1
|
Rioux AV, Nsimba-Batomene TR, Slimani S, Bergeron NAD, Gravel MAM, Schreiber SV, Fiola MJ, Haydock L, Garneau AP, Isenring P. Navigating the multifaceted intricacies of the Na +-Cl - cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. Physiol Rev 2024; 104:1147-1204. [PMID: 38329422 PMCID: PMC11381001 DOI: 10.1152/physrev.00027.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.
Collapse
Affiliation(s)
- A V Rioux
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - T R Nsimba-Batomene
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - N A D Bergeron
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M A M Gravel
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S V Schreiber
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M J Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - L Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - A P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - P Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
2
|
Trejo F, Elizalde S, Mercado A, Gamba G, de losHeros P. SLC12A cryo-EM: analysis of relevant ion binding sites, structural domains, and amino acids. Am J Physiol Cell Physiol 2023; 325:C921-C939. [PMID: 37545407 DOI: 10.1152/ajpcell.00089.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
The solute carrier family 12A (SLC12A) superfamily of membrane transporters modulates the movement of cations coupled with chloride across the membrane. In doing so, these cotransporters are involved in numerous aspects of human physiology: cell volume regulation, ion homeostasis, blood pressure regulation, and neurological action potential via intracellular chloride concentration modulation. Their physiological characterization has been largely studied; however, understanding the mechanics of their function and the relevance of structural domains or specific amino acids has been a pending task. In recent years, single-particle cryogenic electron microscopy (cryo-EM) has been successfully applied to members of the SLC12A family including all K+:Cl- cotransporters (KCCs), Na+:K+:2Cl- cotransporter NKCC1, and recently Na+:Cl- cotransporter (NCC); revealing structural elements that play key roles in their function. The present review analyzes the data provided by these cryo-EM reports focusing on structural domains and specific amino acids involved in ion binding, domain interactions, and other important SCL12A structural elements. A comparison of cryo-EM data from NKCC1 and KCCs is presented in the light of the two recent NCC cryo-EM studies, to propose insight into structural elements that might also be found in NCC and are necessary for its proper function. In the final sections, the importance of key coordination residues for substrate specificity and their implication on various pathophysiological conditions and genetic disorders is reviewed, as this could provide the basis to correlate structural elements with the development of novel and selective treatments, as well as mechanistic insight into the function and regulation of cation-coupled chloride cotransporters (CCCs).
Collapse
Affiliation(s)
- Fátima Trejo
- Unidad de Investigación UNAM-INC, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stephanie Elizalde
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Adriana Mercado
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Gerardo Gamba
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola de losHeros
- Unidad de Investigación UNAM-INC, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Shih SW, Yan JJ, Lu SW, Chuang YT, Lin HW, Chou MY, Hwang PP. Molecular Physiological Evidence for the Role of Na+-Cl− Co-Transporter in Branchial Na+ Uptake in Freshwater Teleosts. Int J Mol Sci 2023; 24:ijms24076597. [PMID: 37047570 PMCID: PMC10094795 DOI: 10.3390/ijms24076597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The gills are the major organ for Na+ uptake in teleosts. It was proposed that freshwater (FW) teleosts adopt Na+/H+ exchanger 3 (Nhe3) as the primary transporter for Na+ uptake and Na+-Cl− co-transporter (Ncc) as the backup transporter. However, convincing molecular physiological evidence to support the role of Ncc in branchial Na+ uptake is still lacking due to the limitations of functional assays in the gills. Thus, this study aimed to reveal the role of branchial Ncc in Na+ uptake with an in vivo detection platform (scanning ion-selective electrode technique, SIET) that has been recently established in fish gills. First, we identified that Ncc2-expressing cells in zebrafish gills are a specific subtype of ionocyte (NCC ionocytes) by using single-cell transcriptome analysis and immunofluorescence. After a long-term low-Na+ FW exposure, zebrafish increased branchial Ncc2 expression and the number of NCC ionocytes and enhanced gill Na+ uptake capacity. Pharmacological treatments further suggested that Na+ is indeed taken up by Ncc, in addition to Nhe, in the gills. These findings reveal the uptake roles of both branchial Ncc and Nhe under FW and shed light on osmoregulatory physiology in adult fish.
Collapse
Affiliation(s)
- Shang-Wu Shih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
- Department of Life Science, National Taiwan University, Taipei 106319, Taiwan
| | - Jia-Jiun Yan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Shao-Wei Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Ya-Ting Chuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
| | - How-Wei Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 106319, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
- Department of Life Science, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
4
|
Moreno E, Pacheco-Alvarez D, Chávez-Canales M, Elizalde S, Leyva-Ríos K, Gamba G. Structure-function relationships in the sodium chloride cotransporter. Front Physiol 2023; 14:1118706. [PMID: 36998989 PMCID: PMC10043231 DOI: 10.3389/fphys.2023.1118706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
The thiazide sensitive Na+:Cl− cotransporter (NCC) is the principal via for salt reabsorption in the apical membrane of the distal convoluted tubule (DCT) in mammals and plays a fundamental role in managing blood pressure. The cotransporter is targeted by thiazide diuretics, a highly prescribed medication that is effective in treating arterial hypertension and edema. NCC was the first member of the electroneutral cation-coupled chloride cotransporter family to be identified at a molecular level. It was cloned from the urinary bladder of the Pseudopleuronectes americanus (winter flounder) 30 years ago. The structural topology, kinetic and pharmacology properties of NCC have been extensively studied, determining that the transmembrane domain (TM) coordinates ion and thiazide binding. Functional and mutational studies have discovered residues involved in the phosphorylation and glycosylation of NCC, particularly on the N-terminal domain, as well as the extracellular loop connected to TM7-8 (EL7-8). In the last decade, single-particle cryogenic electron microscopy (cryo-EM) has permitted the visualization of structures at high atomic resolution for six members of the SLC12 family (NCC, NKCC1, KCC1-KCC4). Cryo-EM insights of NCC confirm an inverted conformation of the TM1-5 and TM6-10 regions, a characteristic also found in the amino acid-polyamine-organocation (APC) superfamily, in which TM1 and TM6 clearly coordinate ion binding. The high-resolution structure also displays two glycosylation sites (N-406 and N-426) in EL7-8 that are essential for NCC expression and function. In this review, we briefly describe the studies related to the structure-function relationship of NCC, beginning with the first biochemical/functional studies up to the recent cryo-EM structure obtained, to acquire an overall view enriched with the structural and functional aspects of the cotransporter.
Collapse
Affiliation(s)
- Erika Moreno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - María Chávez-Canales
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stephanie Elizalde
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Karla Leyva-Ríos
- Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Phisiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Gerardo Gamba,
| |
Collapse
|
5
|
Moreno E, Plata C, Vazquez N, Oropeza-Víveros DM, Pacheco-Alvarez D, Rojas-Vega L, Olin-Sandoval V, Gamba G. The European and Japanese eel NaCl cotransporter β exhibit chloride currents and are resistant to thiazide type diuretics. Am J Physiol Cell Physiol 2022; 323:C385-C399. [PMID: 35759442 PMCID: PMC9359660 DOI: 10.1152/ajpcell.00213.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The thiazide-sensitive Na+-Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian distal convoluted tubule, and the inhibition of its function with thiazides is widely used for the treatment of arterial hypertension. In mammals and teleosts, NCC is present as one ortholog that is mainly expressed in the kidney. One exception, however, is the eel, which has two genes encoding NCC. The eNCCa is located in the kidney and eNCCb, which is present in the apical membrane of the rectum. Interestingly, the European eNCCb functions as a NaCl cotransporter that is nevertheless resistant to thiazides and is not activated by low-chloride hypotonic stress. However, in the Japanese eel rectal sac, a thiazide-sensitive NaCl transport mechanism has been described. The protein sequences between eNCCβ and jNCCβ are 98% identical. Here, by site-directed mutagenesis, we transformed eNCCβ into jNCCβ. Our data showed that jNCCβ, similar to eNCCβ, is resistant to thiazides. In addition, both NCCβ proteins have high transport capacity with respect to their renal NCC orthologs, and in contrast to known NCCs, exhibit electrogenic properties that are reduced when residue I172 is substituted by A, G or M. This is considered a key residue for the chloride ion-binding sites of NKCC and KCC. We conclude that NCCb proteins are not sensitive to thiazides and have electrogenic properties dependent on Cl-, and site I172 is important for the function of NCCβ.
