1
|
Dawood HM, Barghouth NM, El-Mezayen NS, Ibrahim RS, Shawky E. Metabolomic insights into the therapeutic mechanisms of costus (Saussurea costus (Falc.) Lipsch.) root extract in propylthiouracil-induced hypothyroidism rat model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117784. [PMID: 38253277 DOI: 10.1016/j.jep.2024.117784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saussurea costus (Falc.) Lipschitz. is one of the most reputed medicinal plants as a traditional medicine in the Arab and Middle East regions in the treatment of thyroid disorders, however, more investigations are needed to fully understand its effectiveness and mechanism of action. AIM OF THE STUDY The primary objective of the study was to assess the impact of Saussurea costus (COST) on the metabolic profiles of propylthiouracil (PTU)-induced hypothyroidism in rats. This involves a comprehensive examination of serum metabolites using UPLC/QqQ-MS analysis aiming to identify differential metabolites, elucidate underlying mechanisms, and evaluate the potential pharmacological effect of COST in restoring metabolic homeostasis. MATERIALS AND METHODS Hypothyroidism was induced in female Sprague-Dawley rats by oral administration of propylthiouracil (PTU). UPLC/QqQ MS analysis of serum samples from normal, PTU, and PTU + COST rats was utilized for annotation of intrinsic metabolites with the aid of online Human metabolome database (HMDB) and extensive literature surfing. Multivariate statistical analyses, including orthogonal partial least squares discriminant analysis (OPLS-DA), discerned variations between the different groups. Serum levels of T3, T4 and TSH in addition to arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) levels in thyroid gland tissues; Phospholipase A2 group IIA (PLA2G2A), and lipoprotein lipase (LPL) in liver tissues were assessed by specific ELISA kits. Gene expression for key proteins of the primary evolved pathwayswere quantified by one-step qRT-PCR technique. Histopathological evaluation of thyroid gland tissue was performed by an investigator blinded to the experimental group using light microscope. RESULTS Distinct clustering in multivariate statistical analysis models indicated significant variations in serum chemical profiles among normal, disease, and treated groups. VIP values guided the selection of differential metabolites, revealing significant changes in metabolite concentrations. Subsequent to COST treatment, 43 differential intrinsic metabolites exhibited a notable tendency to revert towards normal levels. Annotated metabolites, such as lysophosphatidylcholine (LPC), L-acetylcarnitine, gamma-glutamylserine, and others, showed differential regulation in response to PTU and subsequent S. costus treatment. Notably, 21 metabolites were associated with polyunsaturated fatty acids (PUFAs) biosynthesis, arachidonic acid (ARA) metabolism, and glycerophospholipid metabolism exhibited significant changes on conducting metabolic pathway analysis. CONCLUSIONS COST improves PTU-induced hypothyroidism by regulating biosynthesis of PUFAs signified by n-3/n-6, ARA and glycerophospholipid metabolism. The study provides us a novel mechanism to explain the improvement of hypothyroidism and associated dyslipidemia by COST, depicts a metabolic profile of hypothyroidism, and gives us another point cut for further exploring the biomarkers and pathogenesis of hypothyroidism.
