1
|
Milton ME, Cavanagh J. The Biofilm Regulatory Network from Bacillus subtilis: A Structure-Function Analysis. J Mol Biol 2023; 435:167923. [PMID: 36535428 DOI: 10.1016/j.jmb.2022.167923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Bacterial biofilms are notorious for their ability to protect bacteria from environmental challenges, most importantly the action of antibiotics. Bacillus subtilis is an extensively studied model organism used to understand the process of biofilm formation. A complex network of principal regulatory proteins including Spo0A, AbrB, AbbA, Abh, SinR, SinI, SlrR, and RemA, work in concert to transition B. subtilis from the free-swimming planktonic state to the biofilm state. In this review, we explore, connect, and summarize decades worth of structural and biochemical studies that have elucidated this protein signaling network. Since structure dictates function, unraveling aspects of protein molecular mechanisms will allow us to devise ways to exploit critical features of the biofilm regulatory pathway, such as possible therapeutic intervention. This review pools our current knowledge base of B. subtilis biofilm regulatory proteins and highlights potential therapeutic intervention points.
Collapse
Affiliation(s)
- Morgan E Milton
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, NC 27834, USA.
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, NC 27834, USA.
| |
Collapse
|
2
|
Tolibia SEM, Pacheco AD, Balbuena SYG, Rocha J, López Y López VE. Engineering of global transcription factors in Bacillus, a genetic tool for increasing product yields: a bioprocess overview. World J Microbiol Biotechnol 2022; 39:12. [PMID: 36372802 DOI: 10.1007/s11274-022-03460-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022]
Abstract
Transcriptional factors are well studied in bacteria for their global interactions and the effects they produce at the phenotypic level. Particularly, Bacillus subtilis has been widely employed as a model Gram-positive microorganism used to characterize these network interactions. Bacillus species are currently used as efficient commercial microbial platforms to produce diverse metabolites such as extracellular enzymes, antibiotics, surfactants, industrial chemicals, heterologous proteins, among others. However, the pleiotropic effects caused by the genetic modification of specific genes that codify for global regulators (transcription factors) have not been implicated commonly from a bioprocess point of view. Recently, these strategies have attracted the attention in Bacillus species because they can have an application to increase production efficiency of certain commercial interest metabolites. In this review, we update the recent advances that involve this trend in the use of genetic engineering (mutations, deletion, or overexpression) performed to global regulators such as Spo0A, CcpA, CodY and AbrB, which can provide an advantage for the development or improvement of bioprocesses that involve Bacillus species as production platforms. Genetic networks, regulation pathways and their relationship to the development of growth stages are also discussed to correlate the interactions that occur between these regulators, which are important to consider for application in the improvement of commercial-interest metabolites. Reported yields from these products currently produced mostly under laboratory conditions and, in a lesser extent at bioreactor level, are also discussed to give valuable perspectives about their potential use and developmental level directed to process optimization at large-scale.
Collapse
Affiliation(s)
- Shirlley Elizabeth Martínez Tolibia
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Adrián Díaz Pacheco
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala del Instituto Politécnico Nacional, CP 90000, Guillermo Valle, Tlaxcala, Mexico
| | - Sulem Yali Granados Balbuena
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Jorge Rocha
- CONACyT - Unidad Regional Hidalgo, Centro de Investigación en Alimentación y Desarrollo, A.C. Blvd. Santa Catarina, SN, C.P. 42163, San Agustín Tlaxiaca, Hidalgo, Mexico
| | - Víctor Eric López Y López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico.
