1
|
Haarer BK, Pimm ML, de Jong EP, Amberg DC, Henty-Ridilla JL. Purification of human β- and γ-actin from budding yeast. J Cell Sci 2023; 136:jcs260540. [PMID: 37070275 PMCID: PMC10184827 DOI: 10.1242/jcs.260540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
Biochemical studies of human actin and its binding partners rely heavily on abundant and easily purified α-actin from skeletal muscle. Therefore, muscle actin has been used to evaluate and determine the activities of most actin regulatory proteins but there is an underlying concern that these proteins perform differently from actin present in non-muscle cells. To provide easily accessible and relatively abundant sources of human β- or γ-actin (i.e. cytoplasmic actins), we developed Saccharomyces cerevisiae strains that express each as their sole source of actin. Both β- or γ-actin purified in this system polymerize and interact with various binding partners, including profilin, mDia1 (formin), fascin and thymosin-β4 (Tβ4). Notably, Tβ4 and profilin bind to β- or γ-actin with higher affinity than to α-actin, emphasizing the value of testing actin ligands with specific actin isoforms. These reagents will make specific isoforms of actin more accessible for future studies on actin regulation.
Collapse
Affiliation(s)
- Brian K. Haarer
- Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA
| | - Morgan L. Pimm
- Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA
| | | | - David C. Amberg
- Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA
| | - Jessica L. Henty-Ridilla
- Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
2
|
A solution to the long-standing problem of actin expression and purification. Proc Natl Acad Sci U S A 2022; 119:e2209150119. [PMID: 36197995 PMCID: PMC9565351 DOI: 10.1073/pnas.2209150119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actin is the most abundant protein in the cytoplasm of eukaryotic cells and interacts with hundreds of proteins to perform essential functions, including cell motility and cytokinesis. Numerous diseases are caused by mutations in actin, but studying the biochemistry of actin mutants is difficult without a reliable method to obtain recombinant actin. Moreover, biochemical studies have typically used tissue-purified α-actin, whereas humans express six isoforms that are nearly identical but perform specialized functions and are difficult to obtain in isolation from natural sources. Here, we describe a solution to the problem of actin expression and purification. We obtain high yields of actin isoforms in human Expi293F cells. Experiments along the multistep purification protocol demonstrate the removal of endogenous actin and the functional integrity of recombinant actin isoforms. Proteomics analysis of endogenous vs. recombinant actin isoforms confirms the presence of native posttranslational modifications, including N-terminal acetylation achieved after affinity-tag removal using the actin-specific enzyme Naa80. The method described facilitates studies of actin under fully native conditions to determine differences among isoforms and the effects of disease-causing mutations that occur in all six isoforms.
Collapse
|
3
|
Yee M, Walther T, Frischknecht F, Douglas RG. Divergent Plasmodium actin residues are essential for filament localization, mosquito salivary gland invasion and malaria transmission. PLoS Pathog 2022; 18:e1010779. [PMID: 35998188 PMCID: PMC9439217 DOI: 10.1371/journal.ppat.1010779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/02/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Actin is one of the most conserved and ubiquitous proteins in eukaryotes. Its sequence has been highly conserved for its monomers to self-assemble into filaments that mediate essential cell functions such as trafficking, cell shape and motility. The malaria-causing parasite, Plasmodium, expresses a highly sequence divergent actin that is critical for its rapid motility at different stages within its mammalian and mosquito hosts. Each of Plasmodium actin’s four subdomains have divergent regions compared to canonical vertebrate actins. We previously identified subdomains 2 and 3 as providing critical contributions for parasite actin function as these regions could not be replaced by subdomains of vertebrate actins. Here we probed the contributions of individual divergent amino acid residues in these subdomains on parasite motility and progression. Non-lethal changes in these subdomains did not affect parasite development in the mammalian host but strongly affected progression through the mosquito with striking differences in transmission to and through the insect. Live visualization of actin filaments showed that divergent amino acid residues in subdomains 2 and 4 enhanced localization associated with filaments, while those in subdomain 3 negatively affected actin filaments. This suggests that finely tuned actin dynamics are essential for efficient organ entry in the mosquito vector affecting malaria transmission. This work provides residue level insight on the fundamental requirements of actin in highly motile cells. Actin is one of the most abundant and conserved proteins known. Actin monomers can join together to form long filaments. The malaria-causing parasite is transmitted by mosquitoes and needs actin to move very rapidly. An actin from the parasite is different to other actins: its amino acid sequence has relatively high amounts of changes compared to animal species and the actin tends to form only short filaments. We previously identified two large parts of the protein that were critical for the parasite since these large parts could not be exchanged with the equivalent regions of other species. In this study, we focused in on these regions by making more discrete mutations. Most mutations of the actin sequence were tolerated by the parasite in the blood stages. However, these mutants has striking defects in progressing through mosquitoes, especially in invading its salivary glands. We used a new filament labeler to visualize how these mutations affect the actin filaments and found surprisingly different effects. Taken together, small changes to the sequence can have large consequences for the parasite, which ultimately affects its ability to transmit to a new host.
Collapse
Affiliation(s)
- Michelle Yee
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Tobias Walther
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Centre for Infection Research, DZIF, partner site Heidelberg, Heidelberg, Germany
- * E-mail: (FF); (RGD)
| | - Ross G. Douglas
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre and Molecular Infection Biology, Biomedical Research Centre Seltersberg, Justus Liebig University Giessen, Giessen, Germany
- * E-mail: (FF); (RGD)
| |
Collapse
|
4
|
Boiero Sanders M, Antkowiak A, Michelot A. Diversity from similarity: cellular strategies for assigning particular identities to actin filaments and networks. Open Biol 2020; 10:200157. [PMID: 32873155 PMCID: PMC7536088 DOI: 10.1098/rsob.200157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The actin cytoskeleton has the particularity of being assembled into many functionally distinct filamentous networks from a common reservoir of monomeric actin. Each of these networks has its own geometrical, dynamical and mechanical properties, because they are capable of recruiting specific families of actin-binding proteins (ABPs), while excluding the others. This review discusses our current understanding of the underlying molecular mechanisms that cells have developed over the course of evolution to segregate ABPs to appropriate actin networks. Segregation of ABPs requires the ability to distinguish actin networks as different substrates for ABPs, which is regulated in three different ways: (1) by the geometrical organization of actin filaments within networks, which promotes or inhibits the accumulation of ABPs; (2) by the identity of the networks' filaments, which results from the decoration of actin filaments with additional proteins such as tropomyosin, from the use of different actin isoforms or from covalent modifications of actin; (3) by the existence of collaborative or competitive binding to actin filaments between two or multiple ABPs. This review highlights that all these effects need to be taken into account to understand the proper localization of ABPs in cells, and discusses what remains to be understood in this field of research.