Collapse
Affiliation(s)
- Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Neveen M Barghouth
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Nesrine S El-Mezayen
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
2
|
Timm T, Hild C, Liebisch G, Rickert M, Lochnit G, Steinmeyer J. Functional Characterization of Lysophospholipids by Proteomic and Lipidomic Analysis of Fibroblast-like Synoviocytes. Cells 2023; 12:1743. [PMID: 37443777 PMCID: PMC10340184 DOI: 10.3390/cells12131743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Synovial fluid (SF) from human knee joints with osteoarthritis (OA) has elevated levels of lysophosphatidylcholine (LPC) species, but their functional role is not well understood. This in vitro study was designed to test the hypothesis that various LPCs found elevated in OA SF and their metabolites, lysophosphatidic acids (LPAs), modulate the abundance of proteins and phospholipids (PLs) in human fibroblast-like synoviocytes (FLSs), with even minute chemical variations in lysophospholipids determining the extent of regulation. Cultured FLSs (n = 5-7) were treated with one of the LPC species, LPA species, IL-1β, or a vehicle. Tandem mass tag peptide labeling coupled with LC-MS/MS/MS was performed to quantify proteins. The expression of mRNA from regulated proteins was analyzed using RT-PCR. PL synthesis was determined via ESI-MS/MS, and the release of radiolabeled PLs was determined by means of liquid scintillation counting. In total, 3960 proteins were quantified using multiplexed MS, of which 119, 8, and 3 were significantly and reproducibly regulated by IL-1β, LPC 16:0, and LPC 18:0, respectively. LPC 16:0 significantly inhibited the release of PLs and the synthesis of phosphatidylcholine, LPC, and sphingomyelin. Neither LPC metabolite-LPA 16:0 nor LPA 18:0-had any reproducible effect on the levels of each protein. In conclusion, small chemical variations in LPC species can result in the significantly altered expression and secretion of proteins and PLs from FLSs. IL-1β influenced all proteins that were reproducibly regulated by LPC 16:0. LPC species are likely to modulate FLS protein expression only in more advanced OA stages with low IL-1β levels. None of the eight proteins being significantly regulated by LPC 16:0 have been previously reported in OA. However, our in vitro findings show that the CD81 antigen, calumenin, and B4E2C1 are promising candidates for further study, focusing in particular on their potential ability to modulate inflammatory and catabolic mechanisms.
Collapse
Affiliation(s)
- Thomas Timm
- Protein Analytics Group, Institute of Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Christiane Hild
- Laboratory for Experimental Orthopedics, Department of Orthopedics, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Gerhard Liebisch
- Department for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Markus Rickert
- Laboratory for Experimental Orthopedics, Department of Orthopedics, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Guenter Lochnit
- Protein Analytics Group, Institute of Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Juergen Steinmeyer
- Laboratory for Experimental Orthopedics, Department of Orthopedics, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
3
|
Li Y, Liu Y, Yi J, Li Y, Yang B, Shang P, Mehmood K, Bilal RM, Zhang H, Chang YF, Tang Z, Wang Y, Li Y. The potential risks of chronic fluoride exposure on nephrotoxic via altering glucolipid metabolism and activating autophagy and apoptosis in ducks. Toxicology 2021; 461:152906. [PMID: 34450209 DOI: 10.1016/j.tox.2021.152906] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022]
Abstract
Fluoride is one of the most widely distributed elements in nature, while some fluorine-containing compounds are toxic to several vertebrates at certain levels. The current study was performed to evaluate the nephrotoxic effects of fluoride exposure in ducks. The results showed that the renal index was decreased in NaF group, and fluoride exposure significantly decreased the levels of serum Albumin, Glucose, Total cholesterol, Urea, protein and Triglycerides, confirming that NaF exhibited adverse effects on the kidney. The overall structure of renal cells showed damage with the signs of nuclelytic, vacuolar degeneration, atrophy, renal cystic cavity widening after fluoride induction. Renal vascular growth was impaired as the expression of VEGF and HIF-1α decreased (p > 0.05). More importantly, autophagy and apoptosis levels of CYT C, LC3, p62, Beclin, M-TOR, Bax and Caspase-3 were increased (p < 0.05) in the NaF treated group. Interestingly, our results showed that Phosphatidylethanolamine (PE) and Phosphatidylcholine (PC) activated the M-TOR autophagy pathway. Meanwhile, the PE acted on Atg5/ LC3 autophagy factor, followed by the auto-phagosome generation and activation of cell autophagy. These results indicate that NaF exposure to duck induced nephron-toxicity by activating autophagy, apoptosis and glucolipid metabolism pathways, which suggest that fluorine exposure poses a risk of poisoning.
