1
|
Parsons AJ, Stein KR, Atanasoff KE, Ophir SI, Casado JP, Tortorella D. The CD46 ectodomain participates in human cytomegalovirus infection of epithelial cells. J Gen Virol 2023; 104:001892. [PMID: 37668349 PMCID: PMC10484303 DOI: 10.1099/jgv.0.001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) primary infections are typically asymptomatic in healthy individuals yet can cause increased morbidity and mortality in organ transplant recipients, AIDS patients, neonates, and the elderly. The successful, widespread dissemination of this virus among the population can be attributed in part to its wide cellular tropism and ability to establish life-long latency. HCMV infection is a multi-step process that requires numerous cellular and viral factors. The viral envelope consists of envelope protein complexes that interact with cellular factors; such interactions dictate virus recognition and attachment to different cell types, followed by fusion either at the cell membrane or within an endocytic vesicle. Several HCMV entry factors, including neuropilin-2 (Nrp2), THBD, CD147, OR14I1, and CD46, are characterized as participating in HCMV pentamer-specific entry of non-fibroblast cells such as epithelial, trophoblast, and endothelial cells, respectively. This study focuses on characterizing the structural elements of CD46 that impact HCMV infection. Infectivity studies of wild-type and CD46 knockout epithelial cells demonstrated that levels of CD46 expressed on the cell surface were directly related to HCMV infectivity. Overexpression of CD46 isomers BC1, BC2, and C2 enhanced infection. Further, CD46 knockout epithelial cells expressing CD46 deletion and chimeric molecules identified that the intact ectodomain was critical for rescue of HCMV infection in CD46 knockout cells. Collectively, these data support a model that the extracellular domain of CD46 participates in HCMV infection due to its surface expression.
Collapse
Affiliation(s)
- Andrea J. Parsons
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kathryn R. Stein
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristina E. Atanasoff
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sabrina I. Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jailene Paredes Casado
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
3
|
Van Damme E, Thys K, Tuefferd M, Van Hove C, Aerssens J, Van Loock M. HCMV Displays a Unique Transcriptome of Immunomodulatory Genes in Primary Monocyte-Derived Cell Types. PLoS One 2016; 11:e0164843. [PMID: 27760232 PMCID: PMC5070835 DOI: 10.1371/journal.pone.0164843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/01/2016] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus which rarely presents problems in healthy individuals, yet may result in severe morbidity in immunocompromised patients and in immune-naïve neonates. HCMV has a large 235 kb genome with a coding capacity of at least 165 open reading frames (ORFs). This large genome allows complex gene regulation resulting in different sets of transcripts during lytic and latent infection. While latent virus mainly resides within monocytes and CD34+ progenitor cells, reactivation to lytic infection is driven by differentiation towards terminally differentiated myeloid dendritic cells and macrophages. Consequently, it has been suggested that macrophages and dendritic cells contribute to viral spread in vivo. Thus far only limited knowledge is available on the expression of HCMV genes in terminally differentiated myeloid primary cells and whether or not the virus exhibits a different set of lytic genes in primary cells compared with lytic infection in NHDF fibroblasts. To address these questions, we used Illumina next generation sequencing to determine the HCMV transcriptome in macrophages and dendritic cells during lytic infection and compared it to the transcriptome in NHDF fibroblasts. Here, we demonstrate unique expression profiles in macrophages and dendritic cells which significantly differ from the transcriptome in fibroblasts mainly by modulating the expression of viral transcripts involved in immune modulation, cell tropism and viral spread. In a head to head comparison between macrophages and dendritic cells, we observed that factors involved in viral spread and virion composition are differentially regulated suggesting that the plasticity of the virion facilitates the infection of surrounding cells. Taken together, this study provides the full transcript expression analysis of lytic HCMV genes in monocyte-derived type 1 and type 2 macrophages as well as in monocyte-derived dendritic cells. Thereby underlining the potential of HCMV to adapt to or influence different cellular environments to promote its own survival.
