1
|
Roshanara, Tandon R, Baig MS, Das S, Srivastava R, Puri N, Nakhasi HL, Selvapandiyan A. Identifying Rab2 Protein as a Key Interactor of Centrin1 Essential for Leishmania donovani Growth. ACS Infect Dis 2024; 10:3273-3288. [PMID: 39110117 DOI: 10.1021/acsinfecdis.4c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Previously, we have demonstrated that deletion of a growth-regulating gene (LdCen1) in the Leishmania donovani parasite (LdCen1-/-) attenuated the parasite's intracellular amastigote growth but not the growth of extracellular promastigotes. LdCen1-/- parasites were found to be safe and efficacious against homologous and heterologous Leishmania species as a vaccine candidate in animal models. The reason for the differential growth of LdCen1-/- between the two stages of the parasite needed investigation. Here, we report that LdCen1 interacts with a novel Ras-associated binding protein in L. donovani (LdRab2) to compensate for the growth of LdCen1-/- promastigotes. LdRab2 was isolated by protein pull-down from the parasite lysate, followed by nano-LC-MS/MS identification. The RAB domain sequence and the functional binding partners of the LdRab2 protein were predicted via Search Tool for the Retrieval of Interacting Proteins (STRING) analysis. The closeness of the LdRab2 protein to other reported centrin-binding proteins with different functions in other organisms was analyzed via phylogenetic analysis. Furthermore, in vitro and in silico analyses revealed that LdRab2 also interacts with other L. donovani centrins 3-5. Since centrin is a calcium-binding protein, we further investigated calcium-based interactions and found that the binding of LdRab2 to LdCen1 and LdCen4 is calcium-independent, whereas the interactions with LdCen3 and LdCen5 are calcium-dependent. The colocalization of LdCen1 and LdRab2 at the cellular basal-body region by immunofluorescence supports their possible functional association. The elevated expression of the LdRab2 protein in the mutant promastigotes suggested a probable role in compensating for the promastigote growth of this mutant strain, probably in association with other parasite centrins.
Collapse
Affiliation(s)
- Roshanara
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Rati Tandon
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | | | - Sanchita Das
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rahul Srivastava
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Bethesda, Maryland 20993, United States
| | | |
Collapse
|
2
|
Kim J, Li CL, Chen X, Cui Y, Golebiowski FM, Wang H, Hanaoka F, Sugasawa K, Yang W. Lesion recognition by XPC, TFIIH and XPA in DNA excision repair. Nature 2023; 617:170-175. [PMID: 37076618 PMCID: PMC10416759 DOI: 10.1038/s41586-023-05959-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/15/2023] [Indexed: 04/21/2023]
Abstract
Nucleotide excision repair removes DNA lesions caused by ultraviolet light, cisplatin-like compounds and bulky adducts1. After initial recognition by XPC in global genome repair or a stalled RNA polymerase in transcription-coupled repair, damaged DNA is transferred to the seven-subunit TFIIH core complex (Core7) for verification and dual incisions by the XPF and XPG nucleases2. Structures capturing lesion recognition by the yeast XPC homologue Rad4 and TFIIH in transcription initiation or DNA repair have been separately reported3-7. How two different lesion recognition pathways converge and how the XPB and XPD helicases of Core7 move the DNA lesion for verification are unclear. Here we report on structures revealing DNA lesion recognition by human XPC and DNA lesion hand-off from XPC to Core7 and XPA. XPA, which binds between XPB and XPD, kinks the DNA duplex and shifts XPC and the DNA lesion by nearly a helical turn relative to Core7. The DNA lesion is thus positioned outside of Core7, as would occur with RNA polymerase. XPB and XPD, which track the lesion-containing strand but translocate DNA in opposite directions, push and pull the lesion-containing strand into XPD for verification.
Collapse
Affiliation(s)
- Jinseok Kim
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Chia-Lung Li
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Xuemin Chen
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
- School of Life Sciences, Anhui University, Hefei, China
| | - Yanxiang Cui
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Filip M Golebiowski
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
- Roche Polska, Warsaw, Poland
| | - Huaibin Wang
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Fumio Hanaoka
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan
| | - Kaoru Sugasawa
- Biosignal Research Center and Graduate School of Science, Kobe University, Kobe, Japan.
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Le J, Min JH. Structural modeling and analyses of genetic variations in the human XPC nucleotide excision repair protein. J Biomol Struct Dyn 2023; 41:13535-13562. [PMID: 36890638 PMCID: PMC10485178 DOI: 10.1080/07391102.2023.2177349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/27/2023] [Indexed: 03/10/2023]
Abstract
Xeroderma pigmentosum C (XPC) is a key initiator in the global genome nucleotide excision repair pathway in mammalian cells. Inherited mutations in the XPC gene can cause xeroderma pigmentosum (XP) cancer predisposition syndrome that dramatically increases the susceptibility to sunlight-induced cancers. Various genetic variants and mutations of the protein have been reported in cancer databases and literature. The current lack of a high-resolution 3-D structure of human XPC makes it difficult to assess the structural impact of the mutations/genetic variations. Using the available high-resolution crystal structure of its yeast ortholog, Rad4, we built a homology model of human XPC protein and compared it with a model generated by AlphaFold. The two models are largely consistent with each other in the structured domains. We have also assessed the degree of conservation for each residue using 966 sequences of XPC orthologs. Our structure- and sequence conservation-based assessments largely agree with the variant's impact on the protein's structural stability, computed by FoldX and SDM. Known XP missense mutations such as Y585C, W690S, and C771Y are consistently predicted to destabilize the protein's structure. Our analyses also reveal several highly conserved hydrophobic regions that are surface-exposed, which may indicate novel intermolecular interfaces that are yet to be characterized.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jennifer Le
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Jung-Hyun Min
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
4
|
Conformational Plasticity of Centrin 1 from Toxoplasma gondii in Binding to the Centrosomal Protein SFI1. Biomolecules 2022; 12:biom12081115. [PMID: 36009009 PMCID: PMC9406199 DOI: 10.3390/biom12081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
Centrins are calcium (Ca2+)-binding proteins that are involved in many cellular functions including centrosome regulation. A known cellular target of centrins is SFI1, a large centrosomal protein containing multiple repeats that represent centrin-binding motifs. Recently, a protein homologous to yeast and mammalian SFI1, denominated TgSFI1, which shares SFI1-repeat organization, was shown to colocalize at centrosomes with centrin 1 from Toxoplasma gondii (TgCEN1). However, the molecular details of the interaction between TgCEN1 and TgSFI1 remain largely unknown. Herein, combining different biophysical methods, including isothermal titration calorimetry, nuclear magnetic resonance, circular dichroism, and fluorescence spectroscopy, we determined the binding properties of TgCEN1 and its individual N- and C-terminal domains to synthetic peptides derived from distinct repeats of TgSFI1. Overall, our data indicate that the repeats in TgSFI1 constitute binding sites for TgCEN1, but the binding modes of TgCEN1 to the repeats differ appreciably in terms of binding affinity, Ca2+ sensitivity, and lobe-specific interaction. These results suggest that TgCEN1 displays remarkable conformational plasticity, allowing for the distinct repeats in TgSFI1 to possess precise modes of TgCEN1 binding and regulation during Ca2+ sensing, which appears to be crucial for the dynamic association of TgCEN1 with TgSFI1 in the centrosome architecture.
Collapse
|
5
|
Yang J, Zhao Y, Yang B. Phosphorylation promotes the endonuclease-like activity of human centrin 2. RSC Adv 2022; 12:21892-21903. [PMID: 36043059 PMCID: PMC9361469 DOI: 10.1039/d2ra03402f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Centrin is a member of the EF-hand superfamily of calcium-binding proteins, which is involved in the nucleotide excision repair (NER). Reversible phosphorylation of centrin is an important regulatory mechanism in vivo and is closely related to many physiological processes. To explore the possible role of centrin in NER, the endonuclease-like activity of human centrin 2 (HsCen2) regulated by phosphorylation in the absence or presence of Tb3+ was investigated by spectroscopy techniques, gel electrophoresis, and molecular docking simulation in 10 mM Hepes, pH 7.4. The results showed that phosphorylation weakened the binding of Tb3+ to HsCen2 and enhanced the binding of DNA to HsCen2. Phosphorylation improves the endonuclease-like activity of HsCen2. In addition, Tb3+ is favorable for DNA binding and endonuclease-like activity of HsCen2 before and after phosphorylation. These results provide clear insights into the effects of phosphorylation on the properties of HsCen2 and offer important clues for further exploration of how phosphorylation affects protein-driven functions. Phosphorylation weakened the binding of Tb3+ to HsCen2, enhanced the binding of DNA to HsCen2; and improves the endonuclease-like activity of HsCen2; Additionally, the endonuclease-like activity of HsCen2 or HsCen2p is regulated up by Tb3+-binding.![]()
Collapse
Affiliation(s)
- Jing Yang
- Institute of Molecular Science, Key Laboratory of Chemical Biology of Molecular, Shanxi University Taiyuan 030006 China +86 351 7016358
| | - Yaqin Zhao
- Institute of Molecular Science, Key Laboratory of Chemical Biology of Molecular, Shanxi University Taiyuan 030006 China +86 351 7016358
| | - Binsheng Yang
- Institute of Molecular Science, Key Laboratory of Chemical Biology of Molecular, Shanxi University Taiyuan 030006 China +86 351 7016358
| |
Collapse
|
6
|
Novel Gene Signatures as Prognostic Biomarkers for Predicting the Recurrence of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14040865. [PMID: 35205612 PMCID: PMC8870597 DOI: 10.3390/cancers14040865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary A high percentage of patients who undergo surgical resection for hepatocellular carcinoma (HCC) experience recurrence. Therefore, identification of accurate molecular markers for predicting recurrence of HCC is important. We analyzed recurrence and non-recurrence HCC tissues using two public omics datasets comprising microarray and RNA-sequencing and found novel gene signatures associated with recurrent HCC. These molecules might be used to not only predict for recurrence of HCC but also act as potential prognostic indicators for patients with HCC. Abstract Hepatocellular carcinoma (HCC) has a high rate of cancer recurrence (up to 70%) in patients who undergo surgical resection. We investigated prognostic gene signatures for predicting HCC recurrence using in silico gene expression analysis. Recurrence-associated gene candidates were chosen by a comparative analysis of gene expression profiles from two independent whole-transcriptome datasets in patients with HCC who underwent surgical resection. Five promising candidate genes, CETN2, HMGA1, MPZL1, RACGAP1, and SNRPB were identified, and the expression of these genes was evaluated using quantitative reverse transcription PCR in the validation set (n = 57). The genes CETN2, HMGA1, RACGAP1, and SNRPB, but not MPZL1, were upregulated in patients with recurrent HCC. In addition, the combination of HMGA1 and MPZL1 demonstrated the best area under the curve (0.807, 95% confidence interval [CI] = 0.681–0.899) for predicting HCC recurrence. In terms of clinicopathological correlation, CETN2, MPZL1, RACGAP1, and SNRPB were upregulated in patients with microvascular invasion, and the expression of MPZL1 and SNRPB was increased in proportion to the Edmonson tumor differentiation grade. Additionally, overexpression of CETN2, HMGA1, and RACGAP1 correlated with poor overall survival (OS) and disease-free survival (DFS) in the validation set. Finally, Cox regression analysis showed that the expression of serum alpha-fetoprotein and RACGAP1 significantly affected OS, whereas platelet count, microvascular invasion, and HMGA1 expression significantly affected DFS. In conclusion, HMGA1 and RACGAP1 may be potential prognostic biomarkers for predicting the recurrence of HCC after surgical resection.