| |
Collapse
|
3
|
Rodriguez Ayala F, Bauman C, Bartolini M, Saball E, Salvarrey M, Leñini C, Cogliati S, Strauch M, Grau R. Transcriptional regulation of adhesive properties ofBacillus subtilisto extracellular matrix proteins through the fibronectin-binding protein YloA. Mol Microbiol 2017; 104:804-821. [DOI: 10.1111/mmi.13666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Facundo Rodriguez Ayala
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Carlos Bauman
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Marco Bartolini
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Ester Saball
- Departamento de Bioquímica Clínica, Área Inmunología, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario, Argentina
| | - Marcela Salvarrey
- Departamento de Bioquímica Clínica, Área Inmunología, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario, Argentina
| | - Cecilia Leñini
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Sebastián Cogliati
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Mark Strauch
- Biomedical Sciences Department, Dental School; University of Maryland; Baltimore MD USA
| | - Roberto Grau
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| |
Collapse
|
4
|
A model system for studying the transcriptomic and physiological changes associated with mammalian host-adaptation by Leptospira interrogans serovar Copenhageni. PLoS Pathog 2014; 10:e1004004. [PMID: 24626166 PMCID: PMC3953431 DOI: 10.1371/journal.ppat.1004004] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/01/2014] [Indexed: 12/23/2022] Open
Abstract
Leptospirosis, an emerging zoonotic disease with worldwide distribution, is caused by spirochetes belonging to the genus Leptospira. More than 500,000 cases of severe leptospirosis are reported annually, with >10% of these being fatal. Leptospires can survive for weeks in suitably moist conditions before encountering a new host. Reservoir hosts, typically rodents, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. In humans, leptospires can cause a variety of clinical manifestations, ranging from asymptomatic or mild fever to severe icteric (Weil's) disease and pulmonary haemorrhage. Currently, little is known about how Leptospira persist within a reservoir host. Prior in vitro studies have suggested that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. However, no study has examined gene expression by leptospires within a mammalian host-adapted state. To obtain a more faithful representation of how leptospires respond to host-derived signals, we used RNA-Seq to compare the transcriptome of L. interrogans cultivated within dialysis membrane chambers (DMCs) implanted into the peritoneal cavities of rats with that of organisms grown in vitro. In addition to determining the relative expression levels of “core” housekeeping genes under both growth conditions, we identified 166 genes that are differentially-expressed by L. interrogans in vivo. Our analyses highlight physiological aspects of host adaptation by leptospires relating to heme uptake and utilization. We also identified 11 novel non-coding transcripts that are candidate small regulatory RNAs. The DMC model provides a facile system for studying the transcriptional and antigenic changes associated with mammalian host-adaption, selection of targets for mutagenesis, and the identification of previously unrecognized virulence determinants. Leptospirosis, a global disease caused by the unusual bacterium Leptospira, is transmitted from animals to humans. Pathogenic species of Leptospira are excreted in urine from infected animals and can continue to survive in suitable environments before coming into contact with a new reservoir or accidental host. Leptospires have an inherent ability to survive a wide range of conditions encountered in nature during transmission and within mammals. However, we know very little about the regulatory pathways and gene products that promote mammalian host adaptation and enable leptospires to establish infection. In this study, we used a novel system whereby leptospires are cultivated in dialysis membrane chambers implanted into the peritoneal cavities of rats to compare the gene expression profiles of mammalian host-adapted and in vitro-cultivated organisms. In addition to providing a facile system for studying the transcriptional and physiologic changes leptospires undergo during mammalian infection, our data provide a rational basis for selecting new targets for mutagenesis.
Collapse
|
5
|
Olson AL, Bobay BG, Melander C, Cavanagh J. ¹H, ¹³C, and ¹⁵N resonance assignments and secondary structure prediction of the full-length transition state regulator AbrB from Bacillus anthracis. BIOMOLECULAR NMR ASSIGNMENTS 2012; 6:95-98. [PMID: 21845362 PMCID: PMC3428226 DOI: 10.1007/s12104-011-9333-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/26/2011] [Indexed: 05/31/2023]
Abstract
The AbrB protein is a transcription factor that regulates the expression of numerous essential genes during the cells transition phase state. AbrB from Bacillus anthracis is, nototriously, the principal protein responsible for anthrax toxin gene expression and is highly homologous to the much-studied AbrB protein from Bacillus subtilis having 85% sequence identity and the ability to regulate the same target promoters. Here we report backbone and sidechain resonance assignments and secondary structure prediction for the full-length AbrB protein from B. anthracis.
