1
|
Dash BK, Urano Y, Mita Y, Ashida Y, Hirose R, Noguchi N. Unconventional secretion of PARK7 requires lysosomal delivery via chaperone-mediated autophagy and specialized SNARE complex. Proc Natl Acad Sci U S A 2025; 122:e2414790122. [PMID: 40327696 PMCID: PMC12088447 DOI: 10.1073/pnas.2414790122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/09/2025] [Indexed: 05/08/2025] Open
Abstract
PARK7/DJ-1, a redox-sensitive protein implicated in neurodegeneration, cancer, and inflammation, exhibits increased secretion under stress. We previously demonstrated that, as a leaderless protein, PARK7 relies on an unconventional autophagy pathway for stress-induced secretion. The current study delves deeper into the mechanisms governing PARK7 secretion under oxidative stress triggered by the neurotoxin 6-hydroxydopamine (6-OHDA). Here, we revealed that 6-OHDA-induced autophagic flux is critical for PARK7 secretion. Downregulation of syntaxin 17 (STX17), a SNARE protein crucial for autophagosome-lysosome fusion and cargo degradation, hindered PARK7 secretion. Likewise, impairing lysosomal function with bafilomycin A1 (BafA1) or chloroquine (CQ) diminished PARK7 release, highlighting the importance of functional lysosomes, potentially in the form of secretory autolysosomes, in PARK7 release. We also found that 6-OHDA appeared to promote the unfolding of PARK7, allowing its selective recognition by the chaperone HSPA8 via KFERQ-like motifs, leading to PARK7 translocation to the lysosomal membrane through LAMP2 via chaperone-mediated autophagy (CMA). Additionally, a dedicated SNARE complex comprising Qabc-SNAREs (STX3/4, VTI1B, and STX8) and R-SNARE SEC22B mediates the fusion of PARK7-containing autolysosomes with the plasma membrane, facilitating the extracellular release of PARK7. Hence, this study uncovers a mechanism where 6-OHDA-induced autophagic flux drives the unconventional secretion of PARK7, involving CMA for PARK7 translocation to lysosomes and specialized SNARE complexes for membrane fusion events.
Collapse
Affiliation(s)
- Biplab Kumar Dash
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe610-0394, Kyoto, Japan
| | - Yasuomi Urano
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe610-0394, Kyoto, Japan
| | - Yuichiro Mita
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe610-0394, Kyoto, Japan
| | - Yuki Ashida
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe610-0394, Kyoto, Japan
| | - Ryoma Hirose
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe610-0394, Kyoto, Japan
| | - Noriko Noguchi
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe610-0394, Kyoto, Japan
| |
Collapse
|
2
|
Shih JY, Hsu YHH. Peptide Activator Stabilizes DJ-1 Structure and Enhances Its Activity. Int J Mol Sci 2024; 25:11075. [PMID: 39456860 PMCID: PMC11508141 DOI: 10.3390/ijms252011075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
DJ-1 is a vital enzyme involved in the maintenance of mitochondrial health, and its mutation has been associated with an increased risk of Parkinson's disease (PD). Effective regulation of DJ-1 activity is essential for the well-being of mitochondria, and DJ-1 is thus a potential target for PD drug development. In this study, two peptides (15EEMETIIPVDVMRRA29 and 47SRDVVICPDA56) were utilized with the aim of enhancing the activity of DJ-1. The mechanisms underlying the activity enhancement by these two peptides were investigated using hydrogen/deuterium exchange mass spectrometry (HDXMS). The HDXMS results revealed distinct mechanisms. Peptide 1 obstructs the access of solvent to the dimer interface and stabilizes the α/β hydrolase structure, facilitating substrate binding to a stabilized active site. Conversely, peptide 2 induces a destabilization of the α/β hydrolase core, enhancing substrate accessibility and subsequently increasing DJ-1 activity. The binding of these two peptides optimizes the activity site within the dimeric structure. These findings offer valuable insights into the mechanisms underlying the activity enhancement of DJ-1 by the two peptides, potentially aiding the development of new drugs that can enhance the activity of DJ-1 and, consequently, advance PD treatment.
Collapse
Affiliation(s)
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan;
| |
Collapse
|
3
|
Luo S, Wang D, Zhang Z. Post-translational modification and mitochondrial function in Parkinson's disease. Front Mol Neurosci 2024; 16:1329554. [PMID: 38273938 PMCID: PMC10808367 DOI: 10.3389/fnmol.2023.1329554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease with currently no cure. Most PD cases are sporadic, and about 5-10% of PD cases present a monogenic inheritance pattern. Mutations in more than 20 genes are associated with genetic forms of PD. Mitochondrial dysfunction is considered a prominent player in PD pathogenesis. Post-translational modifications (PTMs) allow rapid switching of protein functions and therefore impact various cellular functions including those related to mitochondria. Among the PD-associated genes, Parkin, PINK1, and LRRK2 encode enzymes that directly involved in catalyzing PTM modifications of target proteins, while others like α-synuclein, FBXO7, HTRA2, VPS35, CHCHD2, and DJ-1, undergo substantial PTM modification, subsequently altering mitochondrial functions. Here, we summarize recent findings on major PTMs associated with PD-related proteins, as enzymes or substrates, that are shown to regulate important mitochondrial functions and discuss their involvement in PD pathogenesis. We will further highlight the significance of PTM-regulated mitochondrial functions in understanding PD etiology. Furthermore, we emphasize the potential for developing important biomarkers for PD through extensive research into PTMs.
Collapse
Affiliation(s)
- Shishi Luo
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang, Hunan, China
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Danling Wang
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang, Hunan, China
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Zhuohua Zhang
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang, Hunan, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Liu LL, Han Y, Zhang ZJ, Wang YQ, Hu YW, Kaznacheyeva E, Ding JQ, Guo DK, Wang GH, Li B, Ren HG. Loss of DJ-1 function contributes to Parkinson's disease pathogenesis in mice via RACK1-mediated PKC activation and MAO-B upregulation. Acta Pharmacol Sin 2023; 44:1948-1961. [PMID: 37225849 PMCID: PMC10545772 DOI: 10.1038/s41401-023-01104-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative motor disorder characterized by a dramatic reduction in pars compacta of substantia nigra dopaminergic neurons and striatal dopamine (DA) levels. Mutations or deletions in the PARK7/DJ-1 gene are associated with an early-onset familial form of PD. DJ-1 protein prevents neurodegeneration via its regulation of oxidative stress and mitochondrial function as well as its roles in transcription and signal transduction. In this study, we investigated how loss of DJ-1 function affected DA degradation, ROS generation and mitochondrial dysfunction in neuronal cells. We showed that loss of DJ-1 significantly increased the expression of monoamine oxidase (MAO)-B but not MAO-A in both neuronal cells and primary astrocytes. In DJ-1-knockout (KO) mice, MAO-B protein levels in the substantia nigra (SN) and striatal regions were significantly increased. We demonstrated that the induction of MAO-B expression by DJ-1 deficiency depended on early growth response 1 (EGR1) in N2a cells. By coimmunoprecipitation omics analysis, we found that DJ-1 interacted with receptor of activated protein C kinase 1 (RACK1), a scaffolding protein, and thus inhibited the activity of the PKC/JNK/AP-1/EGR1 cascade. The PKC inhibitor sotrastaurin or the JNK inhibitor SP600125 completely inhibited DJ-1 deficiency-induced EGR1 and MAO-B expression in N2a cells. Moreover, the MAO-B inhibitor rasagiline inhibited mitochondrial ROS generation and rescued neuronal cell death caused by DJ-1 deficiency, especially in response to MPTP stimulation in vitro and in vivo. These results suggest that DJ-1 exerts neuroprotective effects by inhibiting the expression of MAO-B distributed at the mitochondrial outer membrane, which mediates DA degradation, ROS generation and mitochondrial dysfunction. This study reveals a mechanistic link between DJ-1 and MAO-B expression and contributes to understanding the crosslinks among pathogenic factors, mitochondrial dysfunction and oxidative stress in PD pathogenesis.
Collapse
Affiliation(s)
- Le-le Liu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yu Han
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zi-Jia Zhang
- Qingdao Municipal Hospital of Shandong Province, Qingdao, 266011, China
| | - Yi-Qi Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yu-Wei Hu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Elena Kaznacheyeva
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, 194064, Russia
| | - Jian-Qing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Dong-Kai Guo
- Laboratory of Clinical Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Guang-Hui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Bin Li
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, China.
| | - Hai-Gang Ren
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
5
|
Sun ME, Zheng Q. The Tale of DJ-1 (PARK7): A Swiss Army Knife in Biomedical and Psychological Research. Int J Mol Sci 2023; 24:ijms24087409. [PMID: 37108572 PMCID: PMC10138432 DOI: 10.3390/ijms24087409] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
DJ-1 (also known as PARK7) is a multifunctional enzyme in human beings that is highly conserved and that has also been discovered in diverse species (ranging from prokaryotes to eukaryotes). Its complex enzymatic and non-enzymatic activities (such as anti-oxidation, anti-glycation, and protein quality control), as well as its role as a transcriptional coactivator, enable DJ-1 to serve as an essential regulator in multiple cellular processes (e.g., epigenetic regulations) and make it a promising therapeutic target for diverse diseases (especially cancer and Parkinson's disease). Due to its nature as a Swiss army knife enzyme with various functions, DJ-1 has attracted a large amount of research interest, from different perspectives. In this review, we give a brief summary of the recent advances with respect to DJ-1 research in biomedicine and psychology, as well as the progress made in attempts to develop DJ-1 into a druggable target for therapy.
Collapse
Affiliation(s)
- Mo E Sun
- Department of Psychology, Duquesne University, Pittsburgh, PA 15282, USA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
A novel splicing variant of DJ-1 in Parkinson's disease induces mitochondrial dysfunction. Heliyon 2023; 9:e14039. [PMID: 36915530 PMCID: PMC10006478 DOI: 10.1016/j.heliyon.2023.e14039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Several studies have identified mutations in neuroprotective genes in a few cases of Parkinson's disease (PD); however, the role of alternative splicing changes in PD remains unelucidated. Based on the transcriptome analysis of substantia nigra (SN) tissues obtained from PD cases and age-matched healthy controls, we identified a novel alternative splicing variant of DJ-1, lacking exon 6 (DJ-1 ΔE6), frequently detected in the SN of patients with PD. We found that the exon 6 skipping of DJ-1 induces mitochondrial dysfunction and impaired antioxidant capability. According to an in silico modeling study, the exon 6 skipping of DJ-1 disrupts the structural state suitable for the oxidation of the cysteine 106 residue that is a prerequisite for activating its neuroprotective roles. Our results suggest that change in DJ-1 alternative splicing may contribute to PD progression and provide an insight for studying PD etiology and its potential therapeutic targets.
