1
|
Dominelli N, Regaiolo A, Willy L, Heermann R. Interkingdom Signaling of the Insect Pathogen Photorhabdus luminescens with Plants Via the LuxR solo SdiA. Microorganisms 2023; 11:microorganisms11040890. [PMID: 37110313 PMCID: PMC10143992 DOI: 10.3390/microorganisms11040890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
In bacteria, group-coordinated behavior such as biofilm formation or virulence are often mediated via cell–cell communication, a process referred to as quorum sensing (QS). The canonical QS system of Gram-negative bacteria uses N-acyl homoserine lactones (AHLs) as communication molecules, which are produced by LuxI-type synthases and sensed by cognate LuxR-type receptors. These receptors act as transcriptional regulators controlling the expression of specific genes. Some bacteria harbor LuxR-type receptors lacking a cognate LuxI-type synthases, designated as LuxR solos. Among many other LuxR solos, the entomopathogenic enteric bacterium Photorhabdus luminescens harbors a SdiA-like LuxR solo containing an AHL signal-binding domain, for which a respective signal molecule and target genes have not been identified yet. Here we performed SPR analysis to demonstrate that SdiA acts as a bidirectional regulator of transcription, tightly controlling its own expression and the adjacent PluDJC_01670 (aidA) gene in P. luminescens, a gene supposed to be involved in the colonization of eukaryotes. Via qPCR we could further determine that in sdiA deletion mutant strains, aidA is upregulated, indicating that SdiA negatively affects expression of aidA. Furthermore, the ΔsdiA deletion mutant exhibited differences in biofilm formation and motility compared with the wild-type. Finally, using nanoDSF analysis we could identify putative binding ability of SdiA towards diverse AHLs, but also to plant-derived signals, modulating the DNA-binding capacity of SdiA, suggesting that this LuxR solo acts as an important player in interkingdom signaling between P. luminescens and plants.
Collapse
|
2
|
Wang W, Lin X, Yang H, Huang X, Pan L, Wu S, Yang C, Zhang L, Li Y. Anti-quorum sensing evaluation of methyleugenol, the principal bioactive component, from the Melaleuca bracteata leaf oil. Front Microbiol 2022; 13:970520. [PMID: 36118239 PMCID: PMC9477228 DOI: 10.3389/fmicb.2022.970520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication in bacteria that couples gene expression through the accumulation of signaling molecules, which finally induce the production of several virulence factors and modulate bacterial behaviors. Plants have evolved an array of quorum sensing inhibitors (QSIs) to inhibit the pathogens, of which aromatic compounds are widely recognized. The essential oil of Melaleuca bracteata was found to exhibit anti-quorum sensing activity, and its principal bioactive component, methyleugenol (ME), had been isolated in our previous study. Here, ME interfered effectively with the QS-regulated processes of toxin secretion in Chomobacterium violaceum ATCC31532, resulting in strong inhibition of QS genes, cviR, cviI, vioA-E, hmsHNR, lasA-B, pilE1-3, and hcnABC, leading to impaired virulence, including violacein production, biofilm biomass, and swarming motility. The accumulation of the signal molecule (N-hexanoyl-DL-homoserine lactone, C6-HSL) in C. violaceum declined upon treatment with ME, suggesting an inhibition effect on the C6-HSL production, and the ME was also capable of degrading the C6-HSL in vitro assay. Molecular docking technique and the consumption change of exogenous C6-HSL in C. violaceum CV026 revealed the anti-QS mechanism of ME consisted of inhibition of C6-HSL production, potentially via interaction with CviR and/or CviI protein. Collectively, the isolated ME, the principal active components of M. bracteata EO, exhibited a wide range of inhibition processes targeting C. violaceum QS system, which supports the potential anti-pathogenic use of M. bracteata EO and ME for treatment of pathogen contamination caused by bacterial pathogens.
Collapse
Affiliation(s)
- Wenting Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojie Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huixiang Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqin Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lei Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaohua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liaoyuan Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Liaoyuan Zhang,
| | - Yongyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- Yongyu Li,
| |
Collapse
|
3
|
Liu F, Hu M, Zhang Z, Xue Y, Chen S, Hu A, Zhang LH, Zhou J. Dickeya Manipulates Multiple Quorum Sensing Systems to Control Virulence and Collective Behaviors. FRONTIERS IN PLANT SCIENCE 2022; 13:838125. [PMID: 35211146 PMCID: PMC8860905 DOI: 10.3389/fpls.2022.838125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/07/2022] [Indexed: 06/12/2023]
Abstract
Soft rot Pectobacteriaceae (SRP), typical of Pectobacterium and Dickeya, are a class of Gram-negative bacterial pathogens that cause devastating diseases on a wide range of crops and ornamental plants worldwide. Quorum sensing (QS) is a cell-cell communication mechanism regulating the expression of specific genes by releasing QS signal molecules associated with cell density, in most cases, involving in the vital process of virulence and infection. In recent years, several types of QS systems have been uncovered in Dickeya pathogens to control diverse biological behaviors, especially bacterial pathogenicity and transkingdom interactions. This review depicts an integral QS regulation network of Dickeya, elaborates in detail the regulation of specific QS system on different biological functions of the pathogens and hosts, aiming at providing a systematic overview of Dickeya pathogenicity and interactions with hosts, and, finally, expects the future prospective of effectively controlling the bacterial soft rot disease caused by Dickeya by quenching the key QS signal.
Collapse
|
4
|
Quorum Sensing Regulation in Phytopathogenic Bacteria. Microorganisms 2021; 9:microorganisms9020239. [PMID: 33498890 PMCID: PMC7912708 DOI: 10.3390/microorganisms9020239] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Quorum sensing is a type of chemical communication by which bacterial populations control expression of their genes in a coordinated manner. This regulatory mechanism is commonly used by pathogens to control the expression of genes encoding virulence factors and that of genes involved in the bacterial adaptation to variations in environmental conditions. In phytopathogenic bacteria, several mechanisms of quorum sensing have been characterized. In this review, we describe the different quorum sensing systems present in phytopathogenic bacteria, such as those using the signal molecules named N-acyl-homoserine lactone (AHL), diffusible signal factor (DSF), and the unknown signal molecule of the virulence factor modulating (VFM) system. We focus on studies performed on phytopathogenic bacteria of major importance, including Pseudomonas, Ralstonia, Agrobacterium, Xanthomonas, Erwinia, Xylella,Dickeya, and Pectobacterium spp. For each system, we present the mechanism of regulation, the functions targeted by the quorum sensing system, and the mechanisms by which quorum sensing is regulated.