Collapse
Affiliation(s)
- Ellen Van Damme
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Kim Thys
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Carl Van Hove
- Discovery Sciences, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jeroen Aerssens
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marnix Van Loock
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
- * E-mail:
| |
Collapse
|
4
|
Van Damme E, Van Loock M. Functional annotation of human cytomegalovirus gene products: an update. Front Microbiol 2014; 5:218. [PMID: 24904534 PMCID: PMC4032930 DOI: 10.3389/fmicb.2014.00218] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/25/2014] [Indexed: 01/31/2023] Open
Abstract
Human cytomegalovirus is an opportunistic double-stranded DNA virus with one of the largest viral genomes known. The 235 kB genome is divided in a unique long (UL) and a unique short (US) region which are flanked by terminal and internal repeats. The expression of HCMV genes is highly complex and involves the production of protein coding transcripts, polyadenylated long non-coding RNAs, polyadenylated anti-sense transcripts and a variety of non-polyadenylated RNAs such as microRNAs. Although the function of many of these transcripts is unknown, they are suggested to play a direct or regulatory role in the delicately orchestrated processes that ensure HCMV replication and life-long persistence. This review focuses on annotating the complete viral genome based on three sources of information. First, previous reviews were used as a template for the functional keywords to ensure continuity; second, the Uniprot database was used to further enrich the functional database; and finally, the literature was manually curated for novel functions of HCMV gene products. Novel discoveries were discussed in light of the viral life cycle. This functional annotation highlights still poorly understood regions of the genome but more importantly it can give insight in functional clusters and/or may be helpful in the analysis of future transcriptomics and proteomics studies.
Collapse
Affiliation(s)
- Ellen Van Damme
- Janssen Infectious Diseases BVBA, Therapeutic Area of Infectious Diseases Beerse, Belgium
| | - Marnix Van Loock
- Janssen Infectious Diseases BVBA, Therapeutic Area of Infectious Diseases Beerse, Belgium
| |
Collapse
|
5
|
Redmann V, Gardner T, Lau Z, Morohashi K, Felsenfeld D, Tortorella D. Novel class of potential therapeutics that target ricin retrograde translocation. Toxins (Basel) 2013; 6:33-53. [PMID: 24366208 PMCID: PMC3920248 DOI: 10.3390/toxins6010033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 01/11/2023] Open
Abstract
Ricin toxin, an A-B toxin from Ricinus communis, induces cell death through the inhibition of protein synthesis. The toxin binds to the cell surface via its B chain (RTB) followed by its retrograde trafficking through intracellular compartments to the ER where the A chain (RTA) is transported across the membrane and into the cytosol. Ricin A chain is transported across the ER membrane utilizing cellular proteins involved in the disposal of aberrant ER proteins by a process referred to as retrograde translocation. Given the current lack of therapeutics against ricin intoxication, we developed a high-content screen using an enzymatically attenuated RTA chimera engineered with a carboxy-terminal enhanced green fluorescent protein (RTA(E177Q)egfp) to identify compounds that target RTA retrograde translocation. Stabilizing RTA(E177Q)egfp through the inclusion of proteasome inhibitor produced fluorescent peri-nuclear granules. Quantitative analysis of the fluorescent granules provided the basis to discover compounds from a small chemical library (2080 compounds) with known bioactive properties. Strikingly, the screen found compounds that stabilized RTA molecules within the cell and several compounds limited the ability of wild type RTA to suppress protein synthesis. Collectively, a robust high-content screen was developed to discover novel compounds that stabilize intracellular ricin and limit ricin intoxication.