Collapse
Affiliation(s)
- Yangwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yingwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bijing Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, Tibet, China.
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Rana Muhammad Bilal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yajing Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Yang M, Zhou M, Li Y, Huang H, Jia Y. Lipidomic analysis of facial skin surface lipid reveals the causes of pregnancy-related skin barrier weakness. Sci Rep 2021; 11:3229. [PMID: 33547383 PMCID: PMC7864992 DOI: 10.1038/s41598-021-82624-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Self-reported skin discomfort is a common problem during pregnancy, but it is not clear whether skin barrier function is altered in the process. Few studies have described the skin barrier function during pregnancy. In this work, we used highly sensitive and high-resolution ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) to distinguish skin surface lipid (SSL) combined with multivariate analysis of lipids and metabolic changes to determine the relationship between SSL changes and skin physiology during pregnancy in order to better understand the skin condition of pregnant women. The results showed a significant reduction in the total lipid content in pregnant women. A total of 2270 lipids were detected, and the relative abundances of fatty acyls and glycerolipids were significantly reduced, while glycerophospholipids (GPs), sphingolipids, and saccharolipids was significantly increased in the pregnancy group. Multivariate data analysis indicated that 23 entities constituted the most important individual species responsible for the discrimination and phosphatidylcholine was the most abundant lipid in pregnancy group. In addition, compared to SSL profile of control group, it was observed that the average chain length of ceramides and fatty acids both decreased in SSL profile of pregnancy group. The main and most commonly affected pathway was that of GP pathways. These findings indicate that skin lipids are significantly altered in mid-pregnancy compared to the control group. Changes in ostrogen during pregnancy also make the skin more susceptible to inflammatory factors and lead to more fragile and susceptible skin, weakening the skin barrier along with the lipid alterations.
Collapse
Affiliation(s)
- Manli Yang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.,Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Mingyue Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yuan Li
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hong Huang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China. .,Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
5
|
Yaghmour MH, Thiele C, Kuerschner L. An advanced method for propargylcholine phospholipid detection by direct-infusion MS. J Lipid Res 2021; 62:100022. [PMID: 33453218 PMCID: PMC7900581 DOI: 10.1016/j.jlr.2021.100022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 01/16/2023] Open
Abstract
Phospholipids with a choline head group are an abundant component of cellular membranes and are involved in many important biological functions. For studies on the cell biology and metabolism of these lipids, traceable analogues where propargylcholine replaces the choline head group have proven useful. We present a novel method to analyze propargylcholine phospholipids by MS. The routine employs 1-radyl-2-lyso-sn-glycero-3-phosphopropargylcholines as labeled lysophosphatidylcholine precursors, which upon cellular conversion direct the traceable tag with superb specificity and efficiency to the primary target lipid class. Using azidopalmitate as a click-chemistry reporter, we introduce a highly specific, sensitive, and robust MS detection procedure for the propargylcholine phospholipids. In a first study, we apply the new technique to investigate choline phospholipid metabolism in brain endothelial cells. These experiments reveal differences in the metabolism of phosphatidylcholine and its pendant, ether phosphatidylcholine. The novel method described here opens a new, quantitative, and detailed view on propargylcholine phospholipid metabolism and will greatly facilitate future studies on choline phospholipid metabolism.