Collapse
Affiliation(s)
- Andrew L Olson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
6
|
Thermodynamic and molecular analysis of the AbrB-binding sites within the phyC-region of Bacillus amyloliquefaciens FZB45. Mol Genet Genomics 2011; 287:111-22. [PMID: 22183144 DOI: 10.1007/s00438-011-0666-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 12/05/2011] [Indexed: 12/16/2022]
Abstract
AbrB is a global regulator of transition state that is known to repress more than 100 genes in Bacillus species. Although AbrB is involved in the regulation of most cellular processes, a conserved binding motif seems to be elusive. Thus, the mechanism of AbrB-mediated transcriptional control is still unclear. In our previous work we identified two separate AbrB-binding sites within phytase gene region (phyC) of Bacillus amyloliquefaciens FZB45, whose integrity is essential for repression. Comparable architecture of AbrB-binding sites is also described for tycA that encodes an antibiotic synthesis enzyme. Considering the size of the AbrB tetramer (56 kDa) and other AbrB binding motifs (~20 to 98 bp) we hypothesized preferred binding positions within both AbrB sites of phyC that exhibit higher affinities to AbrB. Thus, we used surface plasmon resonance (SPR) to study the binding kinetics between AbrB and 40-bp ds-oligonucleotides that were derived from both binding sites. Surface plasmon resonance sensorgrams revealed strong binding kinetics that showed nearly no dissociation and positive cooperativity of the AbrB-DNA interaction to the whole AbrB-binding site 2 and to a small part of AbrB-binding site 1. Using chemically modified DNA we found bases contacting AbrB mainly at one face of the DNA-helix within a core region separated by one helical turn each. High content of modified guanines presented in the control reaction of the KMnO(4) interference assay indicated distortion of the DNA-structure of phyC. In vitro transcription assays and base substitutions within the core region support this idea and the cooperativity of AbrB binding.
Collapse
|
7
|
C68 from the Sulfolobus islandicus plasmid-virus pSSVx is a novel member of the AbrB-like transcription factor family. Biochem J 2011; 435:157-66. [PMID: 21208189 DOI: 10.1042/bj20101334] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The genetic element pSSVx from Sulfolobus islandicus, strain REY15/4, is a hybrid between a plasmid and a fusellovirus. This plasmid-virus hybrid infects several species of the hyperthermophilic acidophilic crenarchaeon Sulfolobus. The open reading frame orfc68 of pSSVx encodes a 7.7 kDa protein that does not show significant sequence homology with any protein with known three-dimensional structure. EMSA (electrophoretic mobility-shift assay) experiments, DNA footprinting and CD analyses indicate that recombinant C68, purified from Escherichia coli, binds to two different operator sites that are located upstream of its own promoter. The three-dimensional structure, solved by a single-wavelength anomalous diffraction experiment on a selenomethionine derivative, shows that the protein assumes a swapped-hairpin fold, which is a distinctive fold associated with a family of prokaryotic transcription factors, such as AbrB from Bacillus subtilis. Nevertheless, C68 constitutes a novel representative of this family because it shows several peculiar structural and functional features.
Collapse
|
8
|
Abstract
A social behavior named cannibalism has been described during the early stages of sporulation of the Gram-positive Bacillus subtilis. This phenomenon is based on the heterogeneity of sporulating populations, constituted by at least two cell types: (1) sporulating cells, in which the master regulator of sporulation Spo0A is active, and (2) nonsporulating cells, in which Spo0A is inactive. Sporulating cells produce two toxins that act cooperatively to kill the nonsporulating sister cells. The nutrients released by the dead cells into the starved medium are used for growth by the sporulating cells that are not yet fully committed to sporulate, and as a result, sporulation is arrested. This review outlines the molecular mechanisms of the killing and immunity to the toxins, the regulation of their production and other examples of killing of siblings in microorganisms. The biological significance of this behavior is discussed.
