1
|
Bansod S, Dodhiawala PB, Geng Y, Bulle A, Liu P, Li L, Townsend R, Grierson PM, Held JM, Adhikari H, Lim KH. The TRIM4 E3 ubiquitin ligase degrades TPL2 and is modulated by oncogenic KRAS. Cell Rep 2024; 43:114667. [PMID: 39178114 PMCID: PMC11472288 DOI: 10.1016/j.celrep.2024.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/24/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024] Open
Abstract
Loss-of-function mutations in the C terminus of TPL2 kinase promote oncogenesis by impeding its proteasomal degradation, leading to sustained protein expression. However, the degradation mechanism for TPL2 has remained elusive. Through proximity-dependent biotin identification (BioID), we uncovered tripartite motif-containing 4 (TRIM4) as the E3 ligase that binds and degrades TPL2 by polyubiquitination of lysines 415 and 439. The naturally occurring TPL2 mutants R442H and E188K exhibit impaired TRIM4 binding, enhancing their stability. We further discovered that TRIM4 itself is stabilized by another E3 ligase, TRIM21, which in turn is regulated by KRAS. Mutant KRAS recruits RNF185 to degrade TRIM21 and subsequently TRIM4, thereby stabilizing TPL2. In the presence of mutant KRAS, TPL2 phosphorylates and degrades GSK3β, resulting in β-catenin stabilization and activation of the Wnt pathway. These findings elucidate the physiological mechanisms regulating TPL2 and its exploitation by mutant KRAS, underscoring the need to develop TPL2 inhibitors for KRAS-mutant cancers.
Collapse
Affiliation(s)
- Sapana Bansod
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Paarth B Dodhiawala
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yutong Geng
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashenafi Bulle
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Peng Liu
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lin Li
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Reid Townsend
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick M Grierson
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason M Held
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Hema Adhikari
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Yshii LM, Manfiolli AO, Denadai-Souza A, Kinoshita PF, Gomes MD, Scavone C. Tumor necrosis factor receptor-associated factor 6 interaction with alpha-synuclein enhances cell death through the Nuclear Factor-kB pathway. IBRO Rep 2020; 9:218-223. [PMID: 32984640 PMCID: PMC7498709 DOI: 10.1016/j.ibror.2020.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 11/30/2022] Open
Abstract
TRAF6 binds to both WT and the mutant form A30 P asyn in SH-SY5Y cell model. The activation of NF-κB leads to changes in cytokines levels induced by TRAF6 - WT asyn interaction decreasing cell viability. The interaction between TRAF6 and A30P asyn does not induce NF-κB activation and cytokine regulation in SH-SY5Y cells. The present work demonstrates a novel role of TRAF6 in the pathophysiology of Parkinson's disease.
Background Parkinson's disease (PD) is a neurodegenerative disease characterized by intracellular inclusions named Lewy bodies (LB), and alpha-synuclein (asyn) is the major component of these protein aggregates. The precise physiological and pathological roles of asyn are not fully understood. Nevertheless, asyn present in LB is ubiquitinated but fails to reach the 26S proteasome. The mutation A30 P is related to an aggressive and early-onset form of PD. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an E3 ubiquitin ligase, and it interacts and ubiquitinates the asyn in atypical chains (lysine K6, K27, K29, and K33). Methods: Here, we investigated the role of TRAF6 interaction with asyn and the involvement of nuclear factor κB (NF-κB), a key transcription factor in pro-inflammatory signaling pathway activation. Results and Conclusion We demonstrated that TRAF6 binds to both WT and the mutant form A30 P asyn in an SH-SY5Y cell model. Additionally, the interaction between TRAF6 and WT asyn induced an increase in the activation of NF-κB, leading to changes in TNF, IL-1β and IL-10 levels and culminating in reduced cell viability. Interestingly, the activation of NF-κB and gene regulation were not found in A30 P asyn. These data point to a novel role of TRAF6 in the pathophysiology of PD.