Collapse
|
7
|
Jana M, Dasarathy S, Ghosh S, Pahan K. Upregulation of DJ-1 in Dopaminergic Neurons by a Physically-Modified Saline: Implications for Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24054652. [PMID: 36902085 PMCID: PMC10002578 DOI: 10.3390/ijms24054652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder in human and loss-of-functions DJ-1 mutations are associated with a familial form of early onset PD. Functionally, DJ-1 (PARK7), a neuroprotective protein, is known to support mitochondria and protect cells from oxidative stress. Mechanisms and agents by which the level of DJ-1 could be increased in the CNS are poorly described. RNS60 is a bioactive aqueous solution created by exposing normal saline to Taylor-Couette-Poiseuille flow under high oxygen pressure. Recently we have described neuroprotective, immunomodulatory and promyelinogenic properties of RNS60. Here we delineate that RNS60 is also capable of increasing the level of DJ-1 in mouse MN9D neuronal cells and primary dopaminergic neurons, highlighting another new neuroprotective effect of RNS60. While investigating the mechanism we found the presence of cAMP response element (CRE) in DJ-1 gene promoter and stimulation of CREB activation in neuronal cells by RNS60. Accordingly, RNS60 treatment increased the recruitment of CREB to the DJ-1 gene promoter in neuronal cells. Interestingly, RNS60 treatment also induced the enrollment of CREB-binding protein (CBP), but not the other histone acetyl transferase p300, to the promoter of DJ-1 gene. Moreover, knockdown of CREB by siRNA led to the inhibition of RNS60-mediated DJ-1 upregulation, indicating an important role of CREB in DJ-1 upregulation by RNS60. Together, these results indicate that RNS60 upregulates DJ-1 in neuronal cells via CREB-CBP pathway. It may be of benefit for PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sridevi Dasarathy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
8
|
Pal P, Roy S, Chowdhury A, Chatterjee R, Ray K, Ray J. Parkinson's disease-associated 18 bp promoter variant of DJ-1 alters REST binding and regulates its expression. Neurosci Lett 2023; 795:137051. [PMID: 36603736 DOI: 10.1016/j.neulet.2023.137051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/17/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with a complex etiology. Presence of autosomal mutations in PARK7/DJ-1 gene has been associated with early-onset PD. Growing evidence has suggested that DJ-1 acts as a putative sensor of oxidative stress. Reduced levels of DJ-1 protein have been reported in the cerebrospinal fluid of sporadic PD patients. Several case-control association studies have identified DJ-1 g.168_185del (rs200968609) variants conferring susceptibility towards PD pathogenesis. Similarly, among the PD patients in eastern India, the deletion allele (g.168_185) of this DJ-1 promoter polymorphism was found to be associated with PD. Hence, we aimed to find out the functional contribution of this promoter variant of DJ-1 in PD pathogenesis. The expression of DJ-1 was observed to be significantly reduced in the presence of both deletion and duplication sequences as identified from the luciferase promoter activity assay. The transcription factor binding prediction tool identified DJ-1 promoter 18 bp insertion polymorphism as the only binding partner of REST (RE1 Silencing Transcription Factor). Transient Chromatin Immuno-precipitation (ChIP) assay further confirmed this prediction. Previous reports have highlighted the role of REST in regulating the expression of stress-responsive genes. Our study has identified the functional involvement of DJ-1 promoter variants and REST-mediated regulation of DJ-1 expression in PD pathogenesis.
Collapse
Affiliation(s)
- Prosenjit Pal
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India.
| | - Shubhrajit Roy
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Abhishek Chowdhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Molecular and Human Genetics Division, Kolkata, India
| | | | - Kunal Ray
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, India
| | - Jharna Ray
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| |
Collapse
|
9
|
Ge Y, Zheng X, Mao S, Zhang Q, Hu G, Wei Y. DJ-1 inhibits glutathione degradation by downregulating CHAC1 expression in astrocytes. Neurosci Res 2022; 184:62-69. [PMID: 35988816 DOI: 10.1016/j.neures.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/15/2022]
Abstract
The PARK7 gene, which encodes DJ-1 protein, is the causative gene of autosomal recessive early-onset Parkinson's disease. DJ-1 has many biological functions, including regulating glutathione (GSH) levels. However, the molecular mechanism by which DJ-1 regulates GSH levels in astrocytes remains unclear. With high throughput sequencing, we discovered that DJ-1 knockout could significantly upregulate the expression of ChaC glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1). We demonstrate that DJ-1 can bind with the basic leucine zipper domain of activating transcription factor 3 (ATF3) through bimolecular fluorescence complementation. Besides, DJ-1 inhibits ATF3 binding to the CHAC1 promoter and downregulates the expression of CHAC1 to reduce GSH degradation. Our research suggests that the loss of DJ-1 in astrocytes promotes the degradation of GSH, leading neurons more vulnerable to oxidative damage. It provides a theoretical basis for developing drugs targeting DJ-1 and GSH in the brain.
Collapse
Affiliation(s)
- Yuan Ge
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinlei Zheng
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shiyu Mao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China
| | - Qingyu Zhang
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China
| | - Yao Wei
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
10
|
Rocha SM, Bantle CM, Aboellail T, Chatterjee D, Smeyne RJ, Tjalkens RB. Rotenone induces regionally distinct α-synuclein protein aggregation and activation of glia prior to loss of dopaminergic neurons in C57Bl/6 mice. Neurobiol Dis 2022; 167:105685. [PMID: 35257879 PMCID: PMC9615439 DOI: 10.1016/j.nbd.2022.105685] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 12/21/2022] Open
Abstract
Rotenone is a naturally occurring insecticide that inhibits mitochondrial complex I and leads to neurochemical and neuropathological deficits closely resembling those in Parkinson's disease (PD). Deficits include loss of dopaminergic neurons (DAn) in the substantia nigra pars compacta (SNpc), decreased dopamine levels and aggregation of misfolded alpha-synuclein (p129). In rat models of rotenone-induced parkinsonism, the progression of neuronal injury has been associated with activation of microglia and astrocytes. However, these neuroinflammatory changes have been challenging to study in mice, in part because the systemic rotenone exposure model utilized in rats is more toxic to mice. To establish a reproducible murine model of rotenone-induced PD, we therefore investigated the progression of neuroinflammation, protein aggregation and DAn loss in C57Bl/6 mice by exposing animals to 2.5 mg/kg/day rotenone for 14 days, followed by a two-week period where neuroinflammation is allowed to progress. Our results indicate that initial cellular dysfunction leads to increased formation of proteinase K-resistant p129 aggregates in the caudate-putamen and SNpc. Clearance of these aggregates was region- and cell type-specific, with the early appearance of reactive astrocytes coinciding with accumulation of p129 in the SNpc. Phagocytic microglial cells containing p129 aggregates were observed proximal to p129+ DAn in the SNpc. The majority of neuronal loss in the SNpc occurred during the two-week period after rotenone exposure, subsequent to the peak of microglia and astrocyte activation, as well as the peak of p129 aggregation. A secondary peak of p129 coincided with neurodegeneration at later timepoints. These data indicate that systemic exposure to rotenone in C57Bl/6 mice causes progressive accumulation and regional spread of p129 aggregates that precede maximal loss of DAn. Thus, activation of glial cells and aggregation of p129 appear to drive neuronal loss following neurotoxic stress imposed by exposure to rotenone.
Collapse
Affiliation(s)
- Savannah M Rocha
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Collin M Bantle
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Tawfik Aboellail
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Debotri Chatterjee
- Jefferson Comprehensive Parkinson's Center, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Richard J Smeyne
- Jefferson Comprehensive Parkinson's Center, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America.
| |
Collapse
|
11
|
Atypical Ubiquitination and Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23073705. [PMID: 35409068 PMCID: PMC8998352 DOI: 10.3390/ijms23073705] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Ubiquitination (the covalent attachment of ubiquitin molecules to target proteins) is one of the main post-translational modifications of proteins. Historically, the type of polyubiquitination, which involves K48 lysine residues of the monomeric ubiquitin, was the first studied type of ubiquitination. It usually targets proteins for their subsequent proteasomal degradation. All the other types of ubiquitination, including monoubiquitination; multi-monoubiquitination; and polyubiquitination involving lysine residues K6, K11, K27, K29, K33, and K63 and N-terminal methionine, were defined as atypical ubiquitination (AU). Good evidence now exists that AUs, participating in the regulation of various cellular processes, are crucial for the development of Parkinson's disease (PD). These AUs target various proteins involved in PD pathogenesis. The K6-, K27-, K29-, and K33-linked polyubiquitination of alpha-synuclein, the main component of Lewy bodies, and DJ-1 (another PD-associated protein) is involved in the formation of insoluble aggregates. Multifunctional protein kinase LRRK2 essential for PD is subjected to K63- and K27-linked ubiquitination. Mitophagy mediated by the ubiquitin ligase parkin is accompanied by K63-linked autoubiquitination of parkin itself and monoubiquitination and polyubiquitination of mitochondrial proteins with the formation of both classical K48-linked ubiquitin chains and atypical K6-, K11-, K27-, and K63-linked polyubiquitin chains. The ubiquitin-specific proteases USP30, USP33, USP8, and USP15, removing predominantly K6-, K11-, and K63-linked ubiquitin conjugates, antagonize parkin-mediated mitophagy.
Collapse
|
12
|
Buneeva OA, Medvedev AE. DJ-1 Protein and Its Role in the Development of Parkinson's Disease: Studies on Experimental Models. BIOCHEMISTRY (MOSCOW) 2021; 86:627-640. [PMID: 34225587 DOI: 10.1134/s000629792106002x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
DJ-1, also known as Parkinson's disease protein 7, is a multifunctional protein ubiquitously expressed in cells and tissues. Interacting with proteins of various intracellular compartments, DJ-1 plays an important role in maintaining different cellular functions. Mutant DJ-1 forms containing amino acid substitutions (especially L166P), typical of Parkinson's disease, are characterized by impaired dimerization, stability, and folding. DJ-1 exhibits several types of catalytic activity; however, in the enzyme classification it exists as protein deglycase (EC 3.5.1.124). Apparently, in different cell compartments DJ-1 exhibits catalytic and non-catalytic functions, and their ratio still remains unknown. Oxidative stress promotes dissociation of cytoplasmic DJ-1 dimers into monomers, which are translocated to the nucleus, where this protein acts as a coactivator of various signaling pathways, preventing cell death. In mitochondria, DJ-1 is found in the synthasome, where it interacts with the β ATP synthase subunit. Downregulation of the DJ-1 gene under conditions of experimental PD increases sensitivity of the cells to neurotoxins, and introduction of the recombinant DJ-1 protein attenuates manifestation of this pathology. The thirteen-membered fragment of the DJ-1 amino acid sequence attached to the heptapeptide of the TAT protein penetrating into the cells exhibited neuroprotective properties in various PD models both in cell cultures and after administration to animals. Low molecular weight DJ-1 ligands also demonstrate therapeutic potential, providing neuroprotective effects seen during their incubation with cells and administration to animals.