Collapse
Affiliation(s)
- Micaela Boiero Sanders
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Adrien Antkowiak
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Alphée Michelot
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
5
|
Barger SR, James ML, Pellenz CD, Krendel M, Sirotkin V. Human myosin 1e tail but not motor domain replaces fission yeast Myo1 domains to support myosin-I function during endocytosis. Exp Cell Res 2019; 384:111625. [PMID: 31542284 DOI: 10.1016/j.yexcr.2019.111625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 10/26/2022]
Abstract
In both unicellular and multicellular organisms, long-tailed class I myosins function in clathrin-mediated endocytosis. Myosin 1e (Myo1e) in vertebrates and Myo1 in fission yeast have similar domain organization, yet whether these proteins or their individual protein domains are functionally interchangeable remains unknown. In an effort to assess functional conservation of class I myosins, we tested whether human Myo1e could replace Myo1 in fission yeast Schizosaccharomyces pombe and found that it was unable to substitute for yeast Myo1. To determine if any individual protein domain is responsible for the inability of Myo1e to function in yeast, we created human-yeast myosin-I chimeras. By functionally testing these chimeric myosins in vivo, we concluded that the Myo1e motor domain is unable to function in yeast, even when combined with the yeast Myo1 tail and a full complement of yeast regulatory light chains. Conversely, the Myo1e tail, when attached to the yeast Myo1 motor domain, supports localization to endocytic actin patches and partially rescues the endocytosis defect in myo1Δ cells. Further dissection showed that both the TH1 and TH2-SH3 domains in the human Myo1e tail are required for localization and function of chimeric myosin-I at endocytic sites. Overall, this study provides insights into the role of individual myosin-I domains, expands the utility of fission yeast as a simple model system to study the effects of disease-associated MYO1E mutations, and supports a model of co-evolution between a myosin motor and its actin track.
Collapse
Affiliation(s)
- Sarah R Barger
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Michael L James
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Christopher D Pellenz
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Vladimir Sirotkin
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
6
|
Douglas RG, Nandekar P, Aktories JE, Kumar H, Weber R, Sattler JM, Singer M, Lepper S, Sadiq SK, Wade RC, Frischknecht F. Inter-subunit interactions drive divergent dynamics in mammalian and Plasmodium actin filaments. PLoS Biol 2018; 16:e2005345. [PMID: 30011270 PMCID: PMC6055528 DOI: 10.1371/journal.pbio.2005345] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023] Open
Abstract
Cell motility is essential for protozoan and metazoan organisms and typically relies on the dynamic turnover of actin filaments. In metazoans, monomeric actin polymerises into usually long and stable filaments, while some protozoans form only short and highly dynamic actin filaments. These different dynamics are partly due to the different sets of actin regulatory proteins and partly due to the sequence of actin itself. Here we probe the interactions of actin subunits within divergent actin filaments using a comparative dynamic molecular model and explore their functions using Plasmodium, the protozoan causing malaria, and mouse melanoma derived B16-F1 cells as model systems. Parasite actin tagged to a fluorescent protein (FP) did not incorporate into mammalian actin filaments, and rabbit actin-FP did not incorporate into parasite actin filaments. However, exchanging the most divergent region of actin subdomain 3 allowed such reciprocal incorporation. The exchange of a single amino acid residue in subdomain 2 (N41H) of Plasmodium actin markedly improved incorporation into mammalian filaments. In the parasite, modification of most subunit–subunit interaction sites was lethal, whereas changes in actin subdomains 1 and 4 reduced efficient parasite motility and hence mosquito organ penetration. The strong penetration defects could be rescued by overexpression of the actin filament regulator coronin. Through these comparative approaches we identified an essential and common contributor, subdomain 3, which drives the differential dynamic behaviour of two highly divergent eukaryotic actins in motile cells. Actin is one of the most abundant and conserved proteins across eukaryotes. Its ability to assemble from individual monomers into dynamic polymers is essential for many cellular functions, including division and motility. In most cells, actin is able to form long and stable filaments. However, an actin of the malaria-causing parasite Plasmodium, while having a very similar monomer structure to actins from other eukaryotes, forms only short and unstable filaments. These short and dynamic filaments are crucial in allowing the parasite to move very rapidly in tissue. Here we investigated the basis of these differences. We used molecular dynamics simulations of actin filaments to investigate the actin–actin interfaces in filaments from Plasmodium and rabbit. We next engineered parasites to express chimeric actins that contained different parts of rabbit and parasite actin and thereby identified actin residues important for parasite viability and progression across the life cycle. We could rescue the most prominent defect specifically with overexpression of the actin binding protein coronin. This suggests that the more stable actin harms the parasite and that coronin helps in recycling filaments. By screening the effects of actin chimeras in mammalian cells, we also identified regions that allow these different actins to efficiently interact with each other. Taken together, our results improve our understanding of the interactions required for actin to incorporate into filaments across divergent eukaryotes.