Collapse
Affiliation(s)
- Lidia M Yshii
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Adriana O Manfiolli
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Alexandre Denadai-Souza
- Section of Experimental Endocrinology, Department of Pharmacology, Federal University of Sao Paulo, São Paulo, 04044-020, Brazil
| | - Paula F Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Marcelo D Gomes
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, 05508-900, Brazil
| |
Collapse
|
3
|
Njunge LW, Estania AP, Guo Y, Liu W, Yang L. Tumor progression locus 2 (TPL2) in tumor-promoting Inflammation, Tumorigenesis and Tumor Immunity. Am J Cancer Res 2020; 10:8343-8364. [PMID: 32724474 PMCID: PMC7381748 DOI: 10.7150/thno.45848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Over the years, tumor progression locus 2 (TPL2) has been identified as an essential modulator of immune responses that conveys inflammatory signals to downstream effectors, subsequently modulating the generation and function of inflammatory cells. TPL2 is also differentially expressed and activated in several cancers, where it is associated with increased inflammation, malignant transformation, angiogenesis, metastasis, poor prognosis and therapy resistance. However, the relationship between TPL2-driven inflammation, tumorigenesis and tumor immunity has not been addressed. Here, we reconcile the function of TPL2-driven inflammation to oncogenic functions such as inflammation, proliferation, apoptosis resistance, angiogenesis, metastasis, immunosuppression and immune evasion. We also address the controversies reported on TPL2 function in tumor-promoting inflammation and tumorigenesis, and highlight the potential role of the TPL2 adaptor function in regulating the mechanisms leading to pro-tumorigenic inflammation and tumor progression. We discuss the therapeutic implications and limitations of targeting TPL2 for cancer treatment. The ideas presented here provide some new insight into cancer pathophysiology that might contribute to the development of more integrative and specific anti-inflammatory and anti-cancer therapeutics.
Collapse
|
4
|
Wang C, Long W, Peng C, Hu L, Zhang Q, Wu A, Zhang X, Duan X, Wong CCL, Tanaka Y, Xia Z. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains. PLoS Pathog 2016; 12:e1005584. [PMID: 27082114 PMCID: PMC4833305 DOI: 10.1371/journal.ppat.1005584] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/29/2016] [Indexed: 11/29/2022] Open
Abstract
The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation. Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM), a distinct neurological disorder with inflammatory symptoms and incomplete paralysis of the limbs, and adult T-cell leukemia/lymphoma (ATL), a highly aggressive malignant proliferation of CD4+ T lymphocytes. Both TSP/HAM and ATL are mainly driven by the activation of IκB kinase (IKK)-NF-κB stimulated by HTLV-1 oncoprotein Tax. The molecular mechanism by which Tax activates IKK remains unclear. Here, we found that Tax is an E3 ubiquitin ligase, which, together with its cognate ubiquitin-conjugating enzymes (E2s) UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of unanchored free mixed-linkage polyubiquitin chains. The polyubiquitin chains can activate IKK complex directly by binding to the NEMO subunit. Our studies uncovered the essential cellular factors hijacked by HTLV-1 for infection and pathogenesis, as well as the biochemical function and the underlying mechanism of Tax in the process of IKK activation. Our work might shed light on potential development of therapeutics for TSP/HAM and ATL.