Collapse
|
7
|
Feltes BC. Revisiting the structural features of the xeroderma pigmentosum proteins: Focus on mutations and knowledge gaps. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108416. [PMID: 35690419 DOI: 10.1016/j.mrrev.2022.108416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
The nucleotide excision repair pathway is a broadly studied DNA repair mechanism because impairments of its key players, the xeroderma pigmentosum proteins (XPA to XPG), are associated with multiple hereditary diseases. Due to the massive number of novel mutations reported for these proteins and new structural data published every year, proper categorization and discussion of relevant observations is needed to organize this extensive inflow of knowledge. This review aims to revisit the structural data of all XP proteins while updating it with the information developed in of the past six years. Discussions and interpretations of mutation outcomes, mechanisms of action, and knowledge gaps regarding their structures are provided, as well as new perspectives based on recent research.
Collapse
Affiliation(s)
- Bruno César Feltes
- Department of Theoretical Informatics, Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Genetics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Biophysics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Humphreys IR, Pei J, Baek M, Krishnakumar A, Anishchenko I, Ovchinnikov S, Zhang J, Ness TJ, Banjade S, Bagde SR, Stancheva VG, Li XH, Liu K, Zheng Z, Barrero DJ, Roy U, Kuper J, Femández IS, Szakal B, Branzei D, Rizo J, Kisker C, Greene EC, Biggins S, Keeney S, Miller EA, Fromme JC, Hendrickson TL, Cong Q, Baker D. Computed structures of core eukaryotic protein complexes. Science 2021; 374:eabm4805. [PMID: 34762488 PMCID: PMC7612107 DOI: 10.1126/science.abm4805] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein-protein interactions play critical roles in biology, but the structures of many eukaryotic protein complexes are unknown, and there are likely many interactions not yet identified. We take advantage of advances in proteome-wide amino acid coevolution analysis and deep-learning–based structure modeling to systematically identify and build accurate models of core eukaryotic protein complexes within the Saccharomyces cerevisiae proteome. We use a combination of RoseTTAFold and AlphaFold to screen through paired multiple sequence alignments for 8.3 million pairs of yeast proteins, identify 1505 likely to interact, and build structure models for 106 previously unidentified assemblies and 806 that have not been structurally characterized. These complexes, which have as many as five subunits, play roles in almost all key processes in eukaryotic cells and provide broad insights into biological function.
Collapse
Affiliation(s)
- Ian R. Humphreys
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Minkyung Baek
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Aditya Krishnakumar
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ivan Anishchenko
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sergey Ovchinnikov
- Faculty of Arts and Sciences, Division of Science, Harvard University, Cambridge, MA, USA
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, USA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Travis J. Ness
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Sudeep Banjade
- Department of Molecular Biology & Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Saket R. Bagde
- Department of Molecular Biology & Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | | | - Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zhi Zheng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY
| | - Daniel J. Barrero
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Upasana Roy
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jochen Kuper
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Israel S. Femández
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Barnabas Szakal
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - J. Christopher Fromme
- Department of Molecular Biology & Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | | | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Structural Basis for the Functional Diversity of Centrins: A Focus on Calcium Sensing Properties and Target Recognition. Int J Mol Sci 2021; 22:ijms222212173. [PMID: 34830049 PMCID: PMC8622359 DOI: 10.3390/ijms222212173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/23/2022] Open
Abstract
Centrins are a family of small, EF hand-containing proteins that are found in all eukaryotes and are often complexed with centrosome-related structures. Since their discovery, centrins have attracted increasing interest due to their multiple, diverse cellular functions. Centrins are similar to calmodulin (CaM) in size, structure and domain organization, although in contrast to CaM, the majority of centrins possess at least one calcium (Ca2+) binding site that is non-functional, thus displaying large variance in Ca2+ sensing abilities that could support their functional versatility. In this review, we summarize current knowledge on centrins from both biophysical and structural perspectives with an emphasis on centrin-target interactions. In-depth analysis of the Ca2+ sensing properties of centrins and structures of centrins complexed with target proteins can provide useful insight into the mechanisms of the different functions of centrins and how these proteins contribute to the complexity of the Ca2+ signaling cascade. Moreover, it can help to better understand the functional redundancy of centrin isoforms and centrin-binding proteins.
Collapse
|
10
|
Feltes BC. Every protagonist has a sidekick: Structural aspects of human xeroderma pigmentosum-binding proteins in nucleotide excision repair. Protein Sci 2021; 30:2187-2205. [PMID: 34420242 DOI: 10.1002/pro.4173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022]
Abstract
The seven xeroderma pigmentosum proteins (XPps), XPA-XPG, coordinate the nucleotide excision repair (NER) pathway, promoting the excision of DNA lesions caused by exposition to ionizing radiation, majorly from ultraviolet light. Significant efforts are made to investigate NER since mutations in any of the seven XPps may cause the xeroderma pigmentosum and trichothiodystrophy diseases. However, these proteins collaborate with other pivotal players in all known NER steps to accurately exert their purposes. Therefore, in the old and ever-evolving field of DNA repair, it is imperative to reexamine and describe their structures to understand NER properly. This work provides an up-to-date review of the protein structural aspects of the closest partners that directly interact and influence XPps: RAD23B, CETN2, DDB1, RPA (RPA70, 32, and 14), p8 (GTF2H5), and ERCC1. Structurally and functionally vital domains, regions, and critical residues are reexamined, providing structural lessons and perspectives about these indispensable proteins in the NER and other DNA repair pathways. By gathering all data related to the major human xeroderma pigmentosum-interacting proteins, this review will aid newcomers on the subject and guide structural and functional future studies.
Collapse
Affiliation(s)
- Bruno César Feltes
- Department of Theoretical Informatics, Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Genetics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biophysics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
11
|
The interplay of self-assembly and target binding in centrin 1 from Toxoplasma gondii. Biochem J 2021; 478:2571-2587. [PMID: 34114596 PMCID: PMC8286830 DOI: 10.1042/bcj20210295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022]
Abstract
Centrins are conserved calcium (Ca2+)-binding proteins typically associated with centrosomes that have been implicated in several biological processes. In Toxoplasma gondii, a parasite that causes toxoplasmosis, three centrin isoforms have been recognized. We have recently characterized the metal binding and structural features of isoform 1 (TgCEN1), demonstrating that it possesses properties consistent with a role as a Ca2+ sensor and displays a Ca2+-dependent tendency to self-assemble. Herein, we expanded our studies, focusing on the self-association and target binding properties of TgCEN1 by combining biophysical techniques including dynamic light scattering, isothermal titration calorimetry, nuclear magnetic resonance, circular dichroism, and fluorescence spectroscopy. We found that the self-assembly process of TgCEN1 depends on different physicochemical factors, including Ca2+ concentration, temperature, and protein concentration, and is mediated by both electrostatic and hydrophobic interactions. The process is completely abolished upon removal of the first 21-residues of the protein and is significantly reduced in the presence of a binding target peptide derived from the human XPC protein (P17-XPC). Titration of P17-XPC to the intact protein and isolated domains showed that TgCEN1 possesses two binding sites with distinct affinities and Ca2+ sensitivity; a high-affinity site in the C-lobe which may be constitutively bound to the peptide and a low-affinity site in the N-lobe which is active only upon Ca2+ stimulus. Overall, our results suggest a specific mechanism of TgCEN1 for Ca2+-modulated target binding and support a N-to-C self-assembly mode, in which the first 21-residues of one molecule likely interact with the C-lobe of the other.
Collapse
|
12
|
van Eeuwen T, Shim Y, Kim HJ, Zhao T, Basu S, Garcia BA, Kaplan CD, Min JH, Murakami K. Cryo-EM structure of TFIIH/Rad4-Rad23-Rad33 in damaged DNA opening in nucleotide excision repair. Nat Commun 2021; 12:3338. [PMID: 34099686 PMCID: PMC8184850 DOI: 10.1038/s41467-021-23684-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/05/2021] [Indexed: 11/08/2022] Open
Abstract
The versatile nucleotide excision repair (NER) pathway initiates as the XPC-RAD23B-CETN2 complex first recognizes DNA lesions from the genomic DNA and recruits the general transcription factor complex, TFIIH, for subsequent lesion verification. Here, we present a cryo-EM structure of an NER initiation complex containing Rad4-Rad23-Rad33 (yeast homologue of XPC-RAD23B-CETN2) and 7-subunit coreTFIIH assembled on a carcinogen-DNA adduct lesion at 3.9-9.2 Å resolution. A ~30-bp DNA duplex could be mapped as it straddles between Rad4 and the Ssl2 (XPB) subunit of TFIIH on the 3' and 5' side of the lesion, respectively. The simultaneous binding with Rad4 and TFIIH was permitted by an unwinding of DNA at the lesion. Translocation coupled with torque generation by Ssl2 and Rad4 would extend the DNA unwinding at the lesion and deliver the damaged strand to Rad3 (XPD) in an open form suitable for subsequent lesion scanning and verification.
Collapse
Affiliation(s)
- Trevor van Eeuwen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yoonjung Shim
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tingting Zhao
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shrabani Basu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jung-Hyun Min
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA.
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
SAC3B is a target of CML19, the centrin 2 of Arabidopsis thaliana. Biochem J 2020; 477:173-189. [PMID: 31860002 DOI: 10.1042/bcj20190674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/15/2023]
Abstract
Arabidopsis centrin 2, also known as calmodulin-like protein 19 (CML19), is a member of the EF-hand superfamily of calcium (Ca2+)-binding proteins. In addition to the notion that CML19 interacts with the nucleotide excision repair protein RAD4, CML19 was suggested to be a component of the transcription export complex 2 (TREX-2) by interacting with SAC3B. However, the molecular determinants of this interaction have remained largely unknown. Herein, we identified a CML19-binding site within the C-terminus of SAC3B and characterized the binding properties of the corresponding 26-residue peptide (SAC3Bp), which exhibits the hydrophobic triad centrin-binding motif in a reversed orientation (I8W4W1). Using a combination of spectroscopic and calorimetric experiments, we shed light on the SAC3Bp-CML19 complex structure in solution. We demonstrated that the peptide interacts not only with Ca2+-saturated CML19, but also with apo-CML19 to form a protein-peptide complex with a 1 : 1 stoichiometry. Both interactions involve hydrophobic and electrostatic contributions and include the burial of Trp residues of SAC3Bp. However, the peptide likely assumes different conformations upon binding to apo-CML19 or Ca2+-CML19. Importantly, the peptide dramatically increases the affinity for Ca2+ of CML19, especially of the C-lobe, suggesting that in vivo the protein would be Ca2+-saturated and bound to SAC3B even at resting Ca2+-levels. Our results, providing direct evidence that Arabidopsis SAC3B is a CML19 target and proposing that CML19 can bind to SAC3B through its C-lobe independent of a Ca2+ stimulus, support a functional role for these proteins in TREX-2 complex and mRNA export.