Collapse
Affiliation(s)
- Erika Moreno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico
| | - Consuelo Plata
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico
| | - Norma Vazquez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan 14080 Mexico City, Mexico
| | - Dulce María Oropeza-Víveros
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico
| | | | - Lorena Rojas-Vega
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico
| | - Viridiana Olin-Sandoval
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan 14080 Mexico City, Mexico
| |
Collapse
|
6
|
Polymorphisms in common antihypertensive targets: Pharmacogenomic implications for the treatment of cardiovascular disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:141-182. [PMID: 35659371 DOI: 10.1016/bs.apha.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The idea of personalized medicine came to fruition with sequencing the human genome; however, aside from a few cases, the genetic revolution has yet to materialize. Cardiovascular diseases are the leading cause of death globally, and hypertension is a common prelude to nearly all cardiovascular diseases. Thus, hypertension is an ideal candidate disease to apply tenants of personalized medicine to lessen cardiovascular disease. Herein is a survey that visually depicts the polymorphisms in the top eight antihypertensive targets. Although there are numerous genome-wide association studies regarding cardiovascular disease, few studies look at the effects of receptor polymorphisms on drug treatment. With 17,000+ polymorphisms in the combined target proteins examined, it is expected that some of the clinical variability in the treatment of hypertension is due to polymorphisms in the drug targets. Recent advances in techniques and technology, such as high throughput examination of single mutations, structure prediction, computational power for modeling, and CRISPR models of point mutations, allow for a relatively rapid and comprehensive examination of the effects of known and future polymorphisms on drug affinity and effects. As hypertension is easy to measure and has a plethora of clinically viable ligands, hypertension makes an excellent disease to study pharmacogenomics in the lab and the clinic. If the promises of personalized medicine are to materialize, a concerted effort to examine the effects polymorphisms have on drugs is required. A clinician with the knowledge of a patient's genotype can then prescribe drugs that are optimal for treating that specific patient.
Collapse
|
7
|
Chew TA, Zhang J, Feng L. High-Resolution Views and Transport Mechanisms of the NKCC1 and KCC Transporters. J Mol Biol 2021; 433:167056. [PMID: 34022207 PMCID: PMC9722358 DOI: 10.1016/j.jmb.2021.167056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022]
Abstract
Cation-chloride cotransporters (CCCs) are responsible for the coupled co-transport of Cl- with K+ and/or Na+ in an electroneutral manner. They play important roles in myriad fundamental physiological processes--from cell volume regulation to transepithelial solute transport and intracellular ion homeostasis--and are targeted by medicines commonly prescribed to treat hypertension and edema. After several decades of studies into the functions and pharmacology of these transporters, there have been several breakthroughs in the structural determination of CCC transporters. The insights provided by these new structures for the Na+/K+/Cl- cotransporter NKCC1 and the K+/Cl- cotransporters KCC1, KCC2, KCC3 and KCC4 have deepened our understanding of their molecular basis and transport function. This focused review discusses recent advances in the structural and mechanistic understanding of CCC transporters, including architecture, dimerization, functional roles of regulatory domains, ion binding sites, and coupled ion transport.
Collapse
Affiliation(s)
- Thomas A Chew
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jinru Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Simultaneous Homozygous Mutations in SLC12A3 and CLCNKB in an Inbred Chinese Pedigree. Genes (Basel) 2021; 12:genes12030369. [PMID: 33807568 PMCID: PMC7999423 DOI: 10.3390/genes12030369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 11/30/2022] Open
Abstract
Gitelman syndrome (GS) and Bartter syndrome (BS) type III are both rare, recessively inherited salt-losing tubulopathies caused by SLC12A3 and CLCNKB mutations, respectively. We described a 48-year-old male patient with fatigue, carpopedal spasm, arthralgia, hypokalemic alkalosis, mild renal dysfunction, hypomagnesemia, hypocalciuria, hyperuricemia, normotension, hyperreninemia and chondrocalcinosis in knees and Achilles tendons. His parents are first cousin. Genetic analysis revealed simultaneous homozygous mutations in SLC12A3 gene with c.248G>A, p.Arg83Gln and CLCNKB gene with c.1171T>C, p.Trp391Arg. The second younger brother of the proband harbored the same simultaneous mutations in SLC12A3 and CLCNKB and exhibited similar clinical features except normomagnesemia and bilateral kidney stones. The first younger brother of the proband harbored the same homozygous mutations in CLCNKB and exhibited clinical features of hypokalemia, normomagnesemia, hypercalciuria and hyperuricemia. Potassium chloride, spironolactone and potassium magnesium aspartate were prescribed to the proband to correct electrolytic disturbances. Benzbromarone and febuxostat were prescribed to correct hyperuricemia. The dose of potassium magnesium aspartate was subsequently increased to alleviate arthralgia resulting from calcium pyrophosphate deposition disease (CPPD). To the best of our knowledge, we are the first to report an exceptionally rare case in an inbred Chinese pedigree with simultaneous homozygous mutations in SLC12A3 and CLCNKB. GS and BS type III have significant intrafamilial phenotype heterogeneity. When arthralgia is developed in patients with GS and BS, gout and CPPD should both be considered.
Collapse
|
9
|
Meor Azlan NF, Zhang J. Role of the Cation-Chloride-Cotransporters in Cardiovascular Disease. Cells 2020; 9:E2293. [PMID: 33066544 PMCID: PMC7602155 DOI: 10.3390/cells9102293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 02/05/2023] Open
Abstract
The SLC12 family of cation-chloride-cotransporters (CCCs) is comprised of potassium chloride cotransporters (KCCs), which mediate Cl- extrusion and sodium-potassium chloride cotransporters (N[K]CCs), which mediate Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. The functions of CCCs influence a variety of physiological processes, many of which overlap with the pathophysiology of cardiovascular disease. Although not all of the cotransporters have been linked to Mendelian genetic disorders, recent studies have provided new insights into their functional role in vascular and renal cells in addition to their contribution to cardiovascular diseases. Particularly, an imbalance in potassium levels promotes the pathogenesis of atherosclerosis and disturbances in sodium homeostasis are one of the causes of hypertension. Recent findings suggest hypothalamic signaling as a key signaling pathway in the pathophysiology of hypertension. In this review, we summarize and discuss the role of CCCs in cardiovascular disease with particular emphasis on knowledge gained in recent years on NKCCs and KCCs.
Collapse
Affiliation(s)
- Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, UK;
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, UK;
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen 361004, Fujian, China
| |
Collapse
|
10
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
11
|
Rapoport RM, Soleimani M. Mechanism of Thiazide Diuretic Arterial Pressure Reduction: The Search Continues. Front Pharmacol 2019; 10:815. [PMID: 31543812 PMCID: PMC6730501 DOI: 10.3389/fphar.2019.00815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Thiazide diuretic (TZD)-mediated chronic reduction of arterial pressure is thought to occur through decreased total peripheral vascular resistance. Further, the decreased peripheral vascular resistance is accomplished through TZD activation of an extrarenal target, resulting in inhibition of vascular constriction. However, despite greater than five decades of investigation, little progress has been made into the identification of the TZD extrarenal target. Proposed mechanisms range from direct inhibition of constrictor and activation of relaxant signaling pathways in the vascular smooth muscle to indirect inhibition through decreased neurogenic and hormonal regulatory pathways. Surprisingly, particularly in view of this lack of progress, comprehensive reviews of the subject are absent. Moreover, even though it is well recognized that 1) several types of hypertension are insensitive to TZD reduction of arterial pressure and, further, TZD fail to reduce arterial pressure in normotensive subjects and animals, and 2) different mechanisms underlie acute and chronic TZD, findings derived from these models and parameters remain largely undifferentiated. This review 1) comprehensively describes findings associated with TZD reduction of arterial pressure; 2) differentiates between observations in TZD-sensitive and TZD-insensitive hypertension, normotensive subjects/animals, and acute and chronic effects of TZD; 3) critically evaluates proposed TZD extrarenal targets; 4) proposes guiding parameters for relevant investigations into extrarenal TZD target identification; and 5) proposes a working model for TZD chronic reduction of arterial pressure through vascular dilation.