Collapse
Affiliation(s)
- Olga A Buneeva
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | | |
Collapse
|
13
|
Huang M, Chen S. DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Prog Neurobiol 2021; 204:102114. [PMID: 34174373 DOI: 10.1016/j.pneurobio.2021.102114] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases (NDs) are one of the major health threats to human characterized by selective and progressive neuronal loss. The mechanisms of NDs are still not fully understood. The study of genetic defects and disease-related proteins offers us a window into the mystery of it, and the extension of knowledge indicates that different NDs share similar features, mechanisms, and even genetic or protein abnormalities. Among these findings, PARK7 and its production DJ-1 protein, which was initially found implicated in PD, have also been found altered in other NDs. PARK7 mutations, altered expression and posttranslational modification (PTM) cause DJ-1 abnormalities, which in turn lead to downstream mechanisms shared by most NDs, such as mitochondrial dysfunction, oxidative stress, protein aggregation, autophagy defects, and so on. The knowledge of DJ-1 derived from PD researches might apply to other NDs in both basic research and clinical application, and might yield novel insights into and alternative approaches for dealing with NDs.
Collapse
Affiliation(s)
- Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China; Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
14
|
Cytoprotective Mechanisms of DJ-1: Implications in Cardiac Pathophysiology. Molecules 2021; 26:molecules26133795. [PMID: 34206441 PMCID: PMC8270312 DOI: 10.3390/molecules26133795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
DJ-1 was originally identified as an oncogene product while mutations of the gene encoding DJ-1/PARK7 were later associated with a recessive form of Parkinson's disease. Its ubiquitous expression and diversity of function suggest that DJ-1 is also involved in mechanisms outside the central nervous system. In the last decade, the contribution of DJ-1 to the protection from ischemia-reperfusion injury has been recognized and its involvement in the pathophysiology of cardiovascular disease is attracting increasing attention. This review describes the current and gaps in our knowledge of DJ-1, focusing on its role in regulating cardiovascular function. In parallel, we present original data showing an association between increased DJ-1 expression and antiapoptotic and anti-inflammatory markers following cardiac and vascular surgical procedures. Future studies should address DJ-1's role as a plausible novel therapeutic target for cardiovascular disease.
Collapse
|
15
|
Tang X, Yu D, Wang H, Meng W, Lei Z, Zhai Y, Wang Y, Wang X. Biochemical and cytotoxic evaluation of latroeggtoxin-VI against PC12 cells. J Biochem Mol Toxicol 2021; 35:e22825. [PMID: 34047418 DOI: 10.1002/jbt.22825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/27/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023]
Abstract
Latroeggtoxin-VI (LETX-VI) is a peptide neurotoxin discovered from Latrodectus tredecimguttatus eggs. In the current study, the action features of the neurotoxin on PC12 cells were systematically investigated. LETX-VI could promote dopamine release from PC12 cells in the absence and presence of Ca2+, involving an even more complex action mechanism in the presence of Ca2+ and when the treatment time was longer. Although LETX-VI enchanced the autophagy and secretion activity in PC 12 cells, it showed no remarkable influence on the proliferation, cell cycle, apoptosis and ultrastructure of the cells. Pulldown combined with CapLC-MS/MS analysis suggested that LETX-VI affected PC12 cells by interacting with multiple proteins involved in the metabolism, transport, and release of neurotransmitters, particularly dopamine. The low cytotoxicity and effective regulatory action of LETX-VI on PC12 cells suggest the potential of the active peptide in the development of drugs for the treatment of some dopamine-related psychotic diseases and cancers.
Collapse
Affiliation(s)
- Xiaochao Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dianmei Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Haiyan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wenwen Meng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhixiang Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yiwen Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Ying Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
16
|
Katano-Toki A, Yoshino S, Nakajima Y, Tomaru T, Nishikido A, Ishida E, Horiguchi K, Saito T, Ozawa A, Satoh T, Yamada M. SFPQ associated with a co-activator for PPARγ, HELZ2, regulates key nuclear factors for adipocyte differentiation. Biochem Biophys Res Commun 2021; 562:139-145. [PMID: 34052659 DOI: 10.1016/j.bbrc.2021.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
We recently isolated a novel co-activator of peroxisome proliferator-activated receptor γ, helicase with zinc finger 2 (HELZ2). HELZ2 null mice were resistant to diet-induced obesity and NAFFL/NASH, and HELZ2 was phosphorylated at tyrosine residues. In order to find a factor related to HELZ2, we analyzed products co-immunoprecipitated with phosphorylated HELZ2 by mass spectrometry analyses. We identified proline- and glutamine-rich (SFPQ) as a protein associating with tyrosine-phosphorylated HELZ2. The knockdown of SFPQ in 3T3-L1 cells downregulated mRNA levels of transcription factors including Krox20, Cebpβ, and Cebpδ: key factors for early-stage adipocyte differentiation. In addition, knockdown of SFPQ inhibited 3T3-L1 cell differentiation to mature adipocytes. These findings demonstrated that SFPQ associating with HELZ2 is an important novel transcriptional regulator of adipocyte differentiation.
Collapse
Affiliation(s)
- Akiko Katano-Toki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Satoshi Yoshino
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasuyo Nakajima
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takuya Tomaru
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ayaka Nishikido
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Emi Ishida
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuhiko Horiguchi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tsugumichi Saito
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Atsushi Ozawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tetsurou Satoh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masanobu Yamada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
17
|
Takayama KI, Honma T, Suzuki T, Kondoh Y, Osada H, Suzuki Y, Yoshida M, Inoue S. Targeting Epigenetic and Posttranscriptional Gene Regulation by PSF Impairs Hormone Therapy-Refractory Cancer Growth. Cancer Res 2021; 81:3495-3508. [PMID: 33975881 DOI: 10.1158/0008-5472.can-20-3819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/05/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
RNA-binding protein PSF functions as an epigenetic modifier by interacting with long noncoding RNAs and the corepressor complex. PSF also promotes RNA splicing events to enhance oncogenic signals. In this study, we conducted an in vitro chemical array screen and identified multiple small molecules that interact with PSF. Several molecules inhibited RNA binding by PSF and decreased prostate cancer cell viability. Among these molecules and its derivatives was a promising molecule, No. 10-3 [7,8-dihydroxy-4-(4-methoxyphenyl)chromen-2-one], that was the most effective at blocking PSF RNA-binding ability and suppressing treatment-resistant prostate and breast cancer cell proliferation. Exposure to No. 10-3 inhibited PSF target gene expression at the mRNA level. Treatment with No. 10-3 reversed epigenetically repressed PSF downstream targets, such as cell-cycle inhibitors, at the transcriptional level. Chromatin immunoprecipitation sequencing in prostate cancer cells revealed that No. 10-3 enhances histone acetylation to induce expression of apoptosis as well as cell-cycle inhibitors. Furthermore, No. 10-3 exhibited antitumor efficacy in a hormone therapy-resistant prostate cancer xenograft mouse model, suppressing treatment-resistant tumor growth. Taken together, this study highlights the feasibility of targeting PSF-mediated epigenetic and RNA-splicing activities for the treatment of aggressive cancers. SIGNIFICANCE: This study identifies small molecules that target PSF-RNA interactions and suppress hormone therapy-refractory cancer growth, suggesting the potential of targeting PSF-mediated gene regulation for cancer treatment.
Collapse
Affiliation(s)
- Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Teruki Honma
- Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Drug Discovery Chemical Bank Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Drug Discovery Chemical Bank Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan. .,Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
18
|
Mitochondrial LonP1 protease is implicated in the degradation of unstable Parkinson's disease-associated DJ-1/PARK 7 missense mutants. Sci Rep 2021; 11:7320. [PMID: 33795807 PMCID: PMC8016953 DOI: 10.1038/s41598-021-86847-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/19/2021] [Indexed: 01/03/2023] Open
Abstract
DJ-1/PARK7 mutations are linked with familial forms of early-onset Parkinson's disease (PD). We have studied the degradation of untagged DJ-1 wild type (WT) and missense mutants in mouse embryonic fibroblasts obtained from DJ-1-null mice, an approach closer to the situation in patients carrying homozygous mutations. The results showed that the mutants L10P, M26I, A107P, P158Δ, L166P, E163K, and L172Q are unstable proteins, while A39S, E64D, R98Q, A104T, D149A, A171S, K175E, and A179T are as stable as DJ-1 WT. Inhibition of proteasomal and autophagic-lysosomal pathways had little effect on their degradation. Immunofluorescence and biochemical fractionation studies indicated that M26I, A107P, P158Δ, L166P, E163K, and L172Q mutants associate with mitochondria. Silencing of mitochondrial matrix protease LonP1 produced a strong reduction of the degradation of the mitochondrial-associated DJ-1 mutants A107P, P158Δ, L166P, E163K, and L172Q but not of mutant L10P. These results demonstrated a mitochondrial pathway of degradation of those DJ-1 missense mutants implicated in PD pathogenesis.