Collapse
|
5
|
Kravchenko U, Gogoleva N, Kalubaka N, Kruk A, Diubo Y, Gogolev Y, Nikolaichik Y. The PhoPQ Two-Component System Is the Major Regulator of Cell Surface Properties, Stress Responses and Plant-Derived Substrate Utilisation During Development of Pectobacterium versatile-Host Plant Pathosystems. Front Microbiol 2021; 11:621391. [PMID: 33519782 PMCID: PMC7843439 DOI: 10.3389/fmicb.2020.621391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022] Open
Abstract
Pectobacterium versatile (formerly P. carotovorum) is a recently defined species of soft rot enterobacteria capable of infecting many plant hosts and damaging different tissues. Complex transcriptional regulation of virulence properties can be expected for such a versatile pathogen. However, the relevant information is available only for related species and is rather limited. The PhoPQ two-component system, originally described in pectobacteria as PehRS, was previously shown to regulate a single gene, pehA. Using an insertional phoP mutant of Pectobacterium versatile (earlier-P. carotovorum), we demonstrate that PhoP regulates at least 115 genes with a majority of them specific for pectobacteria. The functions performed by PhoP-controlled genes include degradation, transport and metabolism of plant-derived carbon sources (polygalacturonate, arabinose-containing polysaccharides and citrate), modification of bacterial cell envelope and stress resistance. We also demonstrated PhoP involvement in establishing the order of plant cell wall decomposition and utilisation of the corresponding breakdown products. Based on experimental data and in silico analysis, we defined a PhoP binding site motif and provided proof for its universality in enteric bacteria. Scanning P. versatile genome for the locations of this motif suggested a much larger PhoP regulon enriched with the genes important for a plant pathogen, which makes PhoP a global virulence regulator. Potential PhoP targets include many regulatory genes and PhoP control over one of them, expI, was confirmed experimentally, highlighting the link between the PhoPQ two-component and quorum sensing systems. High concentrations of calcium and magnesium ions were found to abolish the PhoPQ-dependent transcription activation but did not relieve repression. Reduced PhoP expression and minimisation of PhoP dependence of regulon members' expression in P. versatile cells isolated from potato tuber tissues suggest that PhoPQ system is a key switch of expression levels of multiple virulence-related genes fine-tuned to control the development of P. versatile-host plant pathosystem.
Collapse
Affiliation(s)
- Uljana Kravchenko
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Natalia Gogoleva
- Federal Research Center “Kazan Scientific Center of RAS”, Kazan Institute of Biochemistry and Biophysics, Kazan, Russia
- Laboratory of Extreme Biology, Kazan Federal University Institute of Fundamental Medicine and Biology, Kazan, Russia
| | - Nastassia Kalubaka
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Alla Kruk
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Yuliya Diubo
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Yuri Gogolev
- Federal Research Center “Kazan Scientific Center of RAS”, Kazan Institute of Biochemistry and Biophysics, Kazan, Russia
- Department of Biochemistry, Biotechnology and Pharmacology, Kazan Federal University Institute of Fundamental Medicine and Biology, Kazan, Russia
| | - Yevgeny Nikolaichik
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| |
Collapse
|
6
|
Lau YY, How KY, Yin WF, Chan KG. Functional characterization of quorum sensing LuxR-type transcriptional regulator, EasR in Enterobacter asburiae strain L1. PeerJ 2020; 8:e10068. [PMID: 33150063 PMCID: PMC7585371 DOI: 10.7717/peerj.10068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/08/2020] [Indexed: 01/17/2023] Open
Abstract
Over the past decades, Enterobacter spp. have been identified as challenging and important pathogens. The emergence of multidrug-resistant Enterobacteria especially those that produce Klebsiella pneumoniae carbapenemase has been a very worrying health crisis. Although efforts have been made to unravel the complex mechanisms that contribute to the pathogenicity of different Enterobacter spp., there is very little information associated with AHL-type QS mechanism in Enterobacter spp. Signaling via N-acyl homoserine lactone (AHL) is the most common quorum sensing (QS) mechanism utilized by Proteobacteria. A typical AHL-based QS system involves two key players: a luxI gene homolog to synthesize AHLs and a luxR gene homolog, an AHL-dependent transcriptional regulator. These signaling molecules enable inter-species and intra-species interaction in response to external stimuli according to population density. In our recent study, we reported the genome of AHL-producing bacterium, Enterobacter asburiae strain L1. Whole genome sequencing and in silico analysis revealed the presence of a pair of luxI/R genes responsible for AHL-type QS, designated as easI/R, in strain L1. In a QS system, a LuxR transcriptional protein detects and responds to the concentration of a specific AHL controlling gene expression. In E. asburiae strain L1, EasR protein binds to its cognate AHLs, N-butanoyl homoserine lactone (C4-HSL) and N–hexanoyl homoserine lactone (C6-HSL), modulating the expression of targeted genes. In this current work, we have cloned the 693 bp luxR homolog of strain L1 for further characterization. The functionality and specificity of EasR protein in response to different AHL signaling molecules to activate gene transcription were tested and validated with β-galactosidase assays. Higher β-galactosidase activities were detected for cells harboring EasR, indicating EasR is a functional transcriptional regulator. This is the first report documenting the cloning and characterization of transcriptional regulator, luxR homolog of E. asburiae.
Collapse
Affiliation(s)
- Yin Yin Lau
- International Genome Centre, Jiangsu University, Zhenjiang, China.,Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Malaysia
| | - Kah Yan How
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Malaysia
| | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China.,Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Malaysia
| |
Collapse
|
7
|
Feng L, Schaefer AL, Hu M, Chen R, Greenberg EP, Zhou J. Virulence Factor Identification in the Banana Pathogen Dickeya zeae MS2. Appl Environ Microbiol 2019; 85:e01611-19. [PMID: 31540986 PMCID: PMC6856320 DOI: 10.1128/aem.01611-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/16/2019] [Indexed: 11/20/2022] Open
Abstract
The phytopathogen Dickeya zeae MS2 is a particularly virulent agent of banana soft rot disease. To begin to understand this banana disease and to understand the role of quorum sensing and quorum-sensing-related regulatory elements in D. zeae MS2, we sequenced its genome and queried the sequence for genes encoding LuxR homologs. We identified a canonical LuxR-LuxI homolog pair similar to those in other members of the genus Dickeya The quorum-sensing signal for this pair was N-3-oxo-hexanoyl-homoserine lactone, and the circuit affected motility, cell clumping, and production of the pigment indigoidine, but it did not affect infections of banana seedlings in our experiments. We also identified a luxR homolog linked to a gene annotated as encoding a proline iminopeptidase. Similar linked pairs have been associated with virulence in other plant pathogens. We show that mutants with deletions in the proline iminopeptidase gene are attenuated for virulence. Surprisingly, a mutant with a deletion in the gene encoding the LuxR homolog shows normal virulence.IMPORTANCEDickeya zeae is an emerging banana soft rot pathogen in China. We used genome sequencing and annotation to create an inventory of potential virulence factors and virulence gene regulators encoded in Dickeya zeae MS2, a particularly virulent strain. We created mutations in several genes and tested these mutants in a banana seedling infection model. A strain with a mutated proline iminopeptidase gene, homologs of which are important for disease in the Xanthomonas species phytopathogens, was attenuated for soft rot symptoms in our model. Understanding how the proline iminopeptidase functions as a virulence factor may lead to insights about how to control the disease, and it is of general importance as homologs of the proline iminopeptidase occur in dozens of plant-associated bacteria.