Collapse
|
9
|
Murray EJ, Stanley-Wall NR. The sensitivity of Bacillus subtilis to diverse antimicrobial compounds is influenced by Abh. Arch Microbiol 2010; 192:1059-67. [PMID: 20844865 DOI: 10.1007/s00203-010-0630-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/20/2010] [Accepted: 08/24/2010] [Indexed: 01/07/2023]
Abstract
Abh is a transition state regulator of Bacillus subtilis that controls biofilm formation and the production of several diverse antimicrobial compounds. Using a high-throughput non-biased technique, we show for the first time that Abh influences the sensitivity of B. subtilis to diverse antimicrobial compounds. Following up on these findings with a combination of classical genetics and antibiotic susceptibility assays, we demonstrate that Abh influences cellular processes such as the remodelling of the cell wall. We present data demonstrating that the extracytoplasmic function sigma factor σ(X) controls resistance to β-lactam antibiotics by activating abh transcription. Downstream from Abh, activation of slrR expression by Abh is responsible for controlling the sensitivity of B. subtilis to such antibiotics due to the role that SlrR plays in regulating autolysin biosynthesis. The abh mutant additionally exhibits increased resistance to aminoglycoside antimicrobials. We confirm that aminoglycoside killing of B. subtilis is likely to be caused by oxidative damage but rule out the possibility that the increased resistance of the abh mutant to aminoglycosides is due to a general increase in resistance to oxidative stress.
Collapse
Affiliation(s)
- Ewan J Murray
- Division of Molecular Microbiology, College of Life Sciences, MSI/WTB/JBC Complex, University of Dundee, Dundee DD1 5EH, UK
| | | |
Collapse
|
10
|
Chumsakul O, Takahashi H, Oshima T, Hishimoto T, Kanaya S, Ogasawara N, Ishikawa S. Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation. Nucleic Acids Res 2010; 39:414-28. [PMID: 20817675 PMCID: PMC3025583 DOI: 10.1093/nar/gkq780] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbrB is a global transcriptional regulator of Bacillus subtilis that represses the expression of many genes during exponential growth. Here, we demonstrate that AbrB and its homolog Abh bind to hundreds of sites throughout the entire B. subtilis genome during exponential growth. Comparison of regional binding of AbrB and Abh in wild-type, ΔabrB and Δabh backgrounds revealed that they bind as homomer and/or heteromer forms with different specificities and affinities. We found four AbrB and Abh binding patterns were major. Three of these contain pairs of TGGNA motifs connected by A/T-rich sequences, differing in arrangement and spacing. We also assessed the direct involvement of these complexes in the control of gene expression. Our data indicate that AbrB usually acts as a repressor, and that the ability of Abh to act as a transcriptional regulator was limited. We found that changes to AbrB/Abh levels affect their binding at several promoters and consequently transcriptional regulation. Surprisingly, most AbrB/Abh binding events had no impact on transcription, suggesting an interesting possibility that AbrB/Abh binding is analogous to nucleoid-associated protein binding in Escherichia coli.
Collapse
Affiliation(s)
- Onuma Chumsakul
- Graduate School of Information Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Agervald Å, Zhang X, Stensjö K, Devine E, Lindblad P. CalA, a cyanobacterial AbrB protein, interacts with the upstream region of hypC and acts as a repressor of its transcription in the cyanobacterium Nostoc sp. strain PCC 7120. Appl Environ Microbiol 2010; 76:880-90. [PMID: 20023111 PMCID: PMC2813017 DOI: 10.1128/aem.02521-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 12/04/2009] [Indexed: 12/31/2022] Open
Abstract
The filamentous, heterocystous, nitrogen-fixing cyanobacterium Nostoc sp. strain PCC 7120 may contain, depending on growth conditions, up to two hydrogenases directly involved in hydrogen metabolism. HypC is one out of at least seven auxiliary gene products required for synthesis of a functional hydrogenase, specifically involved in the maturation of the large subunit. In this study we present a protein, CalA (Alr0946 in the genome), belonging to the transcription regulator family AbrB, which in protein-DNA assays was found to interact with the upstream region of hypC. Transcriptional investigations showed that calA is cotranscribed with the downstream gene alr0947, which encodes a putative protease from the abortive infection superfamily, Abi. CalA was shown to interact specifically not only with the upstream region of hypC but also with its own upstream region, acting as a repressor on hypC. The bidirectional hydrogenase activity was significantly downregulated when CalA was overexpressed, demonstrating a correlation with the transcription factor, either direct or indirect. In silico studies showed that homologues to both CalA and Alr0947 are highly conserved proteins within cyanobacteria with very similar physical organizations of the corresponding structural genes. Possible functions of the cotranscribed downstream protein Alr0947 are presented. In addition, we present a three-dimensional (3D) model of the DNA binding domain of CalA and putative DNA binding mechanisms are discussed.