Collapse
|
19
|
Chen X, Zhang Y, Wang Q, Qin Y, Yang X, Xing Z, Shen Y, Wu H, Qi Y. The function of SUMOylation and its crucial roles in the development of neurological diseases. FASEB J 2021; 35:e21510. [PMID: 33710677 DOI: 10.1096/fj.202002702r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 11/11/2022]
Abstract
Neurological diseases are relatively complex diseases of a large system; however, the detailed mechanism of their pathogenesis has not been completely elucidated, and effective treatment methods are still lacking for some of the diseases. The SUMO (small ubiquitin-like modifier) modification is a dynamic and reversible process that is catalyzed by SUMO-specific E1, E2, and E3 ligases and reversed by a family of SENPs (SUMO/Sentrin-specific proteases). SUMOylation covalently conjugates numerous cellular proteins, and affects their cellular localization and biological activity in numerous cellular processes. A wide range of neuronal proteins have been identified as SUMO substrates, and the disruption of SUMOylation results in defects in synaptic plasticity, neuronal excitability, and neuronal stress responses. SUMOylation disorders cause many neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. By modulating the ion channel subunit, SUMOylation imbalance is responsible for the development of various channelopathies. The regulation of protein SUMOylation in neurons may provide a new strategy for the development of targeted therapeutic drugs for neurodegenerative diseases and channelopathies.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qiqi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
20
|
Tang X, Yu D, Wang H, Meng W, Zhai Y, Lei Z, Liu Z, Wang X. Pull-Down Assay-Guided Insights into the Effects of Latroeggtoxin-VI on Nerve Cells. Toxins (Basel) 2021; 13:136. [PMID: 33673184 PMCID: PMC7918074 DOI: 10.3390/toxins13020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Latroeggtoxin-VI (LETX-VI) is a peptide neurotoxin newly found from the eggs of spider L. tredecimguttatus. To explore the mechanism of action of the LETX-VI on nerve cells, the effects of LETX-VI on PC12 cells, a commonly used neuron model, were analyzed using a pull-down assay-guided strategy. LETX-VI was shown to interact with 164 PC12 cell proteins that have diverse molecular functions such as binding, catalysis, regulation, structural activity, etc., thereby extensively affecting the biological processes in the PC12 cells, particularly protein metabolism, response to stimulus, substance transport, and nucleic acid metabolism, with 56.71%, 42.07%, 29.88% and 28.66% of the identified proteins being involved in these biological processes, respectively. By interacting with the relevant proteins, LETX-VI enhanced the synthesis of dopamine; positively regulated cell division and proliferation; and negatively regulated cell cycle arrest, cell death, and apoptotic processes, and therefore has limited cytotoxicity against the PC12 cells, which were further experimentally confirmed. In general, the effects of LETX-VI on PC12 cells are more regulatory than cytotoxic. These findings have deepened our understanding of the action mechanism of LETX-VI on nerve cells and provided valuable clues for further related researches including those on Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (X.T.); (D.Y.); (H.W.); (W.M.); (Y.Z.); (Z.L.); (Z.L.)
| |
Collapse
|
21
|
Han NR, Kim YK, Ahn S, Hwang TY, Lee H, Park HJ. A Comprehensive Phenotype of Non-motor Impairments and Distribution of Alpha-Synuclein Deposition in Parkinsonism-Induced Mice by a Combination Injection of MPTP and Probenecid. Front Aging Neurosci 2021; 12:599045. [PMID: 33519420 PMCID: PMC7838388 DOI: 10.3389/fnagi.2020.599045] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is characterized by non-motor symptoms as well as motor deficits. The non-motor symptoms rarely appear individually and occur simultaneously with motor deficits or independently. However, a comprehensive research on the non-motor symptoms using an experimental model of PD remains poorly understood. The aim of the current study is to establish a chronic mouse model of PD mimicking the comprehensive non-motor symptoms of human PD by injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid (MPTP/p). The non-motor and motor symptoms were evaluated by performing buried food, short-term olfactory memory, hot plate, open field, tail suspension, Y maze, novel object recognition, bead expulsion, one-h stool collection, rotarod, rearing, catalepsy, and akinesia tests after 10 injections of MPTP/p into mice. The expression levels of α-synuclein, glial fibrillary acidic protein (GFAP), tyrosine hydroxylase (TH) or DJ-1 were analyzed by Western blotting or immunostaining. MPTP/p-treated mice achieved to reproduce the key features of non-motor symptoms including olfactory deficit, thermal hyperalgesia, anxiety, depression, cognitive decline, and gastrointestinal dysfunction in addition to motor deficits. The MPTP/p-treated mice also showed the high levels of α-synuclein and low levels of TH and DJ-1 in striatum, substantia nigra, olfactory bulb, hippocampus, amygdala, prefrontal cortex, locus coeruleus, or colon. In addition, the expression levels of phosphorylated-α-synuclein and GFAP were elevated in the striatum and substantia nigra in the MPTP/p-treated mice. Taken together, our study clarifies that the chronic MPTP/p-treated mice have a variety of non-motor dysfunctions as well as motor abnormalities by α-synuclein overexpression and dopaminergic depletion. Therefore, the study of comprehensive phenotypes of non-motor symptoms in one PD model would advance in-depth understandings of neuropathological alternations and contribute to future strategies for PD treatment.
Collapse
Affiliation(s)
- Na-Ra Han
- Integrative Parkinson's Disease Research Group, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea.,Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Yu-Kang Kim
- Integrative Parkinson's Disease Research Group, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea.,Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sora Ahn
- Integrative Parkinson's Disease Research Group, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea
| | - Tae-Yeon Hwang
- Integrative Parkinson's Disease Research Group, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea.,Department of Meridian & Acupoints, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyejung Lee
- Department of Meridian & Acupoints, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hi-Joon Park
- Integrative Parkinson's Disease Research Group, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea.,Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
22
|
Jungling A, Reglodi D, Maasz G, Zrinyi Z, Schmidt J, Rivnyak A, Horvath G, Pirger Z, Tamas A. Alterations of Nigral Dopamine Levels in Parkinson's Disease after Environmental Enrichment and PACAP Treatment in Aging Rats. Life (Basel) 2021; 11:life11010035. [PMID: 33429934 PMCID: PMC7827131 DOI: 10.3390/life11010035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
The neuroprotective effects of environmental enrichment and PACAP (pituitary adenylate cyclase-activating polypeptide) are well-described in Parkinson’s disease. The aim of our study is to investigate the beneficial effects of these factors in aging parkinsonian rats. Newborn Wistar rats were divided into standard and enriched groups according to their environmental conditions. Standard animals were raised under regular conditions. During the first five postnatal weeks, enriched pups were placed in larger cages with different objects. Aging animals received (1) saline, (2) 6-hydroxidopamine (6-OHDA), or (3) 6-OHDA + PACAP injections into the left substantia nigra (s.n.). On the seventh postoperative day, the left and right s.n. were collected. The s.n. of young and aging unoperated animals were also examined in our experiment. We determined the dopamine (DA) levels by the HPLC-MS technique, while the sandwich ELISA method was used to measure the Parkinson disease protein 7 (PARK7) protein levels. In healthy animals, we found an age-related decrease of DA levels. In aging parkinsonian-enriched rats, the operation did not result in a significant DA loss. PACAP treatment could prevent the DA loss in both the standard and enriched groups. All injured PACAP-treated rats showed remarkably higher protective PARK7 levels. The protective effect of PACAP correlated with the increase of the DA and PARK7 levels.
Collapse
Affiliation(s)
- Adel Jungling
- MTA-PTE PACAP Research Team, Department of Anatomy, Medical School, University of Pecs, 7624 Pecs, Hungary; (A.J.); (D.R.); (A.R.); (G.H.)
| | - Dora Reglodi
- MTA-PTE PACAP Research Team, Department of Anatomy, Medical School, University of Pecs, 7624 Pecs, Hungary; (A.J.); (D.R.); (A.R.); (G.H.)
| | - Gabor Maasz
- MTA-OK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary; (G.M.); (Z.Z.); (Z.P.)
| | - Zita Zrinyi
- MTA-OK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary; (G.M.); (Z.Z.); (Z.P.)
| | - Janos Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Adam Rivnyak
- MTA-PTE PACAP Research Team, Department of Anatomy, Medical School, University of Pecs, 7624 Pecs, Hungary; (A.J.); (D.R.); (A.R.); (G.H.)
| | - Gabor Horvath
- MTA-PTE PACAP Research Team, Department of Anatomy, Medical School, University of Pecs, 7624 Pecs, Hungary; (A.J.); (D.R.); (A.R.); (G.H.)
| | - Zsolt Pirger
- MTA-OK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary; (G.M.); (Z.Z.); (Z.P.)
| | - Andrea Tamas
- MTA-PTE PACAP Research Team, Department of Anatomy, Medical School, University of Pecs, 7624 Pecs, Hungary; (A.J.); (D.R.); (A.R.); (G.H.)
- Correspondence: or ; Tel.: +36-72-536-001 (ext. 36421)
| |
Collapse
|
23
|
PARIS-DJ-1 Interaction Regulates Mitochondrial Functions in Cardiomyocytes, Which Is Critically Important in Cardiac Hypertrophy. Mol Cell Biol 2020; 41:MCB.00106-20. [PMID: 33077496 DOI: 10.1128/mcb.00106-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial dysfunction is one of the major pathological attributes of cardiac hypertrophy and is associated with reduced expression of PGC1α in cardiomyocytes. However, the transcriptional regulation of PGC1α remains elusive. Here, we show that parkin interacting substrate (PARIS), a KRAB zinc finger protein, prevented PGC1α transcription despite the induction of cardiomyocytes with hypertrophic stimuli. Moreover, PARIS expression and its nuclear localization are enhanced in hypertrophy both in vitro and in vivo Knocking down PARIS resulted in mitochondrial biogenesis and improved respiration and other biochemical features that were compromised during hypertrophy. Furthermore, a PARIS-dependent proteome showed exclusive binding of a deSUMOylating protein called DJ-1 to PARIS in control cells, while this interaction is completely abrogated in hypertrophied cells. We further demonstrate that proteasomal degradation of DJ-1 under oxidative stress led to augmented PARIS SUMOylation and consequent repression of PGC1α promoter activity. SUMOylation-resistant mutants of PARIS failed to repress PGC1α, suggesting a critical role for PARIS SUMOylation in hypertrophy. The present study, therefore, proposes a novel regulatory pathway where DJ-1 acts as an oxidative stress sensor and contributes to the feedback loop governing PARIS-mediated mitochondrial function.
Collapse
|
24
|
Chen J, Bian X, Li Y, Xiao X, Yin Y, Du X, Wang C, Li L, Bai Y, Liu X. Moderate hypothermia induces protection against hypoxia/reoxygenation injury by enhancing SUMOylation in cardiomyocytes. Mol Med Rep 2020; 22:2617-2626. [PMID: 32945433 PMCID: PMC7453665 DOI: 10.3892/mmr.2020.11374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/04/2020] [Indexed: 02/05/2023] Open
Abstract
Moderate hypothermia plays a major role in myocardial cell death as a result of hypoxia/reoxygenation (H/R) injury. However, few studies have investigated the molecular mechanisms of hypothermic cardioprotection. Several responses to stress and other cell functions are regulated by post‑translational protein modifications controlled by small ubiquitin‑like modifier (SUMO). Previous studies have established that high SUMOylation of proteins potentiates the ability of cells to withstand hypoxic‑ischemic stress. The level to which moderate hypothermia affects SUMOylation is not fully understood, as the functions of SUMOylation in the heart have not been studied in depth. The aim of the present study was to investigate the effect of moderate hypothermia (33˚C) on the protective functions of SUMOylation on myocardial cells. HL‑1 and H9c2 cells were treated with the hypoxia‑mimetic chemical CoCl2 and complete medium to simulate H/R injury. Hypothermia intervention was then administered. A Cell Counting kit‑8 assay was used to analyze cell viability. Mitochondrial membrane potential and the generation of reactive oxygen species (ROS) were used as functional indexes of mitochondria dysfunction. Bcl‑2 and caspase‑3 expression levels were analyzed by western blotting. The present results suggested that moderate hypothermia significantly increased SUMO1 and Bcl‑2 expression levels, as well as the mitochondrial membrane potential, but significantly decreased the expression levels of caspase‑3 and mitochondrial ROS. Thus, moderate hypothermia may enhance SUMOylation and attenuate myocardial H/R injury. Moreover, a combination of SUMOylation and moderate hypothermia may be a potential cardiovascular intervention.