Collapse
Affiliation(s)
- Robert M Rapoport
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Manoocher Soleimani
- Research Service, Veterans Affairs Medical Center, Cincinnati, OH, United States.,Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
12
|
Structure-function relationships in the renal NaCl cotransporter (NCC). CURRENT TOPICS IN MEMBRANES 2019; 83:177-204. [PMID: 31196605 DOI: 10.1016/bs.ctm.2019.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The thiazide-sensitive Na+-Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the distal convoluted tubule, serves as a receptor for thiazide-type diuretics, and is involved in inherited diseases associated with abnormal blood pressure. The functional and structural characterization of NCC from different species has led us to gain insights into the structure-function relationships of the cotransporter. Here we present an overview of different studies that had described these properties. Additionally, we report the cloning and characterization of the NCC from the spiny dogfish (Squalus acanthias) kidney (sNCC). The purpose of the present study was to determine the main functional, pharmacological and regulatory properties of sNCC to make a direct comparison with other NCC orthologous. The sNCC cRNA encodes a 1033 amino acid membrane protein, when expressed in Xenopus oocytes, functions as a thiazide-sensitive Na-Cl cotransporter with NCC regulation and thiazide-inhibition properties similar to mammals, rather than to teleosts. However, the Km values for ion transport kinetics are significantly higher than those observed in the mammal species. In summary, we present a review on NCC structure-function relationships with the addition of the sNCC information in order to enrich the NCC cotransporter knowledge.
Collapse
|
13
|
Ravarotto V, Loffing J, Loffing-Cueni D, Heidemeyer M, Pagnin E, Calò LA, Rossi GP. Gitelman's Syndrome: characterization of a novel c.1181G>A point mutation and functional classification of the known mutations. Hypertens Res 2018; 41:578-588. [PMID: 29925901 DOI: 10.1038/s41440-018-0061-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 12/18/2022]
Abstract
We have investigated the mechanisms by which a novel missense point mutation (c.1181G>A) found in two sisters causes Gitelman's syndrome by impairing the sodium chloride co-transporter (NCC, encoded by SLC12A3 gene) function. The cDNA and in vitro transcribed mRNA of either wild-type or mutated SLC12A3 were transfected into HEK293 cells and injected into Xenopus laevis oocytes, respectively. The expression, maturation, trafficking, and function of the mutated and wild-type NCC were assessed by Western blotting, immunohistochemistry and 22Na+ uptake studies. By immunoblotting of lysates from HEK293 cells and oocytes expressing wild-type NCC, two NCC-related bands of approximately 130 kDa and 115 kDa, corresponding to fully and core-glycosylated NCC, respectively, were identified. In contrast, the mutant NCC only showed a single band of approximately 115 kDa, indicating impaired maturation of the protein. Moreover, oocytes injected with wild-type NCC showed thiazide-sensitive 22Na+ uptake, which was absent in those injected with the mutant NCC. The novel mutation was discussed in the context of the functionally characterized NCC mutations causing Gitelman's syndrome, which fit into five classes. In conclusion, the functional characterization of this novel Gly394Asp NCC and its localization on the NCC structure, alongside that of previously known mutations causing Gitelman's syndrome, may provide novel information on the function of the different domains of the human NCC.
Collapse
Affiliation(s)
- Verdiana Ravarotto
- Internal Medicine, Department of Medicine-DIMED, University of Padova, Padova, Italy.,Nephrology, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | | | | | | | - Elisa Pagnin
- Nephrology, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Lorenzo A Calò
- Nephrology, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Gian Paolo Rossi
- Internal Medicine, Department of Medicine-DIMED, University of Padova, Padova, Italy.
| |
Collapse
|
14
|
Soo JYC, Jansen J, Masereeuw R, Little MH. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol 2018; 14:378-393. [PMID: 29626199 PMCID: PMC6013592 DOI: 10.1038/s41581-018-0003-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vitro screens for nephrotoxicity are currently poorly predictive of toxicity in humans. Although the functional proteins that are expressed by nephron tubules and mediate drug susceptibility are well known, current in vitro cellular models poorly replicate both the morphology and the function of kidney tubules and therefore fail to demonstrate injury responses to drugs that would be nephrotoxic in vivo. Advances in protocols to enable the directed differentiation of pluripotent stem cells into multiple renal cell types and the development of microfluidic and 3D culture systems have opened a range of potential new platforms for evaluating drug nephrotoxicity. Many of the new in vitro culture systems have been characterized by the expression and function of transporters, enzymes, and other functional proteins that are expressed by the kidney and have been implicated in drug-induced renal injury. In vitro platforms that express these proteins and exhibit molecular biomarkers that have been used as readouts of injury demonstrate improved functional maturity compared with static 2D cultures and represent an opportunity to model injury to renal cell types that have hitherto received little attention. As nephrotoxicity screening platforms become more physiologically relevant, they will facilitate the development of safer drugs and improved clinical management of nephrotoxicants.
Collapse
Affiliation(s)
- Joanne Y-C Soo
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jitske Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Melissa H Little
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.
- Murdoch Children's Research Institute, Parkville, Victoria, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
15
|
Moreno E, Gayosso JA, Montejano JR, Almaguer G, Vázquez N, Cruz C, Mercado A, Bobadilla NA, Gamba G, Sierra A, Ramírez V. Geraniin is a diuretic by inhibiting the Na +-K +-2Cl - cotransporter NKCC2. Am J Physiol Renal Physiol 2017; 314:F240-F250. [PMID: 29046296 DOI: 10.1152/ajprenal.00221.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Geranium seemannii Peyr is a perennial plant endemic to central Mexico that has been widely used for its diuretic effect, but the responsible compound of this effect is unknown as well as the mechanism by which the diuretic effect is achieved. Geraniin is one of the compounds isolated from this kind of geranium. This study was designed to determinate whether geraniin possesses diuretic activity and to elucidate the mechanism of action. Geraniin was extracted and purified from Geranium seemannii Peyr. Male Wistar rats were divided into four groups: 1) Control, 2) 75 mg/kg of geraniin, 3) 20 mg/kg of furosemide, and 4) 10 mg/kg of hydrochlorothiazide. Each treatment was administered by gavage every 24 h for 7 days. The urinary excretion of electrolytes and the fractional excretion of sodium (FENa) were determined. To uncover the molecular target of geraniin, Xenopus laevis oocytes were microinjected with cRNAs encoding the Na+-Cl- cotransporter (NCC) and the Na+-K+-2Cl- cotransporter NKCC2 to functionally express these cotransporters. Geraniin significantly increased diuresis, natriuresis, and calciuresis to a similar extent as was observed in the furosemide-treated rats. Consistent with the furosemide-like effect, in X. laevis oocytes, geraniin significantly reduced the activity of NKCC2, with no effect on NCC activity. In contrast to furosemide, the effect of geraniin on NKCC2 was irreversible, apparently due to its inhibitory effect on heat shock protein 90. Our observations suggest that geraniin could have a potential role in the treatment of hypertension or edematous states.