Collapse
Affiliation(s)
- Åsa Agervald
- Department of Photochemistry and Molecular Science, Ångström Laboratories, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden, Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907
| | - Xiaohui Zhang
- Department of Photochemistry and Molecular Science, Ångström Laboratories, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden, Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907
| | - Karin Stensjö
- Department of Photochemistry and Molecular Science, Ångström Laboratories, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden, Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907
| | - Ellenor Devine
- Department of Photochemistry and Molecular Science, Ångström Laboratories, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden, Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907
| | - Peter Lindblad
- Department of Photochemistry and Molecular Science, Ångström Laboratories, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden, Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907
| |
Collapse
|
12
|
López D, Vlamakis H, Losick R, Kolter R. Cannibalism enhances biofilm development in Bacillus subtilis. Mol Microbiol 2009; 74:609-18. [PMID: 19775247 DOI: 10.1111/j.1365-2958.2009.06882.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cannibalism is a mechanism to delay sporulation in Bacillus subtilis. Cannibal cells express the skf and sdp toxin systems to lyse a fraction of their sensitive siblings. The lysed cells release nutrients that serve to feed the community, effectively delaying spore formation. Here we provide evidence that the subpopulation of cells that differentiates into cannibals is the same subpopulation that produces the extracellular matrix that holds cells together in biofilms. Cannibalism and matrix formation are both triggered in response to the signalling molecule surfactin. Nutrients released by the cannibalized cells are preferentially used by matrix-producing cells, as they are the only cells expressing resistance to the Skf and Sdp toxins. As a result this subpopulation increases in number and matrix production is enhanced when cannibalism toxins are produced. The cannibal/matrix-producing subpopulation is also generated in response to antimicrobials produced by other microorganisms and may thus constitute a defense mechanism to protect B. subtilis from the action of antibiotics in natural settings.
Collapse
Affiliation(s)
- Daniel López
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
13
|
SigmaX is involved in controlling Bacillus subtilis biofilm architecture through the AbrB homologue Abh. J Bacteriol 2009; 191:6822-32. [PMID: 19767430 DOI: 10.1128/jb.00618-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A characteristic feature of biofilm formation is the production of a protective extracellular polymeric matrix. In the gram-positive bacterium Bacillus subtilis, the biofilm matrix is synthesized by the products of the epsABCDEFGHIJKLMNO operon (hereafter called the eps operon) and yqxM-sipW-tasA loci. Transcription from these operons is repressed by two key regulators, AbrB and SinR. Relief of inhibition is necessary to allow biofilm formation to proceed. Here we present data indicating that Abh, a sequence and structural homologue of AbrB, regulates biofilm architecture by B. subtilis when colony morphology and pellicle formation are assessed. Data indicating that abh expression is dependent on the environmental signals that stimulate the activity of the extracytoplasmic function sigma-factor sigma(X) are shown. We demonstrate that expression of slrR, the proposed activator of yqxM transcription, is positively controlled by Abh. Furthermore, Abh is shown to activate transcription from the promoter of the eps operon through its control of SlrR. These findings add to the increasingly complex transcriptional network that controls biofilm formation by B. subtilis.
Collapse
|
14
|
Sullivan DM, Bobay BG, Kojetin DJ, Thompson RJ, Rance M, Strauch MA, Cavanagh J. Insights into the nature of DNA binding of AbrB-like transcription factors. Structure 2009; 16:1702-13. [PMID: 19000822 DOI: 10.1016/j.str.2008.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 11/30/2022]
Abstract
Understanding the DNA recognition and binding by the AbrB-like family of transcriptional regulators is of significant interest since these proteins enable bacteria to elicit the appropriate response to diverse environmental stimuli. Although these "transition-state regulator" proteins have been well characterized at the genetic level, the general and specific mechanisms of DNA binding remain elusive. We present RDC-refined NMR solution structures and dynamic properties of the DNA-binding domains of three Bacillus subtilis transition-state regulators: AbrB, Abh, and SpoVT. We combined previously investigated DNase I footprinting, DNA methylation, gel-shift assays, and mutagenic and NMR studies to generate a structural model of the complex between AbrBN(55) and its cognate promoter, abrB8. These investigations have enabled us to generate a model for the specific nature of the transition-state regulator-DNA interaction, a structure that has remained elusive thus far.