Collapse
Affiliation(s)
- Luwen Feng
- Guangdong Province Sociomicrobiology Basic Science and Frontier Technology Research Team & Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, People's Republic of China
| | - Amy L Schaefer
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Ming Hu
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, People's Republic of China
| | - Ruiyi Chen
- Guangdong Province Sociomicrobiology Basic Science and Frontier Technology Research Team & Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, People's Republic of China
| | - E Peter Greenberg
- Guangdong Province Sociomicrobiology Basic Science and Frontier Technology Research Team & Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, People's Republic of China
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jianuan Zhou
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
8
|
Potrykus M, Hugouvieux‐Cotte‐Pattat N, Lojkowska E. Interplay of classic Exp and specific Vfm quorum sensing systems on the phenotypic features of Dickeya solani strains exhibiting different virulence levels. MOLECULAR PLANT PATHOLOGY 2018; 19:1238-1251. [PMID: 28921772 PMCID: PMC6638156 DOI: 10.1111/mpp.12614] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/10/2017] [Accepted: 09/14/2017] [Indexed: 05/31/2023]
Abstract
Bacteria from the genus Dickeya cause severe symptoms on numerous economically important plants. Dickeya solani is the Dickeya species most frequently found on infected potato plants in Europe. D. solani strains from different countries show high genetic homogeneity, but significant differences in their virulence level. Dickeya species possess two quorum sensing (QS) mechanisms: the Exp system based on classic N-acyl-homoserine lactone (AHL) signals and a specific system depending on the production and perception of a molecule of unknown structure, Virulence Factor Modulating (VFM). To study the interplay between these two QS systems, five D. solani strains exhibiting different virulence levels were selected. Mutants were constructed by inactivating genes coding for each QS system. Double mutants were obtained by simultaneous inactivation of genes coding for both QS systems. Most of the D. solani mutants showed an attenuation of chicory maceration and a decreased production of plant cell wall-degrading enzymes (PCWDEs) and motility, but to different degrees depending on the strain. The VFM-QS system seems to regulate virulence in both D. solani and Dickeya dadantii, but the AHL-QS system has greater effects in D. solani than in D. dadantii. The inactivation of both QS systems in D. solani did not reveal any additive effect on the tested features. The inactivation of vfm genes generally has a more dominant effect relative to that of exp genes. Thus, VFM- and AHL-QS systems do not work in synergy to modulate the production of diverse virulence factors and the ability to macerate plant tissue.
Collapse
Affiliation(s)
- Marta Potrykus
- Department of Biotechnology, Intercollegiate Faculty of BiotechnologyUniversity of Gdansk and Medical University of Gdansk, Abrahama 58, 80–307GdanskPoland
| | - Nicole Hugouvieux‐Cotte‐Pattat
- UMR5240 Microbiologie Adaptation et PathogénieUniversité Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1F–69622 VilleurbanneFrance
| | - Ewa Lojkowska
- Department of Biotechnology, Intercollegiate Faculty of BiotechnologyUniversity of Gdansk and Medical University of Gdansk, Abrahama 58, 80–307GdanskPoland
| |
Collapse
|
9
|
The quorum sensing regulator CinR hierarchically regulates two other quorum sensing pathways in ligand-dependent and -independent fashions in Rhizobium etli. J Bacteriol 2015; 197:1573-81. [PMID: 25691531 DOI: 10.1128/jb.00003-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Many rhizobial species use complex N-acyl-homoserine lactone (AHL)-based quorum sensing (QS) systems to monitor their population density and regulate their symbiotic interactions with their plant hosts. There are at least three LuxRI-type regulatory systems in Rhizobium etli CFN42: CinRI, RaiRI, and TraRI. In this study, we show that CinI, RaiI, and TraI are responsible for synthesizing all AHLs under the tested conditions. The activation of these AHL synthase genes requires their corresponding LuxR-type counterparts. We further demonstrate that CinRI is at the top of the regulatory cascade that activates RaiRI and TraRI QS systems. Moreover, we discovered that CinR possesses a specific affinity to bind cinI promoter in the absence of its cognate AHL ligand, thereby activating cinI transcription. Addition of AHLs leads to improved binding to the cinI promoter and enhanced cinI expression. Furthermore, we found that compared to the wild type, the cinR mutation displayed reduced nodule formation, and cinR, raiR, and traI mutants show significantly lower levels of nitrogen fixation activity than the wild type. These results suggest that the complex QS regulatory systems in R. etli play an important role in its symbiosis with legume hosts. IMPORTANCE Many bacteria use quorum sensing (QS) to monitor their cell densities and coordinately regulate a number of physiological functions. Rhizobia often have diverse and complex LuxR/LuxI-type quorum sensing systems that may be involved in symbiosis and N2 fixation. In this study, we identified three LuxR/LuxI-type QS systems in Rhizobium etli CFN42: CinRI, RaiRI, and TraRI. We established a complex network of regulation between these QS components and found that these QS systems played important roles in symbiosis processes.
Collapse
|
10
|
Bacterial quorum sensing and metabolic slowing in a cooperative population. Proc Natl Acad Sci U S A 2014; 111:14912-7. [PMID: 25267613 DOI: 10.1073/pnas.1412431111] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) controls the production of numerous intra- and extracellular products across many species of Proteobacteria. Although these cooperative activities are often costly at an individual level, they provide significant benefits to the group. Other potential roles for QS include the restriction of nutrient acquisition and maintenance of metabolic homeostasis of individual cells in a crowded but cooperative population. Under crowded conditions, QS may function to modulate and coordinate nutrient utilization and the homeostatic primary metabolism of individual cells. Here, we show that QS down-regulates glucose uptake, substrate level and oxidative phosphorylation, and de novo nucleotide biosynthesis via the activity of the QS-dependent transcriptional regulator QsmR (quorum sensing master regulator R) in the rice pathogen Burkholderia glumae. Systematic analysis of glucose uptake and core primary metabolite levels showed that QS deficiency perturbed nutrient acquisition, and energy and nucleotide metabolism, of individuals within the group. The QS mutants grew more rapidly than the wild type at the early exponential stage and outcompeted wild-type cells in coculture. Metabolic slowing of individuals in a QS-dependent manner indicates that QS acts as a metabolic brake on individuals when cells begin to mass, implying a mechanism by which AHL-mediated QS might have evolved to ensure homeostasis of the primary metabolism of individuals under crowded conditions.
Collapse
|
11
|
Acyl-homoserine lactone recognition and response hindering the quorum-sensing regulator EsaR. PLoS One 2014; 9:e107687. [PMID: 25238602 PMCID: PMC4169570 DOI: 10.1371/journal.pone.0107687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
During quorum sensing in the plant pathogen Pantoea stewartii subsp. stewartii, EsaI, an acyl-homoserine lactone (AHL) synthase, and the transcription factor EsaR coordinately control capsular polysaccharide production. The capsule is expressed only at high cell density when AHL levels are high, leading to inactivation of EsaR. In lieu of detailed structural information, the precise mechanism whereby EsaR recognizes AHL and is hindered by it, in a response opposite to that of most other LuxR homologues, remains unresolved. Hence, a random mutagenesis genetic approach was designed to isolate EsaR* variants that are immune to the effects of AHL. Error-prone PCR was used to generate the desired mutants, which were subsequently screened for their ability to repress transcription in the presence of AHL. Following sequencing, site-directed mutagenesis was used to generate all possible mutations of interest as single, rather than multiple amino acid substitutions. Eight individual amino acids playing a critical role in the AHL-insensitive phenotype have been identified. The ability of EsaR* variants to bind AHL and the effect of individual substitutions on the overall conformation of the protein were examined through in vitro assays. Six EsaR* variants had a decreased ability to bind AHL. Fluorescence anisotropy was used to examine the relative DNA binding affinity of the final two EsaR* variants, which retained some AHL binding capability but remained unresponsive to it, perhaps due to an inability of the N-terminal domain to transduce information to the C-terminal domain.