Collapse
Affiliation(s)
- Jinsheng Chen
- North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
- Department of Anesthesiology, Tangshan Maternity and Child Health Care Hospital, Tangshan, Hebei 063000, P.R. China
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Yanxia Li
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiaolin Xiao
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Yanying Yin
- Department of Neurology, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xinping Du
- Department of Cardiology, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Cuancuan Wang
- Department of Cardiology, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Lili Li
- Department of Bone and Soft Tissue Tumors, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yaowu Bai
- North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
- Department of Anesthesiology, Tangshan Maternity and Child Health Care Hospital, Tangshan, Hebei 063000, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| |
Collapse
|
25
|
He J, Cheng J, Wang T. SUMOylation-Mediated Response to Mitochondrial Stress. Int J Mol Sci 2020; 21:ijms21165657. [PMID: 32781782 PMCID: PMC7460625 DOI: 10.3390/ijms21165657] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial stress is considered as a factor that reprograms the mitochondrial biogenesis and metabolism. As known, SUMOylation occurs through a series of stress-induced biochemical reactions. During the process of SUMOylation, the small ubiquitin-like modifier (SUMO) and its specific proteases (SENPs) are key signal molecules. Furthermore, they are considered as novel mitochondrial stress sensors that respond to the signals produced by various stresses. The responses are critical for mitochondrial homeostasis. The scope of this review is to provide an overview of the function of SUMOylation in the mitochondrial stress response, to delineate a SUMOylation-involved signal network diagram, and to highlight a number of key questions that remain answered.
Collapse
Affiliation(s)
- Jianli He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (J.C.); (T.W.); Tel.: +86-(21)-6384-6590-776327 (J.C.); +86-(21)-6384-6590-778026 (T.W.)
| | - Tianshi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (J.C.); (T.W.); Tel.: +86-(21)-6384-6590-776327 (J.C.); +86-(21)-6384-6590-778026 (T.W.)
| |
Collapse
|
26
|
Bilsland AE, Liu Y, Turnbull A, Sumpton D, Stevenson K, Cairney CJ, Boyd SM, Roffey J, Jenkinson D, Keith WN. A Novel Pyrazolopyrimidine Ligand of Human PGK1 and Stress Sensor DJ1 Modulates the Shelterin Complex and Telomere Length Regulation. Neoplasia 2019; 21:893-907. [PMID: 31401411 PMCID: PMC6700475 DOI: 10.1016/j.neo.2019.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 11/15/2022]
Abstract
Telomere signaling and metabolic dysfunction are hallmarks of cell aging. New agents targeting these processes might provide therapeutic opportunities, including chemoprevention strategies against cancer predisposition. We report identification and characterization of a pyrazolopyrimidine compound series identified from screens focused on cell immortality and whose targets are glycolytic kinase PGK1 and oxidative stress sensor DJ1. We performed structure-activity studies on the series to develop a photoaffinity probe to deconvolute the cellular targets. In vitro binding and structural analyses confirmed these targets, suggesting that PGK1/DJ1 interact, which we confirmed by immunoprecipitation. Glucose homeostasis and oxidative stress are linked to telomere signaling and exemplar compound CRT0063465 blocked hypoglycemic telomere shortening. Intriguingly, PGK1 and DJ1 bind to TRF2 and telomeric DNA. Compound treatment modulates these interactions and also affects Shelterin complex composition, while conferring cellular protection from cytotoxicity due to bleomycin and desferroxamine. These results demonstrate therapeutic potential of the compound series.
Collapse
Affiliation(s)
- Alan E Bilsland
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1QH, UK
| | - Yu Liu
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1QH, UK
| | - Andrew Turnbull
- Cancer Research Technology Ltd., Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - David Sumpton
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Katrina Stevenson
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1QH, UK
| | - Claire J Cairney
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1QH, UK
| | - Susan M Boyd
- CompChem Solutions Ltd, St John's Innovation Centre, Cambridge, CB4 0WS, UK
| | - Jon Roffey
- Cancer Research Technology Ltd., Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - David Jenkinson
- Cancer Research Technology Ltd., Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1QH, UK.
| |
Collapse
|
27
|
Xu X, Wang R, Hao Z, Wang G, Mu C, Ding J, Sun W, Ren H. DJ-1 regulates tyrosine hydroxylase expression through CaMKKβ/CaMKIV/CREB1 pathway in vitro and in vivo. J Cell Physiol 2019; 235:869-879. [PMID: 31232473 DOI: 10.1002/jcp.29000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/04/2019] [Indexed: 01/27/2023]
Abstract
Lack of dopamine production and neurodegeneration of dopaminergic neurons in the substantia nigra are considered as the major characteristics of Parkinson's disease, a prevalent movement disorder worldwide. DJ-1 mutation leading to loss of its protein functions is a genetic factor of PD. In this study, our results illustrated that DJ-1 can directly interact with Ca2+ /calmodulin-dependent protein kinase kinase β (CaMKKβ) and modifies the cAMP-responsive element binding protein 1 (CREB1) activity, thus regulates tyrosine hydroxylase (TH) expression. In Dj-1 knockout mouse substantia nigra, the levels of TH and the phosphorylation of CREB1 Ser133 are significantly decreased. Moreover, Dj-1 deficiency suppresses the phosphorylation of CaMKIV (Thr196/200) and CREB1 (Ser133), subsequently inhibits TH expression in vitro. Furthermore, Knockdown of Creb1 abolishes the effects of DJ-1 on TH regulation. Our data reveal a novel pathway in which DJ-1 regulates CaMKKβ/CaMKIV/CREB1 activities to facilitate TH expression.
Collapse
Affiliation(s)
- Xingyun Xu
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Rui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zongbing Hao
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Chenchen Mu
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanping Sun
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
28
|
Gao L, Zhang Z, Xu W, Li T, Ying G, Qin B, Li J, Zheng J, Zhao T, Yan F, Zhu Y, Chen G. Natrium Benzoate Alleviates Neuronal Apoptosis via the DJ-1-Related Anti-oxidative Stress Pathway Involving Akt Phosphorylation in a Rat Model of Traumatic Spinal Cord Injury. Front Mol Neurosci 2019; 12:42. [PMID: 30853891 PMCID: PMC6395451 DOI: 10.3389/fnmol.2019.00042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/01/2019] [Indexed: 12/22/2022] Open
Abstract
This study aimed to explore the neuroprotective effects and mechanisms of natrium benzoate (NaB) and DJ-1 in attenuating reactive oxygen species (ROS)-induced neuronal apoptosis in traumatic spinal cord injury (t-SCI) in rats. T-SCI was induced by clip compression. The protein expression and neuronal apoptosis was evaluated by Western blotting, double immunofluorescence staining and transmission electron microscope (TEM). ROS level, spinal cord water content (SCWC) and Evans blue (EB) extravasation was also examined. Locomotor function was evaluated by Basso, Beattie, and Bresnahan (BBB) and inclined plane test (IPT) scores. We found that DJ-1 is expressed in spinal cord neurons and increased after t-SCI. At 24 h post-injury, the levels of DJ-1, p-Akt, SOD2, ROS, p-p38 MAPK/p38 MAPK ratio, and CC-3 increased, while the Bcl-2/Bax ratio decreased. NaB upregulated DJ-1, p-Akt, and SOD2, decreased ROS, p-p38 MAPK/p38 MAPK ratio, and CC-3, and increased the Bcl-2/Bax ratio, which were reversed by DJ-1 siRNA. The proportion of CC-3- and TUNEL-positive neurons also increased after t-SCI and was reduced by NaB. These effects were reversed by MK2206. Moreover, the level of oxDJ-1 increased after t-SCI, which was decreased by DJ-1 siRNA, NaB or the combination of them. NaB also reduced mitochondrial vacuolization, SCWC and EB extravasation, and improved locomotor function assessed by the BBB and IPT scores. In conclusion, NaB increased DJ-1, and thus reduced ROS and ROS-induced neuronal apoptosis by promoting Akt phosphorylation in t-SCI rats. NaB shows potential as a therapeutic agent for t-SCI, with DJ-1 as its main target.
Collapse
Affiliation(s)
- Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongyuan Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guangyu Ying
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Qin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tengfei Zhao
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjian Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Saidu NEB, Kavian N, Leroy K, Jacob C, Nicco C, Batteux F, Alexandre J. Dimethyl fumarate, a two-edged drug: Current status and future directions. Med Res Rev 2019; 39:1923-1952. [PMID: 30756407 DOI: 10.1002/med.21567] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Abstract
Dimethyl fumarate (DMF) is a fumaric acid ester registered for the treatment of relapsing-remitting multiple sclerosis (RRMS). It induces protein succination leading to inactivation of cysteine-rich proteins. It was first shown to possess cytoprotective and antioxidant effects in noncancer models, which appeared related to the induction of the nuclear factor erythroid 2 (NF-E2)-related factor 2 (NRF2) pathway. DMF also displays antitumor activity in several cellular and mice models. Recently, we showed that the anticancer mechanism of DMF is dose-dependent and is paradoxically related to the decrease in the nuclear translocation of NRF2. Some other studies performed indicate also the potential role of DMF in cancers, which are dependent on the NRF2 antioxidant and cellular detoxification program, such as KRAS-mutated lung adenocarcinoma. It, however, seems that DMF has multiple biological effects as it has been shown to also inhibit the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), thus blocking downstream targets that may be involved in the development and progression of inflammatory cascades leading to various disease processes, including tumors, lymphomas, diabetic retinopathy, arthritis, and psoriasis. Herein, we present the current status and future directions of the use of DMF in various diseases models with particular emphases on its targeting of specific intracellular signal transduction cascades in cancer; to shed some light on its possible mode of action.