Collapse
Affiliation(s)
- Erika Moreno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Juan A Gayosso
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo Pachuca, Hidalgo, Mexico
| | - José R Montejano
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo Pachuca, Hidalgo, Mexico
| | - Georgina Almaguer
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo Pachuca, Hidalgo, Mexico
| | - Norma Vázquez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cristino Cruz
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Adriana Mercado
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City, Mexico
| | - Norma A Bobadilla
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y de Ciencias de la Salud, Monterrey, Nuevo León , México
| | - Alfredo Sierra
- Escuela Superior de Medicina, Instituto Politécnico Nacional , Mexico City, Mexico
| | - Victoria Ramírez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| |
Collapse
|
16
|
Alexander RT, Dimke H. Effect of diuretics on renal tubular transport of calcium and magnesium. Am J Physiol Renal Physiol 2017; 312:F998-F1015. [DOI: 10.1152/ajprenal.00032.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 01/07/2023] Open
Abstract
Calcium (Ca2+) and Magnesium (Mg2+) reabsorption along the renal tubule is dependent on distinct trans- and paracellular pathways. Our understanding of the molecular machinery involved is increasing. Ca2+ and Mg2+ reclamation in kidney is dependent on a diverse array of proteins, which are important for both forming divalent cation-permeable pores and channels, but also for generating the necessary driving forces for Ca2+ and Mg2+ transport. Alterations in these molecular constituents can have profound effects on tubular Ca2+ and Mg2+ handling. Diuretics are used to treat a large range of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na+) transport, but also indirectly affect renal Ca2+ and Mg2+ handling, i.e., by establishing a prerequisite electrochemical gradient. It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca2+ and Mg2+ handling are reviewed in the context of the present understanding of basal molecular mechanisms of Ca2+ and Mg2+ transport. Acetazolamide, osmotic diuretics, Na+/H+ exchanger (NHE3) inhibitors, and antidiabetic Na+/glucose cotransporter type 2 (SGLT) blocking compounds, target the proximal tubule, where paracellular Ca2+ transport predominates. Loop diuretics and renal outer medullary K+ (ROMK) inhibitors block thick ascending limb transport, a segment with significant paracellular Ca2+ and Mg2+ transport. Thiazides target the distal convoluted tubule; however, their effect on divalent cation transport is not limited to that segment. Finally, potassium-sparing diuretics, which inhibit electrogenic Na+ transport at distal sites, can also affect divalent cation transport.
Collapse
Affiliation(s)
- R. Todd Alexander
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada; and
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
Moreno E, Plata C, Rodríguez-Gama A, Argaiz ER, Vázquez N, Leyva-Ríos K, Islas L, Cutler C, Pacheco-Alvarez D, Mercado A, Cariño-Cortés R, Castañeda-Bueno M, Gamba G. The European Eel NCCβ Gene Encodes a Thiazide-resistant Na-Cl Cotransporter. J Biol Chem 2016; 291:22472-22481. [PMID: 27587391 DOI: 10.1074/jbc.m116.742783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/25/2016] [Indexed: 12/21/2022] Open
Abstract
The thiazide-sensitive Na-Cl cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian distal convoluted tubule. NCC plays a key role in the regulation of blood pressure. Its inhibition with thiazides constitutes the primary baseline therapy for arterial hypertension. However, the thiazide-binding site in NCC is unknown. Mammals have only one gene encoding for NCC. The eel, however, contains a duplicate gene. NCCα is an ortholog of mammalian NCC and is expressed in the kidney. NCCβ is present in the apical membrane of the rectum. Here we cloned and functionally characterized NCCβ from the European eel. The cRNA encodes a 1043-amino acid membrane protein that, when expressed in Xenopus oocytes, functions as an Na-Cl cotransporter with two major characteristics, making it different from other known NCCs. First, eel NCCβ is resistant to thiazides. Single-point mutagenesis supports that the absence of thiazide inhibition is, at least in part, due to the substitution of a conserved serine for a cysteine at position 379. Second, NCCβ is not activated by low-chloride hypotonic stress, although the unique Ste20-related proline alanine-rich kinase (SPAK) binding site in the amino-terminal domain is conserved. Thus, NCCβ exhibits significant functional differences from NCCs that could be helpful in defining several aspects of the structure-function relationship of this important cotransporter.
Collapse
Affiliation(s)
- Erika Moreno
- From the Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico
| | - Consuelo Plata
- From the Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico
| | - Alejandro Rodríguez-Gama
- the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, 14080 Mexico City, Mexico
| | - Eduardo R Argaiz
- From the Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico.,the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, 14080 Mexico City, Mexico
| | - Norma Vázquez
- From the Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico.,the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, 14080 Mexico City, Mexico
| | - Karla Leyva-Ríos
- the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, 14080 Mexico City, Mexico
| | - León Islas
- the Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Coyoacan, Mexico City, Mexico
| | - Christopher Cutler
- the Biology Department, Georgia Southern University, Statesboro, Georgia 30460
| | | | - Adriana Mercado
- the Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, 14080 Mexico City, Mexico, and
| | - Raquel Cariño-Cortés
- the School of Medicine, Universidad Autónoma del Estado de Hidalgo, 42034 Pachuca, Hidalgo, México
| | - María Castañeda-Bueno
- From the Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico
| | - Gerardo Gamba
- From the Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, 14080 Mexico City, Mexico, .,the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, 14080 Mexico City, Mexico
| |
Collapse
|
18
|
Sinning A, Radionov N, Trepiccione F, López-Cayuqueo KI, Jayat M, Baron S, Cornière N, Alexander RT, Hadchouel J, Eladari D, Hübner CA, Chambrey R. Double Knockout of the Na+-Driven Cl-/HCO3- Exchanger and Na+/Cl- Cotransporter Induces Hypokalemia and Volume Depletion. J Am Soc Nephrol 2016; 28:130-139. [PMID: 27151921 DOI: 10.1681/asn.2015070734] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 03/08/2016] [Indexed: 01/13/2023] Open
Abstract
We recently described a novel thiazide-sensitive electroneutral NaCl transport mechanism resulting from the parallel operation of the Cl-/HCO3- exchanger pendrin and the Na+-driven Cl-/2HCO3- exchanger (NDCBE) in β-intercalated cells of the collecting duct. Although a role for pendrin in maintaining Na+ balance, intravascular volume, and BP is well supported, there is no in vivo evidence for the role of NDCBE in maintaining Na+ balance. Here, we show that deletion of NDCBE in mice caused only subtle perturbations of Na+ homeostasis and provide evidence that the Na+/Cl- cotransporter (NCC) compensated for the inactivation of NDCBE. To unmask the role of NDCBE, we generated Ndcbe/Ncc double-knockout (dKO) mice. On a normal salt diet, dKO and single-knockout mice exhibited similar activation of the renin-angiotensin-aldosterone system, whereas only dKO mice displayed a lower blood K+ concentration. Furthermore, dKO mice displayed upregulation of the epithelial sodium channel (ENaC) and the Ca2+-activated K+ channel BKCa. During NaCl depletion, only dKO mice developed marked intravascular volume contraction, despite dramatically increased renin activity. Notably, the increase in aldosterone levels expected on NaCl depletion was attenuated in dKO mice, and single-knockout and dKO mice had similar blood K+ concentrations under this condition. In conclusion, NDCBE is necessary for maintaining sodium balance and intravascular volume during salt depletion or NCC inactivation in mice. Furthermore, NDCBE has an important role in the prevention of hypokalemia. Because NCC and NDCBE are both thiazide targets, the combined inhibition of NCC and the NDCBE/pendrin system may explain thiazide-induced hypokalemia in some patients.