Collapse
Affiliation(s)
- Veronika Redmann
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, One Gustave L. Levy Place, New York, NY 10029, USA; E-Mails: (V.R.); (T.G.)
| | - Thomas Gardner
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, One Gustave L. Levy Place, New York, NY 10029, USA; E-Mails: (V.R.); (T.G.)
| | - Zerlina Lau
- Icahn School of Medicine at Mount Sinai, Integrated Screening Core, Experimental Therapeutics Institute, One Gustave L. Levy Place, New York, NY 10029, USA; E-Mails: (Z.L.); (K.M.); (D.F.)
| | - Keita Morohashi
- Icahn School of Medicine at Mount Sinai, Integrated Screening Core, Experimental Therapeutics Institute, One Gustave L. Levy Place, New York, NY 10029, USA; E-Mails: (Z.L.); (K.M.); (D.F.)
| | - Dan Felsenfeld
- Icahn School of Medicine at Mount Sinai, Integrated Screening Core, Experimental Therapeutics Institute, One Gustave L. Levy Place, New York, NY 10029, USA; E-Mails: (Z.L.); (K.M.); (D.F.)
| | - Domenico Tortorella
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, One Gustave L. Levy Place, New York, NY 10029, USA; E-Mails: (V.R.); (T.G.)
- Author whom correspondence should be addressed. E-Mail: ; Tel.: +1-212-2415447; Fax: +1-212-534-1684
| |
Collapse
|
6
|
Noriega V, Redmann V, Gardner T, Tortorella D. Diverse immune evasion strategies by human cytomegalovirus. Immunol Res 2013; 54:140-51. [PMID: 22454101 DOI: 10.1007/s12026-012-8304-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Members of the Herpesviridae family have the capacity to undergo both lytic and latent infection to establish a lifelong relationship with their host. Following primary infection, human cytomegalovirus (HCMV) can persist as a subclinical, recurrent infection for the lifetime of an individual. This quiescent portion of its life cycle is termed latency and is associated with periodic bouts of reactivation during times of immunosuppression, inflammation, or stress. In order to exist indefinitely and establish infection, HCMV encodes a multitude of immune modulatory mechanisms devoted to escaping the host antiviral response. HCMV has become a paradigm for studies of viral immune evasion of antigen presentation by both major histocompatibility complex (MHC) class I and II molecules. By restricting the presentation of viral antigens during both productive and latent infection, HCMV limits elimination by the human immune system. This review will focus on understanding how the virus manipulates the pathways of antigen presentation in order to modulate the host response to infection.
Collapse
Affiliation(s)
- Vanessa Noriega
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
| | | | | | | |
Collapse
|
7
|
Redmann V, Oresic K, Tortorella LL, Cook JP, Lord M, Tortorella D. Dislocation of ricin toxin A chains in human cells utilizes selective cellular factors. J Biol Chem 2011; 286:21231-8. [PMID: 21527639 DOI: 10.1074/jbc.m111.234708] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ricin is a potent A-B toxin that is transported from the cell surface to the cytosol, where it inactivates ribosomes, leading to cell death. Ricin enters cells via endocytosis, where only a minute number of ricin molecules reach the endoplasmic reticulum (ER) lumen. Subsequently, the ricin A chain traverses the ER bilayer by a process referred to as dislocation or retrograde translocation to gain access to the cytosol. To study the molecular processes of ricin A chain dislocation, we have established, for the first time, a human cell system in which enzymatically attenuated ricin toxin A chains (RTA(E177D) and RTA(Δ177-181)) are expressed in the cell and directed to the ER. Using this human cell-based system, we found that ricin A chains underwent a rapid dislocation event that was quite distinct from the dislocation of a canonical ER soluble misfolded protein, null Hong Kong variant of α(1)-antitrypsin. Remarkably, ricin A chain dislocation occurred via a membrane-integrated intermediate and utilized the ER protein SEL1L for transport across the ER bilayer to inhibit protein synthesis. The data support a model in which ricin A chain dislocation occurs via a novel strategy of utilizing the hydrophobic nature of the ER membrane and selective ER components to gain access to the cytosol.