Collapse
|
14
|
Genetic diversity and functional effect of common polymorphisms in genes involved in the first heterodimeric complex of the Nucleotide Excision Repair pathway. DNA Repair (Amst) 2019; 86:102770. [PMID: 31865061 DOI: 10.1016/j.dnarep.2019.102770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 01/26/2023]
Abstract
Nucleotide excision repair is a multistep process that recognizes and eliminates a spectrum of DNA damages. Five proteins, namely XPC, RAD23, Centrin 2, DDB1 and DDB2 act as a heterodimeric complex at the early steps of the NER pathway and play a crucial role in the removal of DNA lesions. Several exonic mutations on genes coding for these proteins have been identified as associated with Xeroderma-pigmentosum (XP), a rare monogenic disorder. However, the role of regulatory polymorphisms in disease development and inter-ethnic diversity is still not well documented. Due to the high incidence rate of XP in Tunisia, we performed a genotyping analysis of 140 SNPs found on these 5 genes in a set of 135-subjects representing the general Tunisian-population. An inter-ethnic comparison based on the genotype frequency of these SNPs have been also conducted. For the most relevant variants, we performed a comprehensive assessment of their functional effects. Linkage disequilibrium and principal component analysis showed that the Tunisian-population is an admixed and intermediate population between Sub-Saharan Africans and Europeans. Using variable factor maps, we identified a list of 20 polymorphisms that contribute considerably to the inter-ethnic diversity of the NER complex. In-silico functional analysis showed that SNPs on XPC, DDB1 and DDB2 are associated with eQTLs mainly DDB2-rs10838681 that seems to decrease significantly the expression level of ACP2 (p = 6.1 × 10-26). Statistical analysis showed that the allelic frequency of DDB2-rs10838681 in Tunisia is significantly different from all other populations. Using rVarBase, we identified 5 variants on XPC, DDB1 and DDB2 that seem to alter the binding sites of several transcription factors considered as key players in DNA-repair pathways. Results presented in this study provide the first report on regulatory polymorphisms of the NER-complex genes in Tunisia. These results may also help to establish a baseline database for future association and functional studies.
Collapse
|
15
|
Calcium and phosphorylation double-regulating caltractin initiating target protein XPC function. Int J Biol Macromol 2019; 136:503-511. [DOI: 10.1016/j.ijbiomac.2019.06.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/22/2023]
|
16
|
Shan F, Yang X, Diwu Y, Ma H, Tu X. Trypanosoma brucei centrin5 is enriched in the flagellum and interacts with other centrins in a calcium-dependent manner. FEBS Open Bio 2019; 9:1421-1431. [PMID: 31161731 PMCID: PMC6668372 DOI: 10.1002/2211-5463.12683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 11/21/2022] Open
Abstract
Centrin is an evolutionarily conserved EF‐hand‐containing protein, which is present in eukaryotic organisms as diverse as algae, yeast, and humans. Centrins are associated with the microtubule‐organizing center and with centrosome‐related structures, such as basal bodies in flagellar and ciliated cells, and the spindle pole body in yeast. Five centrin genes have been identified in Trypanosoma brucei (T. brucei), a protozoan parasite that causes sleeping sickness in humans and nagana in cattle in sub‐Saharan Africa. In the present study, we identified that centrin5 of T. brucei (TbCentrin5) is localized throughout the cytosol and nucleus and enriched in the flagellum. We further identified that TbCentrin5 binds Ca2+ ions with a high affinity and constructed a model of TbCentrin5 bound by Ca2+ ions. Meanwhile, we observed that TbCentrin5 interacts with TbCentrin1, TbCentrin3, and TbCentrin4 and that the interactions are Ca2+‐dependent, suggesting that TbCentrin5 is able to form different complexes with other TbCentrins to participate in relevant cellular processes. Our study provides a foundation for better understanding of the biological roles of TbCentrin5.
Collapse
Affiliation(s)
- Fangzhen Shan
- Hefei National Laboratory for Physical Science at Microscale and School of Life Science, University of Science and Technology of China, Hefei, China
| | - Xiao Yang
- Hefei National Laboratory for Physical Science at Microscale and School of Life Science, University of Science and Technology of China, Hefei, China
| | - Yating Diwu
- Hefei National Laboratory for Physical Science at Microscale and School of Life Science, University of Science and Technology of China, Hefei, China
| | - Haoyu Ma
- Hefei National Laboratory for Physical Science at Microscale and School of Life Science, University of Science and Technology of China, Hefei, China
| | - Xiaoming Tu
- Hefei National Laboratory for Physical Science at Microscale and School of Life Science, University of Science and Technology of China, Hefei, China
| |
Collapse
|
17
|
Ying G, Frederick JM, Baehr W. Deletion of both centrin 2 (CETN2) and CETN3 destabilizes the distal connecting cilium of mouse photoreceptors. J Biol Chem 2019; 294:3957-3973. [PMID: 30647131 DOI: 10.1074/jbc.ra118.006371] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/09/2019] [Indexed: 02/03/2023] Open
Abstract
Centrins (CETN1-4) are ubiquitous and conserved EF-hand-family Ca2+-binding proteins associated with the centrosome, basal body, and transition zone. Deletion of CETN1 or CETN2 in mice causes male infertility or dysosmia, respectively, without affecting photoreceptor function. However, it remains unclear to what extent centrins are redundant with each other in photoreceptors. Here, to explore centrin redundancy, we generated Cetn3 GT/GT single-knockout and Cetn2 -/-;Cetn3 GT/GT double-knockout mice. Whereas the Cetn3 deletion alone did not affect photoreceptor function, simultaneous ablation of Cetn2 and Cetn3 resulted in attenuated scotopic and photopic electroretinography (ERG) responses in mice at 3 months of age, with nearly complete retina degeneration at 1 year. Removal of CETN2 and CETN3 activity from the lumen of the connecting cilium (CC) destabilized the photoreceptor axoneme and reduced the CC length as early as postnatal day 22 (P22). In Cetn2 -/-;Cetn3 GT/GT double-knockout mice, spermatogenesis-associated 7 (SPATA7), a key organizer of the photoreceptor-specific distal CC, was depleted gradually, and CETN1 was condensed to the mid-segment of the CC. Ultrastructural analysis revealed that in this double knockout, the axoneme of the CC expanded radially at the distal end, with vertically misaligned outer segment discs and membrane whorls. These observations suggest that CETN2 and CETN3 cooperate in stabilizing the CC/axoneme structure.
Collapse
Affiliation(s)
- Guoxin Ying
- From the Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah 84132,
| | - Jeanne M Frederick
- From the Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah 84132
| | - Wolfgang Baehr
- From the Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah 84132, .,the Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84112, and.,the Department of Biology, University of Utah, Salt Lake City, Utah 84132
| |
Collapse
|
18
|
Fisk HA, Thomas JL, Nguyen TB. Breaking Bad: Uncoupling of Modularity in Centriole Biogenesis and the Generation of Excess Centrioles in Cancer. Results Probl Cell Differ 2019; 67:391-411. [PMID: 31435805 DOI: 10.1007/978-3-030-23173-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Centrosomes are tiny yet complex cytoplasmic structures that perform a variety of roles related to their ability to act as microtubule-organizing centers. Like the genome, centrosomes are single copy structures that undergo a precise semi-conservative replication once each cell cycle. Precise replication of the centrosome is essential for genome integrity, because the duplicated centrosomes will serve as the poles of a bipolar mitotic spindle, and any number of centrosomes other than two will lead to an aberrant spindle that mis-segregates chromosomes. Indeed, excess centrosomes are observed in a variety of human tumors where they generate abnormal spindles in situ that are thought to participate in tumorigenesis by driving genomic instability. At the heart of the centrosome is a pair of centrioles, and at the heart of centrosome duplication is the replication of this centriole pair. Centriole replication proceeds through a complex macromolecular assembly process. However, while centrosomes may contain as many as 500 proteins, only a handful of proteins have been shown to be essential for centriole replication. Our observations suggest that centriole replication is a modular, bottom-up process that we envision akin to building a house; the proper site of assembly is identified, a foundation is assembled at that site, and subsequent modules are added on top of the foundation. Here, we discuss the data underlying our view of modularity in the centriole assembly process, and suggest that non-essential centriole assembly factors take on greater importance in cancer cells due to their function in coordination between centriole modules, using the Monopolar spindles 1 protein kinase and its substrate Centrin 2 to illustrate our model.
Collapse
Affiliation(s)
- Harold A Fisk
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| | - Jennifer L Thomas
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Tan B Nguyen
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
19
|
Sugasawa K. Mechanism and regulation of DNA damage recognition in mammalian nucleotide excision repair. DNA Repair (Amst) 2019; 45:99-138. [DOI: 10.1016/bs.enz.2019.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Solution structure of TbCentrin4 from Trypanosoma brucei and its interactions with Ca 2+ and other centrins. Biochem J 2018; 475:3763-3778. [PMID: 30389845 DOI: 10.1042/bcj20180752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
Abstract
Centrin is a conserved calcium-binding protein that plays an important role in diverse cellular biological processes such as ciliogenesis, gene expression, DNA repair and signal transduction. In Trypanosoma brucei, TbCentrin4 is mainly localized in basal bodies and bi-lobe structure, and is involved in the processes coordinating karyokinesis and cytokinesis. In the present study, we solved the solution structure of TbCentrin4 using NMR (nuclear magnetic resonance) spectroscopy. TbCentrin4 contains four EF-hand motifs consisting of eight α-helices. Isothermal titration calorimetry experiment showed that TbCentrin4 has a strong Ca2+ binding ability. NMR chemical shift perturbation indicated that TbCentrin4 binds to Ca2+ through its C-terminal domain composed of EF-hand 3 and 4. Meanwhile, we revealed that TbCentrin4 undergoes a conformational change and self-assembly induced by high concentration of Ca2+ Intriguingly, localization of TbCentrin4 was dispersed or disappeared from basal bodies and the bi-lobe structure when the cells were treated with Ca2+ in vivo, implying the influence of Ca2+ on the cellular functions of TbCentrin4. Besides, we observed the interactions between TbCentrin4 and other Tbcentrins and revealed that the interactions are Ca2+ dependent. Our findings provide a structural basis for better understanding the biological functions of TbCentrin4 in the relevant cellular processes.