Collapse
Affiliation(s)
- Chong Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenying Long
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Peng
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Lin Hu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiong Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ailing Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoqing Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Catherine C. L. Wong
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa, Japan
| | - Zongping Xia
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
5
|
Xiao Y, Jin J, Chang M, Nakaya M, Hu H, Zou Q, Zhou X, Brittain GC, Cheng X, Sun SC. TPL2 mediates autoimmune inflammation through activation of the TAK1 axis of IL-17 signaling. ACTA ACUST UNITED AC 2014; 211:1689-702. [PMID: 24980047 PMCID: PMC4113941 DOI: 10.1084/jem.20132640] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TPL2 is required for Th17-mediated neuroinflammation during EAE by regulating the TAK1 signaling axis downstream of the IL-17R in astrocytes. Development of autoimmune diseases, such as multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), involves the inflammatory action of Th1 and Th17 cells, but the underlying signaling mechanism is incompletely understood. We show that the kinase TPL2 is a crucial mediator of EAE and is required for the pathological action of Th17 cells. TPL2 serves as a master kinase mediating the activation of multiple downstream pathways stimulated by the Th17 signature cytokine IL-17. TPL2 acts by linking the IL-17 receptor signal to the activation of TAK1, which involves a dynamic mechanism of TPL2–TAK1 interaction and TPL2-mediated phosphorylation and catalytic activation of TAK1. These results suggest that TPL2 mediates TAK1 axis of IL-17 signaling, thereby promoting autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Yichuan Xiao
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jin Jin
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Mikyoung Chang
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Mako Nakaya
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Hongbo Hu
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Qiang Zou
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Xiaofei Zhou
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - George C Brittain
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Xuhong Cheng
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Shao-Cong Sun
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030 The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030
| |
Collapse
|
6
|
Gantke T, Sriskantharajah S, Sadowski M, Ley SC. IκB kinase regulation of the TPL-2/ERK MAPK pathway. Immunol Rev 2012; 246:168-82. [DOI: 10.1111/j.1600-065x.2012.01104.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATL), whereas the highly related HTLV-2 is not associated with ATL or other cancers. In addition to ATL leukemogenesis, studies of the HTLV viruses also provide an exceptional model for understanding basic pathogenic mechanisms of virus-host interactions and human oncogenesis. Accumulating evidence suggests that the viral regulatory protein Tax and host inflammatory transcription factor NF-κB are largely responsible for the different pathogenic potentials of HTLV-1 and HTLV-2. Here, we discuss the molecular mechanisms of HTLV-1 oncogenic pathogenesis with a focus on the interplay between the Tax oncoprotein and NF-κB pro-oncogenic signaling. We also outline some of the most intriguing and outstanding questions in the fields of HTLV and NF-κB. Answers to those questions will greatly advance our understanding of ATL leukemogenesis and other NF-κB-associated tumorigenesis and will help us design personalized cancer therapies.
Collapse
|
8
|
Lee DE, Lee KW, Byun S, Jung SK, Song N, Lim SH, Heo YS, Kim JE, Kang NJ, Kim BY, Bowden GT, Bode AM, Lee HJ, Dong Z. 7,3',4'-Trihydroxyisoflavone, a metabolite of the soy isoflavone daidzein, suppresses ultraviolet B-induced skin cancer by targeting Cot and MKK4. J Biol Chem 2011; 286:14246-56. [PMID: 21378167 PMCID: PMC3077626 DOI: 10.1074/jbc.m110.147348] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 02/28/2011] [Indexed: 01/05/2023] Open
Abstract
Nonmelanoma skin cancer is one of the most frequently occurring cancers in the United States. Chronic exposure to UVB irradiation is a major cause of this cancer. Daidzein, along with genistein, is a major isoflavone found in soybeans; however, little is known about the chemopreventive effects of daidzein and its metabolites in UVB-induced skin cancer. Here, we found that 7,3',4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, effectively inhibits UVB-induced cyclooxygenase 2 (COX-2) expression through the inhibition of NF-κB transcription activity in mouse skin epidermal JB6 P+ cells. In contrast, daidzein had no effect on COX-2 expression levels. Data from Western blot and kinase assays showed that 7,3',4'-THIF inhibited Cot and MKK4 activity, thereby suppressing UVB-induced phosphorylation of mitogen-activated protein kinases. Pull-down assays indicated that 7,3',4'-THIF competed with ATP to inhibit Cot or MKK4 activity. Topical application of 7,3',4'-THIF clearly suppressed the incidence and multiplicity of UVB-induced tumors in hairless mouse skin. Hairless mouse skin results also showed that 7,3',4'-THIF inhibits Cot or MKK4 kinase activity directly, resulting in suppressed UVB-induced COX-2 expression. A docking study revealed that 7,3',4'-THIF, but not daidzein, easily docked to the ATP binding site of Cot and MKK4, which is located between the N- and C-lobes of the kinase domain. Collectively, these results provide insight into the biological actions of 7,3',4'-THIF, a potential skin cancer chemopreventive agent.