Collapse
Affiliation(s)
- Veronika Redmann
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
8
|
Ng CL, Oresic K, Tortorella D. TRAM1 is involved in disposal of ER membrane degradation substrates. Exp Cell Res 2010; 316:2113-22. [PMID: 20430023 DOI: 10.1016/j.yexcr.2010.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 03/12/2010] [Accepted: 04/12/2010] [Indexed: 11/28/2022]
Abstract
ER quality control consists of monitoring protein folding and targeting misfolded proteins for proteasomal degradation. ER stress results in an unfolded protein response (UPR) that selectively upregulates proteins involved in protein degradation, ER expansion, and protein folding. Given the efficiency in which misfolded proteins are degraded, there likely exist cellular factors that enhance the export of proteins across the ER membrane. We have reported that translocating chain-associated membrane protein 1 (TRAM1), an ER-resident membrane protein, participates in HCMV US2- and US11-mediated dislocation of MHC class I heavy chains (Oresic, K., Ng, C.L., and Tortorella, D. 2009). Consistent with the hypothesis that TRAM1 is involved in the disposal of misfolded ER proteins, cells lacking TRAM1 experienced a heightened UPR upon acute ER stress, as evidenced by increased activation of unfolded protein response elements (UPRE) and elevated levels of NF-kappaB activity. We have also extended the involvement of TRAM1 in the selective degradation of misfolded ER membrane proteins Cln6(M241T) and US2, but not the soluble degradation substrate alpha(1)-antitrypsin null(HK). These degradation model systems support the paradigm that TRAM1 is a selective factor that can enhance the dislocation of ER membrane proteins.
Collapse
Affiliation(s)
- Caroline L Ng
- One Gustave L. Levy Place, Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
9
|
Cln6 mutants associated with neuronal ceroid lipofuscinosis are degraded in a proteasome-dependent manner. Biosci Rep 2009; 29:173-81. [PMID: 18811591 DOI: 10.1042/bsr20080143] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
NCLs (neuronal ceroid lipofuscinoses), a group of inherited neurodegenerative lysosomal storage diseases that predominantly affect children, are the result of autosomal recessive mutations within one of the nine cln genes. The wild-type cln gene products are composed of membrane and soluble proteins that localize to the lysosome or the ER (endoplasmic reticulum). However, the destiny of the Cln variants has not been fully characterized. To explore a possible link between ER quality control and processing of Cln mutants, we investigated the fate of two NCL-related Cln6 mutants found in patient samples (Cln6(G123D) and Cln6(M241T)) in neuronal-derived human cells. The point mutations are predicted to be in the putative transmembrane domains and most probably generate misfolded membrane proteins that are subjected to ER quality control. Consistent with this paradigm, both mutants underwent rapid proteasome-mediated degradation and complexed with components of the ER extraction apparatus, Derlin-1 and p97. In addition, knockdown of SEL1L [sel-1 suppressor of lin-12-like (Caenorhabditis elegans)], a member of an E3 ubiquitin ligase complex involved in ER protein extraction, rescued significant amounts of Cln6(G123D) and Cln6(M241T) polypeptides. The results implicate ER quality control in the instability of the Cln variants that probably contributes to the development of NCL.