Collapse
|
12
|
Zaitseva YV, Popova AA, Khmel IA. Quorum sensing regulation in bacteria of the family enterobacteriaceae. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414030120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Sieira R. Regulation of virulence in Brucella: an eclectic repertoire of transcription factors defines the complex architecture of the virB promoter. Future Microbiol 2013; 8:1193-208. [DOI: 10.2217/fmb.13.83] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many intracellular bacterial pathogens use type IV secretion systems to deliver effector molecules and subvert the eukaryotic host cell defenses. The genus Brucella comprises facultative intracellular bacteria that cause brucellosis, a disease affecting a wide range of mammals including humans. The virB operon codes for a type IV secretion system that plays a central role in intracellular survival and replication of Brucella within the host. Expression of the virB genes is under the control of various transcription factors that allow this system to respond to different types of environmental signals, and display binding site structures and arrangements that define the intrinsic complexity of the virB promoter. This review focuses on summarizing the current state of research concerning regulation of the Brucella virB operon, with special emphasis on describing the nature and function of the implicated regulatory elements and examining the involved protein–DNA interactions.
Collapse
Affiliation(s)
- Rodrigo Sieira
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| |
Collapse
|
14
|
Kim J, Park W. Identification and characterization of genes regulated by AqsR, a LuxR-type regulator in Acinetobacter oleivorans DR1. Appl Microbiol Biotechnol 2013; 97:6967-78. [DOI: 10.1007/s00253-013-5006-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/09/2013] [Accepted: 05/17/2013] [Indexed: 12/25/2022]
|
15
|
Ryan GT, Wei Y, Winans SC. A LuxR-type repressor of Burkholderia cenocepacia inhibits transcription via antiactivation and is inactivated by its cognate acylhomoserine lactone. Mol Microbiol 2012; 87:94-111. [PMID: 23136852 DOI: 10.1111/mmi.12085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2012] [Indexed: 11/30/2022]
Abstract
Burkholderia cenocepacia is an opportunistic human pathogen that encodes two LuxI-type acylhomoserine lactone (AHL) synthases and three LuxR-type AHL receptors. Of these, cepI and cepR form a cognate synthase/receptor pair, as do cciI and cciR, while cepR2 lacks a genetically linked AHL synthase gene. Another group showed that a cepR2 mutant overexpressed a cluster of linked genes that appear to direct the production of a secondary metabolite. We found that these same genes were upregulated by octanoylhomoserine lactone (OHL), which is synthesized by CepI. These data suggest that several cepR2-linked promoters are repressed by CepR2 and that CepR2 is antagonized by OHL. Fusions of two divergent promoters to lacZ were used to confirm these hypotheses, and promoter resections and DNase I footprinting assays revealed a single CepR2 binding site between the two promoters. This binding site lies well upstream of both promoters, suggesting an unusual mode of repression. Adjacent to the cepR2 gene is a gene that we designate cepS, which encodes an AraC-type transcription factor. CepS is essential for expression of both promoters, regardless of the CepR2 status or OHL concentration. CepS therefore acts downstream of CepR2, and CepR2 appears to function as a CepS antiactivator.
Collapse
Affiliation(s)
- Gina T Ryan
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
16
|
Prigent-Combaret C, Zghidi-Abouzid O, Effantin G, Lejeune P, Reverchon S, Nasser W. The nucleoid-associated protein Fis directly modulates the synthesis of cellulose, an essential component of pellicle-biofilms in the phytopathogenic bacterium Dickeya dadantii. Mol Microbiol 2012; 86:172-86. [PMID: 22925161 DOI: 10.1111/j.1365-2958.2012.08182.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacteria use biofilm structures to colonize surfaces and to survive in hostile conditions, and numerous bacteria produce cellulose as a biofilm matrix polymer. Hence, expression of the bcs operon, responsible for cellulose biosynthesis, must be finely regulated in order to allow bacteria to adopt the proper surface-associated behaviours. Here we show that in the phytopathogenic bacterium, Dickeya dadantii, production of cellulose is required for pellicle-biofilm formation and resistance to chlorine treatments. Expression of the bcs operon is growth phase-regulated and is stimulated in biofilms. Furthermore, we unexpectedly found that the nucleoid-associated protein and global regulator of virulence functions, Fis, directly represses bcs operon expression by interacting with an operator that is absent from the bcs operon of animal pathogenic bacteria and the plant pathogenic bacterium Pectobacterium. Moreover, production of cellulose enhances plant surface colonization by D. dadantii. Overall, these data suggest that cellulose production and biofilm formation may be important factors for surface colonization by D. dadantii and its subsequent survival in hostile environments. This report also presents a new example of how bacteria can modulate the action of a global regulator to co-ordinate basic metabolism, virulence and modifications of lifestyle.
Collapse
|
17
|
Monson R, Burr T, Carlton T, Liu H, Hedley P, Toth I, Salmond GP. Identification of genes in the VirR regulon ofPectobacterium atrosepticumand characterization of their roles in quorum sensing-dependent virulence. Environ Microbiol 2012; 15:687-701. [DOI: 10.1111/j.1462-2920.2012.02822.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Ouafa ZA, Reverchon S, Lautier T, Muskhelishvili G, Nasser W. The nucleoid-associated proteins H-NS and FIS modulate the DNA supercoiling response of the pel genes, the major virulence factors in the plant pathogen bacterium Dickeya dadantii. Nucleic Acids Res 2012; 40:4306-19. [PMID: 22275524 PMCID: PMC3378864 DOI: 10.1093/nar/gks014] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dickeya dadantii is a pathogen infecting a wide range of plant species. Soft rot, the visible symptom, is mainly due to the production of pectate lyases (Pels) that can destroy the plant cell walls. Previously we found that the pel gene expression is modulated by H-NS and FIS, two nucleoid-associated proteins (NAPs) modulating the DNA topology. Here, we show that relaxation of the DNA in growing D. dadantii cells decreases the expression of pel genes. Deletion of fis aggravates, whereas that of hns alleviates the negative impact of DNA relaxation on pel expression. We further show that H-NS and FIS directly bind the pelE promoter and that the response of D. dadantii pel genes to stresses that induce DNA relaxation is modulated, although to different extents, by H-NS and FIS. We infer that FIS acts as a repressor buffering the negative impact of DNA relaxation on pel gene transcription, whereas H-NS fine-tunes the response of virulence genes precluding their expression under suboptimal conditions of supercoiling. This novel dependence of H-NS effect on DNA topology expands our understanding of the role of NAPs in regulating the global bacterial gene expression and bacterial pathogenicity.