Collapse
Affiliation(s)
- Dong Eun Lee
- From the World Class University, Biomodulation Major, Department of Agricultural Biotechnology
- Food Science and Biotechnology Program, Seoul National University, Seoul 151-921, Republic of Korea
- The Hormel Institute, University of Minnesota, Minnesota 55912
| | - Ki Won Lee
- Food Science and Biotechnology Program, Seoul National University, Seoul 151-921, Republic of Korea
| | - Sanguine Byun
- From the World Class University, Biomodulation Major, Department of Agricultural Biotechnology
- Food Science and Biotechnology Program, Seoul National University, Seoul 151-921, Republic of Korea
- The Hormel Institute, University of Minnesota, Minnesota 55912
| | - Sung Keun Jung
- From the World Class University, Biomodulation Major, Department of Agricultural Biotechnology
- Food Science and Biotechnology Program, Seoul National University, Seoul 151-921, Republic of Korea
- The Hormel Institute, University of Minnesota, Minnesota 55912
| | - Nury Song
- From the World Class University, Biomodulation Major, Department of Agricultural Biotechnology
- Food Science and Biotechnology Program, Seoul National University, Seoul 151-921, Republic of Korea
- The Hormel Institute, University of Minnesota, Minnesota 55912
| | - Sung Hwan Lim
- From the World Class University, Biomodulation Major, Department of Agricultural Biotechnology
| | - Yong-Seok Heo
- the Department of Chemistry, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jong Eun Kim
- From the World Class University, Biomodulation Major, Department of Agricultural Biotechnology
- Food Science and Biotechnology Program, Seoul National University, Seoul 151-921, Republic of Korea
- The Hormel Institute, University of Minnesota, Minnesota 55912
| | - Nam Joo Kang
- the School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Bo Yeon Kim
- the Korea Research Institute of Bioscience and Biotechnology, Choongbuk 363-883, Republic of Korea, and
| | - G. Tim Bowden
- the University of Arizona Cancer Center, Tucson, Arizona 85724
| | - Ann M. Bode
- Food Science and Biotechnology Program, Seoul National University, Seoul 151-921, Republic of Korea
| | - Hyong Joo Lee
- From the World Class University, Biomodulation Major, Department of Agricultural Biotechnology
| | - Zigang Dong
- Food Science and Biotechnology Program, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
9
|
Vougioukalaki M, Kanellis DC, Gkouskou K, Eliopoulos AG. Tpl2 kinase signal transduction in inflammation and cancer. Cancer Lett 2011; 304:80-9. [PMID: 21377269 DOI: 10.1016/j.canlet.2011.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 01/11/2023]
Abstract
The activation of mitogen-activated protein kinases (MAPKs) is critically involved in inflammatory and oncogenic events. Tumor progression locus 2 (Tpl2), also known as COT and MAP3 kinase 8 (MAP3K8), is a serine-threonine kinase with an important physiological role in tumor necrosis factor, interleukin-1, CD40, Toll-like receptor and G protein-coupled receptor-mediated ERK MAPK signaling. Whilst the full characterization of the biochemical events that lead to the activation of Tpl2 still represent a major challenge, genetic and molecular evidence has highlighted interesting interactions with the NF-κB network. Here, we provide an overview of the multifaceted functions of Tpl2 and the molecular mechanisms that govern its regulation.