Collapse
|
21
|
Chen L, Bian S, Li H, Madura K. A role for Saccharomyces cerevisiae Centrin (Cdc31) in mitochondrial function and biogenesis. Mol Microbiol 2018; 110:831-846. [PMID: 30251372 DOI: 10.1111/mmi.14128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/24/2018] [Accepted: 09/09/2018] [Indexed: 11/28/2022]
Abstract
Centrins belong to a family of proteins containing calcium-binding EF-hand motifs that perform well-established roles in centrosome and spindle pole body (SPB) duplication. Yeast encodes a single Centrin protein (Cdc31) that binds components in the SPB. However, further studies revealed a role for Centrins in mRNA export, and interactions with contractile filaments and photoreceptors. In addition, human Centrin-2 can bind the DNA-lesion recognition factor XPC, and improve the efficiency of nucleotide excision repair. Similarly, we reported that yeast Cdc31 binds Rad4, a functional counterpart of the XPC DNA repair protein. We also found that Cdc31 is involved in the ubiquitin/proteasome system, and mutations interfere with intracellular protein turnover. In this report, we describe new findings that indicate a role for Cdc31 in the energy metabolism pathway. Cdc31 and cdc31 mutant proteins showed distinct interactions with proteins in energy metabolism, and mutants showed sensitivity to oxidative stress and poor growth on non-fermentable carbon. Significant alteration in mitochondrial morphology was also detected. Although it is unclear how Cdc31 contributes to so many unrelated mechanisms, we propose that by controlling SPB duplication Centrin proteins might link the cellular responses to DNA damage, oxidative load and proteotoxic stresses to growth control.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Lane, SPH-383, Piscataway, NJ, 08854, USA
| | - Shengjie Bian
- Center for Advanced Proteomics Research, New Jersey Medical School, Rutgers University, 185 S. Orange Ave., Newark, NJ, 07103, USA
| | - Hong Li
- Center for Advanced Proteomics Research, New Jersey Medical School, Rutgers University, 185 S. Orange Ave., Newark, NJ, 07103, USA
| | - Kiran Madura
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Lane, SPH-383, Piscataway, NJ, 08854, USA
| |
Collapse
|
22
|
La Verde V, Trande M, D'Onofrio M, Dominici P, Astegno A. Binding of calcium and target peptide to calmodulin-like protein CML19, the centrin 2 of Arabidopsis thaliana. Int J Biol Macromol 2017; 108:1289-1299. [PMID: 29129631 DOI: 10.1016/j.ijbiomac.2017.11.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/03/2023]
Abstract
Calmodulin-like protein 19 (CML19) is an Arabidopsis centrin that modulates nucleotide excision repair (NER) by binding to RAD4 protein, the Arabidopsis homolog of human Xeroderma pigmentosum complementation group C protein. Although the necessity of CML19 as a part of the RAD4 plant recognition complex for functional NER is known at a cellular level, little is known at a molecular level. Herein, we used a combination of biophysical and biochemical approaches to investigate the structural and ion and target-peptide binding properties of CML19. We found that CML19 possesses four Ca2+-specific binding sites, two of high affinity in the N-terminal domain and two of low affinity in the C-terminal domain. Binding of Ca2+ to CML19 increases its alpha-helix content, stabilizes the tertiary structure, and triggers a conformational change, resulting in the exposure of a hydrophobic patch instrumental for target protein recognition. Using bioinformatics tools we identified a CML19-binding site at the C-terminus of RAD4, and through in vitro binding experiments we analyzed the interaction between a 17-mer peptide representing this site and CML19. We found that the peptide shows a high affinity for CML19 in the presence of Ca2+ (stoichiometry 1:1) and the interaction primarily involves the C-terminal half of CML19.
Collapse
Affiliation(s)
- Valentina La Verde
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Italy
| | - Matteo Trande
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Italy
| | - Paola Dominici
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Italy
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Italy.
| |
Collapse
|
23
|
Kim SY, Kim DS, Hong JE, Park JH. Crystal structure of wild-type centrin 1 from Mus musculus occupied by Ca2+. BIOCHEMISTRY (MOSCOW) 2017; 82:1129-1139. [DOI: 10.1134/s0006297917100054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Abstract
Pre-mRNA processing protein 40 (Prp40) is a nuclear protein that has a role in pre-mRNA splicing. Prp40 possesses two leucine-rich nuclear export signals, but little is known about the function of Prp40 in the export process. Another protein that has a role in protein export is centrin, a member of the EF-hand superfamily of Ca2+-binding proteins. Prp40 was found to be a centrin target by yeast-two-hybrid screening using both Homo sapiens centrin 2 (Hscen2) and Chlamydomonas reinhardtii centrin (Crcen). We identified a centrin-binding site within H. sapiens Prp40 homolog A (HsPrp40A), which contains a hydrophobic triad W1L4L8 that is known to be important in the interaction with centrin. This centrin-binding site is highly conserved within the first nuclear export signal consensus sequence identified in Saccharomyces cerevisiae Prp40. Here, we examine the interaction of HsPrp40A peptide (HsPrp40Ap) with both Hscen2 and Crcen by isothermal titration calorimetry. We employed the thermodynamic parameterization to estimate the polar and apolar surface area of the interface. In addition, we have defined the molecular mechanism of thermally induced unfolding and dissociation of the Crcen-HsPrp40Ap complex using two-dimensional infrared correlation spectroscopy. These complementary techniques showed for the first time, to our knowledge, that HsPrp40Ap interacts with centrin in vitro, supporting a coupled functional role for these proteins in pre-mRNA splicing.
Collapse
|
25
|
Krokidis MG, Terzidis MA, Efthimiadou E, Zervou SK, Kordas G, Papadopoulos K, Hiskia A, Kletsas D, Chatgilialoglu C. Purine 5′,8-cyclo-2′-deoxynucleoside lesions: formation by radical stress and repair in human breast epithelial cancer cells. Free Radic Res 2017; 51:470-482. [DOI: 10.1080/10715762.2017.1325485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marios G. Krokidis
- Institute of Nanoscience and Nanotechnology, NSCR “Demokritos”, Athens, Greece
| | | | - Eleni Efthimiadou
- Institute of Nanoscience and Nanotechnology, NSCR “Demokritos”, Athens, Greece
| | | | - George Kordas
- Institute of Nanoscience and Nanotechnology, NSCR “Demokritos”, Athens, Greece
| | | | - Anastasia Hiskia
- Institute of Nanoscience and Nanotechnology, NSCR “Demokritos”, Athens, Greece
| | - Dimitris Kletsas
- Institute of Biosciences and Applications, NCSR “Demokritos”, Athens, Greece
| | - Chryssostomos Chatgilialoglu
- Institute of Nanoscience and Nanotechnology, NSCR “Demokritos”, Athens, Greece
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| |
Collapse
|
26
|
Verma D, Murmu A, Gourinath S, Bhattacharya A, Chary KVR. Structure of Ca2+-binding protein-6 from Entamoeba histolytica and its involvement in trophozoite proliferation regulation. PLoS Pathog 2017; 13:e1006332. [PMID: 28505197 PMCID: PMC5444848 DOI: 10.1371/journal.ppat.1006332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/25/2017] [Accepted: 04/03/2017] [Indexed: 12/01/2022] Open
Abstract
Cell cycle of Entamoeba histolytica, the etiological agent of amoebiasis, follows a novel pathway, which includes nuclear division without the nuclear membrane disassembly. We report a nuclear localized Ca2+-binding protein from E. histolytica (abbreviated hereafter as EhCaBP6), which is associated with microtubules. We determined the 3D solution NMR structure of EhCaBP6, and identified one unusual, one canonical and two non-canonical cryptic EF-hand motifs. The cryptic EF-II and EF-IV pair with the Ca2+-binding EF-I and EF-III, respectively, to form a two-domain structure similar to Calmodulin and Centrin proteins. Downregulation of EhCaBP6 affects cell proliferation by causing delays in transition from G1 to S phase, and inhibition of DNA synthesis and cytokinesis. We also demonstrate that EhCaBP6 modulates microtubule dynamics by increasing the rate of tubulin polymerization. Our results, including structural inferences, suggest that EhCaBP6 is an unusual CaBP involved in regulating cell proliferation in E. histolytica similar to nuclear Calmodulin. E. histolytica, the etiological agent of amoebiasis, is a protozoan parasite responsible for around 100,000 deaths per year in developing nations. Though the organism has been identified more than 100 years back, there is not much understanding about the biology of this organism. Calcium signaling plays an important role in the biology of this organism. Here we show structure-functional relationship of one of the Ca2+-binding proteins (abbreviated as EhCaBP6) and suggest its involvement in cell division in this parasite. EhCaBP6, a nucleo-cytosolic Ca2+-binding protein, is a microtubule end binding protein and overexpression of its gene induces an increase in number of microtubular assemblies in E. histolytica. Cell division cycle in E. histolytica occurs along the microtubular structures without disruption of nuclear envelope. Occurrence of multinucleated cells in culture suggests duplication and reduplication of nuclear DNA without cytokinesis. Although Kinesin like protein (Klp1), Formin1 and EhCaBP6 were shown to be part of the microtubular assembly, their role in regulation of the cell cycle is not yet documented. Further, E. histolytica does not have a typical CaM like protein. However, the 3D structure of EhCaBP6 with two Ca2+-binding sites is similar to CaM, in spite of their low sequence similarity. Here, we demonstrate that EhCaBP6 regulates cell cycle specifically by facilitating DNA synthesis, transition from G1 to S phase and cytokinesis. The structural and functional similarity between EhCaBP6 and CaM suggests EhCaBP6 to be a functional homologue of nuclear CaM with important roles in regulation of cell cycle.
Collapse
Affiliation(s)
- Deepshikha Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad, India
| | - Aruna Murmu
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kandala V. R. Chary
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad, India
- * E-mail:
| |
Collapse
|
27
|
Shi E, Zhang W, Zhao Y, Yang B. Binding of Euplotes octocarinatus centrin to peptide from xeroderma pigmentosum group C protein (XPC). RSC Adv 2017. [DOI: 10.1039/c7ra03079g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trp is buried in the hydrophobic cavity, the peptide folds into an α-helix, and the interaction is enthalpically driven from ITC.
Collapse
Affiliation(s)
- Enxian Shi
- Institute of Molecular Science
- Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry
- Shanxi University
- Taiyuan 030006
- PR China
| | - Wenlong Zhang
- Institute of Molecular Science
- Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry
- Shanxi University
- Taiyuan 030006
- PR China
| | - Yaqin Zhao
- Institute of Molecular Science
- Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry
- Shanxi University
- Taiyuan 030006
- PR China
| | - Binsheng Yang
- Institute of Molecular Science
- Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry
- Shanxi University
- Taiyuan 030006
- PR China
| |
Collapse
|
28
|
Xiaojuan Guo YZ, Yang B. Regulation of centrin self-assembly investigated by fluorescence resonance light scattering. RSC Adv 2017. [DOI: 10.1039/c6ra26865j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Centrin is primarily involved in fiber contraction, which is associated with the cell division cycle and ciliogenesis.