Collapse
Affiliation(s)
- Mohamed H Yaghmour
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christoph Thiele
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Lars Kuerschner
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
6
|
Xu W, Qian M, Huang C, Cui P, Li W, Du Q, Yi S, Shi X, Guo Y, Zheng J, Liu D, Lin D. Comparison of Mechanisms of Endothelial Cell Protections Between High-Density Lipoprotein and Apolipoprotein A-I Mimetic Peptide. Front Pharmacol 2019; 10:817. [PMID: 31379582 PMCID: PMC6659106 DOI: 10.3389/fphar.2019.00817] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/24/2019] [Indexed: 01/23/2023] Open
Abstract
Apolipoprotein A-I (apoA-I) mimetic peptide, D-4F, exhibits anti-atherogenic effects similar to high-density lipoprotein (HDL). However, it remains elusive whether D-4F and HDL share similar molecular mechanisms underlying anti-atherogenic effects and endothelial cell protections. We here compared the metabolic changes in endothelial cells induced by D-4F and HDL against oxidized low-density lipoprotein (ox-LDL), which may be of benefit to understanding the protective mechanisms of HDL and D-4F. Functional assays, including wound healing, transwell migration, and tube formation, were used to evaluate the pro-angiogenic effects of HDL and D-4F. NMR-based metabolomic analysis was employed to explore the protective mechanisms underlying HDL and D-4F. Partial least-squares discriminant analysis (PLS-DA) was performed to assess metabolic profiles, and orthogonal PLS-DA (OPLS-DA) was carried out to identify characteristic metabolites. Moreover, significantly altered metabolic pathways were also analyzed. We found that ox-LDL impaired the migration and tube formation of endothelial cells. Metabolomic analysis showed that ox-LDL triggered oxidative stress, impaired glycolysis, and enhanced glycerophospholipid metabolism. Both HDL and D-4F improved the migration and angiogenesis of endothelial cells, alleviated oxidative stress, and ameliorated disordered glycolysis impaired by ox-LDL. Strikingly, HDL partially attenuated the disturbed glycerophospholipid metabolism, whereas D-4F did not show this effect. In summary, although D-4F shared the similar protective effects with HDL on the migration and angiogenesis of endothelial cells, it could not deduce the molecular mechanisms of HDL completely. Nevertheless, D-4F possesses the potentiality to be exploited as clinically applicable agent for endothelial cell protection and cardiovascular disease treatment.
Collapse
Affiliation(s)
- Wenqi Xu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Mingming Qian
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Caihua Huang
- Exercise and Health Laboratory, Xiamen University of Technology, Xiamen, China
| | - Pengfei Cui
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Wei Li
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Qian Du
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Shenghui Yi
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xiaohe Shi
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yansong Guo
- Department of Cardiology, Fujian Provincial Hospital, Provincial Clinical Medicine College, Fujian Cardiovascular Institute, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Medical University, Fuzhou, China
| | - Jianlan Zheng
- Department of Ob/Gyn and Neonatal and Reproductive Medicine, The People's Liberation Army 174th Hospital and The Affiliated Hospital of Xiamen University, Xiamen, China
| | - Donghui Liu
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China.,Department of Cardiology, Fujian Provincial Hospital, Provincial Clinical Medicine College, Fujian Cardiovascular Institute, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Medical University, Fuzhou, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Yu Z, Wang N, Ahn DU, Ma M. Long Term Egg Yolk Consumption Alters Lipid Metabolism and Attenuates Hyperlipidemia in Mice Fed a High‐Fat Diet Based on Lipidomics Analysis. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhihui Yu
- National R&D Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural UniversityWuhan 430070HubeiChina
| | - Ning Wang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and EconomyZhengzhou 450046HenanChina
| | - Dong U. Ahn
- Department of Animal Science, Iowa State UniversityAmesIA50011USA
| | - Meihu Ma
- National R&D Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural UniversityWuhan 430070HubeiChina
| |
Collapse
|
8
|
Sluzalska KD, Liebisch G, Ishaque B, Schmitz G, Rickert M, Steinmeyer J. The Effect of Dexamethasone, Adrenergic and Cholinergic Receptor Agonists on Phospholipid Metabolism in Human Osteoarthritic Synoviocytes. Int J Mol Sci 2019; 20:ijms20020342. [PMID: 30650648 PMCID: PMC6359197 DOI: 10.3390/ijms20020342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 01/07/2023] Open
Abstract
