, Gyongsan, 712-749 Korea
| | - Si Kyu Lim
- GenoTech Corporation, Daejeon, 305-343 Korea
| | - Min Kyun Na
- Faculty of Pharmacy, Yeungnam University, Gyongsan, 712-749 Korea
| | - Doo Hyun Nam
- Faculty of Pharmacy, Yeungnam University, Gyongsan, 712-749 Korea
| |
Collapse
|
37
|
Gavalda S, Léger M, van der Rest B, Stella A, Bardou F, Montrozier H, Chalut C, Burlet-Schiltz O, Marrakchi H, Daffé M, Quémard A. The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis. J Biol Chem 2009; 284:19255-64. [PMID: 19436070 DOI: 10.1074/jbc.m109.006940] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The last steps of the biosynthesis of mycolic acids, essential and specific lipids of Mycobacterium tuberculosis and related bacteria, are catalyzed by proteins encoded by the fadD32-pks13-accD4 cluster. Here, we produced and purified an active form of the Pks13 polyketide synthase, with a phosphopantetheinyl (P-pant) arm at both positions Ser-55 and Ser-1266 of its two acyl carrier protein (ACP) domains. Combination of liquid chromatography-tandem mass spectrometry of protein tryptic digests and radiolabeling experiments showed that, in vitro, the enzyme specifically loads long-chain 2-carboxyacyl-CoA substrates onto the P-pant arm of its C-terminal ACP domain via the acyltransferase domain. The acyl-AMPs produced by the FadD32 enzyme are specifically transferred onto the ketosynthase domain after binding to the P-pant moiety of the N-terminal ACP domain of Pks13 (N-ACP(Pks13)). Unexpectedly, however, the latter step requires the presence of active FadD32. Thus, the couple FadD32-(N-ACP(Pks13)) composes the initiation module of the mycolic condensation system. Pks13 ultimately condenses the two loaded fatty acyl chains to produce alpha-alkyl beta-ketoacids, the precursors of mycolic acids. The developed in vitro assay will constitute a strategic tool for antimycobacterial drug screening.
Collapse
Affiliation(s)
- Sabine Gavalda
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Départements Mécanismes Moléculaires des Infections Mycobacteriennes, Biologie du Cancer, 205 route de Narbonne, F-31077 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kurth DG, Gago GM, de la Iglesia A, Bazet Lyonnet B, Lin TW, Morbidoni HR, Tsai SC, Gramajo H. ACCase 6 is the essential acetyl-CoA carboxylase involved in fatty acid and mycolic acid biosynthesis in mycobacteria. MICROBIOLOGY-SGM 2009; 155:2664-2675. [PMID: 19423629 DOI: 10.1099/mic.0.027714-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycolic acids are essential for the survival, virulence and antibiotic resistance of the human pathogen Mycobacterium tuberculosis. Inhibitors of mycolic acid biosynthesis, such as isoniazid and ethionamide, have been used as efficient drugs for the treatment of tuberculosis. However, the increase in cases of multidrug-resistant tuberculosis has prompted a search for new targets and agents that could also affect synthesis of mycolic acids. In mycobacteria, the acyl-CoA carboxylases (ACCases) provide the building blocks for de novo fatty acid biosynthesis by fatty acid synthase (FAS) I and for the elongation of FAS I products by the FAS II complex to produce meromycolic acids. By generating a conditional mutant in the accD6 gene of Mycobacterium smegmatis, we demonstrated that AccD6 is the essential carboxyltransferase component of the ACCase 6 enzyme complex implicated in the biosynthesis of malonyl-CoA, the substrate of the two FAS enzymes of Mycobacterium species. Based on the conserved structure of the AccD5 and AccD6 active sites we screened several inhibitors of AccD5 as potential inhibitors of AccD6 and found that the ligand NCI-172033 was capable of inhibiting AccD6 with an IC(50) of 8 microM. The compound showed bactericidal activity against several pathogenic Mycobacterium species by producing a strong inhibition of both fatty acid and mycolic acid biosynthesis at minimal inhibitory concentrations. Overexpression of accD6 in M. smegmatis conferred resistance to NCI-172033, confirming AccD6 as the main target of the inhibitor. These results define the biological role of a key ACCase in the biosynthesis of membrane and cell envelope fatty acids, and provide a new target, AccD6, for rational development of novel anti-mycobacterial drugs.
Collapse
Affiliation(s)
- Daniel G Kurth
- Microbiology Division, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Gabriela M Gago
- Microbiology Division, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Agustina de la Iglesia
- Microbiology Division, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Bernardo Bazet Lyonnet
- Microbiology Division, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Ting-Wan Lin
- Department of Molecular Biology and Biochemistry and Department of Chemistry, University of California, Irvine, CA 92612, USA
| | - Héctor R Morbidoni
- Microbiology Division, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Argentina
| | - Shiou-Chuan Tsai
- Department of Molecular Biology and Biochemistry and Department of Chemistry, University of California, Irvine, CA 92612, USA
| | - Hugo Gramajo
- Microbiology Division, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| |
Collapse
|
39
|
Chopra T, Gokhale RS. Chapter 12 Polyketide Versatility in the Biosynthesis of Complex Mycobacterial Cell Wall Lipids. Methods Enzymol 2009; 459:259-94. [DOI: 10.1016/s0076-6879(09)04612-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Gande R, Dover LG, Krumbach K, Besra GS, Sahm H, Oikawa T, Eggeling L. The two carboxylases of Corynebacterium glutamicum essential for fatty acid and mycolic acid synthesis. J Bacteriol 2007; 189:5257-64. [PMID: 17483212 PMCID: PMC1951862 DOI: 10.1128/jb.00254-07] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The suborder Corynebacterianeae comprises bacteria like Mycobacterium tuberculosis and Corynebacterium glutamicum, and these bacteria contain in addition to the linear fatty acids, unique alpha-branched beta-hydroxy fatty acids, called mycolic acids. Whereas acetyl-coenzyme A (CoA) carboxylase activity is required to provide malonyl-CoA for fatty acid synthesis, a new type of carboxylase is apparently additionally present in these bacteria. It activates the alpha-carbon of a linear fatty acid by carboxylation, thus enabling its decarboxylative condensation with a second fatty acid to afford mycolic acid synthesis. We now show that the acetyl-CoA carboxylase of C. glutamicum consists of the biotinylated alpha-subunit AccBC, the beta-subunit AccD1, and the small peptide AccE of 8.9 kDa, forming an active complex of approximately 812,000 Da. The carboxylase involved in mycolic acid synthesis is made up of the two highly similar beta-subunits AccD2 and AccD3 and of AccBC and AccE, the latter two identical to the subunits of the acetyl-CoA carboxylase complex. Since AccD2 and AccD3 orthologues are present in all Corynebacterianeae, these polypeptides are vital for mycolic acid synthesis forming the unique hydrophobic outer layer of these bacteria, and we speculate that the two beta-subunits present serve to lend specificity to this unique large multienzyme complex.