Collapse
|
19
|
KEPSEU WILFREDD, WOAFO PAUL, SEPULCHRE JACQUESA. DYNAMICS OF THE TRANSITION TO PATHOGENICITY INERWINIA CHRYSANTHEMI. J BIOL SYST 2011. [DOI: 10.1142/s0218339010003172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The enterobacteria Erwinia chrysanthemi and other soft-rot Erwiniae cause soft-rot disease in plants by secreting extracellular enzymes among which the main virulence factors are pectate lyases (Pels). These pectic enzymes are produced by the activation of the pel genes whose transcription is controlled by a complex regulatory network. Using the knowledge acquired in a previous work, a simplified regulatory network is proposed, keeping only the key variables for the transition to pathogenicity. We identify that the core mechanism for the onset of Pel is governed by a small metabolico-genetic network involving the repressor KdgR and the inductor KDG. Next we consider that the triggering of Pel synthesis is relayed by a quorum sensing (QS) phenomenon describing the ability of bacteria to use the size and density of their colonies to regulate the production of pectate lyases. The simplified network is described by only a few differential equations, thereby allowing the use of standard bifurcation analysis in the phase space. From this modeling emerges a qualitative but generic mechanism for the transition to virulence of a pectinolytic bacterium when it infects a plant.
Collapse
Affiliation(s)
- WILFRED D. KEPSEU
- Laboratory of Modeling and Simulation in Engineering and Biological Physics, Faculty of Science, University of Yaounde I, P. O. Box 812 Yaounde, Cameroon
| | - PAUL WOAFO
- Laboratory of Modeling and Simulation in Engineering and Biological Physics, Faculty of Science, University of Yaounde I, P. O. Box 812 Yaounde, Cameroon
| | - JACQUES-A. SEPULCHRE
- Institut Non Linéaire de Nice, Université de Nice – Sophia, CNRS (UMR), 1361 route des Lucioles, 06560 Valbonne, France
| |
Collapse
|
20
|
Probing the impact of ligand binding on the acyl-homoserine lactone-hindered transcription factor EsaR of Pantoea stewartii subsp. stewartii. J Bacteriol 2011; 193:6315-22. [PMID: 21949066 DOI: 10.1128/jb.05956-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The quorum-sensing regulator EsaR from Pantoea stewartii subsp. stewartii is a LuxR homologue that is inactivated by acyl-homoserine lactone (AHL). In the corn pathogen P. stewartii, production of exopolysaccharide (EPS) is repressed by EsaR at low cell densities. However, at high cell densities when high concentrations of its cognate AHL signal are present, EsaR is inactivated and derepression of EPS production occurs. Thus, EsaR responds to AHL in a manner opposite to that of most LuxR family members. Depending on the position of its binding site within target promoters, EsaR serves as either a repressor or activator in the absence rather than in the presence of its AHL ligand. The effect of AHL on LuxR homologues has been difficult to study in vitro because AHL is required for purification and stability. EsaR, however, can be purified without AHL enabling an in vitro analysis of the response of the protein to ligand. Western immunoblots and pulse-chase experiments demonstrated that EsaR is stable in vivo in the absence or presence of AHL. Limited in vitro proteolytic digestions of a biologically active His-MBP tagged version of EsaR highlighted intradomain and interdomain conformational changes that occur in the protein in response to AHL. Gel filtration chromatography of the full-length fusion protein and cross-linking of the N-terminal domain both suggest that this conformational change does not impact the multimeric state of the protein. These findings provide greater insight into the diverse mechanisms for AHL responsiveness found within the LuxR family.
Collapse
|
21
|
Chen J, Xie J. Role and regulation of bacterial LuxR-like regulators. J Cell Biochem 2011; 112:2694-702. [DOI: 10.1002/jcb.23219] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Wei Y, Ryan GT, Flores-Mireles AL, Costa ED, Schneider DJ, Winans SC. Saturation mutagenesis of a CepR binding site as a means to identify new quorum-regulated promoters in Burkholderia cenocepacia. Mol Microbiol 2011; 79:616-32. [PMID: 21255107 DOI: 10.1111/j.1365-2958.2010.07469.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Burkholderia cenocepacia is an opportunistic pathogen of humans that encodes two genes that resemble the acylhomoserine lactone synthase gene luxI of Vibrio fischeri and three genes that resemble the acylhomoserine lactone receptor gene luxR. Of these, CepI synthesizes octanoylhomoserine lactone (OHL), while CepR is an OHL-dependent transcription factor. In the current study we developed a strategy to identify genes that are directly regulated by CepR. We systematically altered a CepR binding site (cep box) upstream of a target promoter to identify nucleotides that are essential for CepR activity in vivo and for CepR binding in vitro. We constructed 34 self-complementary oligonucleotides containing altered cep boxes, and measured binding affinity for each. These experiments allowed us to identify a consensus CepR binding site. Several hundred similar sequences were identified, some of which were adjacent to probable promoters. Several such promoters were fused to a reporter gene with and without intact cep boxes. This allowed us to identify four new regulated promoters that were induced by OHL, and that required a cep box for induction. CepR-dependent, OHL-dependent expression of all four promoters was reconstituted in Escherichia coli. Purified CepR bound to each of these sites in electrophoretic mobility shift assays.
Collapse
Affiliation(s)
- Yuping Wei
- Departments of Microbiology Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
23
|
Tsai CS, Winans SC. The quorum-hindered transcription factor YenR of Yersinia enterocolitica inhibits pheromone production and promotes motility via a small non-coding RNA. Mol Microbiol 2011; 80:556-71. [PMID: 21362062 DOI: 10.1111/j.1365-2958.2011.07595.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The YenR and YenI proteins of Yersinia enterocolitica resemble the quorum sensing proteins LuxR and LuxI of Vibrio fischeri. Apo-YenR activated a gene, designated yenS, that lies adjacent to and divergent from yenR. YenR-dependent expression of yenS was inhibited by endogenous or exogenous 3-oxohexanoylhomoserine lactone (OHHL) a pheromone made by YenI. Purified apo-YenR bound non-cooperatively to two 20-nucleotide sites that lie upstream of yenS. Binding occurred in the absence of (OHHL), and YenR was largely released from the DNA by this pheromone. yenS encoded two non-translated RNAs 169 and 105 nucleotides long that share the same 5' end but have different 3' ends. One or both RNAs inhibited the translation and accumulation of the yenI mRNA by binding to a region that overlaps the YenI start codon. A mutation in yenI strongly stimulated swarming motility on the surface of semi-solid agar, while exogenous OHHL completely suppressed this phenotype. Hypermotility in yenI mutants was also suppressed by mutations in yenR or yenS, suggesting that YenS plays a direct, stimulatory role in swarming motility.
Collapse
Affiliation(s)
- Ching-Sung Tsai
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
24
|
Tsai CS, Winans SC. LuxR-type quorum-sensing regulators that are detached from common scents. Mol Microbiol 2011; 77:1072-82. [PMID: 20624221 DOI: 10.1111/j.1365-2958.2010.07279.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The ability of LuxR-type proteins to regulate transcription is controlled by bacterial pheromones, N-acylhomoserine lactones (AHLs). Most LuxR-family proteins require their cognate AHLs for activity, and at least some of them require AHLs for folding and protease resistance. However, a few members of this family are able to fold, dimerize, bind DNA, and regulate transcription in the absence of AHLs; moreover, these proteins are antagonized by their cognate AHLs. Complexes between some of these proteins and their DNA binding sites are disrupted by AHLs in vitro. All such proteins are fairly closely related within the larger LuxR family, indicating that they share a relatively recent common ancestor. The 3' ends of the genes encoding these receptors invariably overlap with the 3' ends of the cognate AHL synthase genes, suggesting additional antagonism at the level of mRNA synthesis, stability or translation.