Collapse
Affiliation(s)
- Daniel M Sullivan
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Asen I, Djuranovic S, Lupas AN, Zeth K. Crystal structure of SpoVT, the final modulator of gene expression during spore development in Bacillus subtilis. J Mol Biol 2008; 386:962-75. [PMID: 18996130 DOI: 10.1016/j.jmb.2008.10.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
Endospore formation in Bacillus subtilis is orchestrated by five developmental sigma factors and further modulated by several auxiliary transcription factors. One of these, SpoVT, regulates forespore-specific sigma(G)-dependent genes and plays a key role in the final stages of spore formation. We have determined the crystal structure of the isolated C-terminal domain of SpoVT at 1.5 A by experimental phasing techniques and used this model to solve the structure of the full-length SpoVT at 2.6 A by molecular replacement. SpoVT is a tetramer that shows an overall significant distortion mediated by electrostatic interactions. Two monomers dimerize via the highly charged N-terminal domains to form swapped-hairpin beta-barrels. These asymmetric dimers further tetramerize through the formation of mixed helix bundles between their C-terminal domains, which themselves fold as GAF (cGMP-specific and cGMP-stimulated phosphodiesterases, Anabaena adenylate cyclases, and Escherichia coli FhlA) domains. The combination of a swapped-hairpin beta-barrel with a GAF domain represents a novel domain architecture in transcription factors. The occurrence of SpoVT homologs throughout Bacilli and Clostridia demonstrates the ancestral origin of this factor in sporulation.
Collapse
Affiliation(s)
- Iris Asen
- Department of Membrane Biochemistry, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
16
|
Oliveira P, Lindblad P. An AbrB-Like protein regulates the expression of the bidirectional hydrogenase in Synechocystis sp. strain PCC 6803. J Bacteriol 2008; 190:1011-9. [PMID: 18039761 PMCID: PMC2223582 DOI: 10.1128/jb.01605-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 11/05/2007] [Indexed: 11/20/2022] Open
Abstract
In the unicellular cyanobacterium Synechocystis sp. strain PCC 6803, the pentameric bidirectional Ni-Fe hydrogenase (HoxEFUYH) is the sole enzyme involved in hydrogen metabolism. Recent investigations implicated the transcription factor LexA in the regulation of the hox genes in this cyanobacterium, suggesting the factor to work as an activator. In this work, we show evidence that LexA cannot account exclusively for the regulation of the hox genes in this cyanobacterium. Therefore, we investigated which additional transcription factors interact in and may regulate the expression of the hox genes in Synechocystis sp. strain PCC 6803. By using DNA affinity assays, a transcription factor with similarity to the transition state regulator AbrB from Bacillus subtilis was isolated. Electrophoretic mobility shift assays showed that the AbrB-like protein specifically interacts with the promoter region of the hox genes as well as with its own promoter region. In addition, results obtained with two genetically modified strains of Synechocystis sp. strain PCC 6803, one with a not fully segregated inactivation mutation of the abrB-like gene and the other overexpressing the same abrB-like gene, suggest that this transcription factor functions as a regulator of hox gene expression.