Collapse
Affiliation(s)
- Anne Sinning
- Institut für Humangenetik, University Hospital Jena, Friedrich Schiller Universität, Jena, Germany
| | - Nikita Radionov
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty de Medicine, Université Paris-Descartes, Paris, France
| | - Francesco Trepiccione
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty de Medicine, Université Paris-Descartes, Paris, France
| | - Karen I López-Cayuqueo
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Centro de Estudios Científicos (CECs), Valdivia, Chile.,Faculty de Medicine, Université Paris-Descartes, Paris, France
| | - Maximilien Jayat
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty de Medicine, Université Paris-Descartes, Paris, France
| | - Stéphanie Baron
- Department de Physiologie, Hopital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Nicolas Cornière
- Service de Néphrologie et Transplantation Rénale, Centre Hospitalier Universitaire de La Réunion, St. Denis, France
| | - R Todd Alexander
- Departments of Pediatrics and Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Juliette Hadchouel
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty de Medicine, Université Paris-Descartes, Paris, France
| | - Dominique Eladari
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty de Medicine, Université Paris-Descartes, Paris, France.,Department de Physiologie, Hopital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Christian A Hübner
- Institut für Humangenetik, University Hospital Jena, Friedrich Schiller Universität, Jena, Germany
| | - Régine Chambrey
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France; .,Faculty de Medicine, Université Paris-Descartes, Paris, France.,Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
19
|
Impact of Hybrid and Complex N-Glycans on Cell Surface Targeting of the Endogenous Chloride Cotransporter Slc12a2. Int J Cell Biol 2015; 2015:505294. [PMID: 26351455 PMCID: PMC4553341 DOI: 10.1155/2015/505294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 11/21/2022] Open
Abstract
The Na+K+2Cl− cotransporter-1 (Slc12a2, NKCC1) is widely distributed and involved in cell volume/ion regulation. Functional NKCC1 locates in the plasma membrane of all cells studied, particularly in the basolateral membrane of most polarized cells. Although the mechanisms involved in plasma membrane sorting of NKCC1 are poorly understood, it is assumed that N-glycosylation is necessary. Here, we characterize expression, N-glycosylation, and distribution of NKCC1 in COS7 cells. We show that ~25% of NKCC1 is complex N-glycosylated whereas the rest of it corresponds to core/high-mannose and hybrid-type N-glycosylated forms. Further, ~10% of NKCC1 reaches the plasma membrane, mostly as core/high-mannose type, whereas ~90% of NKCC1 is distributed in defined intracellular compartments. In addition, inhibition of the first step of N-glycan biosynthesis with tunicamycin decreases total and plasma membrane located NKCC1 resulting in almost undetectable cotransport function. Moreover, inhibition of N-glycan maturation with swainsonine or kifunensine increased core/hybrid-type NKCC1 expression but eliminated plasma membrane complex N-glycosylated NKCC1 and transport function. Together, these results suggest that (i) NKCC1 is delivered to the plasma membrane of COS7 cells independently of its N-glycan nature, (ii) most of NKCC1 in the plasma membrane is core/hybrid-type N-glycosylated, and (iii) the minimal proportion of complex N-glycosylated NKCC1 is functionally active.
Collapse
|
20
|
Wang L, Dong C, Xi YG, Su X. Thiazide-sensitive Na+-Cl- cotransporter: genetic polymorphisms and human diseases. Acta Biochim Biophys Sin (Shanghai) 2015; 47:325-34. [PMID: 25841442 DOI: 10.1093/abbs/gmv020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/26/2015] [Indexed: 12/16/2022] Open
Abstract
The thiazide-sensitive Na(+)-Cl(-) cotransporter (TSC) is responsible for the major sodium chloride reabsorption pathway, which is located in the apical membrane of the epithelial cells of the distal convoluted tubule. TSC is involved in several physiological activities including transepithelial ion absorption and secretion, cell volume regulation, and setting intracellular Cl(-) concentration below or above its electrochemical potential equilibrium. In addition, TSC serves as the target of thiazide-type diuretics that are the first line of therapy for the treatment of hypertension in the clinic, and its mutants are also reported to be associated with the hereditary disease, Gitelman's syndrome. This review aims to summarize the publications with regard to the TSC by focusing on the association between TSC mutants and human hypertension as well as Gitelman's syndrome.
Collapse
Affiliation(s)
- Linghong Wang
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| | - Chao Dong
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| | - Ya-Guang Xi
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| |
Collapse
|
21
|
Hartmann AM, Nothwang HG. Molecular and evolutionary insights into the structural organization of cation chloride cotransporters. Front Cell Neurosci 2015; 8:470. [PMID: 25653592 PMCID: PMC4301019 DOI: 10.3389/fncel.2014.00470] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/30/2014] [Indexed: 01/26/2023] Open
Abstract
Cation chloride cotransporters (CCC) play an essential role for neuronal chloride homeostasis. K(+)-Cl(-) cotransporter (KCC2), is the principal Cl(-)-extruder, whereas Na(+)-K(+)-Cl(-) cotransporter (NKCC1), is the major Cl(-)-uptake mechanism in many neurons. As a consequence, the action of the inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine strongly depend on the activity of these two transporters. Knowledge of the mechanisms involved in ion transport and regulation is thus of great importance to better understand normal and disturbed brain function. Although no overall 3-dimensional crystal structures are yet available, recent molecular and phylogenetic studies and modeling have provided new and exciting insights into structure-function relationships of CCC. Here, we will summarize our current knowledge of the gross structural organization of the proteins, their functional domains, ion binding and translocation sites, and the established role of individual amino acids (aa). A major focus will be laid on the delineation of shared and distinct organizational principles between KCC2 and NKCC1. Exploiting the richness of recently generated genome data across the tree of life, we will also explore the molecular evolution of these features.
Collapse
Affiliation(s)
- Anna-Maria Hartmann
- Systematics and Evolutionary Biology Group, Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg Oldenburg, Germany
| | - Hans Gerd Nothwang
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg Oldenburg, Germany ; Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg Oldenburg, Germany
| |
Collapse
|
22
|
Moes AD, van der Lubbe N, Zietse R, Loffing J, Hoorn EJ. The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation. Pflugers Arch 2013; 466:107-18. [PMID: 24310820 DOI: 10.1007/s00424-013-1407-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/14/2022]
Abstract
SLC12A3 encodes the thiazide-sensitive sodium chloride cotransporter (NCC), which is primarily expressed in the kidney, but also in intestine and bone. In the kidney, NCC is located in the apical plasma membrane of epithelial cells in the distal convoluted tubule. Although NCC reabsorbs only 5 to 10% of filtered sodium, it is important for the fine-tuning of renal sodium excretion in response to various hormonal and non-hormonal stimuli. Several new roles for NCC in the regulation of sodium, potassium, and blood pressure have been unraveled recently. For example, the recent discoveries that NCC is activated by angiotensin II but inhibited by dietary potassium shed light on how the kidney handles sodium during hypovolemia (high angiotensin II) and hyperkalemia. The additive effect of angiotensin II and aldosterone maximizes sodium reabsorption during hypovolemia, whereas the inhibitory effect of potassium on NCC increases delivery of sodium to the potassium-secreting portion of the nephron. In addition, great steps have been made in unraveling the molecular machinery that controls NCC. This complex network consists of kinases and ubiquitinases, including WNKs, SGK1, SPAK, Nedd4-2, Cullin-3, and Kelch-like 3. The pathophysiological significance of this network is illustrated by the fact that modification of each individual protein in the network changes NCC activity and results in salt-dependent hypotension or hypertension. This review aims to summarize these new insights in an integrated manner while identifying unanswered questions.
Collapse
Affiliation(s)
- Arthur D Moes
- Department of Internal Medicine, Erasmus Medical Center, PO Box 2040, Room H-438, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Chávez-Canales M, Arroyo JP, Ko B, Vázquez N, Bautista R, Castañeda-Bueno M, Bobadilla NA, Hoover RS, Gamba G. Insulin increases the functional activity of the renal NaCl cotransporter. J Hypertens 2013; 31:303-11. [PMID: 23303355 DOI: 10.1097/hjh.0b013e32835bbb83] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Insulin is recognized to increase renal salt reabsorption in the distal nephron and hyperinsulinemic states have been shown to be associated with increased expression of the renal NaCl cotransporter (NCC). However, the effect of insulin on NCC functional activity has not been reported. METHODS Using a heterologous expression system of Xenopus laevis oocytes, a mouse distal convoluted cell line, mDCT15 cells, endogenously expressing NCC, and an ex-vivo kidney perfusion technique, we assessed the effect of insulin on the activity and phosphorylation of NCC. The signaling pathway involved was analyzed. RESULTS In Xenopus oocytes insulin increases the activity of NCC together with its phosphorylation at threonine residue 58. Activation of NCC by insulin was also observed in mDCT15 cells. Additionally, insulin increased the NCC phosphorylation in kidney under the ex-vivo perfusion technique. In oocytes and mDCT15 cells, insulin effect on NCC was prevented with inhibitors of phosphatidylinositol 3-kinase (PI3K), mTORC2, and AKT1 kinases, but not by inhibitors of MAP or mTORC1 kinases, suggesting that PI3K-mTORC2-AKT1 is the intracellular pathway required. Additionally, activation of NCC by insulin was not affected by wild-type or mutant versions of with no lysine kinase 1, with no lysine kinase 4, or serum glucocorticoid kinase 1, but it was no longer observed in the presence of wild-type or the dominant negative, catalytically inactive with no lysine kinase 3, implicating this kinase in the process. CONCLUSION Insulin induces activation and phosphorylation of NCC. This effect could play an important role in arterial hypertension associated with hyperinsulinemic states, such as obesity, metabolic syndrome, or type 2 diabetes mellitus.