Collapse
Affiliation(s)
- Maria Vougioukalaki
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, University of Crete Medical School, Institute for Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece
| | | | | | | |
Collapse
|
10
|
Abstract
NF-κB is a pivotal transcription factor that controls cell survival and proliferation in diverse physiological processes. The activity of NF-κB is tightly controlled through its cytoplasmic sequestration by specific inhibitors, IκBs. Various cellular stimuli induce the activation of an IκB kinase, which phosphorylates IκBs and triggers their proteasomal degradation, causing nuclear translocation of activated NF-κB. Under normal conditions, the activation of NF-κB occurs transiently, thus ensuring rapid but temporary induction of target genes. Deregulated NF-κB activation contributes to the development of various diseases, including cancers and immunological disorders. Accumulated studies demonstrate that the NF-κB signaling pathway is a target of several human oncogenic viruses, including the human T cell leukemia virus type 1, the Kaposi sarcoma-associated herpesvirus, and the Epstein-Bar virus. These viruses encode specific oncoproteins that target different signaling components of the NF-κB pathway, leading to persistent activation of NF-κB. This chapter will discuss the molecular mechanisms by which NF-κB is activated by the viral oncoproteins.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065
| |
Collapse
|
11
|
Regulation and function of TPL-2, an IκB kinase-regulated MAP kinase kinase kinase. Cell Res 2010; 21:131-45. [PMID: 21135874 DOI: 10.1038/cr.2010.173] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The IκB kinase (IKK) complex plays a well-documented role in innate and adaptive immunity. This function has been widely attributed to its role as the central activator of the NF-κB family of transcription factors. However, another important consequence of IKK activation is the regulation of TPL-2, a MEK kinase that is required for activation of ERK-1/2 MAP kinases in myeloid cells following Toll-like receptor and TNF receptor stimulation. In unstimulated cells, TPL-2 is stoichiometrically complexed with the NF-κB inhibitory protein NF-κB1 p105, which blocks TPL-2 access to its substrate MEK, and the ubiquitin-binding protein ABIN-2 (A20-binding inhibitor of NF-κB 2), both of which are required to maintain TPL-2 protein stability. Following agonist stimulation, the IKK complex phosphorylates p105, triggering its K48-linked ubiquitination and degradation by the proteasome. This releases TPL-2 from p105-mediated inhibition, facilitating activation of MEK, in addition to modulating NF-κB activation by liberating associated Rel subunits for translocation into the nucleus. IKK-induced proteolysis of p105, therefore, can directly regulate both NF-κB and ERK MAP kinase activation via NF-κB1 p105. TPL-2 is critical for production of the proinflammatory cytokine TNF during inflammatory responses. Consequently, there has been considerable interest in the pharmaceutical industry to develop selective TPL-2 inhibitors as drugs for the treatment of TNF-dependent inflammatory diseases, such as rheumatoid arthritis and inflammatory bowel disease. This review summarizes our current understanding of the regulation of TPL-2 signaling function, and also the complex positive and negative roles of TPL-2 in immune and inflammatory responses.
Collapse
|
12
|
Molecular profiling of CD3-CD4+ T cells from patients with the lymphocytic variant of hypereosinophilic syndrome reveals targeting of growth control pathways. Blood 2009; 114:2969-83. [PMID: 19608752 DOI: 10.1182/blood-2008-08-175091] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The clonal CD3(-)CD4(+) T-cell population characterizing lymphocytic variant hypereosinophilic syndrome (L-HES) persists for years, with a subgroup of patients ultimately progressing to T lymphoma. The molecular changes associated with the premalignant clone and the emergence of malignant subclones are unknown, precluding the development of targeted therapy for this HES variant. In this study, we used whole genome arrays to examine gene expression in the CD3(-)CD4(+) T cells and found that 850 genes were differentially regulated during chronic disease compared with CD3(+)CD4(+) T cells from healthy donors. Changes in the expression of 349 genes were altered in association with the clinical progression from chronic L-HES to T lymphoma in 1 patient, with 87 of 349 genes representing further changes in genes whose expression was altered in all chronic disease patients (87 of 850). Array analysis after CD2/CD28-mediated activation revealed that the major gene expression changes observed in the CD3(-)CD4(+) T cells do not reflect activation induced alterations but rather pathways involved in T-cell homeostasis, including transforming growth factor-beta signaling, apoptosis, and T-cell maturation, signaling, and migration. Examination of microRNA expression in the CD3(-)CD4(+) T cells from patients with chronic disease identified 23 microRNAs that changed significantly, among which miR-125a further decreased in association with one patient's evolution to T lymphoma.