Collapse
Affiliation(s)
- Ross G. Douglas
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Prajwal Nandekar
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Julia-Elisabeth Aktories
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Hirdesh Kumar
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Rebekka Weber
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Julia M. Sattler
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Simone Lepper
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - S. Kashif Sadiq
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Rebecca C. Wade
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, Germany
- * E-mail: (FF); (RCW)
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- * E-mail: (FF); (RCW)
| |
Collapse
|
7
|
Vedula P, Kashina A. The makings of the 'actin code': regulation of actin's biological function at the amino acid and nucleotide level. J Cell Sci 2018; 131:131/9/jcs215509. [PMID: 29739859 DOI: 10.1242/jcs.215509] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The actin cytoskeleton plays key roles in every eukaryotic cell and is essential for cell adhesion, migration, mechanosensing, and contractility in muscle and non-muscle tissues. In higher vertebrates, from birds through to mammals, actin is represented by a family of six conserved genes. Although these genes have evolved independently for more than 100 million years, they encode proteins with ≥94% sequence identity, which are differentially expressed in different tissues, and tightly regulated throughout embryogenesis and adulthood. It has been previously suggested that the existence of such similar actin genes is a fail-safe mechanism to preserve the essential function of actin through redundancy. However, knockout studies in mice and other organisms demonstrate that the different actins have distinct biological roles. The mechanisms maintaining this distinction have been debated in the literature for decades. This Review summarizes data on the functional regulation of different actin isoforms, and the mechanisms that lead to their different biological roles in vivo We focus here on recent studies demonstrating that at least some actin functions are regulated beyond the amino acid level at the level of the actin nucleotide sequence.
Collapse
Affiliation(s)
- Pavan Vedula
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
LeClaire LL, Fortwendel JR. Differential Support of Aspergillus fumigatus Morphogenesis by Yeast and Human Actins. PLoS One 2015; 10:e0142535. [PMID: 26555617 PMCID: PMC4640809 DOI: 10.1371/journal.pone.0142535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022] Open
Abstract
The actin cytoskeleton is highly conserved among eukaryotes and is essential for cellular processes regulating growth and differentiation. In fungi, filamentous actin (F-actin) orchestrates hyphal tip structure and extension via organization of exocytic and endocytic processes at the hyphal tip. Although highly conserved, there are key differences among actins of fungal species as well as between mammalian and fungal actins. For example, the F-actin stabilizing molecules, phalloidin and jasplakinolide, bind to actin structures in yeast and human cells, whereas phalloidin does not bind actin structures of Aspergillus. These discrepancies suggest structural differences between Aspergillus actin filaments and those of human and yeast cells. Additionally, fungal actin kinetics are much faster than those of humans, displaying 5-fold faster nucleation and 40-fold faster nucleotide exchange rates. Limited published studies suggest that these faster actin kinetics are required for normal growth and morphogenesis of yeast cells. In the current work, we show that replacement of Aspergillus actin with yeast actin generates a morphologically normal strain, suggesting that Aspergillus actin kinetics are similar to those of yeast. In contrast to wild type A. fumigatus, F-actin in this strain binds phalloidin, and pharmacological stabilization of these actin structures with jasplakinolide inhibits germination and alters morphogenesis in a dose-dependent manner. We also show that human β-actin cannot support Aspergillus viability, even though the amino acid sequences of human and Aspergillus actins are 89.3% identical. Our findings show that minor differences in actin protein sequence account for loss of phalloidin and jasplakinolide sensitivity in Aspergillus species.
Collapse
Affiliation(s)
- Lawrence L. LeClaire
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Jarrod R. Fortwendel
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
9
|
Walters RW, Muhlrad D, Garcia J, Parker R. Differential effects of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2015; 21:1660-1671. [PMID: 26199455 PMCID: PMC4536325 DOI: 10.1261/rna.053116.115] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/05/2015] [Indexed: 05/27/2023]
Abstract
Stress granules and P-bodies are conserved assemblies of nontranslating mRNAs in eukaryotic cells that can be related to RNA-protein aggregates found in some neurodegenerative diseases. Herein, we examine how the Hsp70/Hsp40 protein chaperones affected the assembly and disassembly of stress granules and P-bodies in yeast. We observed that Hsp70 and the Ydj1 and Sis1 Hsp40 proteins accumulated in stress granules and defects in these proteins led to decreases in the disassembly and/or clearance of stress granules. We observed that individual Hsp40 proteins have different effects on stress granules with defects in Ydj1 leading to accumulation of stress granules in the vacuole and limited recovery of translation following stress, which suggests that Ydj1 promotes disassembly of stress granules to promote translation. In contrast, defects in Sis1 did not affect recovery of translation, accumulated cytoplasmic stress granules, and showed reductions in the targeting of stress granules to the vacuole. This demonstrates a new principle whereby alternative disassembly machineries lead to different fates of components within stress granules, thereby providing additional avenues for regulation of their assembly, composition, and function. Moreover, a role for Hsp70 and Hsp40 proteins in stress granule disassembly couples the assembly of these stress responsive structures to the proteostatic state of the cell.
Collapse
Affiliation(s)
- Robert W Walters
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - Denise Muhlrad
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA Howard Hughes Medical Institute, Boulder, Colorado 80303, USA
| | - Jennifer Garcia
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA Howard Hughes Medical Institute, Boulder, Colorado 80303, USA
| |
Collapse
|
10
|
Rubenstein PA, Wen KK. Insights into the effects of disease-causing mutations in human actins. Cytoskeleton (Hoboken) 2014; 71:211-29. [PMID: 24574087 DOI: 10.1002/cm.21169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/13/2013] [Accepted: 02/19/2014] [Indexed: 01/04/2023]
Abstract
Mutations in all six actins in humans have now been shown to cause diseases. However, a number of factors have made it difficult to gain insight into how the changes in actin functions brought about by these pathogenic mutations result in the disease phenotype. These include the presence of multiple actins in the same cell, limited accessibility to pure mutant material, and complexities associated with the structures and their component cells that manifest the diseases. To try to circumvent these difficulties, investigators have turned to the use of model systems. This review describes these various approaches, the initial results obtained using them, and the insight they have provided into allosteric mechanisms that govern actin function. Although results so far have not explained a particular disease phenotype at the molecular level, they have provided valuable insight into actin function at the mechanistic level which can be utilized in the future to delineate the molecular bases of these different actinopathies.