Collapse
Affiliation(s)
- Ching-Sung Tsai
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
25
|
Stevens AM, Queneau Y, Soulère L, Bodman SV, Doutheau A. Mechanisms and Synthetic Modulators of AHL-Dependent Gene Regulation. Chem Rev 2010; 111:4-27. [DOI: 10.1021/cr100064s] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ann M. Stevens
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States, INSA Lyon, Laboratoire de Chimie Organique et Bioorganique, 69621 Villeurbanne Cedex, France, CNRS, UMR 5246 ICBMS, Université Lyon 1, INSA-Lyon, CPE-Lyon, 69622 Villeurbanne Cedex, France, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269, United States, and National Science Foundation, Arlington, Virginia 22230, United States
| | - Yves Queneau
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States, INSA Lyon, Laboratoire de Chimie Organique et Bioorganique, 69621 Villeurbanne Cedex, France, CNRS, UMR 5246 ICBMS, Université Lyon 1, INSA-Lyon, CPE-Lyon, 69622 Villeurbanne Cedex, France, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269, United States, and National Science Foundation, Arlington, Virginia 22230, United States
| | - Laurent Soulère
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States, INSA Lyon, Laboratoire de Chimie Organique et Bioorganique, 69621 Villeurbanne Cedex, France, CNRS, UMR 5246 ICBMS, Université Lyon 1, INSA-Lyon, CPE-Lyon, 69622 Villeurbanne Cedex, France, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269, United States, and National Science Foundation, Arlington, Virginia 22230, United States
| | - Susanne von Bodman
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States, INSA Lyon, Laboratoire de Chimie Organique et Bioorganique, 69621 Villeurbanne Cedex, France, CNRS, UMR 5246 ICBMS, Université Lyon 1, INSA-Lyon, CPE-Lyon, 69622 Villeurbanne Cedex, France, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269, United States, and National Science Foundation, Arlington, Virginia 22230, United States
| | - Alain Doutheau
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States, INSA Lyon, Laboratoire de Chimie Organique et Bioorganique, 69621 Villeurbanne Cedex, France, CNRS, UMR 5246 ICBMS, Université Lyon 1, INSA-Lyon, CPE-Lyon, 69622 Villeurbanne Cedex, France, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269, United States, and National Science Foundation, Arlington, Virginia 22230, United States
| |
Collapse
|
26
|
Acyl-homoserine lactone binding to and stability of the orphan Pseudomonas aeruginosa quorum-sensing signal receptor QscR. J Bacteriol 2010; 193:421-8. [PMID: 21097632 DOI: 10.1128/jb.01041-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Pseudomonas aeruginosa transcription factor QscR responds to a variety of fatty acyl-homoserine lactones (HSLs), including N-3-oxododecanoyl-HSL (3OC12-HSL), which is produced and detected by the P. aeruginosa quorum-sensing circuit LasI and LasR. As is true for LasR and many other acyl-HSL-dependent transcription factors, production of soluble QscR in sufficient amounts for purification requires growth of recombinant bacteria in the presence of an appropriate acyl-HSL. QscR is thought to bind 3OC12-HSL relatively weakly compared to LasR, and unlike LasR, binding of purified QscR to target DNA was shown to strongly depend on exogenously added 3OC12-HSL. We show that purified QscR is dimeric at sufficiently high concentrations and monomeric at lower concentrations. Furthermore, QscR bound 3OC12-HSL more tightly than previously believed. Purified QscR retained 3OC12-HSL, and at sufficiently high concentrations, it bound target DNA in the absence of added 3OC12-HSL. We also obtained soluble QscR from recombinant Escherichia coli grown in the presence of N-3-oxohexanoyl-HSL (3OC6-HSL) instead of 3OC12-HSL, and because 3OC6-HSL bound much more loosely to QscR than other acyl-HSLs tested, we were able to exchange 3OC6-HSL with other acyl-HSLs in vitro and then estimate binding affinities of QscR for different acyl-HSLs and for target DNA. Our data support a model whereby QscR polypeptides fold properly in the absence of an acyl-HSL, but soluble, acyl-HSL-free QscR does not accumulate because it is subject to rapid aggregation or proteolysis.
Collapse
|
27
|
Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules. Future Med Chem 2010; 2:1005-35. [DOI: 10.4155/fmc.10.185] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Small molecules that can attenuate bacterial toxin production or biofilm formation have the potential to solve the bacteria resistance problem. Although several molecules, which inhibit bacterial cell-to-cell communication (quorum sensing), biofilm formation and toxin production, have been discovered, there is a paucity of US FDA-approved drugs that target these processes. Here, we review the current understanding of quorum sensing in important pathogens such as Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus and provide examples of experimental molecules that can inhibit both known and unknown targets in bacterial virulence factor production and biofilm formation. Structural data for protein targets that are involved in both quorum sensing and cyclic diguanylic acid signaling are needed to aid the development of molecules with drug-like properties in order to target bacterial virulence factors production and biofilm formation.
Collapse
|
28
|
Structure/function analysis of the Pantoea stewartii quorum-sensing regulator EsaR as an activator of transcription. J Bacteriol 2009; 191:7402-9. [PMID: 19820098 DOI: 10.1128/jb.00994-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Pantoea stewartii subsp. stewartii, two regulatory proteins are key to the process of cell-cell communication known as quorum sensing: the LuxI and LuxR homologues EsaI and EsaR. Most LuxR homologues function as activators of transcription in the presence of their cognate acylated homoserine lactone (AHL) signal. However, EsaR was initially found to function as a repressor in the absence of AHL. Previous studies demonstrated that, in the absence of AHL, EsaR retains the ability to function as a weak activator of the lux operon in recombinant Escherichia coli. Here it is shown that both the N-terminal and the C-terminal domains of EsaR are necessary for positive regulation. A site-directed mutagenesis study, guided by homology modeling to LuxR and TraR, has revealed three critical residues in EsaR that are involved in activation of RNA polymerase. In addition, a native EsaR-activated promoter has been identified, which controls expression of a putative regulatory sRNA in P. stewartii.
Collapse
|
29
|
Costa ED, Cho H, Winans SC. Identification of amino acid residues of the pheromone-binding domain of the transcription factor TraR that are required for positive control. Mol Microbiol 2009; 73:341-51. [PMID: 19602141 DOI: 10.1111/j.1365-2958.2009.06755.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genes required for replication and for conjugal transfer of the Agrobacterium tumefaciens Ti plasmid are regulated by the quorum sensing transcription factor TraR, whose N-terminal domain binds to the pheromone 3-oxo-octanoylhomoserine lactone (OOHL) and whose C-terminal domain binds to specific DNA sequences called tra boxes. Here, we constructed 117 mutants, altering 103 surface-exposed amino acid residues of the TraR N-terminal domain. Each mutant was tested for activation of the traI promoter, where TraR binds to a site centred 45 nucleotides upstream of the transcription start site, and of the traM promoter, where TraR binds a site centred 66 nucleotides upstream. Alteration of 18 residues blocked activity at the traI promoter. Of these, alteration at three positions impaired TraR abundance or DNA binding, leaving 15 residues that are specifically needed for positive control. Of these 15 residues, nine also blocked or reduced activity at the traM promoter, while six had no effect. Amino acid residues required for activation of both promoters probably contact the C-terminal domain of the RNA polymerase alpha subunit, while residues required only for traI promoter activation may contact another RNA polymerase component.