Phospholipids (PLs) possess the unique ability to contribute to synovial joint lubrication. The aim of our study was to determine for the first time the effect of dexamethasone and some adrenergic and cholinergic agonists on the biosynthesis and release of PLs from human fibroblast-like synoviocytes (FLS). Osteoarthritic human knee FLS were treated with dexamethasone, terbutaline, epinephrine, carbachol, and pilocarpine, or the glucocorticoid receptor antagonist RU 486. Simultaneously PL biosynthesis was determined through the incorporation of stable isotope-labeled precursors into PLs. Radioactive isotope-labeled precursors were used to radiolabel PLs for the subsequent quantification of their release into nutrient media. Lipids were extracted and quantified using electrospray ionization tandem mass spectrometry or liquid scintillation counting. Dexamethasone significantly decreased the biosynthesis of phosphatidylcholine, phosphatidylethanolamine (PE), PE-based plasmalogen, and sphingomyelin. The addition of RU 486 abolished these effects. A release of PLs from FLS into nutrient media was not recognized by any of the tested agents. None of the adrenergic or cholinergic receptor agonists modulated the PL biosynthesis. We demonstrate for the first time an inhibitory effect of dexamethasone on the PL biosynthesis of FLS from human knees. Moreover, our study indicates that the PL metabolism of synovial joints and lungs are differently regulated.
Collapse
Affiliation(s)
- Katarzyna D Sluzalska
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Gerhard Liebisch
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany.
| | - Bernd Ishaque
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Gerd Schmitz
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany.
| | - Markus Rickert
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Juergen Steinmeyer
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
9
|
Wallner S, Orsó E, Grandl M, Konovalova T, Liebisch G, Schmitz G. Phosphatidylcholine and phosphatidylethanolamine plasmalogens in lipid loaded human macrophages. PLoS One 2018; 13:e0205706. [PMID: 30308051 PMCID: PMC6181407 DOI: 10.1371/journal.pone.0205706] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022] Open
Abstract
Background Plasmalogens are either phosphatidylcholine (PC P) or phosphatidylethanolamine (PE P) glycerophospholipids containing a vinyl ether moiety in sn-1-position and an esterified fatty acid in sn-2 position. Multiple functions have been proposed, including reservoir of precursors for inflammatory mediators, modulation of membrane fluidity, and anti-oxidative properties. They could therefore play a role under conditions of metabolic stress. Especially enzymatically modified LDL (eLDL) and oxidatively modified LDL (oxLDL) represent modifications of LDL that are taken up by macrophages in atherosclerotic plaques. The aim of this study was to analyze plasmalogen related effects of eLDL and oxLDL in human monocyte derived macrophages, as well as the effects of HDL3 mediated deloading. Methods Elutriated monocytes from nine healthy donors were differentiated in vitro for four days. Macrophages were then loaded with native LDL, eLDL and oxLDL for 24h and subsequently deloaded with HDL3 for another 24h. Lipidomic and transcriptomic profiles were obtained. Results Loading of macrophages with eLDL and oxLDL led to a transient but strong elevation of lysophosphatidylcholine (LPC) most likely through direct uptake. Only eLDL induced increased levels of total PC, presumably through an induction of PC synthesis. On the other hand treatment with oxLDL led to a significant increase in PC P. Analysis of individual lipid species showed lipoprotein and saturation specific effects for LPC, PC P and PE P species. Membrane fluidity was decreased by the large amount of FC contained in the lipoproteins, as indicated by a lower PC to FC ratio after lipoprotein loading. In contrast the observed changes in the saturated to mono-unsaturated fatty acid (SFA to MUFA) and saturated to poly-unsaturated fatty acid (SFA to PUFA) ratios in PE P could represent a cellular reaction to counteract this effect by producing more fluid membranes. Transcriptomic analysis showed considerable differences between eLDL and oxLDL treated macrophages. As a common feature of both lipoproteins we detected a strong downregulation of pathways for endogenous lipid synthesis as well as for exogenous lipid uptake. Deloading with HDL3 had only minor effects on total lipid class as well as on individual lipid species levels, most of the time not reaching significance. Interestingly treatment with HDL3 had no effect on membrane fluidity under these conditions, although incubation with HDL3 was partially able to counteract the oxLDL induced transcriptomic effects. To investigate the functional effect of lipoprotein treatment on macrophage polarization we performed surface marker flow cytometry. Under our experimental conditions oxLDL was able to partially shift the surface marker pattern towards a pro-inflammatory M1-like phenotype. This is consistent with the consumption of arachidonic acid containing PE P species in oxLDL treated cells, presumably for the synthesis of inflammatory mediators. Summary Our findings provide novel data on the lipoprotein induced, lipidomic and transcriptomic changes in macrophages. This can help us better understand the development of metabolic, inflammatory diseases as well as improve our background knowledge on lipid biomarkers in serum.