Collapse
Affiliation(s)
- Peter A Rubenstein
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | |
Collapse
|
11
|
Yamashiro S, Gokhin DS, Sui Z, Bergeron SE, Rubenstein PA, Fowler VM. Differential actin-regulatory activities of Tropomodulin1 and Tropomodulin3 with diverse tropomyosin and actin isoforms. J Biol Chem 2014; 289:11616-11629. [PMID: 24644292 DOI: 10.1074/jbc.m114.555128] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tropomodulins (Tmods) are F-actin pointed end capping proteins that interact with tropomyosins (TMs) and cap TM-coated filaments with higher affinity than TM-free filaments. Here, we tested whether differences in recognition of TM or actin isoforms by Tmod1 and Tmod3 contribute to the distinct cellular functions of these Tmods. We found that Tmod3 bound ~5-fold more weakly than Tmod1 to α/βTM, TM5b, and TM5NM1. However, surprisingly, Tmod3 was as effective as Tmod1 at capping pointed ends of skeletal muscle α-actin (αsk-actin) filaments coated with α/βTM, TM5b, or TM5NM1. Tmod3 only capped TM-coated αsk-actin filaments more weakly than Tmod1 in the presence of recombinant αTM2, which is unacetylated at its NH2 terminus, binds F-actin weakly, and has a disabled Tmod-binding site. Moreover, both Tmod1 and Tmod3 were similarly effective at capping pointed ends of platelet β/cytoplasmic γ (γcyto)-actin filaments coated with TM5NM1. In the absence of TMs, both Tmod1 and Tmod3 had similarly weak abilities to nucleate β/γcyto-actin filament assembly, but only Tmod3 could sequester cytoplasmic β- and γcyto-actin (but not αsk-actin) monomers and prevent polymerization under physiological conditions. Thus, differences in TM binding by Tmod1 and Tmod3 do not appear to regulate the abilities of these Tmods to cap TM-αsk-actin or TM-β/γcyto-actin pointed ends and, thus, are unlikely to determine selective co-assembly of Tmod, TM, and actin isoforms in different cell types and cytoskeletal structures. The ability of Tmod3 to sequester β- and γcyto-actin (but not αsk-actin) monomers in the absence of TMs suggests a novel function for Tmod3 in regulating actin remodeling or turnover in cells.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; Laboratory of Single-Molecule Cell Biology, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - David S Gokhin
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Zhenhua Sui
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Sarah E Bergeron
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242
| | | | - Velia M Fowler
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
12
|
Wen KK, McKane M, Rubenstein PA. Importance of a Lys113-Glu195 intermonomer ionic bond in F-actin stabilization and regulation by yeast formins Bni1p and Bnr1p. J Biol Chem 2013; 288:19140-53. [PMID: 23653364 DOI: 10.1074/jbc.m113.474122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proper actin cytoskeletal function requires actin's ability to generate a stable filament and requires that this reaction be regulated by actin-binding proteins via allosteric effects on the actin. A proposed ionic interaction in the actin filament interior between Lys(113) of one monomer and Glu(195) of a monomer in the apposing strand potentially fosters cross-strand stabilization and allosteric communication between the filament interior and exterior. We interrupted the potential interaction by creating either K113E or E195K actin. By combining the two, we also reversed the interaction with a K113E/E195K (E/K) mutant. In all cases, we isolated viable cells expressing only the mutant actin. Either single mutant cell displays significantly decreased growth in YPD medium. This deficit is rescued in the double mutant. All three mutants display abnormal phalloidin cytoskeletal staining. K113E actin exhibits a critical concentration of polymerization 4 times higher than WT actin, nucleates more poorly, and forms shorter filaments. Restoration of the ionic bond, E/K, eliminates most of these problems. E195K actin behaves much more like WT actin, indicating accommodation of the neighboring lysines. Both Bni1 and Bnr1 formin FH1-FH2 fragment accelerate polymerization of WT, E/K, and to a lesser extent E195K actin. Bni1p FH1-FH2 dramatically inhibits K113E actin polymerization, consistent with barbed end capping. However, Bnr1p FH1-FH2 restores K113E actin polymerization, forming single filaments. In summary, the proposed ionic interaction plays an important role in filament stabilization and in the propagation of allosteric changes affecting formin regulation in an isoform-specific fashion.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
13
|
Abstract
The field of mechanobiology has witnessed an explosive growth over the past several years as interest has greatly increased in understanding how mechanical forces are transduced by cells and how cells migrate, adhere and generate traction. Actin, a highly abundant and anomalously conserved protein, plays a large role in forming the dynamic cytoskeleton that is so essential for cell form, motility and mechanosensitivity. While the actin filament (F-actin) has been viewed as dynamic in terms of polymerization and depolymerization, new results suggest that F-actin itself may function as a highly dynamic tension sensor. This property may help explain the unusual conservation of actin's sequence, as well as shed further light on actin's essential role in structures from sarcomeres to stress fibers.
Collapse
Affiliation(s)
- Vitold E Galkin
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | | | | |
Collapse
|
14
|
McCullough BR, Grintsevich EE, Chen CK, Kang H, Hutchison AL, Henn A, Cao W, Suarez C, Martiel JL, Blanchoin L, Reisler E, De La Cruz EM. Cofilin-linked changes in actin filament flexibility promote severing. Biophys J 2011; 101:151-9. [PMID: 21723825 DOI: 10.1016/j.bpj.2011.05.049] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/20/2011] [Accepted: 05/24/2011] [Indexed: 11/25/2022] Open
Abstract
The actin regulatory protein, cofilin, increases the bending and twisting elasticity of actin filaments and severs them. It has been proposed that filaments partially decorated with cofilin accumulate stress from thermally driven shape fluctuations at bare (stiff) and decorated (compliant) boundaries, thereby promoting severing. This mechanics-based severing model predicts that changes in actin filament compliance due to cofilin binding affect severing activity. Here, we test this prediction by evaluating how the severing activities of vertebrate and yeast cofilactin scale with the flexural rigidities determined from analysis of shape fluctuations. Yeast actin filaments are more compliant in bending than vertebrate actin filaments. Severing activities of cofilactin isoforms correlate with changes in filament flexibility. Vertebrate cofilin binds but does not increase the yeast actin filament flexibility, and does not sever them. Imaging of filament thermal fluctuations reveals that severing events are associated with local bending and fragmentation when deformations attain a critical angle. The critical severing angle at boundaries between bare and cofilin-decorated segments is smaller than in bare or fully decorated filaments. These measurements support a cofilin-severing mechanism in which mechanical asymmetry promotes local stress accumulation and fragmentation at boundaries of bare and cofilin-decorated segments, analogous to failure of some nonprotein materials.