Collapse
Affiliation(s)
- Esther D Costa
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
30
|
The LuxR family quorum-sensing activator MrtR requires its cognate autoinducer for dimerization and activation but not for protein folding. J Bacteriol 2008; 191:434-8. [PMID: 18978063 DOI: 10.1128/jb.01247-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MrtR, a LuxR homolog in Mesorhizobium tianshanense, is important for symbiosis. We found that MrtR requires its cognate N-acylhomoserine lactone for forming dimers, binding to a single DNA site and activating the downstream promoter. However, MrtR is able to fold independently of its ligand.
Collapse
|
31
|
PecS is a global regulator of the symptomatic phase in the phytopathogenic bacterium Erwinia chrysanthemi 3937. J Bacteriol 2008; 190:7508-22. [PMID: 18790868 DOI: 10.1128/jb.00553-08] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pathogenicity of the enterobacterium Erwinia chrysanthemi (Dickeya dadantii), the causative agent of soft-rot disease in many plants, is a complex process involving several factors whose production is subject to temporal regulation during infection. PecS is a transcriptional regulator that controls production of various virulence factors. Here, we used microarray analysis to define the PecS regulon and demonstrated that PecS notably regulates a wide range of genes that could be linked to pathogenicity and to a group of genes concerned with evading host defenses. Among the targets are the genes encoding plant cell wall-degrading enzymes and secretion systems and the genes involved in flagellar biosynthesis, biosurfactant production, and the oxidative stress response, as well as genes encoding toxin-like factors such as NipE and hemolysin-coregulated proteins. In vitro experiments demonstrated that PecS interacts with the regulatory regions of five new targets: an oxidative stress response gene (ahpC), a biosurfactant synthesis gene (rhlA), and genes encoding exported proteins related to other plant-associated bacterial proteins (nipE, virK, and avrL). The pecS mutant provokes symptoms more rapidly and with more efficiency than the wild-type strain, indicating that PecS plays a critical role in the switch from the asymptomatic phase to the symptomatic phase. Based on this, we propose that the temporal regulation of the different groups of genes required for the asymptomatic phase and the symptomatic phase is, in part, the result of a gradual modulation of PecS activity triggered during infection in response to changes in environmental conditions emerging from the interaction between both partners.
Collapse
|
32
|
Smith C, Song H, You L. Signal discrimination by differential regulation of protein stability in quorum sensing. J Mol Biol 2008; 382:1290-7. [PMID: 18721812 DOI: 10.1016/j.jmb.2008.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/30/2008] [Accepted: 08/02/2008] [Indexed: 11/29/2022]
Abstract
Quorum sensing (QS) is a communication mechanism exploited by a large variety of bacteria to coordinate gene expression at the population level. In Gram-negative bacteria, QS occurs via synthesis and detection of small chemical signals, most of which belong to the acyl-homoserine lactone class. In such a system, binding of an acyl-homoserine lactone signal to its cognate transcriptional regulator (R-protein) often induces stabilization and subsequent dimerization of the R-protein, which results in the regulation of downstream gene expression. Existence of diverse QS systems within and among species of bacteria indicates that each bacterium needs to distinguish among a myriad of structurally similar chemical signals. We show, using a mathematical model, that fast degradation of an R-protein monomer can facilitate discrimination of signals that differentially stabilize it. Furthermore, our results suggest an inverse correlation between the stability of an R-protein and the achievable limits of fidelity in signal discrimination. In particular, an unstable R-protein tends to be more specific to its cognate signal, whereas a stable R-protein tends to be more promiscuous. These predictions are consistent with experimental data on well-studied natural and engineered R-proteins and thus have implications for understanding the functional design of QS systems.
Collapse
Affiliation(s)
- Cameron Smith
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
33
|
von Bodman SB, Willey JM, Diggle SP. Cell-cell communication in bacteria: united we stand. J Bacteriol 2008; 190:4377-91. [PMID: 18456806 PMCID: PMC2446813 DOI: 10.1128/jb.00486-08] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Susanne B von Bodman
- Department of Plant Science, University of Connecticut, Storrs, CT 06269-4163, USA.
| | | | | |
Collapse
|
34
|
Lebeau A, Reverchon S, Gaubert S, Kraepiel Y, Simond-Côte E, Nasser W, Van Gijsegem F. The GacA global regulator is required for the appropriate expression of Erwinia chrysanthemi 3937 pathogenicity genes during plant infection. Environ Microbiol 2008; 10:545-59. [DOI: 10.1111/j.1462-2920.2007.01473.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Yang S, Peng Q, Zhang Q, Yi X, Choi CJ, Reedy RM, Charkowski AO, Yang CH. Dynamic regulation of GacA in type III secretion, pectinase gene expression, pellicle formation, and pathogenicity of Dickeya dadantii (Erwinia chrysanthemi 3937). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:133-142. [PMID: 18052890 DOI: 10.1094/mpmi-21-1-0133] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Dickeya dadantii (Erwinia chrysanthemi 3937) secretes exoenzymes, including pectin-degrading enzymes, leading to the loss of structural integrity of plant cell walls. A type III secretion system (T3SS) is essential for full virulence of this bacterium within plant hosts. The GacS/GacA two-component signal transduction system participates in important biological roles in several gram-negative bacteria. In this study, a gacA deletion mutant (Ech137) of D. dadantii was constructed to investigate the effect of this mutation on pathogenesis and other phenotypes. Compared with wild-type D. dadantii, Ech137 had a delayed biofilm-pellicle formation. The production of pectate lyase (Pel), protease, and cellulase was diminished in Ech137 compared with the wild-type cells. Reduced transcription of two endo-Pel genes, pelD and pelL, was found in Ech137 using a green fluorescence protein-based fluorescence-activated cell sorter promoter activity assay. In addition, the transcription of T3SS genes dspE (an effector), hrpA (a structural protein of the T3SS pilus), and hrpN (a T3SS harpin) was reduced in Ech137. A lower amount of rsmB regulatory RNA was found in gacA mutant Ech137 compared with the wild-type bacterium by quantitative reverse-transcription polymerase chain reaction. Compared with wild-type D. dadantii, a lower amount of hrpL mRNA was observed in Ech137 at 12 h grown in medium. Although the role of RsmA, rsmB, and RsmC in D. dadantii is not clear, from the regulatory pathway revealed in E. carotovora, the lower expression of dspE, hrpA, and hrpN in Ech137 may be due to a post-transcriptional regulation of hrpL through the Gac-Rsm regulatory pathway. Consequently, the reduced exoenzyme production and Pel gene expression in the mutant may be sue partially to the regulatory role of rsmB-RsmA on exoenzyme expression. Similar to in vitro results, a lower expression of T3SS and pectinase genes of Ech137 also was observed in bacterial cells inoculated into Saintpaulia ionantha leaves, perhaps accounting for the observed reduction in local maceration. Interestingly, compared with the wild-type D. dadantii, although a lower concentration of Ech137 was observed at day 3 and 4 postinoculation, there is no significant difference in bacterial concentration between the wild-type bacterium and Ech137 in the early stage of infection. Finally, the nearly abolished systemic invasion ability of Ech137 suggests that GacA of D. dadantii is essential for the pathogenicity and systemic movement of the bacterium in S. ionantha.