Collapse
Affiliation(s)
- María Chávez-Canales
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Novel NCC mutants and functional analysis in a new cohort of patients with Gitelman syndrome. Eur J Hum Genet 2011; 20:263-70. [PMID: 22009145 DOI: 10.1038/ejhg.2011.189] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Gitelman syndrome (GS) is an autosomal recessive disorder characterized by hypokalemic metabolic alkalosis in conjunction with significant hypomagnesemia and hypocalciuria. The GS phenotype is caused by mutations in the solute carrier family 12, member 3 (SLC12A3) gene that encodes the thiazide-sensitive NaCl cotransporter (NCC). We analyzed DNA samples of 163 patients with a clinical suspicion of GS by direct sequencing of all 26 exons of the SLC12A3 gene. In total, 114 different mutations were identified, 31 of which have not been reported before. These novel variants include 3 deletions, 18 missense, 6 splice site and 4 nonsense mutations. We selected seven missense mutations to investigate their effect on NCC activity and plasma membrane localization by using the Xenopus laevis oocyte expression system. The Thr392Ile mutant did not display transport activity (probably class 2 mutation), while the Asn442Ser and Gln1030Arg NCC mutants showed decreased plasma membrane localization and consequently function, likely due to impaired trafficking (class 3 mutation). Even though the NaCl uptake was hampered for NCC mutants Glu121Asp, Pro751Leu, Ser475Cys and Tyr489His, the transporters reached the plasma membrane (class 4 mutation), suggesting an effect on NCC regulation or ion affinity. The present study shows the identification of 38 novel mutations in the SLC12A3 gene and provides insight into the mechanisms that regulate NCC.
Collapse
|
25
|
Arroyo JP, Lagnaz D, Ronzaud C, Vázquez N, Ko BS, Moddes L, Ruffieux-Daidié D, Hausel P, Koesters R, Yang B, Stokes JB, Hoover RS, Gamba G, Staub O. Nedd4-2 modulates renal Na+-Cl- cotransporter via the aldosterone-SGK1-Nedd4-2 pathway. J Am Soc Nephrol 2011; 22:1707-19. [PMID: 21852580 DOI: 10.1681/asn.2011020132] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Regulation of renal Na(+) transport is essential for controlling blood pressure, as well as Na(+) and K(+) homeostasis. Aldosterone stimulates Na(+) reabsorption by the Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule (DCT) and by the epithelial Na(+) channel (ENaC) in the late DCT, connecting tubule, and collecting duct. Aldosterone increases ENaC expression by inhibiting the channel's ubiquitylation and degradation; aldosterone promotes serum-glucocorticoid-regulated kinase SGK1-mediated phosphorylation of the ubiquitin-protein ligase Nedd4-2 on serine 328, which prevents the Nedd4-2/ENaC interaction. It is important to note that aldosterone increases NCC protein expression by an unknown post-translational mechanism. Here, we present evidence that Nedd4-2 coimmunoprecipitated with NCC and stimulated NCC ubiquitylation at the surface of transfected HEK293 cells. In Xenopus laevis oocytes, coexpression of NCC with wild-type Nedd4-2, but not its catalytically inactive mutant, strongly decreased NCC activity and surface expression. SGK1 prevented this inhibition in a kinase-dependent manner. Furthermore, deficiency of Nedd4-2 in the renal tubules of mice and in cultured mDCT(15) cells upregulated NCC. In contrast to ENaC, Nedd4-2-mediated inhibition of NCC did not require the PY-like motif of NCC. Moreover, the mutation of Nedd4-2 at either serine 328 or 222 did not affect SGK1 action, and mutation at both sites enhanced Nedd4-2 activity and abolished SGK1-dependent inhibition. Taken together, these results suggest that aldosterone modulates NCC protein expression via a pathway involving SGK1 and Nedd4-2 and provides an explanation for the well-known aldosterone-induced increase in NCC protein expression.
Collapse
Affiliation(s)
- Juan Pablo Arroyo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Castañeda-Bueno M, Vázquez N, Bustos-Jaimes I, Hernández D, Rodríguez-Lobato E, Pacheco-Alvarez D, Cariño-Cortés R, Moreno E, Bobadilla NA, Gamba G. A single residue in transmembrane domain 11 defines the different affinity for thiazides between the mammalian and flounder NaCl transporters. Am J Physiol Renal Physiol 2010; 299:F1111-9. [PMID: 20719978 DOI: 10.1152/ajprenal.00412.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Little is known about the residues that control the binding and affinity of thiazide-type diuretics for their protein target, the renal Na(+)-Cl(-) cotransporter (NCC). Previous studies from our group have shown that affinity for thiazides is higher in rat (rNCC) than in flounder (flNCC) and that the transmembrane region (TM) 8-12 contains the residues that produce this difference. Here, an alignment analysis of TM 8-12 revealed that there are only six nonconservative variations between flNCC and mammalian NCC. Two are located in TM9, three in TM11, and one in TM12. We used site-directed mutagenesis to generate rNCC containing flNCC residues, and thiazide affinity was assessed using Xenopus laevis oocytes. Wild-type or mutant NCC activity was measured using (22)Na(+) uptake in the presence of increasing concentrations of metolazone. Mutations in TM11 conferred rNCC an flNCC-like affinity, which was caused mostly by the substitution of a single residue, S575C. Supporting this observation, the substitution C576S conferred to flNCC an rNCC-like affinity. Interestingly, the S575C mutation also rendered rNCC more active. Substitution of S575 in rNCC for other residues, such as alanine, aspartate, and lysine, did not alter metolazone affinity, suggesting that reduced affinity in flNCC is due specifically to the presence of a cysteine. We conclude that the difference in metolazone affinity between rat and flounder NCC is caused mainly by a single residue and that this position in the protein is important for determining its functional properties.
Collapse
Affiliation(s)
- María Castañeda-Bueno
- Molecular Physiology Unit, Vasco de Quiroga No. 15, Tlalpan 14000, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gamba G. The thiazide-sensitive Na+-Cl- cotransporter: molecular biology, functional properties, and regulation by WNKs. Am J Physiol Renal Physiol 2009; 297:F838-48. [PMID: 19474192 DOI: 10.1152/ajprenal.00159.2009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The thiazide-sensitive Na+-Cl(-) cotransporter is the major salt reabsorption pathway in the distal convoluted tubule, which is located just after the macula densa at the beginning of the aldosterone-sensitive nephron. This cotransporter was identified at the molecular level in the early 1990s by the pioneering work of Steven C. Hebert and coworkers, opening the molecular area, not only for the Na+-Cl(-) cotransporter but also for the family of electroneutral cation-coupled chloride cotransporters that includes the loop diuretic-sensitive Na+-K+-2Cl(-) cotransporter of the thick ascending limb of Henle's loop. This work honoring the memory of Steve Hebert presents a brief review of our current knowledge about salt and water homeostasis generated as a consequence of cloning the cotransporter, with particular emphasis on the molecular biology, physiological properties, human disease due to decreased or increased activity of the cotransporter, and regulation of the cotransporter by a family of serine/threonine kinases known as WNK. Thus one of the legacies of Steve Hebert is a better understanding of salt and water homeostasis.