Collapse
Affiliation(s)
- Brannon R McCullough
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites. PLoS Pathog 2011; 7:e1002280. [PMID: 21998582 PMCID: PMC3188518 DOI: 10.1371/journal.ppat.1002280] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/17/2011] [Indexed: 01/05/2023] Open
Abstract
Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filament instability and its relationship to gliding motility remain unresolved. We demonstrate that recombinant Toxoplasma (TgACTI) and Plasmodium (PfACTI and PfACTII) actins polymerized into very short filaments in vitro but were induced to form long, stable filaments by addition of equimolar levels of phalloidin. Parasite actins contain a conserved phalloidin-binding site as determined by molecular modeling and computational docking, yet vary in several residues that are predicted to impact filament stability. In particular, two residues were identified that form intermolecular contacts between different protomers in conventional actin filaments and these residues showed non-conservative differences in apicomplexan parasites. Substitution of divergent residues found in TgACTI with those from mammalian actin resulted in formation of longer, more stable filaments in vitro. Expression of these stabilized actins in T. gondii increased sensitivity to the actin-stabilizing compound jasplakinolide and disrupted normal gliding motility in the absence of treatment. These results identify the molecular basis for short, dynamic filaments in apicomplexan parasites and demonstrate that inherent instability of parasite actin filaments is a critical adaptation for gliding motility.
Collapse
|
16
|
Wen KK, McKane M, Stokasimov E, Rubenstein PA. Mutant profilin suppresses mutant actin-dependent mitochondrial phenotype in Saccharomyces cerevisiae. J Biol Chem 2011; 286:41745-41757. [PMID: 21956104 DOI: 10.1074/jbc.m110.217661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the Saccharomyces cerevisiae actin-profilin interface, Ala(167) of the actin barbed end W-loop and His(372) near the C terminus form a clamp around a profilin segment containing residue Arg(81) and Tyr(79). Modeling suggests that altering steric packing in this interface regulates actin activity. An actin A167E mutation could increase interface crowding and alter actin regulation, and A167E does cause growth defects and mitochondrial dysfunction. We assessed whether a profilin Y79S mutation with its decreased mass could compensate for actin A167E crowding and rescue the mutant phenotype. Y79S profilin alone caused no growth defect in WT actin cells under standard conditions in rich medium and rescued the mitochondrial phenotype resulting from both the A167E and H372R actin mutations in vivo consistent with our model. Rescue did not result from effects of profilin on actin nucleotide exchange or direct effects of profilin on actin polymerization. Polymerization of A167E actin was less stimulated by formin Bni1 FH1-FH2 fragment than was WT actin. Addition of WT profilin to mixtures of A167E actin and formin fragment significantly altered polymerization kinetics from hyperbolic to a decidedly more sigmoidal behavior. Substitution of Y79S profilin in this system produced A167E behavior nearly identical to that of WT actin. A167E actin caused more dynamic actin cable behavior in vivo than observed with WT actin. Introduction of Y79S restored cable movement to a more normal phenotype. Our studies implicate the importance of the actin-profilin interface for formin-dependent actin and point to the involvement of formin and profilin in the maintenance of mitochondrial integrity and function.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Melissa McKane
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Ema Stokasimov
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Peter A Rubenstein
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242.
| |
Collapse
|
17
|
Stark BC, Wen KK, Allingham JS, Rubenstein PA, Lord M. Functional adaptation between yeast actin and its cognate myosin motors. J Biol Chem 2011; 286:30384-30392. [PMID: 21757693 PMCID: PMC3162397 DOI: 10.1074/jbc.m111.262899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/20/2011] [Indexed: 11/06/2022] Open
Abstract
We employed budding yeast and skeletal muscle actin to examine the contribution of the actin isoform to myosin motor function. While yeast and muscle actin are highly homologous, they exhibit different charge density at their N termini (a proposed myosin-binding interface). Muscle myosin-II actin-activated ATPase activity is significantly higher with muscle versus yeast actin. Whether this reflects inefficiency in the ability of yeast actin to activate myosin is not known. Here we optimized the isolation of two yeast myosins to assess actin function in a homogenous system. Yeast myosin-II (Myo1p) and myosin-V (Myo2p) accommodate the reduced N-terminal charge density of yeast actin, showing greater activity with yeast over muscle actin. Increasing the number of negative charges at the N terminus of yeast actin from two to four (as in muscle) had little effect on yeast myosin activity, while other substitutions of charged residues at the myosin interface of yeast actin reduced activity. Thus, yeast actin functions most effectively with its native myosins, which in part relies on associations mediated by its outer domain. Compared with yeast myosin-II and myosin-V, muscle myosin-II activity was very sensitive to salt. Collectively, our findings suggest differing degrees of reliance on electrostatic interactions during weak actomyosin binding in yeast versus muscle. Our study also highlights the importance of native actin isoforms when considering the function of myosins.
Collapse
Affiliation(s)
- Benjamin C Stark
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Kuo-Kuang Wen
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa 52242
| | - John S Allingham
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Peter A Rubenstein
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa 52242
| | - Matthew Lord
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, Vermont 05405.
| |
Collapse
|
18
|
Abstract
Actin has maintained an exquisite degree of sequence conservation over large evolutionary distances for reasons that are not understood. The desire to explain phenomena from muscle contraction to cytokinesis in mechanistic detail has driven the generation of an atomic model of the actin filament (F-actin). Here we use electron cryomicroscopy to show that frozen-hydrated actin filaments contain a multiplicity of different structural states. We show (at ∼10 Å resolution) that subdomain 2 can be disordered and can make multiple contacts with the C terminus of a subunit above it. We link a number of disease-causing mutations in the human ACTA1 gene to the most structurally dynamic elements of actin. Because F-actin is structurally polymorphic, it cannot be described using only one atomic model and must be understood as an ensemble of different states.