Collapse
Affiliation(s)
- Yaqin Zhao Xiaojuan Guo
- Institute of Molecular Science
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Shanxi University
- Taiyuan 030006
| | - Binsheng Yang
- Institute of Molecular Science
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Shanxi University
- Taiyuan 030006
| |
Collapse
|
29
|
Sugasawa K. Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair. DNA Repair (Amst) 2016; 44:110-117. [PMID: 27264556 DOI: 10.1016/j.dnarep.2016.05.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
For faithful DNA repair, it is crucial for cells to locate lesions precisely within the vast genome. In the mammalian global genomic nucleotide excision repair (NER) pathway, this difficult task is accomplished through multiple steps, in which the xeroderma pigmentosum group C (XPC) protein complex plays a central role. XPC senses the presence of oscillating 'normal' bases in the DNA duplex, and its binding properties contribute to the extremely broad substrate specificity of NER. Unlike XPC, which acts as a versatile sensor of DNA helical distortion, the UV-damaged DNA-binding protein (UV-DDB) is more specialized, recognizing UV-induced photolesions and facilitating recruitment of XPC. Recent single-molecule analyses and structural studies have advanced our understanding of how UV-DDB finds its targets, particularly in the context of chromatin. After XPC binds DNA, it is necessary to verify the presence of damage in order to avoid potentially deleterious incisions at damage-free sites. Accumulating evidence suggests that XPA and the helicase activity of transcription factor IIH (TFIIH) cooperate to verify abnormalities in DNA chemistry. This chapter reviews recent findings about the mechanisms underlying the efficiency, versatility, and accuracy of NER.
Collapse
Affiliation(s)
- Kaoru Sugasawa
- Biosignal Research Center, Kobe University, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
30
|
Grecu D, Irudayaraj VPR, Martinez-Sanz J, Mallet JM, Assairi L. A chirality change in XPC- and Sfi1-derived peptides affects their affinity for centrin. Peptides 2016; 78:77-86. [PMID: 26923803 DOI: 10.1016/j.peptides.2016.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/30/2022]
Abstract
The Ca(2+)-binding protein centrin binds to a hydrophobic motif (W(1)xxL(4)xxxL(8)) included in the sequence of several cellular targets: XPC (xeroderma pigmentosum group C protein), Sfi1 (suppressor of fermentation-induced loss of stress resistance protein1), and Sac3 [the central component of the transcription and mRNA export (TREX-2) complex]. However, centrin binding occurs in a reversed orientation (L(8)xxxL(4)xxW(1)) for Sfi1 and Sac3 compared with XPC. Because D-peptides have been investigated for future therapeutic use, we analyzed their centrin-binding properties. Their affinity for centrin was measured using isothermal titration calorimetry. The chirality change in the target-derived peptides affected their ability to bind centrin in a specific manner depending on the sequence orientation of the centrin-binding motif. In contrast to L-XPC-P10, D-XPC-P10 bound C-HsCen1 in a Ca(2+)-dependent manner and to a lesser extent. D-XPC-P10 exhibited a reduced affinity for C-HsCen1 (Ka=0.064 × 10(6) M(-1)) by a factor of 2000 compared with L-XPC-P10 (Ka=132 × 10(6) M(-1)). D-peptides have a lower affinity than L-peptides for centrin, and the strength of this affinity depends on the sequence orientation of the target-derived peptides. The residual affinity observed for D-XPC suggests that the use of d-peptides represents a promising strategy for inhibiting centrin binding to its targets.
Collapse
Affiliation(s)
- Dora Grecu
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U759, F-91405 Orsay Cédex, France
| | - Victor Paul Raj Irudayaraj
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U759, F-91405 Orsay Cédex, France; UMR CNRS 7203, Paris Cédex 05, France; ENS Ecole Normale Supérieure de Paris, Paris Cédex 05, France; Université Paris 6, Paris Cédex 05, France
| | - Juan Martinez-Sanz
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U759, F-91405 Orsay Cédex, France; UMR9187-U1196, F-91405 Orsay Cédex, France
| | - Jean-Maurice Mallet
- UMR CNRS 7203, Paris Cédex 05, France; ENS Ecole Normale Supérieure de Paris, Paris Cédex 05, France; Université Paris 6, Paris Cédex 05, France
| | - Liliane Assairi
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U759, F-91405 Orsay Cédex, France.
| |
Collapse
|
31
|
Architecture of the human XPC DNA repair and stem cell coactivator complex. Proc Natl Acad Sci U S A 2015; 112:14817-22. [PMID: 26627236 PMCID: PMC4672820 DOI: 10.1073/pnas.1520104112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Xeroderma pigmentosum complementation group C (XPC) complex is a versatile factor involved in both nucleotide excision repair and transcriptional coactivation as a critical component of the NANOG, OCT4, and SOX2 pluripotency gene regulatory network. Here we present the structure of the human holo-XPC complex determined by single-particle electron microscopy to reveal a flexible, ear-shaped structure that undergoes localized loss of order upon DNA binding. We also determined the structure of the complete yeast homolog Rad4 holo-complex to find a similar overall architecture to the human complex, consistent with their shared DNA repair functions. Localized differences between these structures reflect an intriguing phylogenetic divergence in transcriptional capabilities that we present here. Having positioned the constituent subunits by tagging and deletion, we propose a model of key interaction interfaces that reveals the structural basis for this difference in functional conservation. Together, our findings establish a framework for understanding the structure-function relationships of the XPC complex in the interplay between transcription and DNA repair.
Collapse
|
32
|
Sawant DB, Majumder S, Perkins JL, Yang CH, Eyers PA, Fisk HA. Centrin 3 is an inhibitor of centrosomal Mps1 and antagonizes centrin 2 function. Mol Biol Cell 2015; 26:3741-53. [PMID: 26354417 PMCID: PMC4626060 DOI: 10.1091/mbc.e14-07-1248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/04/2015] [Indexed: 11/11/2022] Open
Abstract
Centrins are a family of small, calcium-binding proteins with diverse cellular functions that play an important role in centrosome biology. We previously identified centrin 2 and centrin 3 (Cetn2 and Cetn3) as substrates of the protein kinase Mps1. However, although Mps1 phosphorylation sites control the function of Cetn2 in centriole assembly and promote centriole overproduction, Cetn2 and Cetn3 are not functionally interchangeable, and we show here that Cetn3 is both a biochemical inhibitor of Mps1 catalytic activity and a biological inhibitor of centrosome duplication. In vitro, Cetn3 inhibits Mps1 autophosphorylation at Thr-676, a known site of T-loop autoactivation, and interferes with Mps1-dependent phosphorylation of Cetn2. The cellular overexpression of Cetn3 attenuates the incorporation of Cetn2 into centrioles and centrosome reduplication, whereas depletion of Cetn3 generates extra centrioles. Finally, overexpression of Cetn3 reduces Mps1 Thr-676 phosphorylation at centrosomes, and mimicking Mps1-dependent phosphorylation of Cetn2 bypasses the inhibitory effect of Cetn3, suggesting that the biological effects of Cetn3 are due to the inhibition of Mps1 function at centrosomes.
Collapse
Affiliation(s)
- Dwitiya B Sawant
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Shubhra Majumder
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Jennifer L Perkins
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Ching-Hui Yang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Harold A Fisk
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
33
|
Tajedin L, Anwar M, Gupta D, Tuteja R. Comparative insight into nucleotide excision repair components of Plasmodium falciparum. DNA Repair (Amst) 2015; 28:60-72. [PMID: 25757193 DOI: 10.1016/j.dnarep.2015.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 01/27/2015] [Accepted: 02/10/2015] [Indexed: 12/19/2022]
Abstract
Nucleotide excision repair (NER) is one of the DNA repair pathways crucial for maintenance of genome integrity and deals with repair of DNA damages arising due to exogenous and endogenous factors. The multi-protein transcription initiation factor TFIIH plays a critical role in NER and transcription and is highly conserved throughout evolution. The malaria parasite Plasmodium falciparum has been a challenge for the researchers for a long time because of emergence of drug resistance. The availability of its genome sequence has opened new avenues for research. Antimalarial drugs like chloroquine and mefloquine have been reported to inhibit NER pathway mediated repair reactions and thus promote mutagenesis. Previous studies have validated existence and implied possible association of defective or altered DNA repair pathways with development of drug resistant phenotype in certain P. falciparum strains. We conjecture that a compromised NER pathway in combination with other DNA repair pathways might be conducive for the emergence and sustenance of drug resistance in P. falciparum. Therefore we decided to unravel the components of NER pathway in P. falciparum and using bioinformatics based approaches here we report a genome wide in silico analysis of NER components from P. falciparum and their comparison with the human host. Our results reveal that P. falciparum genome contains almost all the components of NER but we were unable to find clear homologue for p62 and XPC in its genome. The structure modeling of all the components further suggests that their structures are significantly conserved. Furthermore this study lays a foundation to perform similar comparative studies between drug resistant and drug sensitive strains of parasite in order to understand DNA repair-related mechanisms of drug resistance.
Collapse
Affiliation(s)
- Leila Tajedin
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Masroor Anwar
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dinesh Gupta
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
34
|
Feltes BC, Bonatto D. Overview of xeroderma pigmentosum proteins architecture, mutations and post-translational modifications. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:306-20. [PMID: 25795128 DOI: 10.1016/j.mrrev.2014.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/15/2022]
Abstract
The xeroderma pigmentosum complementation group proteins (XPs), which include XPA through XPG, play a critical role in coordinating and promoting global genome and transcription-coupled nucleotide excision repair (GG-NER and TC-NER, respectively) pathways in eukaryotic cells. GG-NER and TC-NER are both required for the repair of bulky DNA lesions, such as those induced by UV radiation. Mutations in genes that encode XPs lead to the clinical condition xeroderma pigmentosum (XP). Although the roles of XPs in the GG-NER/TC-NER subpathways have been extensively studied, complete knowledge of their three-dimensional structure is only beginning to emerge. Hence, this review aims to summarize the current knowledge of mapped mutations and other structural information on XP proteins that influence their function and protein-protein interactions. We also review the possible post-translational modifications for each protein and the impact of these modifications on XP protein functions.
Collapse
Affiliation(s)
- Bruno César Feltes
- Biotechnology Center of the Federal University of Rio Grande do Sul, Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diego Bonatto
- Biotechnology Center of the Federal University of Rio Grande do Sul, Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
35
|
Momot D, Nostrand TA, John K, Ward Y, Steinberg SM, Liewehr DJ, Poirier MC, Olivero OA. Role of nucleotide excision repair and p53 in zidovudine (AZT)-induced centrosomal deregulation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:719-726. [PMID: 25073973 PMCID: PMC7675294 DOI: 10.1002/em.21889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 07/10/2014] [Indexed: 06/03/2023]
Abstract
The nucleoside reverse transcriptase inhibitor zidovudine (AZT) induces genotoxic damage that includes centrosomal amplification (CA > 2 centrosomes/cell) and micronucleus (MN) formation. Here we explored these end points in mice deficient in DNA repair and tumor suppressor function to evaluate their effect on AZT-induced DNA damage. We used mesenchymal-derived fibroblasts cultured from C57BL/6J mice that were null and wild type (WT) for Xpa, and WT, haploinsufficient and null for p53 (6 different genotypes). Dose-responses for CA formation, in cells exposed to 0, 10, and 100 μM AZT for 24 hr, were observed in all genotypes except the Xpa((+/+)) p53((+/-)) cells, which had very low levels of CA, and the Xpa((-/-)) p53((-/-)) cells, which had very high levels of CA. For CA there was a significant three-way interaction between Xpa, p53, and AZT concentration, and Xpa((-/-)) cells had significantly higher levels of CA than Xpa((+/+)) cells, only for p53((+/-)) cells. In contrast, the MN and MN + chromosomes (MN + C) data showed a lack of AZT dose response. The Xpa((-/-)) cells, with p53((+/+)) or ((+/-)) genotypes, had levels of MN and MN + C higher than the corresponding Xpa((+/+)) cells. The data show that CA is a major event induced by exposure to AZT in these cells, and that there is a complicated relationship between AZT and CA formation with respect to gene dosage of Xpa and p53. The loss of both genes resulted in high levels of damage, and p53 haploinsufficicency strongly protected Xpa((+/+)) cells from AZT-induced CA damage.