Collapse
Affiliation(s)
- Nathaniel Edward Bennett Saidu
- Department of Development, Reproduction and Cancer, Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France.,Division of Molecular Medicine, Institut Ruđer Bošković, Zagreb, Croatia
| | - Niloufar Kavian
- Department of Development, Reproduction and Cancer, Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France.,Department of Immunology, Cochin Hospital, AP-HP, Paris, France.,Division of Public Health Laboratory Sciences, HKU Pasteur Research Pole, University of Hong Kong, Hong Kong, SAR China
| | - Karen Leroy
- Department of Development, Reproduction and Cancer, Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France.,Department of Molecular Genetics, Cochin Hospital, AP-HP, Paris, France
| | - Claus Jacob
- Division of Bioorganic Chemistry, University of Saarland, Saarbruecken, Germany
| | - Carole Nicco
- Department of Development, Reproduction and Cancer, Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France
| | - Frédéric Batteux
- Department of Development, Reproduction and Cancer, Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France.,Department of Immunology, Cochin Hospital, AP-HP, Paris, France
| | - Jérôme Alexandre
- Department of Development, Reproduction and Cancer, Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France.,Department of Medical Oncology, Cochin Hospital, AP-HP, Paris, France
| |
Collapse
|
30
|
Mita Y, Kataoka Y, Saito Y, Kashi T, Hayashi K, Iwasaki A, Imanishi T, Miyasaka T, Noguchi N. Distribution of oxidized DJ-1 in Parkinson's disease-related sites in the brain and in the peripheral tissues: effects of aging and a neurotoxin. Sci Rep 2018; 8:12056. [PMID: 30104666 PMCID: PMC6089991 DOI: 10.1038/s41598-018-30561-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023] Open
Abstract
DJ-1 plays an important role in antioxidant defenses, and a reactive cysteine at position 106 (Cys106) of DJ-1, a critical residue of its biological function, is oxidized under oxidative stress. DJ-1 oxidation has been reported in patients with Parkinson's disease (PD), but the relationship between DJ-1 oxidation and PD is still unclear. In the present study using specific antibody for Cys106-oxidized DJ-1 (oxDJ-1), we analyzed oxDJ-1 levels in the brain and peripheral tissues in young and aged mice and in a mouse model of PD induced using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). OxDJ-1 levels in the brain, heart, and skeletal muscle were high compared with other tissues. In the brain, oxDJ-1 was detected in PD-related brain sites such as the substantia nigra (SN) of the midbrain, olfactory bulb (OB), and striatum. In aged wild-type mice, oxDJ-1 levels in the OB, striatum, and heart tended to decrease, while those in the skeletal muscle increased significantly. Expression of dopamine-metabolizing enzymes significantly increased in the SN and OB of aged DJ-1-/- mice, accompanied by a complementary increase in glutathione peroxidase 1. MPTP treatment concordantly changed oxDJ-1 levels in PD-related brain sites and heart. These results indicate that the effects of physiological metabolism, aging, and neurotoxin change oxDJ-1 levels in PD-related brain sites, heart, and skeletal muscle where mitochondrial load is high, suggesting a substantial role of DJ-1 in antioxidant defenses and/or dopamine metabolism in these tissues.
Collapse
Affiliation(s)
- Yuichiro Mita
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yuto Kataoka
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yoshiro Saito
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan.
| | - Takuma Kashi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Kojiro Hayashi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Asa Iwasaki
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Takanori Imanishi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Tomohiro Miyasaka
- Neuropathology, Department of Life and Medical Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Noriko Noguchi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan.
| |
Collapse
|
31
|
Karimi-Moghadam A, Charsouei S, Bell B, Jabalameli MR. Parkinson Disease from Mendelian Forms to Genetic Susceptibility: New Molecular Insights into the Neurodegeneration Process. Cell Mol Neurobiol 2018; 38:1153-1178. [PMID: 29700661 PMCID: PMC6061130 DOI: 10.1007/s10571-018-0587-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
Parkinson disease (PD) is known as a common progressive neurodegenerative disease which is clinically diagnosed by the manifestation of numerous motor and nonmotor symptoms. PD is a genetically heterogeneous disorder with both familial and sporadic forms. To date, researches in the field of Parkinsonism have identified 23 genes or loci linked to rare monogenic familial forms of PD with Mendelian inheritance. Biochemical studies revealed that the products of these genes usually play key roles in the proper protein and mitochondrial quality control processes, as well as synaptic transmission and vesicular recycling pathways within neurons. Despite this, large number of patients affected with PD typically tends to show sporadic forms of disease with lack of a clear family history. Recent genome-wide association studies (GWAS) meta-analyses on the large sporadic PD case-control samples from European populations have identified over 12 genetic risk factors. However, the genetic etiology that underlies pathogenesis of PD is also discussed, since it remains unidentified in 40% of all PD-affected cases. Nowadays, with the emergence of new genetic techniques, international PD genomics consortiums and public online resources such as PDGene, there are many hopes that future large-scale genetics projects provide further insights into the genetic etiology of PD and improve diagnostic accuracy and therapeutic clinical trial designs.
Collapse
Affiliation(s)
- Amin Karimi-Moghadam
- Division of Genetics, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Saeid Charsouei
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Benjamin Bell
- Human Genetics & Genomic Medicine, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Mohammad Reza Jabalameli
- Division of Genetics, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran.
- Human Genetics & Genomic Medicine, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK.
| |
Collapse
|
32
|
De Miranda BR, Rocha EM, Bai Q, El Ayadi A, Hinkle D, Burton EA, Timothy Greenamyre J. Astrocyte-specific DJ-1 overexpression protects against rotenone-induced neurotoxicity in a rat model of Parkinson's disease. Neurobiol Dis 2018; 115:101-114. [PMID: 29649621 PMCID: PMC5943150 DOI: 10.1016/j.nbd.2018.04.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023] Open
Abstract
DJ-1 is a redox-sensitive protein with several putative functions important in mitochondrial physiology, protein transcription, proteasome regulation, and chaperone activity. High levels of DJ-1 immunoreactivity are reported in astrocytes surrounding pathology associated with idiopathic Parkinson's disease, possibly reflecting the glial response to oxidative damage. Previous studies showed that astrocytic over-expression of DJ-1 in vitro prevented oxidative stress and mitochondrial dysfunction in primary neurons. Based on these observations, we developed a pseudotyped lentiviral gene transfer vector with specific tropism for CNS astrocytes in vivo to overexpress human DJ-1 protein in astroglial cells. Following vector delivery to the substantia nigra and striatum of adult Lewis rats, the DJ-1 transgene was expressed robustly and specifically within astrocytes. There was no observable transgene expression in neurons or other glial cell types. Three weeks after vector infusion, animals were exposed to rotenone to induce Parkinson's disease-like pathology, including loss of dopaminergic neurons, accumulation of endogenous α-synuclein, and neuroinflammation. Animals over-expressing hDJ-1 in astrocytes were protected from rotenone-induced neurodegeneration, and displayed a marked reduction in neuronal oxidative stress and microglial activation. In addition, α-synuclein accumulation and phosphorylation were decreased within substantia nigra dopaminergic neurons in DJ-1-transduced animals, and expression of LAMP-2A, a marker of chaperone mediated autophagy, was increased. Together, these data indicate that astrocyte-specific overexpression of hDJ-1 protects neighboring neurons against multiple pathologic features of Parkinson's disease and provides the first direct evidence in vivo of a cell non-autonomous neuroprotective function of astroglial DJ-1.
Collapse
Affiliation(s)
- Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qing Bai
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Amina El Ayadi
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - David Hinkle
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States; Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States; Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States.
| |
Collapse
|
33
|
Xu M, Chen L, Li J, Wu H, Xia Q, Kong X. Emerging roles of DJ-1 in liver diseases through regulation of oxidative stress and immune response. LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2018.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
34
|
Lu L, Jia H, Gao G, Duan C, Ren J, Li Y, Yang H. Pink1 Regulates Tyrosine Hydroxylase Expression and Dopamine Synthesis. J Alzheimers Dis 2018; 63:1361-1371. [DOI: 10.3233/jad-170832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lingling Lu
- Department of Neurobiology, Capital Medical University, Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, China
| | - Huanzhen Jia
- Department of Neurobiology, Capital Medical University, Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, China
| | - Ge Gao
- Department of Neurobiology, Capital Medical University, Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, China
| | - Chunli Duan
- Department of Neurobiology, Capital Medical University, Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, China
| | - Jing Ren
- Department of Neurobiology, Capital Medical University, Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, China
| | - Yi Li
- Department of Neurobiology, Capital Medical University, Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, China
| | - Hui Yang
- Department of Neurobiology, Capital Medical University, Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, China
| |
Collapse
|
35
|
Saito Y. DJ-1 as a Biomarker of Parkinson's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1037:149-171. [PMID: 29147908 DOI: 10.1007/978-981-10-6583-5_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson's disease is a progressive, age-related, neurodegenerative disorder, and oxidative stress is an important mediator in its pathogenesis. DJ-1 has been identified as a causative gene of a familial form of Parkinson's disease, PARK7, and plays a significant role in antioxidative defense, protecting cells from oxidative stress. A cysteine residue of DJ-1 at position 106 (Cys-106) is preferentially oxidized under oxidative stress. This reactive Cys-106 plays a critical role in the biological function of DJ-1, which could act as a sensor of oxidative stress by regulating antioxidative defense depending on Cys-106 oxidation. Thus, the levels of Cys-106-oxidized DJ-1 (oxDJ-1) could be a possible biomarker of oxidative stress. This chapter focuses on the properties of DJ-1 and oxDJ-1 levels as a biomarker of Parkinson's disease. In particular, the usability of these biomarkers to prevent and treat this neurodegenerative disease is discussed. Further, this section deals with the importance of identifying a biomarker of early-phase Parkinson's disease. Finally, this chapter summarizes the features of oxDJ-1 levels in the brain and blood as a biomarker candidate for early-phase Parkinson's disease based on our results using oxDJ-1-specific antibodies.