Collapse
Affiliation(s)
- Roland Gande
- Institute for Biotechnology, Research Centre Juelich, D-52425 Juelich, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Oliynyk M, Samborskyy M, Lester JB, Mironenko T, Scott N, Dickens S, Haydock SF, Leadlay PF. Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol 2007; 25:447-53. [PMID: 17369815 DOI: 10.1038/nbt1297] [Citation(s) in RCA: 313] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 02/21/2007] [Indexed: 11/09/2022]
Abstract
Saccharopolyspora erythraea is used for the industrial-scale production of the antibiotic erythromycin A, derivatives of which play a vital role in medicine. The sequenced chromosome of this soil bacterium comprises 8,212,805 base pairs, predicted to encode 7,264 genes. It is circular, like those of the pathogenic actinomycetes Mycobacterium tuberculosis and Corynebacterium diphtheriae, but unlike the linear chromosomes of the model actinomycete Streptomyces coelicolor A3(2) and the closely related Streptomyces avermitilis. The S. erythraea genome contains at least 25 gene clusters for production of known or predicted secondary metabolites, at least 72 genes predicted to confer resistance to a range of common antibiotic classes and many sets of duplicated genes to support its saprophytic lifestyle. The availability of the genome sequence of S. erythraea will improve insight into its biology and facilitate rational development of strains to generate high-titer producers of clinically important antibiotics.
Collapse
Affiliation(s)
- Markiyan Oliynyk
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Daniel J, Oh TJ, Lee CM, Kolattukudy PE. AccD6, a member of the Fas II locus, is a functional carboxyltransferase subunit of the acyl-coenzyme A carboxylase in Mycobacterium tuberculosis. J Bacteriol 2006; 189:911-7. [PMID: 17114269 PMCID: PMC1797314 DOI: 10.1128/jb.01019-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mycobacterium tuberculosis acyl-coenzyme A (CoA) carboxylases provide the building blocks for de novo fatty acid biosynthesis by fatty acid synthase I (FAS I) and for the elongation of FAS I end products by the FAS II complex to produce meromycolic acids. The M. tuberculosis genome contains three biotin carboxylase subunits (AccA1 to -3) and six carboxyltransferase subunits (AccD1 to -6), with accD6 located in a genetic locus that contains members of the FAS II complex. We found by quantitative real-time PCR analysis that the transcripts of accA3, accD4, accD5, and accD6 are expressed at high levels during the exponential growth phases of M. tuberculosis in vitro. Microarray analysis of M. tuberculosis transcripts indicated that the transcripts for accA3, accD4, accD5, accD6, and accE were repressed during later growth stages. AccD4 and AccD5 have been previously studied, but there are no reports on the function of AccD6. We expressed AccA3 (alpha3) and AccD6 (beta6) in E. coli and purified them by affinity chromatography. We report here that reconstitution of the alpha3-beta6 complex yielded an active acyl-CoA carboxylase. Kinetic characterization of this carboxylase showed that it preferentially carboxylated acetyl-CoA (1.1 nmol/mg/min) over propionyl-CoA (0.36 nmol/mg/min). The activity of the alpha3-beta6 complex was inhibited by the epsilon subunit. The alpha3-beta6 carboxylase was inhibited significantly by dimethyl itaconate, C75, haloxyfop, cerulenin, and 1,2-cyclohexanedione. Our results suggest that the beta6 subunit could play an important role in mycolic acid biosynthesis by providing malonyl-CoA to the FAS II complex.
Collapse
Affiliation(s)
- Jaiyanth Daniel
- Burnett College of Biomedical Sciences, University of Central Florida, BMS 136, 4000 Central Florida Blvd., Orlando, FL 32816-2364, USA
| | | | | | | |
Collapse
|
43
|
Jackson M, Stadthagen G, Gicquel B. Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities. Tuberculosis (Edinb) 2006; 87:78-86. [PMID: 17030019 DOI: 10.1016/j.tube.2006.05.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
The cell envelope of pathogenic mycobacteria is highly distinctive in that it contains a number of lipids esterified with structurally related long-chain multi-methyl-branched fatty acids. These lipids have long been thought to play important roles in the cell envelope structure as well as in the pathogenicity of the tubercle bacillus. This review summarizes what is known about the biosynthesis of long-chain multiple methyl-branched fatty acid-containing lipids in Mycobacterium tuberculosis and describes the most recent findings about their regulation, transport across the different layers of the cell envelope and their biological functions.
Collapse
Affiliation(s)
- Mary Jackson
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|