Collapse
|
10
|
Oresic K, Ng CL, Tortorella D. TRAM1 participates in human cytomegalovirus US2- and US11-mediated dislocation of an endoplasmic reticulum membrane glycoprotein. J Biol Chem 2009; 284:5905-14. [PMID: 19121997 DOI: 10.1074/jbc.m807568200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human cytomegalovirus proteins US2 and US11 have co-opted endoplasmic reticulum (ER) quality control to facilitate the destruction of major histocompatibility complex class I heavy chains. The class I heavy chains are dislocated from the ER to the cytosol, where they are deglycosylated and subsequently degraded by the proteasome. We examined the role of TRAM1 (translocating chain-associated membrane protein-1) in the dislocation of class I molecules using US2- and US11-expressing cells. TRAM1 is an ER protein initially characterized for its role in processing nascent polypeptides. Co-immunoprecipitation studies demonstrated that TRAM1 can complex with the wild type US2 and US11 proteins as well as deglycosylated and polyubiquitinated class I degradation intermediates. In studies using US2- and US11-TRAM1 knockdown cells, we observed an increase in levels of class I heavy chains. Strikingly, increased levels of glycosylated heavy chains were observed in TRAM1 knockdown cells when compared with control cells in a pulse-chase experiment. In fact, US11-mediated class I dislocation was more sensitive to the lack of TRAM1 than US2. These results provide further evidence that these viral proteins may utilize distinct complexes to facilitate class I dislocation. For example, US11-mediated class I heavy chain degradation requires Derlin-1 and SEL1L, whereas signal peptide peptidase is critical for US2-induced class I destabilization. In addition, TRAM1 can complex with the dislocation factors Derlin-1 and signal peptide peptidase. Collectively, the data support a model in which TRAM1 functions as a cofactor to promote efficient US2- and US11-dependent dislocation of major histocompatibility complex class I heavy chains.
Collapse
Affiliation(s)
- Kristina Oresic
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
11
|
Oresic K, Tortorella D. Endoplasmic reticulum chaperones participate in human cytomegalovirus US2-mediated degradation of class I major histocompatibility complex molecules. J Gen Virol 2008; 89:1122-1130. [PMID: 18420789 DOI: 10.1099/vir.0.83516-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inhibition of cell-surface expression of major histocompatibility complex class I molecules by human cytomegalovirus (HCMV, a beta-herpesvirus) promotes escape from recognition by CD8+ cytotoxic T cells. The HCMV US2 and US11 gene products induce class I downregulation during the early phase of HCMV infection by facilitating the degradation of class I heavy chains. The HCMV proteins promote the transport of the class I heavy chains across the endoplasmic reticulum (ER) membrane into the cytosol by a process referred to as 'dislocation', which is then followed by proteasome degradation. This process has striking similarities to the degradation of misfolded ER proteins mediated by ER quality control. Even though the major steps of the dislocation reaction have been characterized, the cellular proteins, specifically the ER chaperones involved in targeting class I for dislocation, have not been fully delineated. To elucidate the chaperones involved in HCMV-mediated class I dislocation, we utilized a chimeric class I heavy chain with an affinity tag at its carboxy terminus. Interestingly, US2 but not US11 continued to target the class I chimera for destruction, suggesting a structural limitation for US11-mediated degradation. Association studies in US2 cells and in cells that express a US2 mutant, US2-186HA, revealed that class I specifically interacts with calnexin, BiP and calreticulin. These findings demonstrate that US2-mediated class I destruction utilizes specific chaperones to facilitate class I dislocation. The data suggest a more general model in which the chaperones that mediate protein folding may also function during ER quality control to eliminate aberrant ER proteins.
Collapse
Affiliation(s)
- Kristina Oresic
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
12
|
Noriega VM, Tortorella D. A bipartite trigger for dislocation directs the proteasomal degradation of an endoplasmic reticulum membrane glycoprotein. J Biol Chem 2007; 283:4031-43. [PMID: 18086679 DOI: 10.1074/jbc.m706283200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polypeptides are organized into distinct substructures, termed protein domains, that are often associated with diverse functions. These modular units can act as binding sites, areas of post-translational modification, and sites of complex multimerization. The human cytomegalovirus US2 gene product is organized into discrete domains that together catalyze the proteasome-dependent degradation of class I major histocompatibility complex heavy chains. US2 co-opts the endogenous ER quality control pathway in order to dispose of class I. The US2 endoplasmic reticulum (ER)-lumenal region is the class I binding domain, whereas the carboxyl terminus can be referred to as the degradation domain. In the present study, we examined the role of the US2 transmembrane domain in virus-mediated class I degradation. Replacement of the US2 transmembrane domain with that of the CD4 glycoprotein completely blocked the ability of US2 to induce class I destruction. A more precise mutagenesis revealed that subregions of the US2 transmembrane domain differ in their ability to trigger class I degradation. Collectively, the data support a model in which US2-mediated class I degradation occurs as a highly regulated process where the US2 transmembrane domain and cytoplasmic tail work in concert to eliminate class I molecules. Host factors, including a signal peptidase complex, probably associate with the US2 molecule in a coordinated fashion to create a predislocation complex to promote the extraction of class I out of the ER. The results imply that the ER quality control machinery may recognize and eliminate misfolded proteins using a similar multistep regulated process.