Collapse
Affiliation(s)
- Stefan Wallner
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Medical Center, Regensburg, Germany
- * E-mail:
| | - Evelyn Orsó
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Medical Center, Regensburg, Germany
| | - Margot Grandl
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Medical Center, Regensburg, Germany
| | - Tatiana Konovalova
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Medical Center, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Medical Center, Regensburg, Germany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Medical Center, Regensburg, Germany
| |
Collapse
|
10
|
Interleukin-1β affects the phospholipid biosynthesis of fibroblast-like synoviocytes from human osteoarthritic knee joints. Osteoarthritis Cartilage 2017; 25:1890-1899. [PMID: 28736247 DOI: 10.1016/j.joca.2017.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Phospholipids (PLs), together with hyaluronan and lubricin, are involved in boundary lubrication within human articular joints. Levels of lubricants in synovial fluid (SF) have been found to be associated with the health status of the joint. However, the biosynthesis and release of PLs within human joints remains poorly understood. This study contributes to our understanding of the effects of cytokines on the biosynthesis of PLs using cultured fibroblast-like synoviocytes (FLS) from human osteoarthritic knee joints. METHODS Cultured FLS were stimulated with IL-1β, TNFα, IL-6, or inhibitors of cell signaling pathways such as QNZ, SB203580 and SP600125 in the presence of stable isotope-labeled precursors of PLs. Lipids were extracted and quantified using electrospray ionization tandem mass spectrometry (ESI-MS/MS). RESULTS Our analyses provide for the first time a detailed overview of PL species being synthesized by FLS. IL-1β increased the biosynthesis of both phosphatidylethanolamine (PE) and PE-based plasmalogens. We show here that the NF-κB, p38 MAPK and JNK signaling pathways are all involved in IL-1β-induced PL biosynthesis. IL-6 had no impact on PLs, whereas TNFα increased the biosynthesis of all PL classes. CONCLUSION The biosynthesis of various PLs is controlled by IL-1β and TNFα. Our detailed PL species analysis revealed that FLS can partly contribute to the elevated PL levels found in human osteoarthritis (OA) SF. IL-1β in particular stimulates PE and PE-based plasmalogens which can act as cell-protective antioxidants. These results suggest that during OA progression, FLS undergo alterations in their PL composition to adapt to the new diseased environment.