Collapse
|
13
|
BCL11B enhances TCR/CD28-triggered NF-kappaB activation through up-regulation of Cot kinase gene expression in T-lymphocytes. Biochem J 2009; 417:457-66. [PMID: 18831712 DOI: 10.1042/bj20080925] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BCL11B is a transcriptional regulator with an important role in T-cell development and leukaemogenesis. We demonstrated recently that BCL11B controls expression from the IL (interleukin)-2 promoter through direct binding to the US1 (upstream site 1). In the present study, we provide evidence that BCL11B also participates in the activation of IL-2 gene expression by enhancing NF-kappaB (nuclear factor kappaB) activity in the context of TCR (T-cell receptor)/CD28-triggered T-cell activation. Enhanced NF-kappaB activation is not a consequence of BCL11B binding to the NF-kappaB response elements or association with the NF-kappaB-DNA complexes, but rather the result of higher translocation of NF-kappaB to the nucleus caused by enhanced degradation of IkappaB (inhibitor of NF-kappaB). The enhanced IkappaB degradation in cells with increased levels of BCL11B was specific for T-cells activated through the TCR, but not for cells activated through TNFalpha (tumour necrosis factor alpha) or UV light, and was caused by increased activity of IkappaB kinase, as indicated by its increase in phosphorylation. As BCL11B is a transcription factor, we investigated whether the expression of genes upstream of IkappaB kinase in the TCR/CD28 signalling pathway was affected by increased BCL11B expression, and found that Cot (cancer Osaka thyroid oncogene) kinase mRNA levels were elevated. Cot kinase is known to promote enhanced IkappaB kinase activity, which results in the phosphorylation and degradation of IkappaB and activation of NF-kappaB. The implied involvement of Cot kinase in BCL11B-mediated NF-kappaB activation in response to TCR activation is supported by the fact that a Cot kinase dominant-negative mutant or Cot kinase siRNA (small interfering RNA) knockdown blocked BCL11B-mediated NF-kappaB activation. In support of our observations, in the present study we report that BCL11B enhances the expression of several other NF-kappaB target genes, in addition to IL-2. In addition, we provide evidence that BCL11B associates with intron 2 of the Cot kinase gene to regulate its expression.
Collapse
|
14
|
Borrello MG, Degl'Innocenti D, Pierotti MA. Inflammation and cancer: the oncogene-driven connection. Cancer Lett 2008; 267:262-70. [PMID: 18502035 DOI: 10.1016/j.canlet.2008.03.060] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 03/20/2008] [Accepted: 03/20/2008] [Indexed: 10/22/2022]
Abstract
Inflammation has long been suspected to contribute to tumor growth. However, the concept that oncogenes, known for decades as responsible for cell neoplastic transformation, build up an inflammatory pro-tumorigenic microenvironment is emerging only in the last few years. The well known oncogenes RAS and MYC have been causally linked to tumor angiogenesis through different ways. Moreover, in thyroid tumors, where many of the genetic tumor-initiating events have been identified, the oncogenes driving tumorigenesis were proved able to induce an inflammatory program. This minireview will focus on growing evidence implicating the role of intrinsic, oncogene-driven pathways leading to pro-tumoral inflammation.
Collapse
Affiliation(s)
- Maria Grazia Borrello
- Department of Experimental Oncology, Operative Unit Molecular Mechanisms of Cancer Growth and Progression, IRCCS Istituto Nazionale dei Tumori Foundation, Via G. Venezian, 1 20133 Milan, Italy.
| | | | | |
Collapse
|
15
|
Tpl2 and ERK transduce antiproliferative T cell receptor signals and inhibit transformation of chronically stimulated T cells. Proc Natl Acad Sci U S A 2008; 105:2987-92. [PMID: 18287049 DOI: 10.1073/pnas.0708381104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein kinase encoded by the Tpl2 protooncogene plays an obligatory role in the transduction of Toll-like receptor and death receptor signals in macrophages, B cells, mouse embryo fibroblasts, and epithelial cells in culture and promotes inflammatory responses in animals. To address its role in T cell activation, we crossed the T cell receptor (TCR) transgene 2C, which recognizes class I MHC presented peptides, into the Tpl2(-/-) genetic background. Surprisingly, the TCR2C(tg/tg)/Tpl2(-/-) mice developed T cell lymphomas with a latency of 4-6 months. The tumor cells were consistently TCR2C(+)CD8(+)CD4(-), suggesting that they were derived either from chronically stimulated mature T cells or from immature single positive (ISP) cells. Further studies showed that the population of CD8(+) ISP cells was not expanded in the thymus of TCR2C(tg/tg)/Tpl2(-/-) mice, making the latter hypothesis unlikely. Mature peripheral T cells of Tpl2(-/-) mice were defective in ERK activation and exhibited enhanced proliferation after TCR stimulation. The same cells were defective in the induction of CTLA4, a negative regulator of the T cell response, which is induced by TCR signals via ERK. These findings suggest that Tpl2 functions normally in a feedback loop that switches off the T cell response to TCR stimulation. As a result, Tpl2, a potent oncogene, functions as a tumor suppressor gene in chronically stimulated T cells.