Collapse
Affiliation(s)
- Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, and Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
28
|
Wang YF, Tseng YC, Yan JJ, Hiroi J, Hwang PP. Role of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 2009; 296:R1650-60. [PMID: 19279294 DOI: 10.1152/ajpregu.00119.2009] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC), a member of the SLC12 family, is mainly expressed in the apical membrane of the mammalian distal convoluted tubule (DCT) cells, is responsible for cotransporting Na(+) and Cl(-) from the lumen into DCT cells and plays a major role in the mammalian renal NaCl reabsorption. The NCC has also been reported in fish, but the functional role in fish ion regulation is yet unclear. The present study used zebrafish as an in vivo model to test the hypothesis of whether the NCC plays a role in Na(+) and/or Cl(-) uptake mechanisms. Four NCCs were cloned, and only one of them, zebrafish (z) slc12a10.2 was found to predominately and specifically be expressed in gills. Double in situ hybridization/immunocytochemistry in zebrafish skin/gills demonstrated that the specific expression of zslc12a10.2 mRNA in a novel group of ionocytes differed from those of the previously-reported H(+)-ATPase-rich (HR) cells and Na(+)-K(+)-ATPase-rich (NaR) cells. Gill mRNA expression of zslc12a10.2 was induced by a low-Cl environment that stimulated fish Cl(-) influx, while a low-Na environment suppressed this expression. Incubation with metolazone, a specific inhibitor of the NCC, impaired both Na(+) and Cl(-) influx in 5-day postfertilization (dpf) zebrafish embryos. Translational knockdown of zslc12a10.2 with a specific morpholino caused significant decreases in both Cl(-) influx and Cl(-) content of 5-dpf zebrafish embryos, suggesting that the operation of zNCC-like 2 results in a net uptake of Cl(-) in zebrafish. On the contrary, zslc12a10.2 morphants showed increased Na(+) influx and content that resulted from upregulation of mRNA expressions of Na(+)-H(+) exchanger 3b and carbonic anhydrase 15a in HR cells. These results for the first time provide in vivo molecular physiological evidence for the possible role of the NCC in the Cl(-) uptake mechanism in zebrafish skin/gills.
Collapse
Affiliation(s)
- Yi-Fang Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan 11529, ROC
| | | | | | | | | |
Collapse
|
29
|
Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc Natl Acad Sci U S A 2009; 106:4384-9. [PMID: 19240212 DOI: 10.1073/pnas.0813238106] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mutations in the kinase WNK4 cause pseudohypoaldosteronism type II (PHAII), a syndrome featuring hypertension and high serum K(+) levels (hyperkalemia). WNK4 has distinct functional states that regulate the balance between renal salt reabsorption and K(+) secretion by modulating the activities of renal transporters and channels, including the Na-Cl cotransporter NCC and the K(+) channel ROMK. WNK4's functions could enable differential responses to intravascular volume depletion (hypovolemia) and hyperkalemia. Because hypovolemia is uniquely associated with high angiotensin II (AngII) levels, AngII signaling might modulate WNK4 activity. We show that AngII signaling in Xenopus oocytes increases NCC activity by abrogating WNK4's inhibition of NCC but does not alter WNK4's inhibition of ROMK. This effect requires AngII, its receptor AT1R, and WNK4, and is prevented by the AT1R inhibitor losartan. NCC activity is also increased by WNK4 harboring mutations found in PHAII, and this activity cannot be further augmented by AngII signaling, consistent with PHAII mutations providing constitutive activation of the signaling pathway between AT1R and NCC. AngII's effect on NCC is also dependent on the kinase SPAK because dominant-negative SPAK or elimination of the SPAK binding motif in NCC prevent activation of NCC by AngII signaling. These effects extend to mammalian cells. AngII increases phosphorylation of specific sites on SPAK and NCC that are necessary for activation of each in mpkDCT cells. These findings place WNK4 in the signaling pathway between AngII and NCC, and provide a mechanism by which hypovolemia maximizes renal salt reabsoprtion without concomitantly increasing K(+) secretion.
Collapse
|
30
|
|
31
|
San-Cristobal P, Ponce-Coria J, Vázquez N, Bobadilla NA, Gamba G. WNK3 and WNK4 amino-terminal domain defines their effect on the renal Na+-Cl- cotransporter. Am J Physiol Renal Physiol 2008; 295:F1199-206. [PMID: 18701621 PMCID: PMC2576145 DOI: 10.1152/ajprenal.90396.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 08/12/2008] [Indexed: 11/22/2022] Open
Abstract
Loss of physiological regulation of the renal thiazide-sensitive Na+-Cl- cotransporter (NCC) by mutant WNK1 or WNK4 results in pseudohypoaldosteronism type II (PHAII) characterized by arterial hypertension and hyperkalemia. WNK4 normally inhibits NCC, but this effect is lost by eliminating WNK4 catalytic activity or through PHAII-type mutations. In contrast, another member of the WNK family, WNK3, activates NCC. The positive effect of WNK3 on NCC also requires its catalytic activity. Because the opposite effects of WNK3 and WNK4 on NCC were observed in the same expression system, sequences within the WNKs should endow these kinases with their activating or inhibiting properties. To gain insight into the structure-function relationships between the WNKs and NCC, we used a chimera approach between WNK3 and WNK4 to elucidate the domain of the WNKs responsible for the effects on NCC. Chimeras were constructed by swapping the amino or carboxyl terminus domains, which flank the central kinase domain, between WNK3 and WNK4. Our results show that the effect of chimeras toward NCC follows the amino-terminal domain. Thus the amino terminus of the WNKs contains the sequences that are required for their activating or inhibiting properties on NCC.
Collapse
Affiliation(s)
- Pedro San-Cristobal
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Vasco de Quiroga no. 15, Tlalpan 14000, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Studies of inherited conditions characterized by high or low blood pressure reveal the importance of a new signalling cascade, With no Lysine kinases (WNK) --> ste20/SPS1-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase-1 (OSR1) --> Cation-Chloride Cotransporters (CCC), in regulating blood pressure and in the pathogenesis of essential hypertension. This review explores how these molecules interact to co-ordinate sodium homeostasis and how errors in these interactions may result in hypertension. RECENT FINDINGS Studies using transgenic animals and gene knockins have clarified the role of mutant WNK4 in hypertension, by revealing its main action to be increasing the expression and activity of sodium-chloride cotransporter (NCC) in the kidney. Functional studies show how phosphorylation of WNK1 regulates both its activity and ability to interact with SPAK/OSR1, and clearly place it upstream of SPAK/OSR1 in the cascade. The structural basis for the interactions between SPAK/OSR1 and targets has been identified. SUMMARY WNKs, activated by upstream kinases or autophosphorylation, bind and phosphorylate SPAK/OSR1, which in turn phosphorylate and activate NCCs and Na-K-Cl cotransporters (NKCCs). This increases sodium retention in the kidney (NKCC2, NCC) and vascular resistance (NKCC1), but decreases renin release (NKCC1). Hypertension-associated mutant WNKs increase surface expression and activation of renal tubular NKCC2 and NCC. Whether this adequately explains the hypertension awaits studies of these mutants in other tissues.
Collapse
|
33
|
Suketa Y. [Expression and regulation of renal sodium-cotransporters and -antiporters, and related-transport proteins]. YAKUGAKU ZASSHI 2008; 128:901-17. [PMID: 18520136 DOI: 10.1248/yakushi.128.901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The authors' researches have been focused on pathogenic, physiological and biochemical mechanisms in hypertension and diabetes. Studies on hypertension were performed using salt-sensitive hypertensive Dahl rats as compared with the corresponding normotensive rats. Especially, implication with mobilization of electrolytes such as sodium, potassium, calcium and magnesium in hypertension gave rise to provocative to the author. Furthermore, complications of diabetes with hypertension were themes for the authors' researches. Thus, sodium-dependent glucose transport has been studied on sodium-dependent glucose transporters such as SGLT1 and SGLT2 using cell lines of porcelain renal cell, LLC-PK(1), and murine renal cell, NRK-52E. Relationship between magnesium mobilization and NO in hypertension has been explored using renal epithelial cell-lines and salt-sensitive hypertensive Dahl rats in the latter half of the author's research life.