Collapse
Affiliation(s)
- Vanessa M Noriega
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York 10029, USA
| | | |
Collapse
|
13
|
Baker BM, Tortorella D. Dislocation of an Endoplasmic Reticulum Membrane Glycoprotein Involves the Formation of Partially Dislocated Ubiquitinated Polypeptides. J Biol Chem 2007; 282:26845-26856. [PMID: 17650499 DOI: 10.1074/jbc.m704315200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Accumulation of improperly folded polypeptides in the endoplasmic reticulum (ER) can trigger a stress response that leads to the export of aberrant proteins into the cytosol and their ultimate proteasomal degradation. Human cytomegalovirus encodes a type I glycoprotein, US11, that binds to nascent MHC class I heavy chain molecules and causes their dislocation from the ER to the cytosol where they are degraded by the proteasome. Examination of US11-mediated class I degradation has identified a host of cellular proteins involved in the dislocation reaction, including the cytosolic AAA ATPase p97, the membrane protein Derlin-1, and the E3 ubiquitin ligase Sel1L. However, the intermediate steps occurring between the initiation of dislocation and full extraction of the misfolded substrate into the cytosol are not known. We demonstrate that US11 itself undergoes ER export and proteasomal degradation and utilize this system to define multiple steps of US11 dislocation. Treatment of US11-expressing cells with proteasome inhibitor resulted in the accumulation of glycosylated and ubiquitinated species as well as a deglycosylated US11 intermediate. Subcellular fractionation of proteasome-inhibited US11 cells demonstrated that deglycosylated intermediates continued to be integrated within the ER membrane, suggesting that the proteasome functions in the latter steps of dislocation. The data supports a model in which US11 is modified with ubiquitin, whereas the transmembrane region is integrated in the ER membrane, and deglycosylation occurs before complete dislocation.
Collapse
Affiliation(s)
- Brooke M Baker
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York 10029
| | - Domenico Tortorella
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York 10029.
| |
Collapse
|
14
|
Sen N, Sen A, Mackow ER. Degrons at the C terminus of the pathogenic but not the nonpathogenic hantavirus G1 tail direct proteasomal degradation. J Virol 2007; 81:4323-30. [PMID: 17267477 PMCID: PMC1866138 DOI: 10.1128/jvi.02279-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pathogenic hantaviruses cause two human diseases: hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). The hantavirus G1 protein contains a long, 142-amino-acid cytoplasmic tail, which in NY-1 virus (NY-1V) is ubiquitinated and proteasomally degraded (E. Geimonen, I. Fernandez, I. N. Gavrilovskaya, and E. R. Mackow, J. Virol. 77: 10760-10768, 2003). Here we report that the G1 cytoplasmic tails of pathogenic Andes (HPS) and Hantaan (HFRS) viruses are also degraded by the proteasome and that, in contrast, the G1 tail of nonpathogenic Prospect Hill virus (PHV) is stable and not proteasomally degraded. We determined that the signals which direct NY-1V G1 tail degradation are present in a hydrophobic region within the C-terminal 30 residues of the protein. In contrast to that of PHV, the NY-1V hydrophobic domain directs the proteasomal degradation of green fluorescent protein and constitutes an autonomous degradation signal, or "degron," within the NY-1V G1 tail. Replacing 4 noncontiguous residues of the NY-1V G1 tail with residues present in the stable PHV G1 tail resulted in a NY-1V G1 tail that was not degraded by the proteasome. In contrast, changing a different but overlapping set of 4 PHV residues to corresponding NY-1V residues directed proteasomal degradation of the PHV G1 tail. The G1 tails of pathogenic, but not nonpathogenic, hantaviruses contain intervening hydrophilic residues within the C-terminal hydrophobic domain, and amino acid substitutions that alter the stability or degradation of NY-1V or PHV G1 tails result from removing or adding intervening hydrophilic residues. Our results identify residues that selectively direct the proteasomal degradation of pathogenic hantavirus G1 tails. Although a role for the proteasomal degradation of the G1 tail in HPS or HFRS is unclear, these findings link G1 tail degradation to viral pathogenesis and suggest that degrons within hantavirus G1 tails are potential virulence determinants.