Collapse
|
19
|
Wen KK, McKane M, Stokasimov E, Fields J, Rubenstein PA. A potential yeast actin allosteric conduit dependent on hydrophobic core residues val-76 and trp-79. J Biol Chem 2010; 285:21185-94. [PMID: 20442407 DOI: 10.1074/jbc.m110.121426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intramolecular allosteric interactions responsible for actin conformational regulation are largely unknown. Previous work demonstrated that replacing yeast actin Val-76 with muscle actin Ile caused decreased nucleotide exchange. Residue 76 abuts Trp-79 in a six-residue linear array beginning with Lys-118 on the surface and ending with His-73 in the nucleotide cleft. To test if altering the degree of packing of these two residues would affect actin dynamics, we constructed V76I, W79F, and W79Y single mutants as well as the Ile-76/Phe-79 and Ile-76/Tyr-79 double mutants. Tyr or Phe should decrease crowding and increase protein flexibility. Subsequent introduction of Ile should restore packing and dampen changes. All mutants showed decreased growth in liquid medium. W79Y alone was severely osmosensitive and exhibited vacuole abnormalities. Both properties were rescued by Ile-76. Phe-79 or Tyr decreased the thermostability of actin and increased its nucleotide exchange rate. These effects, generally greater for Tyr than for Phe, were reversed by introduction of Ile-76. HD exchange showed that the mutations caused propagated conformational changes to all four subdomains. Based on results from phosphate release and light-scattering assays, single mutations affected polymerization in the order of Ile, Phe, and Tyr from least to most. Introduction of Ile-76 partially rescued the polymerization defects caused by either Tyr-79 or Phe-79. Thus, alterations in crowding of the 76-79 residue pair can strongly affect actin conformation and behavior, and these results support the theory that the amino acid array in which they are located may play a central role in actin regulation.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
20
|
Bergeron SE, Zhu M, Thiem SM, Friderici KH, Rubenstein PA. Ion-dependent polymerization differences between mammalian beta- and gamma-nonmuscle actin isoforms. J Biol Chem 2010; 285:16087-95. [PMID: 20308063 DOI: 10.1074/jbc.m110.110130] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
beta- and gamma-nonmuscle actins differ by 4 amino acids at or near the N terminus and distant from polymerization interfaces. beta-Actin contains an Asp(1)-Asp(2)-Asp(3) and Val(10) whereas gamma-actin has a Glu(1)-Glu(2)-Glu(3) and Ile(10). Despite these small changes, conserved across mammals, fish, and birds, their differential localization in the same cell suggests they may play different roles reflecting differences in their biochemical properties. To test this hypothesis, we established a baculovirus-driven expression system for producing these actins in isoform-pure populations although contaminated with 20-25% insect actin. Surprisingly, Ca-gamma-actin exhibits a slower monomeric nucleotide exchange rate, a much longer nucleation phase, and a somewhat slower elongation rate than beta-actin. In the Mg-form, this difference between the two is much smaller. Ca-gamma-actin depolymerizes half as fast as does beta-actin. Mixing experiments with Ca-actins reveal the two will readily co-polymerize. In the Ca-form, phosphate release from polymerizing beta-actin occurs much more rapidly and extensively than polymerization, whereas phosphate release lags behind polymerization with gamma-actin. Phosphate release during treadmilling is twice as fast with beta- as with gamma-actin. With Mg-actin in the initial stages, phosphate release for both actins correlates much more closely with polymerization. Calcium bound in the high affinity binding site of gamma-actin may cause a selective energy barrier relative to beta-actin that retards the equilibration between G- and F-monomer conformations resulting in a slower polymerizing actin with greater filament stability. This difference may be particularly important in sites such as the gamma-actin-rich cochlear hair cell stereocilium where local mm calcium concentrations may exist.
Collapse
Affiliation(s)
- Sarah E Bergeron
- Department of Biochemistry, Roy A and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
21
|
Yates SP, Loncar A, Dawson JF. Actin polymerization is controlled by residue size at position 204. Biochem Cell Biol 2010; 87:853-65. [PMID: 19935871 DOI: 10.1139/o09-039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous work has shown that purified double mutant A204C/C374A yeast actin is polymerization-deficient in vitro under physiological concentrations. To understand the importance of the 204 residue in subdomain 4, a series of actin proteins with a single mutation at this position were created with Cys-374 retained. Only yeast expressing A204G-, A204S-, or A204C-actin were viable. The A204G and A204S strains were sensitive to cold temperature and hyperosmolarity, whereas the A204C strain showed more profound effects on growth under these conditions. Cells expressing A204C-actin exhibited anomalies previously observed for A204C/C374A actin, including abnormal actin structures. A204G- and A204S-actin proteins had 12- and 13-fold increased critical concentrations, respectively, relative to wild-type. Only at very high concentrations could A204C actin polymerize when ATP was bound; when hydrolyzed, the ADP-containing A204C filaments depolymerized, demonstrating a profound difference in critical concentration between ATP and ADP states with A204C actin. A correlation between size of the residue substituted at position 204 and energy minimization of actin filament models was observed. We propose that the region surrounding residue 204 is involved in interactions that change depending on the phosphorylation state of the bound nucleotide that might reflect different conformations of F-actin subunits.
Collapse
Affiliation(s)
- Susan P Yates
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | |
Collapse
|
22
|
Stokasimov E, Rubenstein PA. Actin isoform-specific conformational differences observed with hydrogen/deuterium exchange and mass spectrometry. J Biol Chem 2009; 284:25421-30. [PMID: 19605362 DOI: 10.1074/jbc.m109.013078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin can exist in multiple conformations necessary for normal function. Actin isoforms, although highly conserved in sequence, exhibit different biochemical properties and cellular roles. We used amide proton hydrogen/deuterium (HD) exchange detected by mass spectrometry to analyze conformational differences between Saccharomyces cerevisiae and muscle actins in the G and F forms to gain insight into these differences. We also utilized HD exchange to study interdomain and allosteric communication in yeast-muscle hybrid actins to better understand the conformational dynamics of actin. Areas showing differences in HD exchange between G- and F-actins are areas of intermonomer contacts, consistent with the current filament models. Our results showed greater exchange for yeast G-actin compared with muscle actin in the barbed end pivot region and areas in subdomains 1 and 2 and for F-actin in monomer-monomer contact areas. These results suggest greater flexibility of the yeast actin monomer and filament compared with muscle actin. For hybrid G-actins, the muscle-like and yeastlike parts of the molecule generally showed exchange characteristics resembling their parent actins. A few exceptions were a peptide on top of subdomain 2 and the pivot region between subdomains 1 and 3 with muscle actin-like exchange characteristics although the areas were yeastlike. These results demonstrate that there is cross-talk between subdomains 1 and 2 and the large and small domains. Hybrid F-actin data showing greater exchange compared with both yeast and muscle actins are consistent with mismatched yeast-muscle interfaces resulting in decreased stability of the hybrid filament contacts.