Collapse
Affiliation(s)
- Dariya Momot
- Carcinogen-DNA Interactions Section, LCBG, National Cancer Institute, NIH, Bethesda, Maryland
| | - Terri A. Nostrand
- Carcinogen-DNA Interactions Section, LCBG, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kaarthik John
- Carcinogen-DNA Interactions Section, LCBG, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yvona Ward
- Cell and Cancer Biology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, National Cancer Institute, NIH, Bethesda, Maryland
| | - David J. Liewehr
- Biostatistics and Data Management Section, National Cancer Institute, NIH, Bethesda, Maryland
| | - Miriam C. Poirier
- Carcinogen-DNA Interactions Section, LCBG, National Cancer Institute, NIH, Bethesda, Maryland
| | - Ofelia A. Olivero
- Carcinogen-DNA Interactions Section, LCBG, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
36
|
Thauvin-Robinet C, Lee JS, Lopez E, Herranz-Pérez V, Shida T, Franco B, Jego L, Ye F, Pasquier L, Loget P, Gigot N, Aral B, Lopes CAM, St-Onge J, Bruel AL, Thevenon J, González-Granero S, Alby C, Munnich A, Vekemans M, Huet F, Fry AM, Saunier S, Rivière JB, Attié-Bitach T, Garcia-Verdugo JM, Faivre L, Mégarbané A, Nachury MV. The oral-facial-digital syndrome gene C2CD3 encodes a positive regulator of centriole elongation. Nat Genet 2014; 46:905-11. [PMID: 24997988 PMCID: PMC4120243 DOI: 10.1038/ng.3031] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 06/17/2014] [Indexed: 12/30/2022]
Abstract
Centrioles are microtubule-based, barrel-shaped structures that initiate the assembly of centrosomes and cilia. How centriole length is precisely set remains elusive. The microcephaly protein CPAP (also known as MCPH6) promotes procentriole growth, whereas the oral-facial-digital (OFD) syndrome protein OFD1 represses centriole elongation. Here we uncover a new subtype of OFD with severe microcephaly and cerebral malformations and identify distinct mutations in two affected families in the evolutionarily conserved C2CD3 gene. Concordant with the clinical overlap, C2CD3 colocalizes with OFD1 at the distal end of centrioles, and C2CD3 physically associates with OFD1. However, whereas OFD1 deletion leads to centriole hyperelongation, loss of C2CD3 results in short centrioles without subdistal and distal appendages. Because C2CD3 overexpression triggers centriole hyperelongation and OFD1 antagonizes this activity, we propose that C2CD3 directly promotes centriole elongation and that OFD1 acts as a negative regulator of C2CD3. Our results identify regulation of centriole length as an emerging pathogenic mechanism in ciliopathies.
Collapse
Affiliation(s)
- Christel Thauvin-Robinet
- 1] Equipe d'Accueil 4271 Génétique des Anomalies du Développement, Fédération Hospitalo-Universitaire, Université de Bourgogne, Dijon, France. [2] Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs" de l'Est, Centre de Génétique et Pédiatrie 1, Hôpital d'Enfants, Centre Hospitalier Universitaire Dijon, Dijon, France. [3]
| | - Jaclyn S Lee
- 1] Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA. [2]
| | - Estelle Lopez
- Equipe d'Accueil 4271 Génétique des Anomalies du Développement, Fédération Hospitalo-Universitaire, Université de Bourgogne, Dijon, France
| | - Vicente Herranz-Pérez
- 1] Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universitat de València, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas, Valencia, Spain. [2] Unidad Mixta de Esclerosis Múltiple y Neurorregeneración, Instituto de Investigación Sanitaria Hospital La Fe, Universitat de València, Valencia, Spain
| | - Toshinobu Shida
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | - Brunella Franco
- 1] Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy. [2] Department of Medical Translational Sciences, Division of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Laurence Jego
- Equipe d'Accueil 4271 Génétique des Anomalies du Développement, Fédération Hospitalo-Universitaire, Université de Bourgogne, Dijon, France
| | - Fan Ye
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | - Laurent Pasquier
- Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs" de l'Ouest, Unité Fonctionnelle de Génétique Médicale, Centre Hospitalier Universitaire Rennes, Rennes, France
| | - Philippe Loget
- Laboratoire d'Anatomie-Pathologie, Centre Hospitalier Universitaire Rennes, Rennes, France
| | - Nadège Gigot
- 1] Equipe d'Accueil 4271 Génétique des Anomalies du Développement, Fédération Hospitalo-Universitaire, Université de Bourgogne, Dijon, France. [2] Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Bernard Aral
- 1] Equipe d'Accueil 4271 Génétique des Anomalies du Développement, Fédération Hospitalo-Universitaire, Université de Bourgogne, Dijon, France. [2] Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Carla A M Lopes
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Judith St-Onge
- 1] Equipe d'Accueil 4271 Génétique des Anomalies du Développement, Fédération Hospitalo-Universitaire, Université de Bourgogne, Dijon, France. [2] Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Ange-Line Bruel
- Equipe d'Accueil 4271 Génétique des Anomalies du Développement, Fédération Hospitalo-Universitaire, Université de Bourgogne, Dijon, France
| | - Julien Thevenon
- 1] Equipe d'Accueil 4271 Génétique des Anomalies du Développement, Fédération Hospitalo-Universitaire, Université de Bourgogne, Dijon, France. [2] Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs" de l'Est, Centre de Génétique et Pédiatrie 1, Hôpital d'Enfants, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Susana González-Granero
- 1] Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universitat de València, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas, Valencia, Spain. [2] Unidad Mixta de Esclerosis Múltiple y Neurorregeneración, Instituto de Investigación Sanitaria Hospital La Fe, Universitat de València, Valencia, Spain
| | - Caroline Alby
- 1] INSERM U781, Institut IMAGINE, Hôpital Necker-Enfants Malades, Paris, France. [2] Paris Descartes-Sorbonne Paris Cité University, Institut IMAGINE, Paris, France
| | - Arnold Munnich
- 1] INSERM U781, Institut IMAGINE, Hôpital Necker-Enfants Malades, Paris, France. [2] Paris Descartes-Sorbonne Paris Cité University, Institut IMAGINE, Paris, France. [3] Département de Génétique, Hôpital Necker-Enfants Malades, Paris, France
| | - Michel Vekemans
- 1] INSERM U781, Institut IMAGINE, Hôpital Necker-Enfants Malades, Paris, France. [2] Paris Descartes-Sorbonne Paris Cité University, Institut IMAGINE, Paris, France. [3] Département de Génétique, Hôpital Necker-Enfants Malades, Paris, France
| | - Frédéric Huet
- 1] Equipe d'Accueil 4271 Génétique des Anomalies du Développement, Fédération Hospitalo-Universitaire, Université de Bourgogne, Dijon, France. [2] Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs" de l'Est, Centre de Génétique et Pédiatrie 1, Hôpital d'Enfants, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Andrew M Fry
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Sophie Saunier
- 1] Paris Descartes-Sorbonne Paris Cité University, Institut IMAGINE, Paris, France. [2] INSERM, UMRS 1163, Laboratory of Inherited Kidney Diseases, Paris, France
| | - Jean-Baptiste Rivière
- 1] Equipe d'Accueil 4271 Génétique des Anomalies du Développement, Fédération Hospitalo-Universitaire, Université de Bourgogne, Dijon, France. [2] Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Tania Attié-Bitach
- 1] INSERM U781, Institut IMAGINE, Hôpital Necker-Enfants Malades, Paris, France. [2] Paris Descartes-Sorbonne Paris Cité University, Institut IMAGINE, Paris, France. [3] Département de Génétique, Hôpital Necker-Enfants Malades, Paris, France
| | - Jose Manuel Garcia-Verdugo
- 1] Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universitat de València, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas, Valencia, Spain. [2] Unidad Mixta de Esclerosis Múltiple y Neurorregeneración, Instituto de Investigación Sanitaria Hospital La Fe, Universitat de València, Valencia, Spain
| | - Laurence Faivre
- 1] Equipe d'Accueil 4271 Génétique des Anomalies du Développement, Fédération Hospitalo-Universitaire, Université de Bourgogne, Dijon, France. [2] Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs" de l'Est, Centre de Génétique et Pédiatrie 1, Hôpital d'Enfants, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - André Mégarbané
- Unité de Génétique Médicale, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon
| | - Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
37
|
Grecu D, Assairi L. CK2 phosphorylation of human centrins 1 and 2 regulates their binding to the DNA repair protein XPC, the centrosomal protein Sfi1 and the phototransduction protein transducin β. FEBS Open Bio 2014; 4:407-19. [PMID: 24918055 PMCID: PMC4050191 DOI: 10.1016/j.fob.2014.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 11/24/2022] Open
Abstract
Centrins are calcium-binding proteins that can interact with several cellular targets (Sfi1, XPC, Sac3 and transducin β) through the same hydrophobic triad. However, two different orientations of the centrin-binding motif have been observed: W(1)xxL(4)xxxL(8) for XPC (xeroderma pigmentosum group C protein) and the opposite orientation L(8)xxxL(4)xxW(1) for Sfi1 (suppressor of fermentation-induced loss of stress resistance protein 1), Sac3 and transducin β. Centrins are also phosphorylated by several protein kinases, among which is CK2. The purpose of this study was to determine the binding mechanism of human centrins to three targets (transducin β, Sfi1 and XPC), and the effects of in vitro phosphorylation by CK2 of centrins 1 and 2 with regard to this binding mechanism. We identified the centrin-binding motif at the COOH extremity of transducin β. Human centrin 1 binds to transducin β only in the presence of calcium with a binding constant lower than the binding constant observed for Sfi1 and for XPC. The affinity constants of centrin 1 were 0.10 10(6) M(-1), 249 10(6) M(-1) and 52.5 10(6) M(-1) for Trd, R17-Sfi1 and P17-XPC respectively. CK2 phosphorylates human centrin 1 at residue T138 and human centrin 2 at residues T138 and S158. Consequently CK2 phosphorylation abolished the binding of centrin 1 to transducin β and reduced the binding to Sfi1 and XPC. CK2 phosphorylation of centrin 2 at T138 and S158 abolished the binding to Sfi1 as assessed using a C-HsCen2 T138D-S158D phosphomimetic form of centrin 2.