Collapse
|
16
|
Gohda J, Irisawa M, Tanaka Y, Sato S, Ohtani K, Fujisawa JI, Inoue JI. HTLV-1 Tax-induced NFκB activation is independent of Lys-63-linked-type polyubiquitination. Biochem Biophys Res Commun 2007; 357:225-30. [PMID: 17418100 DOI: 10.1016/j.bbrc.2007.03.125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) Tax-induced activation of nuclear factor-kappaB (NFkappaB) is thought to play a critical role in T-cell transformation and onset of adult T-cell leukemia. However, the molecular mechanism of the Tax-induced NFkappaB activation remains unknown. One of the mitogen-activated protein kinase kinase kinses (MAP3Ks) members, TAK1, plays a critical role in cytokine-induced activation of NFkappaB, which involves lysine 63-linked (K63) polyubiquitination of NEMO, a noncatalytic subunit of the IkappaB kinase complex. Here we show that Tax induces K63 polyubiquitination of NEMO. However, TAK1 is dispensable for Tax-induced NFkappaB activation, and deubiquitination of the K63 polyubiquitin chain failed to block Tax-induced NFkappaB activation. In addition, silencing of other MAP3Ks, including MEKK1, MEKK3, NIK, and TPL-2, did not affect Tax-induced NFkappaB activation. These results strongly suggest that unlike cytokine signaling, Tax-induced NFkappaB activation does not involve K63 polyubiquitination-mediated MAP3K activation.
Collapse
Affiliation(s)
- Jin Gohda
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Wu X, Sun SC. Retroviral oncoprotein Tax deregulates NF-kappaB by activating Tak1 and mediating the physical association of Tak1-IKK. EMBO Rep 2007; 8:510-5. [PMID: 17363973 PMCID: PMC1866198 DOI: 10.1038/sj.embor.7400931] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 01/09/2007] [Accepted: 01/29/2007] [Indexed: 11/08/2022] Open
Abstract
The Tax oncoprotein of human T-cell leukaemia virus type I (HTLV-I) persistently activates nuclear factor-kappaB (NF-kappaB), which is required for HTLV-I-mediated T-cell transformation. Tax activates NF-kappaB by stimulating the activity of IkappaB kinase (IKK), but the underlying mechanism remains elusive. Here, we show that Tax functions as an intracellular stimulator of an IKK-activating kinase, Tak1 (TGF-beta-activating kinase 1). In addition, Tax physically interacts with Tak1 and mediates the recruitment of IKK to Tak1. In HTLV-I-infected T cells, Tak1 is constitutively activated and complexed with both Tax and IKK. We provide genetic evidence that Tak1 is essential for Tax-induced IKK activation. Furthermore, unlike cellular stimuli, the Tax-specific NF-kappaB signalling does not require the ubiquitin-binding function of IKKgamma. These findings show a pathological mechanism of IKK activation by Tax and provide an example for how IKK is persistently activated in cancer cells.
Collapse
Affiliation(s)
- Xuefeng Wu
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey Medical Center, PO Box 850, Hershey, Pennsylvania 17033, USA
| | - Shao-Cong Sun
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey Medical Center, PO Box 850, Hershey, Pennsylvania 17033, USA
- Tel: +1 717 531 4164; Fax: +1 717 531 6522; E-mail:
| |
Collapse
|