Collapse
Affiliation(s)
- Ema Stokasimov
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
23
|
Bryan KE, Rubenstein PA. Allele-specific effects of human deafness gamma-actin mutations (DFNA20/26) on the actin/cofilin interaction. J Biol Chem 2009; 284:18260-9. [PMID: 19419963 DOI: 10.1074/jbc.m109.015818] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Auditory hair cell function requires proper assembly and regulation of the nonmuscle gamma isoactin-rich cytoskeleton, and six point mutations in this isoactin cause a type of delayed onset autosomal dominant nonsyndromic progressive hearing loss, DFNA20/26. The molecular basis underlying this actin-dependent hearing loss is unknown. To address this problem, the mutations have been introduced into yeast actin, and their effects on actin function were assessed in vivo and in vitro. Because we previously showed that polymerization was unaffected in five of the six mutants, we have focused on proteins that regulate actin, in particular cofilin, which severs F-actin and sequesters actin monomers. The mutations do not affect the interaction of cofilin with G-actin. However, T89I and V370A mutant F-actins are much more susceptible to cofilin disassembly than WT filaments in vitro. Conversely, P332A filaments demonstrate enhanced resistance. Wild type actin solutions containing T89I, K118M, or P332A mutant actins at mole fractions similar to those found in the hair cell respond in vitro toward cofilin in a manner proportional to the level of the mutant present. Finally, depression of cofilin action in vivo by elimination of the cofilin-activating protein, Aip1p, rescues the inability to grow on glycerol caused by K118M, T278I, P332A, and V370A. These results suggest that a filament instability caused by these mutations can be balanced by decreasing a system in vivo that promotes increased filament turnover. Such mutant-dependent filament destabilization could easily result in hair cell malfunction leading to the late-onset hearing loss observed in these patients.
Collapse
Affiliation(s)
- Keith E Bryan
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242-1109, USA
| | | |
Collapse
|
24
|
Wen KK, Rubenstein PA. Differential regulation of actin polymerization and structure by yeast formin isoforms. J Biol Chem 2009; 284:16776-16783. [PMID: 19386598 DOI: 10.1074/jbc.m109.006981] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The budding yeast formins, Bnr1 and Bni1, behave very differently with respect to their interactions with muscle actin. However, the mechanisms underlying these differences are unclear, and these formins do not interact with muscle actin in vivo. We use yeast wild type and mutant actins to further assess these differences between Bnr1 and Bni1. Low ionic strength G-buffer does not promote actin polymerization. However, Bnr1, but not Bni1, causes the polymerization of pyrene-labeled Mg-G-actin in G-buffer into single filaments based on fluorometric and EM observations. Polymerization by Bnr1 does not occur with Ca-G-actin. By cosedimentation, maximum filament formation occurs at a Bnr1:actin ratio of 1:2. The interaction of Bnr1 with pyrene-labeled S265C Mg-actin yields a pyrene excimer peak, from the cross-strand interaction of pyrene probes, which only occurs in the context of F-actin. In F-buffer, Bnr1 promotes much faster yeast actin polymerization than Bni1. It also bundles the F-actin in contrast to the low ionic strength situation where only single filaments form. Thus, the differences previously observed with muscle actin are not actin isoform-specific. The binding of both formins to F-actin saturate at an equimolar ratio, but only about 30% of each formin cosediments with F-actin. Finally, addition of Bnr1 but not Bni1 to pyrene-labeled wild type and S265C Mg-F actins enhanced the pyrene- and pyrene-excimer fluorescence, respectively, suggesting Bnr1 also alters F-actin structure. These differences may facilitate the ability of Bnr1 to form the actin cables needed for polarized delivery of nutrients and organelles to the growing yeast bud.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- From the Department of Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Peter A Rubenstein
- From the Department of Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
25
|
A single amino acid residue is responsible for species-specific incompatibility between CCT and α-actin. FEBS Lett 2009; 583:782-6. [DOI: 10.1016/j.febslet.2009.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 01/19/2009] [Indexed: 11/24/2022]
|
26
|
Stokasimov E, McKane M, Rubenstein PA. Role of intermonomer ionic bridges in the stabilization of the actin filament. J Biol Chem 2008; 283:34844-54. [PMID: 18945676 DOI: 10.1074/jbc.m804419200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Filament formation is required for most of the functions of actin. However, the intermonomer interactions that stabilize F-actin have not been elucidated because of a lack of an F-actin crystal structure. The Holmes muscle actin model suggests that an ionic interaction between Arg-39 of one monomer and Glu-167 of an adjacent monomer in the same strand contributes to this stabilization. Yeast actin has an Ala-167 instead. F-actin molecular dynamics modeling predicts another interaction between Arg-39 of one monomer and Asp-275 of an opposing strand monomer. In Toxoplasma gondii actin, which forms short stubby filaments, the Asp-275 equivalent is replaced by Arg leading to a potential filament-destabilizing charge-charge repulsion. Using yeast actin, we tested the effect of A167E as a potential stabilizer and A167R and D275R as potential filament disruptors. All mutations caused abnormal growth and mitochondrial malfunction. A167E and D275R actins polymerize normally and form relatively normal appearing filaments. A167R nucleates filaments more slowly and forms filament bundles. The R39D/A167R double mutant, which re-establishes an ionic bond in the opposite orientation, reverses this polymerization and bundling defect. Stoichiometric amounts of yeast cofilin have little effect on wild-type and A167E filaments. However, D275R and A167R actin depolymerization is profound with cofilin. Although our results suggest that disruption of an interaction between Arg-39 and Asp-275 is not sufficient to cause fragmentation, it suggests that it changes filament stability thereby disposing it for enhanced cofilin depolymerizing effects. Ala-167 results demonstrate the in vivo and in vitro importance of another potential Arg-39 ionic interaction.