Collapse
Affiliation(s)
- Yoshiro Saito
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
36
|
Liu C, Liu X, Qi J, Pant OP, Lu CW, Hao J. DJ-1 in Ocular Diseases: A Review. Int J Med Sci 2018; 15:430-435. [PMID: 29559831 PMCID: PMC5859765 DOI: 10.7150/ijms.23428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/05/2018] [Indexed: 01/13/2023] Open
Abstract
Protein deglycase DJ-1 (Parkinson disease protein 7) is a 20 kDa protein encoded by PARK7 gene. It is also known as a redox-sensitive chaperone and sensor that protect cells against oxidative stress-induced cell death in many human diseases. Though increasing evidence implicates that DJ-1 may also participate in ocular diseases, the overview of DJ-1 in ocular diseases remains elusive. In this review, we discuss the role as well as the underlying molecular mechanisms of DJ-1 in ocular diseases, including Fuchs endothelial corneal dystrophy (FECD), age-related macular degeneration (AMD), cataracts, and ocular neurodegenerative diseases, highlighting that DJ-1 may serve as a very striking therapeutic target for ocular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Cheng-wei Lu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Jilong Hao
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
37
|
Huang CJ, Das U, Xie W, Ducasse M, Tucker HO. Altered stoichiometry and nuclear delocalization of NonO and PSF promote cellular senescence. Aging (Albany NY) 2017; 8:3356-3374. [PMID: 27992859 PMCID: PMC5270673 DOI: 10.18632/aging.101125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/26/2016] [Indexed: 12/21/2022]
Abstract
While cellular senescence is a critical mechanism to prevent malignant transformation of potentially mutated cells, persistence of senescent cells can also promote cancer and aging phenotypes. NonO/p54nrb and PSF are multifunctional hnRNPs typically found as a complex exclusively within the nuclei of all mammalian cells. We demonstrate here that either increase or reduction of expression of either factor results in cellular senescence. Coincident with this, we observe expulsion of NonO and PSF-containing nuclear paraspeckles and posttranslational modification at G2/M. That senescence is mediated most robustly by overexpression of a cytoplasmic C-truncated form of NonO further indicated that translocation of NonO and PSF from the nucleus is critical to senescence induction. Modulation of NonO and PSF expression just prior to or coincident with senescence induction disrupts the normally heterodimeric NonO-PSF nuclear complex resulting in a dramatic shift in stoichiometry to heterotetramers and monomer with highest accumulation within the cytoplasm. This is accompanied by prototypic cell cycle checkpoint activation and chromatin condensation. These observations identify yet another role for these multifunctional factors and provide a hitherto unprecedented mechanism for cellular senescence and nuclear-cytoplasmic trafficking.
Collapse
Affiliation(s)
- Ching-Jung Huang
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Utsab Das
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Weijun Xie
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Miryam Ducasse
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Haley O Tucker
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, Austin, TX 78712, USA
| |
Collapse
|
38
|
Antipova D, Bandopadhyay R. Expression of DJ-1 in Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1037:25-43. [DOI: 10.1007/978-981-10-6583-5_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Nrf2, a Potential Therapeutic Target against Oxidative Stress in Corneal Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2326178. [PMID: 29209447 PMCID: PMC5676473 DOI: 10.1155/2017/2326178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/20/2017] [Indexed: 01/09/2023]
Abstract
Corneal diseases are one of the major causes of blindness worldwide. Conservative medical agents, which may prevent sight-threatening corneal disease progression, are urgently desired. Numerous evidences have revealed the involvement of oxidative stress in various corneal diseases, such as corneal wound healing and Fuchs endothelial corneal dystrophy (FECD). Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like erythroid-cell-derived protein with CNC homology- (ECH-) associated protein 1 (Keap1)/antioxidant response element (ARE) signaling is well known as one of the main antioxidative defense systems. To the best of our knowledge, this is the first review to elucidate the different expression profiles of Nrf2 signaling as well as the underlying mechanisms in corneal diseases, implicating that Nrf2 may serve as a potentially promising therapeutic target for corneal diseases.
Collapse
|
40
|
Matsuda N, Kimura M, Queliconi BB, Kojima W, Mishima M, Takagi K, Koyano F, Yamano K, Mizushima T, Ito Y, Tanaka K. Parkinson's disease-related DJ-1 functions in thiol quality control against aldehyde attack in vitro. Sci Rep 2017; 7:12816. [PMID: 28993701 PMCID: PMC5634459 DOI: 10.1038/s41598-017-13146-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 09/19/2017] [Indexed: 12/21/2022] Open
Abstract
DJ-1 (also known as PARK7) has been identified as a causal gene for hereditary recessive Parkinson’s disease (PD). Consequently, the full elucidation of DJ-1 function will help decipher the molecular mechanisms underlying PD pathogenesis. However, because various, and sometimes inconsistent, roles for DJ-1 have been reported, the molecular function of DJ-1 remains controversial. Recently, a number of papers have suggested that DJ-1 family proteins are involved in aldehyde detoxification. We found that DJ-1 indeed converts methylglyoxal (pyruvaldehyde)-adducted glutathione (GSH) to intact GSH and lactate. Based on evidence that DJ-1 functions in mitochondrial homeostasis, we focused on the possibility that DJ-1 protects co-enzyme A (CoA) and its precursor in the CoA synthetic pathway from aldehyde attack. Here, we show that intact CoA and β-alanine, an intermediate in CoA synthesis, are recovered from methylglyoxal-adducts by recombinant DJ-1 purified from E. coli. In this process, methylglyoxal is converted to L-lactate rather than the D-lactate produced by a conventional glyoxalase. PD-related pathogenic mutations of DJ-1 (L10P, M26I, A104T, D149A, and L166P) impair or abolish detoxification activity, suggesting a pathological significance. We infer that a key to understanding the biological function of DJ-1 resides in its methylglyoxal-adduct hydrolase activity, which protects low-molecular thiols, including CoA, from aldehydes.
Collapse
Affiliation(s)
- Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan. .,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Mayumi Kimura
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Bruno Barros Queliconi
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Waka Kojima
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Masaki Mishima
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, 192-0397, Japan
| | - Kenji Takagi
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Fumika Koyano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Tsunehiro Mizushima
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Yutaka Ito
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, 192-0397, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan. .,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
41
|
Yang Y, Qin M, Bao P, Xu W, Xu J. Secretory carrier membrane protein 5 is an autophagy inhibitor that promotes the secretion of α-synuclein via exosome. PLoS One 2017; 12:e0180892. [PMID: 28700687 PMCID: PMC5507457 DOI: 10.1371/journal.pone.0180892] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/22/2017] [Indexed: 01/07/2023] Open
Abstract
Autophagy-lysosomal pathway is a cellular protective system to remove aggregated proteins and damaged organelles. Meanwhile, exosome secretion has emerged as a mode to selectively clear the neurotoxic proteins, such as α-synuclein. Mounting evidence suggests that these two cellular processes are coordinated to facilitate the clearance of toxic cellular waste; however the regulators for the transition between these two processes are unclear. Here we show that SCAMP5, a secretory carrier membrane protein significantly induced in the brains of Huntington's disease patients, is quickly and transiently induced by protein stress and autophagic stimulation, and is regulated by the master autophagy transcriptional regulator TFEB. Ironically, SCAMP5 inhibits autophagy flux by blocking the fusion of autophagosomes and lysosomes. Although autophagy is blocked, SCAMP5 does not cause significant protein aggregation in cells. Instead, it promotes the Golgi fragmentation and stimulates the unconventional secretion of the co-localizing α-synuclein via exosome as an exosome component. Therefore, we have identified SCAMP5 as a novel coordinator of autophagy and exosome secretion, which is induced upon protein stress to channel the efficient clearance of toxic proteins via the exosomes rather than autophagy-lysosomal pathway.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Meiling Qin
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Puhua Bao
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Wangchao Xu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Jin Xu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
42
|
Peters M, Wielsch B, Boltze J. The role of SUMOylation in cerebral hypoxia and ischemia. Neurochem Int 2017; 107:66-77. [DOI: 10.1016/j.neuint.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
43
|
Yang RX, Lei J, Wang BD, Feng DY, Huang L, Li YQ, Li T, Zhu G, Li C, Lu FF, Nie TJ, Gao GD, Gao L. Pretreatment with Sodium Phenylbutyrate Alleviates Cerebral Ischemia/Reperfusion Injury by Upregulating DJ-1 Protein. Front Neurol 2017. [PMID: 28649223 PMCID: PMC5465296 DOI: 10.3389/fneur.2017.00256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Oxidative stress and mitochondrial dysfunction play critical roles in ischemia/reperfusion (I/R) injury. DJ-1 is an endogenous antioxidant that attenuates oxidative stress and maintains mitochondrial function, likely acting as a protector of I/R injury. In the present study, we explored the protective effect of a possible DJ-1 agonist, sodium phenylbutyrate (SPB), against I/R injury by protecting mitochondrial dysfunction via the upregulation of DJ-1 protein. Pretreatment with SPB upregulated the DJ-1 protein level and rescued the I/R injury-induced DJ-1 decrease about 50% both in vivo and in vitro. SPB also improved cellular viability and mitochondrial function and alleviated neuronal apoptosis both in cell and animal models; these effects of SPB were abolished by DJ-1 knockdown with siRNA. Furthermore, SPB improved the survival rate about 20% and neurological functions, as well as reduced about 50% of the infarct volume and brain edema, of middle cerebral artery occlusion mice 23 h after reperfusion. Therefore, our findings demonstrate that preconditioning of SPB possesses a neuroprotective effect against cerebral I/R injury by protecting mitochondrial function dependent on the DJ-1 upregulation, suggesting that DJ-1 is a potential therapeutic target for clinical ischemic stroke.
Collapse
Affiliation(s)
- Rui-Xin Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jie Lei
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bo-Dong Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Da-Yun Feng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lu Huang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu-Qian Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tao Li
- Research Center of Traditional Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Gang Zhu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chen Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fang-Fang Lu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tie-Jian Nie
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
44
|
Kim T, Vemuganti R. Mechanisms of Parkinson's disease-related proteins in mediating secondary brain damage after cerebral ischemia. J Cereb Blood Flow Metab 2017; 37:1910-1926. [PMID: 28273718 PMCID: PMC5444552 DOI: 10.1177/0271678x17694186] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Both Parkinson's disease (PD) and stroke are debilitating conditions that result in neuronal death and loss of neurological functions. These two conditions predominantly affect aging populations with the deterioration of the quality of life for the patients themselves and a tremendous burden to families. While the neurodegeneration and symptomology of PD develop chronically over the years, post-stroke neuronal death and dysfunction develop rapidly in days. Despite the discrepancy in the pathophysiological time frame and severity, both conditions share common molecular mechanisms that include oxidative stress, mitochondrial dysfunction, inflammation, endoplasmic reticulum stress, and activation of various cell death pathways (apoptosis/necrosis/autophagy) that synergistically modulate the neuronal death. Emerging evidence indicates that several proteins associated with early-onset familial PD play critical roles in mediating the neuronal death. Importantly, mutations in the genes encoding Parkin, PTEN-induced putative kinase 1 and DJ-1 mediate autosomal recessive forms of PD, whereas mutations in the genes encoding leucine-rich repeat kinase 2 and α-synuclein are responsible for autosomal dominant PD. This review discusses the significance of these proteins with the emphasis on the role of α-synuclein in mediating post-ischemic brain damage.