Collapse
Affiliation(s)
- Paulo Oliveira
- Department of Photochemistry and Molecular Science, Angström Laboratories, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden
| | | |
Collapse
|
17
|
Jordan S, Rietkötter E, Strauch MA, Kalamorz F, Butcher BG, Helmann JD, Mascher T. LiaRS-dependent gene expression is embedded in transition state regulation in Bacillus subtilis. MICROBIOLOGY-SGM 2007; 153:2530-2540. [PMID: 17660417 DOI: 10.1099/mic.0.2007/006817-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Maintaining envelope integrity is crucial for the survival of any bacterial cell, especially those living in a complex and ever-changing habitat such as the soil ecosystem. The LiaRS two-component system is part of the regulatory network orchestrating the cell-envelope stress response in Bacillus subtilis. It responds to perturbations of the cell envelope, especially the presence of antibiotics that interfere with the lipid II cycle, such as bacitracin or vancomycin. LiaRS-dependent regulation is strictly repressed by the membrane protein LiaF in the absence of inducing conditions. Here, it is shown that the LiaR-dependent liaI promoter is induced at the onset of stationary phase without addition of exogenous stresses. Its activity is embedded in the complex regulatory cascade governing adaptation at the onset of stationary phase. The liaI promoter is directly repressed by the transition state regulator AbrB and responds indirectly to the activity of Spo0A, the master regulator of sporulation. The activity of the liaI promoter is therefore tightly regulated by at least five regulators to ensure an appropriate level of liaIH expression.
Collapse
Affiliation(s)
- Sina Jordan
- Department of General Microbiology, Georg-August-University, 37077 Göttingen, Germany
| | - Eva Rietkötter
- Department of General Microbiology, Georg-August-University, 37077 Göttingen, Germany
| | - Mark A Strauch
- Department of Biomedical Sciences, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Falk Kalamorz
- Department of General Microbiology, Georg-August-University, 37077 Göttingen, Germany
| | - Bronwyn G Butcher
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - Thorsten Mascher
- Department of General Microbiology, Georg-August-University, 37077 Göttingen, Germany
| |
Collapse
|
18
|
Strauch MA, Bobay BG, Cavanagh J, Yao F, Wilson A, Le Breton Y. Abh and AbrB control of Bacillus subtilis antimicrobial gene expression. J Bacteriol 2007; 189:7720-32. [PMID: 17720793 PMCID: PMC2168746 DOI: 10.1128/jb.01081-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 08/10/2007] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis abh gene encodes a protein whose N-terminal domain has 74% identity to the DNA-binding domain of the global regulatory protein AbrB. Strains with a mutation in abh showed alterations in the production of antimicrobial compounds directed against some other Bacillus species and gram-positive microbes. Relative to its wild-type parental strain, the abh mutant was found deficient, enhanced, or unaffected for the production of antimicrobial activity. Using lacZ fusions, we examined the effects of abh upon the expression of 10 promoters known to be regulated by AbrB, including five that transcribe well-characterized antimicrobial functions (SdpC, SkfA, TasA, sublancin, and subtilosin). For an otherwise wild-type background, the results show that Abh plays a negative regulatory role in the expression of four of the promoters, a positive role for the expression of three, and no apparent regulatory role in the expression of the other three promoters. Binding of AbrB and Abh to the promoter regions was examined using DNase I footprinting, and the results revealed significant differences. The transcription of abh is not autoregulated, but it is subject to a degree of AbrB-afforded negative regulation. The results indicate that Abh is part of the complex interconnected regulatory system that controls gene expression during the transition from active growth to stationary phase.
Collapse
Affiliation(s)
- Mark A Strauch
- Department of Biomedical Sciences, Dental School, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Coles M, Hulko M, Djuranovic S, Truffault V, Koretke K, Martin J, Lupas AN. Common evolutionary origin of swapped-hairpin and double-psi beta barrels. Structure 2007; 14:1489-98. [PMID: 17027498 DOI: 10.1016/j.str.2006.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Revised: 07/26/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
The core of swapped-hairpin and double-psi beta barrels is formed by duplication of a conserved betaalphabeta element, suggesting a common evolutionary origin. The path connecting the two folds is unclear as the two barrels are not interconvertible by a simple topological modification, such as circular permutation. We have identified a protein family whose sequence properties are intermediate to the two folds. The structure of one of these proteins, Pyrococcus horikoshii PhS018, is also built by duplication of the conserved betaalphabeta element but shows yet a third topology, which we name the RIFT barrel. This topology is widespread in the structure database and spans three folds of the SCOP classification, including the middle domain of EF-Tu and the N domain of F1-ATPase. We propose that swapped-hairpin beta barrels arose from an ancestral RIFT barrel by strand invasion and double-psi beta barrels by a strand swap. We group the three barrel types into a metafold, the cradle-loop barrels.
Collapse
Affiliation(s)
- Murray Coles
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|