Collapse
Affiliation(s)
- Ema Stokasimov
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
27
|
Khaitlina S, Hinssen H. Difference in polymerization and steady-state dynamics of free and gelsolin-capped filaments formed by α- and β-isoactins. Arch Biochem Biophys 2008; 477:279-84. [DOI: 10.1016/j.abb.2008.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 06/10/2008] [Accepted: 06/22/2008] [Indexed: 11/17/2022]
|
28
|
Miller BM, Trybus KM. Functional effects of nemaline myopathy mutations on human skeletal alpha-actin. J Biol Chem 2008; 283:19379-88. [PMID: 18477565 DOI: 10.1074/jbc.m801963200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in human alpha-skeletal actin have been implicated in causing congenital nemaline myopathy, a disease characterized histopathologically by nemaline bodies in skeletal muscle and manifested in the patient as skeletal muscle weakness. Here we investigate the functional effects of three severe nemaline myopathy mutations (V43F, A138P, and R183G) in human alpha-skeletal actin. Wild-type and mutant actins were expressed and purified from the baculovirus/insect cell expression system. The mutations are located in different subdomains of actin; Val-43 is located in a flexible loop of subdomain 2, Ala-138 is near a hydrophobic cleft in the "hinge" region between subdomains 1 and 3, and Arg-183 is near the nucleotide-binding site. None of the three mutations affected the folding of the actin monomer, the velocity at which skeletal myosin moves actin in an in vitro motility assay, or the relative average isometric force supported by F-actin. Defects in fundamental actomyosin interactions are, therefore, unlikely to account for the muscle weakness observed in affected patients. There were, however, significant changes observed in the polymerization kinetics of V43F and A138P and in the rate of nucleotide release for V43F. No detectable defect was found for R183G. If these subtle changes in polymerization observed in vitro are amplified in the context of the sarcomere, it could in principle be one of the primary insults that triggers the development of nemaline myopathy.
Collapse
Affiliation(s)
- Becky M Miller
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA
| | | |
Collapse
|
29
|
Wen KK, McKane M, Houtman JCD, Rubenstein PA. Control of the ability of profilin to bind and facilitate nucleotide exchange from G-actin. J Biol Chem 2008; 283:9444-53. [PMID: 18223293 DOI: 10.1074/jbc.m709806200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major factor in profilin regulation of actin cytoskeletal dynamics is its facilitation of G-actin nucleotide exchange. However, the mechanism of this facilitation is unknown. We studied the interaction of yeast (YPF) and human profilin 1 (HPF1) with yeast and mammalian skeletal muscle actins. Homologous pairs (YPF and yeast actin, HPF1 and muscle actin) bound more tightly to one another than heterologous pairs. However, with saturating profilin, HPF1 caused a faster etheno-ATP exchange with both yeast and muscle actins than did YPF. Based on the -fold change in ATP exchange rate/K(d), however, the homologous pairs are more efficient than the heterologous pairs. Thus, strength of binding of profilin to actin and nucleotide exchange rate are not tightly coupled. Actin/HPF interactions were entropically driven, whereas YPF interactions were enthalpically driven. Hybrid yeast actins containing subdomain 1 (sub1) or subdomain 1 and 2 (sub12) muscle actin residues bound more weakly to YPF than did yeast actin (K(d) = 2 microm versus 0.6 microm). These hybrids bound even more weakly to HPF than did yeast actin (K(d) = 5 microm versus 3.2 microm). sub1/YPF interactions were entropically driven, whereas the sub12/YPF binding was enthalpically driven. Compared with WT yeast actin, YPF binding to sub1 occurred with a 5 times faster k(off) and a 2 times faster k(on). sub12 bound with a 3 times faster k(off) and a 1.5 times slower k(on). Profilin controls the energetics of its interaction with nonhybrid actin, but interactions between actin subdomains 1 and 2 affect the topography of the profilin binding site.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
30
|
Saks V, Kaambre T, Guzun R, Anmann T, Sikk P, Schlattner U, Wallimann T, Aliev M, Vendelin M. The creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches. Subcell Biochem 2007; 46:27-65. [PMID: 18652071 DOI: 10.1007/978-1-4020-6486-9_3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this review, we summarize the main structural and functional data on the role of the phosphocreatine (PCr)--creatine kinase (CK) pathway for compartmentalized energy transfer in cardiac cells. Mitochondrial creatine kinase, MtCK, fixed by cardiolipin molecules in the vicinity of the adenine nucleotide translocator, is a key enzyme in this pathway. Direct transfer of ATP and ADP between these proteins has been revealed both in experimental studies on the kinetics of the regulation of mitochondrial respiration and by mathematical modelling as a main mechanism of functional coupling of PCr production to oxidative phosphorylation. In cells in vivo or in permeabilized cells in situ, this coupling is reinforced by limited permeability of the outer membrane of the mitochondria for adenine nucleotides due to the contacts with cytoskeletal proteins. Due to these mechanisms, at least 80% of total energy is exported from mitochondria by PCr molecules. Mathematical modelling of intracellular diffusion and energy transfer shows that the main function of the PCr-CK pathway is to connect different pools (compartments) of ATP and, by this way, to overcome the local restrictions and diffusion limitation of adenine nucleotides due to the high degree of structural organization of cardiac cells.
Collapse
Affiliation(s)
- Valdur Saks
- Laboratory of Fundamental and Applied Bioenergetics, INSERM U 884, Joseph Fourier University, 2280, Rue de la Piscine, BP53X-38041, Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
32
|
Fojo T. Can mutations in gamma-actin modulate the toxicity of microtubule targeting agents? J Natl Cancer Inst 2006; 98:1345-7. [PMID: 17018774 DOI: 10.1093/jnci/djj408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|