Collapse
Affiliation(s)
- Shihui Yang
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53211, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
The acyl-homoserine lactone-type quorum-sensing system modulates cell motility and virulence of Erwinia chrysanthemi pv. zeae. J Bacteriol 2007; 190:1045-53. [PMID: 18083823 DOI: 10.1128/jb.01472-07] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erwinia chrysanthemi pv. zeae is one of the Erwinia chrysanthemi pathovars that infects on both dicotyledons and monocotyledons. However, little is known about the molecular basis and regulatory mechanisms of its virulence. By using a transposon mutagenesis approach, we cloned the genes coding for an E. chrysanthemi pv. zeae synthase of acyl-homoserine lactone (AHL) quorum-sensing signals (expI(Ecz)) and a cognate response regulator (expR(Ecz)). Chromatography analysis showed that expI(Ecz) encoded production of the AHL signal N-(3-oxo-hexanoyl)-homoserine lactone (OHHL). Null mutation of expI(Ecz) in the E. chrysanthemi pv. zeae strain EC1 abolished AHL production, increased bacterial swimming and swarming motility, disabled formation of multicell aggregates, and attenuated virulence of the pathogen on potato tubers. The mutation also marginally reduced the inhibitory activity of E. chrysanthemi pv. zeae on rice seed germination. The mutant phenotypes were rescued by either exogenous addition of AHL signal or in trans expression of expI(Ecz). These data demonstrate that the AHL-type QS signal plays an essential role in modulation of E. chrysanthemi pv. zeae cell motility and the ability to form multicell aggregates and is involved in regulation of bacterial virulence.
Collapse
|
37
|
Abstract
Bacteria employ quorum sensing, a form of cell-cell communication, to sense changes in population density and regulate gene expression accordingly. This work investigated the rewiring of one quorum-sensing module, the lux circuit from the marine bacterium Vibrio fischeri. Steady-state experiments demonstrate that rewiring the network architecture of this module can yield graded, threshold, and bistable gene expression as predicted by a mathematical model. The experiments also show that the native lux operon is most consistent with a threshold, as opposed to a bistable, response. Each of the rewired networks yielded functional population sensors at biologically relevant conditions, suggesting that this operon is particularly robust. These findings (i) permit prediction of the behaviors of quorum-sensing operons in bacterial pathogens and (ii) facilitate forward engineering of synthetic gene circuits.
Collapse
|
38
|
Lautier T, Blot N, Muskhelishvili G, Nasser W. Integration of two essential virulence modulating signals at the Erwinia chrysanthemi pel gene promoters: a role for Fis in the growth-phase regulation. Mol Microbiol 2007; 66:1491-505. [PMID: 18028312 DOI: 10.1111/j.1365-2958.2007.06010.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Production of the essential virulence factors, called pectate lyases (Pels), in the phytopathogenic bacterium Erwinia chrysanthemi is controlled by a complex regulation system and responds to various stimuli, such as the presence of pectin or plant extracts, growth phase, temperature and iron concentration. The presence of pectin and growth phase are the most important signals identified. Eight regulators modulating the expression of the pel genes (encoding Pels) have been characterized. These regulators are organized in a network allowing a sequential functioning of the regulators during infection. Although many studies have been carried out, the mechanisms of control of Pel production by growth phase have not yet been elucidated. Here we report that a fis mutant of E. chrysanthemi showed a strong increase in transcription of the pel genes during exponential growth whereas induction of expression in the parental strain occurred at the end of exponential growth. This reveals that Fis acts to prevent an efficient transcription of pel genes at the beginning of exponential growth and also provides evidence of the involvement of Fis in the growth-phase regulation of the pel genes. By using in vitro DNA-protein interactions and transcription experiments, we find that Fis directly represses the pel gene expression at the transcription initiation step. In addition, we show that Fis acts in concert with KdgR, the main repressor responding to the presence of pectin compounds, to shut down the pel gene transcription. Finally, we find that active Fis is required for the efficient translocation of the Pels in growth medium. Together, these data indicate that Fis tightly controls the availability of Pels during pathogenesis by acting on both their production and their translocation in the external medium.
Collapse
Affiliation(s)
- Thomas Lautier
- Université de Lyon, F-69003, Université Lyon 1, F-69622; INSA-Lyon, Villeurbanne, F-69621, CNRS, UMR 5240, Unité Microbiologie Adaptation et Pathogénie, F-69622, France
| | | | | | | |
Collapse
|
39
|
Lautier T, Nasser W. The DNA nucleoid-associated protein Fis co-ordinates the expression of the main virulence genes in the phytopathogenic bacterium Erwinia chrysanthemi. Mol Microbiol 2007; 66:1474-90. [PMID: 18028311 DOI: 10.1111/j.1365-2958.2007.06012.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Erwinia chrysanthemi strain 3937 is a necrotrophic bacterial plant pathogen. Pectinolytic enzymes and, in particular, pectate lyases (Pels) play a key role in soft rot symptoms but the efficient colonization of plants by E. chrysanthemi requires additional factors. These factors include the harpin HrpN, the cellulase Cel5, proteases (Prts), flagellar proteins and the Sap system, involved in the detoxification of plant antimicrobial peptides. HrpN and flagellum are mostly involved in the early steps of infection whereas the degradative enzymes (Pels, Cel5, Prts) are mainly required in the advanced stages. Production of these virulence factors is tightly regulated by environmental conditions. This report shows that the nucleoid-associated protein Fis plays a pivotal role in the expression of the main virulence genes. Its production is regulated in a growth phase-dependent manner and is under negative autoregulation. An E. chrysanthemi fis mutant displays a reduced motility and expression of hrpN, prtC and the sap operon. In contrast, the expression of the cel5 gene is increased in this mutant. Furthermore, the induction of the Pel activity is delayed and increased during the stationary growth phase in the fis mutant. Most of these controls occur through a direct effect because purified Fis binds to the promoter regions of fis, hrpN, sapA, cel5 and fliC. Moreover, potassium permanganate footprinting and in vitro transcription assays have revealed that Fis prevents transcription initiation at the fis promoter and also transcript elongation from the cel5 promoter. Finally, the fis mutant has a decreased virulence. These results suggest a co-ordinated regulation by Fis of virulence factors involved in certain key steps of infection, early (asymptomatic) and advanced (symptomatic) phases.
Collapse
Affiliation(s)
- Thomas Lautier
- Université de Lyon, F-69003, France; Université Lyon 1, F-69622, France; INSA-Lyon, Villeurbanne, F-69621, France; CNRS, UMR 5240, Unité Microbiologie Adaptation et Pathogénie, F-69622, France
| | | |
Collapse
|