Collapse
Affiliation(s)
- Nandini Sen
- Departments of Medicine, HSC T17, Rm. 60, SUNY at Stony Brook, Stony Brook, NY 11794, and Northport VA Medical Center, NY 11768, USA
| | | | | |
Collapse
|
15
|
Abstract
Relatively small genomes and high replication rates allow viruses and bacteria to accumulate mutations. This continuously presents the host immune system with new challenges. On the other side of the trenches, an increasingly well-adjusted host immune response, shaped by coevolutionary history, makes a pathogen's life a rather complicated endeavor. It is, therefore, no surprise that pathogens either escape detection or modulate the host immune response, often by redirecting normal cellular pathways to their advantage. For the purpose of this chapter, we focus mainly on the manipulation of the class I and class II major histocompatibility complex (MHC) antigen presentation pathways and the ubiquitin (Ub)-proteasome system by both viral and bacterial pathogens. First, we describe the general features of antigen presentation pathways and the Ub-proteasome system and then address how they are manipulated by pathogens. We discuss the many human cytomegalovirus (HCMV)-encoded immunomodulatory genes that interfere with antigen presentation (immunoevasins) and focus on the HCMV immunoevasins US2 and US11, which induce the degradation of class I MHC heavy chains by the proteasome by catalyzing their export from the endoplasmic reticulum (ER)-membrane into the cytosol, a process termed ER dislocation. US2- and US11-mediated subversion of ER dislocation ensures proteasomal degradation of class I MHC molecules and presumably allows HCMV to avoid recognition by cytotoxic T cells, whilst providing insight into general aspects of ER-associated degradation (ERAD) which is used by eukaryotic cells to purge their ER of defective proteins. We discuss the similarities and differences between the distinct pathways co-opted by US2 and US11 for dislocation and degradation of human class I MHC molecules and also a putatively distinct pathway utilized by the murine herpes virus (MHV)-68 mK3 immunoevasin for ER dislocation of murine class I MHC. We speculate on the implications of the three pathogen-exploited dislocation pathways to cellular ER quality control. Moreover, we discuss the ubiquitin (Ub)-proteasome system and its position at the core of antigen presentation as proteolysis and intracellular trafficking rely heavily on Ub-dependent processes. We add a few examples of manipulation of the Ub-proteasome system by pathogens in the context of the immune system and such diverse aspects of the host-pathogen relationship as virus budding, bacterial chromosome integration, and programmed cell death, to name a few. Finally, we speculate on newly found pathogen-encoded deubiquitinating enzymes (DUBs) and their putative roles in modulation of host-pathogen interactions.
Collapse
Affiliation(s)
- Joana Loureiro
- Whitehead Institute, 9 Cambridge Center, Cambridge, Massachusetts, USA
| | | |
Collapse
|