Collapse
Affiliation(s)
- Dora Grecu
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France
| | - Liliane Assairi
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France
| |
Collapse
|
38
|
Et Taouil A, Brun E, Duchambon P, Blouquit Y, Gilles M, Maisonhaute E, Sicard-Roselli C. How protein structure affects redox reactivity: example of Human centrin 2. Phys Chem Chem Phys 2014; 16:24493-8. [DOI: 10.1039/c4cp03536d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human centrin 2 is a protein very sensitive to oxidative stress. Protein reactivity is unraveled by gamma radiolysis and electrochemical techniques.
Collapse
Affiliation(s)
- Abdeslam Et Taouil
- Sorbonne Universités
- UPMC Univ Paris 06
- UMR 8235
- Laboratoire Interfaces et Systèmes Electrochimiques
- Paris, France
| | - Emilie Brun
- Laboratoire de Chimie Physique
- CNRS UMR 8000
- Université Paris-Sud
- Bât. 350
- 91405 Orsay Cedex, France
| | - Patricia Duchambon
- Plateforme Production Protéines Recombinantes
- Institut Curie-INSERM U759
- Université Paris-Sud
- 91405 Orsay Cedex, France
| | - Yves Blouquit
- Institut Curie-INSERM U759
- Université Paris-Sud
- 91405 Orsay Cedex, France
| | - Manon Gilles
- Laboratoire de Chimie Physique
- CNRS UMR 8000
- Université Paris-Sud
- Bât. 350
- 91405 Orsay Cedex, France
| | - Emmanuel Maisonhaute
- Sorbonne Universités
- UPMC Univ Paris 06
- UMR 8235
- Laboratoire Interfaces et Systèmes Electrochimiques
- Paris, France
| | - Cécile Sicard-Roselli
- Laboratoire de Chimie Physique
- CNRS UMR 8000
- Université Paris-Sud
- Bât. 350
- 91405 Orsay Cedex, France
| |
Collapse
|
39
|
Grecu D, Blouquit Y, Assairi L. The E144 residue of Scherffelia dubia centrin discriminates between the DNA repair protein XPC and the centrosomal protein Sfi1. FEBS Open Bio 2013; 4:33-42. [PMID: 24371720 PMCID: PMC3871271 DOI: 10.1016/j.fob.2013.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 11/27/2022] Open
Abstract
Centrins are members of the EF-hand family of calcium-binding proteins, which are highly conserved among eukaryotes. Centrins bind to several cellular targets, through a hydrophobic triad. However, the W(1)xxL(4)xxxL(8) triad in XPC (Xeroderma Pigmentosum Group C protein) is found in the reverse orientation, as in the L(8)xxxL(4)xxW(1) triad in Sfi1 (Suppressor of Fermentation-Induced loss of stress resistance protein 1). As shown by previous NMR studies of human centrin 2 in complex with XPC or Sfi1, the E148 residue of human centrin 2 is in contact with XPC but is pushed away from the triad of Sfi1. We corroborated these findings using site-directed mutagenesis to generate mutations in Scherffelia dubia centrin (SdCen) and by using isothermal titration calorimetry to analyze the binding affinity of these mutants to XPC and Sfi1. We mutated the F109 residue, which is the main residue involved in target binding regardless of triad orientation, and the E144 residue, which was thought to be involved only in XPC binding. The F109L mutation reduced the binding of SdCen to XPC and Sfi1 and the negative effect was greater upon temperature increase. By contrast, the E144A mutation reduced the binding to XPC but had no effect on Sfi1 binding. The F109L-E144A mutation enhanced the negative effect of the two single mutations on XPC binding. Sfi1 proteins from Ostreococcus lucimarinus and Ostreococcus tauri, which belong to the same clade as S. dubia, were also investigated. A comparative analysis shows that the triad residues are more conserved than those in human Sfi1.
Collapse
Affiliation(s)
- Dora Grecu
- Institut Curie, Centre de Recherche, Orsay Cédex F-91405, France
| | - Yves Blouquit
- Institut Curie, Centre de Recherche, Orsay Cédex F-91405, France
| | - Liliane Assairi
- Institut Curie, Centre de Recherche, Orsay Cédex F-91405, France
| |
Collapse
|
40
|
Dantas TJ, Daly OM, Conroy PC, Tomas M, Wang Y, Lalor P, Dockery P, Ferrando-May E, Morrison CG. Calcium-binding capacity of centrin2 is required for linear POC5 assembly but not for nucleotide excision repair. PLoS One 2013; 8:e68487. [PMID: 23844208 PMCID: PMC3699651 DOI: 10.1371/journal.pone.0068487] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/29/2013] [Indexed: 12/25/2022] Open
Abstract
Centrosomes, the principal microtubule-organising centres in animal cells, contain centrins, small, conserved calcium-binding proteins unique to eukaryotes. Centrin2 binds to xeroderma pigmentosum group C protein (XPC), stabilising it, and its presence slightly increases nucleotide excision repair (NER) activity in vitro. In previous work, we deleted all three centrin isoforms present in chicken DT40 cells and observed delayed repair of UV-induced DNA lesions, but no centrosome abnormalities. Here, we explore how centrin2 controls NER. In the centrin null cells, we expressed centrin2 mutants that cannot bind calcium or that lack sites for phosphorylation by regulatory kinases. Expression of any of these mutants restored the UV sensitivity of centrin null cells to normal as effectively as expression of wild-type centrin. However, calcium-binding-deficient and T118A mutants showed greatly compromised localisation to centrosomes. XPC recruitment to laser-induced UV-like lesions was only slightly slower in centrin-deficient cells than in controls, and levels of XPC and its partner HRAD23B were unaffected by centrin deficiency. Interestingly, we found that overexpression of the centrin interactor POC5 leads to the assembly of linear, centrin-dependent structures that recruit other centrosomal proteins such as PCM-1 and NEDD1. Together, these observations suggest that assembly of centrins into complex structures requires calcium binding capacity, but that such assembly is not required for centrin activity in NER.
Collapse
Affiliation(s)
- Tiago J. Dantas
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Owen M. Daly
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Pauline C. Conroy
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Martin Tomas
- Bioimaging Center, University of Konstanz, Konstanz, Germany
- Department of Physics, Center for Applied Photonics, University of Konstanz, Konstanz, Germany
| | - Yifan Wang
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Pierce Lalor
- Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Peter Dockery
- Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | - Ciaran G. Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- * E-mail:
| |
Collapse
|
41
|
Kim JJ, Rajagopalan K, Hussain B, Williams BH, Kulkarni P, Mooney SM. CETN1 is a cancer testis antigen with expression in prostate and pancreatic cancers. Biomark Res 2013; 1:22. [PMID: 24252580 PMCID: PMC4177615 DOI: 10.1186/2050-7771-1-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Cancer Testis Antigens (CTAs) are a group of genes that are highly expressed in the normal testis and several types of cancer. Due to their restricted expression in normal adult tissues, CTAs have been attractive targets for immunotherapy and biomarker development. In this work, we discovered that Centrin 1 (CETN1) which is found in the centrosome of all eukaryotes, may be a member of this group and is highly expressed in prostate and pancreatic cancer. Three members of the centrin family of calcium binding proteins (CETN) are localized to the centrosome in all eukaryotes with CDC31 being the sole yeast homolog. CETN1 is a retrogene that probably arose from a retrotransposition of CETN2, an X-linked gene. A previous mouse study shows that CETN1 is expressed solely in the testis, while CETN2 is expressed in all organs. RESULTS In this work, we show that CETN1 is a new member of the growing group of CTAs. Through the mining of publicly available microarray data, we discovered that human CETN1 expression but not CETN2 or CETN3 is restricted to the testis. In fact, CETN1 is actually down-regulated in testicular malignancies compared to normal testis. Using q-PCR, CETN1 expression is shown to be highly up-regulated in cancer of the prostate and in pancreatic xenografts. Unexpectedly however, CETN1 expression was virtually absent in various cell lines until they were treated with the DNA demethylation agent 5'AZA-2'Deoxycytidine (AZA) but showed no increased expression upon incubation with Histone deacetylase inhibitor Trichostatin-A (TSA) alone. Additionally, like most CTAs, CETN1 appears to be an intrinsically disordered protein which implies that it may occupy a hub position in key protein interaction networks in cancer. Neither CETN1 nor CETN2 could compensate for loss of CDC31 expression in yeast which is analogous to published data for CETN3. CONCLUSIONS This work suggests that CETN1 is a novel CTA with expression in cancer of the prostate and pancreas. In cell lines, the expression is probably regulated by promoter methylation, while the method of regulation in normal adult tissues remains unknown.
Collapse
Affiliation(s)
- John J Kim
- Department of Urology, James Buchanan Brady Urological Institute, The Johns Hopkins University, School of Medicine, Baltimore, MD, 21287, USA.
| | | | | | | | | | | |
Collapse
|
42
|
de Graffenried CL, Anrather D, Von Raußendorf F, Warren G. Polo-like kinase phosphorylation of bilobe-resident TbCentrin2 facilitates flagellar inheritance in Trypanosoma brucei. Mol Biol Cell 2013; 24:1947-63. [PMID: 23615446 PMCID: PMC3681699 DOI: 10.1091/mbc.e12-12-0911] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/26/2013] [Accepted: 04/16/2013] [Indexed: 11/11/2022] Open
Abstract
In the protist parasite Trypanosoma brucei, the single Polo-like kinase (TbPLK) controls the inheritance of a suite of organelles that help position the parasite's single flagellum. These include the basal bodies, the bilobe, and the flagellar attachment zone (FAZ). TbCentrin2 was previously shown to be a target for TbPLK in vitro, and this is extended in this study to in vivo studies, highlighting a crucial role for serine 54 in the N-terminal domain. Duplication of the bilobe correlates with the presence of TbPLK and phospho-TbCentrin2, identified using phosphospecific antiserum. Mutation of S54 leads to slow growth (S54A) or no growth (S54D), the latter suggesting that dephosphorylation is needed to complete bilobe duplication and subsequent downstream events necessary for flagellum inheritance.
Collapse
|
43
|
Nishi R, Sakai W, Tone D, Hanaoka F, Sugasawa K. Structure-function analysis of the EF-hand protein centrin-2 for its intracellular localization and nucleotide excision repair. Nucleic Acids Res 2013; 41:6917-29. [PMID: 23716636 PMCID: PMC3737541 DOI: 10.1093/nar/gkt434] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Centrin-2 is an evolutionarily conserved, calmodulin-related protein, which is involved in multiple cellular functions including centrosome regulation and nucleotide excision repair (NER) of DNA. Particularly to exert the latter function, complex formation with the XPC protein, the pivotal NER damage recognition factor, is crucial. Here, we show that the C-terminal half of centrin-2, containing two calcium-binding EF-hand motifs, is necessary and sufficient for both its localization to the centrosome and interaction with XPC. In XPC-deficient cells, nuclear localization of overexpressed centrin-2 largely depends on co-overexpression of XPC, and mutational analyses of the C-terminal domain suggest that XPC and the major binding partner in the centrosome share a common binding surface on the centrin-2 molecule. On the other hand, the N-terminal domain of centrin-2 also contains two EF-hand motifs but shows only low-binding affinity for calcium ions. Although the N-terminal domain is dispensable for enhancement of the DNA damage recognition activity of XPC, it contributes to augmenting rather weak physical interaction between XPC and XPA, another key factor involved in NER. These results suggest that centrin-2 may have evolved to bridge two protein factors, one with high affinity and the other with low affinity, thereby allowing delicate regulation of various biological processes.