Collapse
Affiliation(s)
- Yasunobu Suketa
- Department of Pharmacy, Chiba Institute of Science Faculty of Pharmacy, 3 Shiomi-cho, Choshi City, Japan.
| |
Collapse
|
34
|
Lauf PK, Chimote AA, Adragna NC. Lithium fluxes indicate presence of Na-Cl cotransport (NCC) in human lens epithelial cells. Cell Physiol Biochem 2008; 21:335-46. [PMID: 18453742 DOI: 10.1159/000129627] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2008] [Indexed: 11/19/2022] Open
Abstract
During regulatory volume decrease (RVD) of human lens epithelial cells (hLECs) by clotrimazole (CTZ)-sensitive K fluxes, Na-K-2Cl cotransport (NKCC) remains active and K-Cl cotransport (KCC) inactive. To determine whether such an abnormal behavior was caused by RVD-induced cell shrinkage, NKCC was measured in the presence of either CTZ or in high K media to prevent RVD. NKCC transports RbCl + NaCl, and LiCl + KCl; thus ouabain-insensitive, bumetanide-sensitive (BS) or Cl-dependent (ClD) Rb and Li fluxes were determined in hyposmotic high NaCl media with CTZ, or in high KCl media alone, or with sulfamate (Sf) or nitrate as Cl replacement at varying Rb, Li or Cl mol fractions (MF). Unexpectedly, NKCC was inhibited by 80% with CTZ (IC(50) = 31 microM). In isosmotic (300 mOsM) K, Li influx was approximately 1/3 of Rb influx in Na, 50% lower in Sf, and bumetanide-insensitive (BI). In hypotonic (200 mOsM) K, only the ClD but not BS Li fluxes were detected. At Li MFs from 0.1-1, Li fluxes fitted a bell-shaped curve maxing at approximately 0.6 Li MF, with the BS fluxes equaling approximately 1/4 of the ClD-Li influx. The difference, i.e. the BI/ClD Li influx, saturated with increasing Li and Cl MFs, with K(ms) for Li of 11 with, and 7 mM without K, and of approximately 46 mM for Cl. Inhibition of this K-independent Li influx by thiazides was weak whilst furosemide (<100 microM) was ineffective. Reverse transcription polymerase chain reaction and Western blots verified presence of both NKCC1 and Na-Cl cotransport (NCC). In conclusion, in hyposmotic high K media, which prevents CTZ-sensitive K flux-mediated RVD in hLECs, NKCC1, though molecularly expressed, was functionally silent. However, a K-independent and moderately thiazide-sensitive ClD-Li flux, i.e. LiCC, likely occurring through NCC was detected operationally and molecularly.
Collapse
Affiliation(s)
- Peter K Lauf
- Cell Biophysics Group, Department of Pathology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| | | | | |
Collapse
|
35
|
Belge H, Gailly P, Schwaller B, Loffing J, Debaix H, Riveira-Munoz E, Beauwens R, Devogelaer JP, Hoenderop JG, Bindels RJ, Devuyst O. Renal expression of parvalbumin is critical for NaCl handling and response to diuretics. Proc Natl Acad Sci U S A 2007; 104:14849-54. [PMID: 17804801 PMCID: PMC1976223 DOI: 10.1073/pnas.0702810104] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The distal convoluted tubule (DCT) plays an essential role in the reabsorption of NaCl by the kidney, a process that can be inhibited by thiazide diuretics. Parvalbumin (PV), a Ca(2+)-binding protein that plays a role in muscle fibers and neurons, is selectively expressed in the DCT, where its role remains unknown. We therefore investigated the renal phenotype of PV knockout mice (Pvalb(-/-)) vs. wild-type (Pvalb(+/+)) littermates. PV colocalized with the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) in the early DCT. The Pvalb(-/-) mice showed increased diuresis and kaliuresis at baseline with higher aldosterone levels and lower lithium clearance. Acute furosemide administration increased diuresis and natriuresis/kaliuresis, but, surprisingly, did not increase calciuria in Pvalb(-/-) mice. NaCl supplementation of Pvalb(-/-) mice increased calciuria at baseline and after furosemide. The Pvalb(-/-) mice showed no significant diuretic response to hydrochlorothiazide, but an accentuated hypocalciuria. A decreased expression of NCC was detected in the early DCT of Pvalb(-/-) kidneys in the absence of ultrastructural and apoptotic changes. The PV-deficient mice had a positive Ca(2+) balance and increased bone mineral density. Studies in mouse DCT cells showed that endogenous NCC expression is Ca(2+)-dependent and can be modulated by the levels of PV expression. These results suggest that PV regulates the expression of NCC by modulating intracellular Ca(2+) signaling in response to ATP in DCT cells. They also provide insights into the Ca(2+)-sparing action of thiazides and the pathophysiology of distal tubulopathies.
Collapse
Affiliation(s)
| | | | - Beat Schwaller
- Unit of Anatomy, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Johannes Loffing
- Unit of Anatomy, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | | | | - Renaud Beauwens
- Laboratory of Cell and Molecular Physiology, Université Libre de Bruxelles Medical School, B-1070 Brussels, Belgium; and
| | | | - Joost G. Hoenderop
- Department of Physiology, Radboud University Nijmegen, 6500 HC Nijmegen, The Netherlands
| | - René J. Bindels
- Department of Physiology, Radboud University Nijmegen, 6500 HC Nijmegen, The Netherlands
| | - Olivier Devuyst
- Departments of *Nephrology
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Riveira-Munoz E, Chang Q, Godefroid N, Hoenderop JG, Bindels RJ, Dahan K, Devuyst O. Transcriptional and functional analyses of SLC12A3 mutations: new clues for the pathogenesis of Gitelman syndrome. J Am Soc Nephrol 2007; 18:1271-83. [PMID: 17329572 DOI: 10.1681/asn.2006101095] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gitelman syndrome (GS) is a recessive salt-losing tubulopathy that is caused by mutations in the SLC12A3 gene that encodes the sodium-chloride co-transporter (NCC). GS is characterized by significant inter- and intrafamilial phenotype variability, with early onset and/or severe clinical manifestations in some patients. No correlations between the disease variability and the position/nature of SLC12A3 mutations have been investigated thus far. In this study, extensive mutational analyses of SLC12A3 were performed in 27 patients with GS, including genomic DNA sequencing, multiplex ligation-dependent probe amplification, cDNA analysis, and quantification of allele-specific transcripts, in parallel with functional analyses in Xenopus laevis oocytes and detailed phenotyping. Twenty-six SLC12A3 mutations were identified in 25 patients with GS, including eight novel (detection rate 80%). Transcript analysis demonstrated that splicing mutations of SLC12A3 lead to frameshifted mRNA subject to degradation by nonsense-mediated decay. Heterologous expression documented a novel class of NCC mutants with defective intrinsic transport activity. A subgroup of patients presented with early onset, growth retardation, and/or detrimental manifestations, confirming the potential severity of GS. The mutations that were associated with a severe presentation were the combination at least for one allele of a missplicing resulting in a truncated transcript that was downregulated by nonsense-mediated decay or a nonfunctional, cell surface-absent mutant. The most recurrent mutation on the second allele was a newly described NCC mutant that affected the functional properties of the co-transporter. These data suggest that the nature/position of SLC12A3 mutation, combined with male gender, is a determinant factor in the severity of GS and provide new insights in the underlying pathogenic mechanisms of the disease.
Collapse
Affiliation(s)
- Eva Riveira-Munoz
- Division of Nephrology, Université Catholique de Louvain Medical School, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|