Collapse
Affiliation(s)
- TaeHee Kim
- 1 Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,2 Neuroscience Training Program, Madison, WI, USA
| | - Raghu Vemuganti
- 1 Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,2 Neuroscience Training Program, Madison, WI, USA.,3 Cellular & Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.,4 William S. Middleton Memorial Veterans Administration Hospital, Madison, WI, USA
| |
Collapse
|
45
|
Yasuda T, Niki T, Ariga H, Iguchi-Ariga SMM. Free radicals impair the anti-oxidative stress activity of DJ-1 through the formation of SDS-resistant dimer. Free Radic Res 2017; 51:397-412. [DOI: 10.1080/10715762.2017.1324201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tatsuki Yasuda
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takeshi Niki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hiroyoshi Ariga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Sanae M. M. Iguchi-Ariga
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
46
|
Amatullah H, Shan Y, Beauchamp BL, Gali PL, Gupta S, Maron-Gutierrez T, Speck ER, Fox-Robichaud AE, Tsang JLY, Mei SHJ, Mak TW, Rocco PRM, Semple JW, Zhang H, Hu P, Marshall JC, Stewart DJ, Harper ME, Liaw PC, Liles WC, dos Santos CC. DJ-1/PARK7 Impairs Bacterial Clearance in Sepsis. Am J Respir Crit Care Med 2017; 195:889-905. [DOI: 10.1164/rccm.201604-0730oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Hajera Amatullah
- The Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, and
| | - Yuexin Shan
- The Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Patricia L. Gali
- The Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Sahil Gupta
- The Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, and
| | - Tatiana Maron-Gutierrez
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Edwin R. Speck
- The Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Alison E. Fox-Robichaud
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jennifer L. Y. Tsang
- The Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Shirley H. J. Mei
- Department of Medicine, McMaster University, Hamilton (Niagara Campus), Ontario, Canada
| | - Tak W. Mak
- Department of Medical Biophysics and Immunology, The Campbell Family Institute for Breast Cancer Research at Princess Margaret Hospital, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Patricia R. M. Rocco
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - John W. Semple
- The Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Haibo Zhang
- The Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - John C. Marshall
- The Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Duncan J. Stewart
- Department of Medicine, McMaster University, Hamilton (Niagara Campus), Ontario, Canada
| | - Mary-Ellen Harper
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Patricia C. Liaw
- Thrombosis and Atherosclerosis Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - W. Conrad Liles
- Department of Medicine, University of Washington, Seattle, Washington
| | - Claudia C. dos Santos
- The Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, and
| |
Collapse
|
47
|
Yamane T, Kozuka M, Yamamoto Y, Nakano Y, Nakagaki T, Ohkubo I, Ariga H. Protease activity of legumain is inhibited by an increase of cystatin E/M in the DJ-1-knockout mouse spleen, cerebrum and heart. Biochem Biophys Rep 2017; 9:187-192. [PMID: 28956004 PMCID: PMC5614579 DOI: 10.1016/j.bbrep.2016.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 11/28/2016] [Accepted: 12/19/2016] [Indexed: 11/15/2022] Open
Abstract
Legumain (EC 3.4.22.34) is an asparaginyl endopeptidase. Legumain activity has been detected in various mouse tissues including the kidney, spleen and epididymis. Legumain is overexpressed in the majority of human solid tumors and transcription of the legumain gene is regulated by the p53 tumor suppressor in HCT116 cells. The legumain activity is also increased under acid conditions in Alzheimer's disease brains. DJ-1/PARK7, a cancer- and Parkinson's disease-associated protein, works as a coactivator to various transcription factors, including the androgen receptor, p53, PSF, Nrf2, SREBP and RREB1. Recently, we found that legumain expression, activation and cleavage of annexin A2 are regulated by DJ-1 through p53. In this study, we found that the expression levels of legumain mRNA were increased in the cerebrum, kidney, spleen, heart, lung, epididymis, stomach, small intestine and pancreas from DJ-1-knockout mice, although legumain activity levels were decreased in the cerebrum, spleen and heart from DJ-1-knockout mice. Furthermore, we found that cystatin E/M expression was increased in the spleen, cerebrum and heart from DJ-1-knockout mice. These results suggest that reduction of legumain activity is caused by an increase of cystatin E/M expression in the spleen, cerebrum and heart from DJ-1-knockout mice. Legumain is strongly activated in the epididymis from DJ-1-knockout mice. Expression level of legumain mRNA is increased but activity is decreased in the spleen, cerebrum and heart from DJ-1-knockout mice. Expression level of cystatin E/M is increased in the spleen, cerebrum and heart from DJ-1-knockout mice.
Collapse
Affiliation(s)
- Takuya Yamane
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Miyuki Kozuka
- Department of Health and Nutrition, Faculty of Human Science, Hokkaido Bunkyo University, Eniwa 061-1449, Japan
| | - Yoshio Yamamoto
- Laboratory of Environmental Chemistry, Mie University Iga Research Institute, Yumegaoka, Iga 518-0131, Japan
| | - Yoshihisa Nakano
- Center for Research and Development Bioresources, Research Organization for University-Community Collaborations, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan
| | - Takenori Nakagaki
- Institute of Food Sciences, Nakagaki Consulting Engineer and Co., Ltd, Nishi-ku, Sakai 593-8328, Japan
| | - Iwao Ohkubo
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Higashi-ku, Sapporo 065-0013, Japan
| | - Hiroyoshi Ariga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
48
|
Richard P, Vethantham V, Manley JL. Roles of Sumoylation in mRNA Processing and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:15-33. [PMID: 28197904 DOI: 10.1007/978-3-319-50044-7_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SUMO has gained prominence as a regulator in a number of cellular processes. The roles of sumoylation in RNA metabolism, however, while considerable, remain less well understood. In this chapter we have assembled data from proteomic analyses, localization studies and key functional studies to extend SUMO's role to the area of mRNA processing and metabolism. Proteomic analyses have identified multiple putative sumoylation targets in complexes functioning in almost all aspects of mRNA metabolism, including capping, splicing and polyadenylation of mRNA precursors. Possible regulatory roles for SUMO have emerged in pre-mRNA 3' processing, where SUMO influences the functions of polyadenylation factors and activity of the entire complex. SUMO is also involved in regulating RNA editing and RNA binding by hnRNP proteins, and recent reports have suggested the involvement of the SUMO pathway in mRNA export. Together, these reports suggest that SUMO is involved in regulation of many aspects of mRNA metabolism and hold the promise for exciting future studies.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | | | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
49
|
Takahashi-Niki K, Niki T, Iguchi-Ariga SMM, Ariga H. Transcriptional Regulation of DJ-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1037:89-95. [PMID: 29147905 DOI: 10.1007/978-981-10-6583-5_7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DJ-1 is an oncogene and also a causative gene for familial Parkinson's disease. DJ-1 has various functions, and the oxidative status of a cysteine residue at position 106 (C106) is crucial for determination of the activation level of DJ-1.DJ-1 binds to many proteins, including various transcription factors, and acts as a coactivator or corepressor for regulating their target genes without direct binding to DNA, thereby affecting various cell functions. DJ-1-regulating transcription factors and their modified proteins are the androgen receptor and its regulatory proteins, p53; polypyrimidine tract-binding protein-associated splicing factor (PSF); Keap1, an inhibitor for nuclear factor erythroid2-related factor 2 (Nrf2); sterol regulatory element-binding protein (SREBP); Ras-responsive element-binding protein (RREB1); signal transducer and activator of transcription 1 (STAT1); and Nurr1. Considering oxidative stress response and dopamine synthesis, the regulation of Nrf2, p53, and PSF by DJ-1 is especially important. In addition, SREBP1 and RREB1 functions that are positively regulated by DJ-1 may participate in the onset and pathogenesis of metabolic syndrome.DJ-1 is expressed ubiquitously with high levels in the testis and brain and moderate levels in other tissues. Furthermore, DJ-1 is translocated from the cytoplasm to nucleus during the cell cycle after mitogen stimulation, suggesting that DJ-1 has a growth-related function. In this review, we describe how DJ-1 regulates cell growth/death and dopamine synthesis by targeting various transcription factors.
Collapse
Affiliation(s)
- Kazuko Takahashi-Niki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Takeshi Niki
- Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Sanae M M Iguchi-Ariga
- Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Hiroyoshi Ariga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
50
|
Wang T, Xu W, Qin M, Yang Y, Bao P, Shen F, Zhang Z, Xu J. Pathogenic Mutations in the Valosin-containing Protein/p97(VCP) N-domain Inhibit the SUMOylation of VCP and Lead to Impaired Stress Response. J Biol Chem 2016; 291:14373-14384. [PMID: 27226613 DOI: 10.1074/jbc.m116.729343] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 11/06/2022] Open
Abstract
Valosin-containing protein/p97(VCP) is a hexameric ATPase vital to protein degradation during endoplasmic reticulum stress. It regulates diverse cellular functions including autophagy, chromatin remodeling, and DNA repair. In addition, mutations in VCP cause inclusion body myopathy, Paget disease of the bone, and frontotemporal dementia (IBMPFD), as well as amyotrophic lateral sclerosis. Nevertheless, how the VCP activities were regulated and how the pathogenic mutations affect the function of VCP during stress are not unclear. Here we show that the small ubiquitin-like modifier (SUMO)-ylation of VCP is a normal stress response inhibited by the disease-causing mutations in the N-domain. Under oxidative and endoplasmic reticulum stress conditions, the SUMOylation of VCP facilitates the distribution of VCP to stress granules and nucleus, and promotes the VCP hexamer assembly. In contrast, pathogenic mutations in the VCP N-domain lead to reduced SUMOylation and weakened VCP hexamer formation upon stress. Defective SUMOylation of VCP also causes altered co-factor binding and attenuated endoplasmic reticulum-associated protein degradation. Furthermore, SUMO-defective VCP fails to protect against stress-induced toxicity in Drosophila Therefore, our results have revealed SUMOylation as a molecular signaling switch to regulate the distribution and functions of VCP during stress response, and suggest that deficiency in VCP SUMOylation caused by pathogenic mutations will render cells vulnerable to stress insults.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Wangchao Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Meiling Qin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Yi Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Puhua Bao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Fuxiao Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetic Research Unit, Shanghai Jiao Tong University Affiliated People's No.6 Hospital, Shanghai 200233, China
| | - Jin Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,.
| |
Collapse
|