Collapse
Affiliation(s)
- Ryotaro Nishi
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | |
Collapse
|
44
|
Stemm-Wolf AJ, Meehl JB, Winey M. Sfr13, a member of a large family of asymmetrically localized Sfi1-repeat proteins, is important for basal body separation and stability in Tetrahymena thermophila. J Cell Sci 2013; 126:1659-71. [PMID: 23426847 DOI: 10.1242/jcs.120238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Directed fluid flow, which is achieved by the coordinated beating of motile cilia, is required for processes as diverse as cellular swimming, developmental patterning and mucus clearance. Cilia are nucleated, anchored and aligned at the plasma membrane by basal bodies, which are cylindrical microtubule-based structures with ninefold radial symmetry. In the unicellular ciliate Tetrahymena thermophila, two centrin family members associated with the basal body are important for both basal body organization and stabilization. We have identified a family of 13 proteins in Tetrahymena that contain centrin-binding repeats related to those identified in the Saccharomyces cerevisiae Sfi1 protein. We have named these proteins Sfr1-Sfr13 (for Sfi1-repeat). Nine of the Sfr proteins localize in unique polarized patterns surrounding the basal body, suggesting non-identical roles in basal body organization and association with basal body accessory structures. Furthermore, the Sfr proteins are found in distinct basal body populations in Tetrahymena cells, indicating that they are responsive to particular developmental programs. A complete genetic deletion of one of the family members, Sfr13, causes unstable basal bodies and defects in daughter basal body separation from the mother, phenotypes also observed with centrin disruption. It is likely that the other Sfr family members are involved in distinct centrin functions, providing specificity to the tasks that centrins perform at basal bodies.
Collapse
Affiliation(s)
- Alexander J Stemm-Wolf
- Department of Molecular, Cellular and Developmental Biology, University of Colorado - Boulder, Boulder, CO 80309, USA
| | | | | |
Collapse
|
45
|
Pastrana-Ríos B, Reyes M, De Orbeta J, Meza V, Narváez D, Gómez AM, Rodríguez Nassif A, Almodovar R, Díaz Casas A, Robles J, Ortiz AM, Irizarry L, Campbell M, Colón M. Relative stability of human centrins and its relationship to calcium binding. Biochemistry 2013; 52:1236-48. [PMID: 23346931 PMCID: PMC3597381 DOI: 10.1021/bi301417z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/20/2013] [Indexed: 11/28/2022]
Abstract
Centrins are calcium binding proteins that belong to the EF-hand superfamily with diverse biological functions. Herein we present the first systematic study that establishes the relative stability of related centrins via complementary biophysical techniques. Our results define the stepwise molecular behavior of human centrins by two-dimensional infrared (2D IR) correlation spectroscopy, the change in heat capacity and enthalpy of denaturation by differential scanning calorimetry, and the relative stability of the helical regions of centrins by circular dichroism. More importantly, 2D IR correlation spectroscopy provides unique information about the similarities and differences in dynamics between these related proteins. The thermally induced molecular behavior of human centrins can be used to predict biological target interactions that have a relative dependence on calcium affinity. This information is essential for understanding why certain isoforms may be used to rescue a phenotype and therefore also for explaining the different functions these proteins may have in vivo. Furthermore, this comparative approach can be applied to the study of recombinant therapeutic protein candidates for the treatment of disease states.
Collapse
Affiliation(s)
- Belinda Pastrana-Ríos
- Protein Research Center, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico 00681-9019, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sperry JB, Ryan ZC, Kumar R, Gross ML. Hydrogen/Deuterium Exchange Reflects Binding of Human Centrin 2 to Ca(2+) and Xeroderma Pigmentosum Group C Peptide: An Example of EX1 Kinetics. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2012; 330-332:302-309. [PMID: 23439742 PMCID: PMC3578700 DOI: 10.1016/j.ijms.2012.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Xeroderma pigmentosum (XP) is a genetic disease affecting 1 in 10,000-100,000 and predisposes people to early-age skin cancer, a disease that is increasing. Those with XP have decreased ability to repair UV-induced DNA damage, leading to increased susceptibility of cancerous non-melanomas and melanomas. A vital, heterotrimeric protein complex is linked to the nucleotide excision repair pathway for the damaged DNA. The complex consists of XPC protein, human centrin 2, and RAD23B. One of the members, human centrin 2, is a ubiquitous, acidic, Ca(2+)-binding protein belonging to the calmodulin superfamily. The XPC protein contains a sequence motif specific for binding to human centrin 2. We report here the Ca(2+)-binding properties of human centrin 2 and its interaction with the XPC peptide motif. We utilized a region-specific H/D exchange protocol to localize the interaction of the XPC peptide with the C-terminal domain of centrin, the binding of which is different than that of calmodulin complexes. The binding dynamics of human centrin 2 to the XPC peptide in the absence and presence of Ca(2+) are revealed by the observation of EX1 H/D exchange regime, indicating that a locally unfolded population exists in solution and undergoes fast H/D exchange.
Collapse
Affiliation(s)
- Justin B Sperry
- Analytical Research and Development, Pfizer Inc., Chesterfield, MO 63017 ; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | | | | | | |
Collapse
|
47
|
Zhang Y, Foreman O, Wigle DA, Kosari F, Vasmatzis G, Salisbury JL, van Deursen J, Galardy PJ. USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J Clin Invest 2012. [PMID: 23187126 DOI: 10.1172/jci63084] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most human tumors have abnormal numbers of chromosomes, a condition known as aneuploidy. The mitotic checkpoint is an important mechanism that prevents aneuploidy by restraining the activity of the anaphase-promoting complex (APC). The deubiquitinase USP44 was identified as a key regulator of APC activation; however, the physiological importance of USP44 and its impact on cancer biology are unknown. To clarify the role of USP44 in mitosis, we engineered a mouse lacking Usp44. We found that USP44 regulated the mitotic checkpoint and prevented chromosome lagging. Mice lacking Usp44 were prone to the development of spontaneous tumors, particularly in the lungs. Additionally, USP44 was frequently downregulated in human lung cancer, and low expression correlated with a poor prognosis. USP44 inhibited chromosome segregation errors independent of its role in the mitotic checkpoint by regulating centrosome separation, positioning, and mitotic spindle geometry. These functions required direct binding to the centriole protein centrin. Our data reveal a new role for the ubiquitin system in mitotic spindle regulation and underscore the importance of USP44 in the pathogenesis of human cancer.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Krasikova YS, Rechkunova NI, Maltseva EA, Craescu CT, Petruseva IO, Lavrik OI. Influence of centrin 2 on the interaction of nucleotide excision repair factors with damaged DNA. BIOCHEMISTRY (MOSCOW) 2012; 77:346-53. [PMID: 22809153 DOI: 10.1134/s0006297912040050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have examined the influence of centrin 2 (Cen2) on the interaction of nucleotide excision repair factors (XPC-HR23b, RPA, and XPA) with 48-mer DNA duplexes bearing the dUMP derivative 5-{3-[6-(carboxyamidofluoresceinyl)amidocapromoyl]allyl}-2'-deoxyuridine-5'-monophosphate. The fluorescein residue linked to the nucleotide base imitates a bulky lesion of DNA. Cen2 stimulated the binding and increased the yield of DNA adducts with XPC-HR23b, a protein recognizing bulky damages in DNA. Stimulation of the binding was most pronounced in the presence of Mg(2+) and demonstrated a bell-shaped dependence on Cen2 concentration. The addition of Cen2 changed the stoichiometry of RPA-DNA complexes and diminished the yield of RPA-DNA covalent crosslinks. We have shown that Cen2 influences the binding of RPA and XPA with DNA, which results in formation of additional DNA-protein complexes possibly including Cen2. We have also found some evidence of direct contacts between Cen2 and DNA. These results in concert with the literature data suggest that Cen2 can be a regulatory element in the nucleotide excision repair system.
Collapse
Affiliation(s)
- Y S Krasikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva 8, 630090 Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
49
|
Vonderfecht T, Cookson MW, Giddings TH, Clarissa C, Winey M. The two human centrin homologues have similar but distinct functions at Tetrahymena basal bodies. Mol Biol Cell 2012; 23:4766-77. [PMID: 23087207 PMCID: PMC3521684 DOI: 10.1091/mbc.e12-06-0454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Centrins are a ubiquitous family of small Ca(2+)-binding proteins found at basal bodies that are placed into two groups based on sequence similarity to the human centrins 2 and 3. Analyses of basal body composition in different species suggest that they contain a centrin isoform from each group. We used the ciliate protist Tetrahymena thermophila to gain a better understanding of the functions of the two centrin groups and to determine their potential redundancy. We have previously shown that the Tetrahymena centrin 1 (Cen1), a human centrin 2 homologue, is required for proper basal body function. In this paper, we show that the Tetrahymena centrin 2 (Cen2), a human centrin 3 homologue, has functions similar to Cen1 in basal body orientation, maintenance, and separation. The two are, however, not redundant. A further examination of human centrin 3 homologues shows that they function in a manner distinct from human centrin 2 homologues. Our data suggest that basal bodies require a centrin from both groups in order to function correctly.
Collapse
Affiliation(s)
- Tyson Vonderfecht
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
50
|
Dantas TJ, Daly OM, Morrison CG. Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance. Cell Mol Life Sci 2012; 69:2979-97. [PMID: 22460578 PMCID: PMC11114748 DOI: 10.1007/s00018-012-0961-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/20/2012] [Accepted: 03/12/2012] [Indexed: 01/11/2023]
Abstract
Centrins are small, highly conserved members of the EF-hand superfamily of calcium-binding proteins that are found throughout eukaryotes. They play a major role in ensuring the duplication and appropriate functioning of the ciliary basal bodies in ciliated cells. They have also been localised to the centrosome, which is the major microtubule organising centre in animal somatic cells. We describe the identification, cloning and characterisation of centrins in multiple eukaryotic species. Although centrins have been implicated in centriole biogenesis, recent results have indicated that centrosome duplication can, in fact, occur in the absence of centrins. We discuss these data and the non-centrosomal functions that are emerging for the centrins. In particular, we discuss the involvement of centrins in nucleotide excision repair, a process that repairs the DNA lesions that are induced primarily by ultraviolet irradiation. We discuss how centrin may be involved in these diverse processes and contribute to nuclear and cytoplasmic events.
Collapse
Affiliation(s)
- Tiago J. Dantas
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Owen M. Daly
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Ciaran G. Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|