Collapse
|
11
|
Growth factors regulate phospholipid biosynthesis in human fibroblast-like synoviocytes obtained from osteoarthritic knees. Sci Rep 2017; 7:13469. [PMID: 29044208 PMCID: PMC5647370 DOI: 10.1038/s41598-017-14004-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022] Open
Abstract
Elevated levels of growth factors and phospholipids (PLs) have been found in osteoarthritic synovial fluid (SF), although the metabolic regulation of PLs is currently unknown. This study aimed to determine the effects of growth factors on the biosynthesis of PLs by fibroblast-like synoviocytes (FLS) obtained from human osteoarthritic knee joints. Electrospray ionization tandem mass spectrometry was applied to analyse the newly synthesized PLs. In the presence of stable isotope-labelled PL precursors, cultured FLS were treated with either transforming growth factor-β1 (TGF-β1), bone morphogenetic protein (BMP)-2, BMP-4, BMP-7 or insulin-like growth factor-1 (IGF-1) alone or in combination with specific inhibitors of cell signalling pathways. TGF-β1 and IGF-1 markedly stimulated the biosynthesis of phosphatidylcholine (PC) before sphingomyelin (SM) and lysophosphatidylcholine (LPC) species were stimulated. BMPs elaborated less pronounced effects. The BMPs tested have different potentials to induce the biosynthesis of phosphatidylethanolamine (PE) and PE-based plasmalogens. Our study shows for the first time that TGF-β1 and IGF-1 substantially regulate the biosynthesis of PC, SM and LPC in human FLS. The functional consequences of elevated levels of PLs require additional study. The BMPs tested may be joint protective in that they upregulate PE-based plasmalogens that function as endogenous antioxidants against reactive oxygen species.
Collapse
|
12
|
Matysik S, Le Roy CI, Liebisch G, Claus SP. Metabolomics of fecal samples: A practical consideration. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Orsó E, Matysik S, Grandl M, Liebisch G, Schmitz G. Human native, enzymatically modified and oxidized low density lipoproteins show different lipidomic pattern. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:299-306. [PMID: 25583048 DOI: 10.1016/j.bbalip.2015.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/23/2014] [Accepted: 01/03/2015] [Indexed: 11/26/2022]
Abstract
In the present paper we have performed comparative lipidomic analysis of two prototypic atherogenic LDL modifications, oxidized LDL and enzymatically modified LDL. Oxidization of LDL was carried out with different chemical modifications starting from the same native LDL preparations: (i) by copper oxidation leading to terminally oxidized LDL (oxLDL), (ii) by moderate oxidization with HOCl (HOCl LDL), (iii) by long term storage of LDL at 4°C to produce minimally modified LDL (mmLDL), or (iv) by 15-lipoxygenase, produced by a transfected fibroblast cell line (LipoxLDL). The enzymatic modification of LDL was performed by treatment of native LDL with trypsin and cholesteryl esterase (eLDL). Free cholesterol (FC) and cholesteryl esters (CE) represent the predominant lipid classes in all LDL preparations. In contrast to native LDL, which contains about two-thirds of total cholesterol as CE, enzymatic modification of LDL decreased the proportion of CE to about one-third. Free cholesterol and CE in oxLDL are reduced by their conversion to oxysterols. Oxidization of LDL preferentially influences the content of polyunsaturated phosphatidylcholine (PC) and polyunsaturated plasmalogen species, by reducing the total PC fraction in oxLDL. Concomitantly, a strong rise of the lysophosphatidylcholine (LPC) fraction can be found in oxLDL as compared to native LDL. This effect is less pronounced in eLDL. The mild oxidation of LDL with hypochlorite and/or lipoxygenase does not alter the content of the analyzed lipid classes and species in a significant manner. The lipidomic characterization of modified LDLs contributes to the better understanding their diverse cellular effects.
Collapse
Affiliation(s)
- Evelyn Orsó
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Silke Matysik
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Margot Grandl
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerd Schmitz
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
14
|
Application of stable isotopes to investigate the metabolism of fatty acids, glycerophospholipid and sphingolipid species. Prog Lipid Res 2014; 54:14-31. [PMID: 24462586 DOI: 10.1016/j.plipres.2014.01.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 12/30/2013] [Accepted: 01/07/2014] [Indexed: 11/22/2022]
Abstract
Nature provides an enormous diversity of lipid molecules that originate from various pathways. To gain insight into the metabolism and dynamics of lipid species, the application of stable isotope-labeled tracers combined with mass spectrometric analysis represents a perfect tool. This review provides an overview of strategies to track fatty acid, glycerophospholipid, and sphingolipid metabolism. In particular, the selection of stable isotope-labeled precursors and their mass spectrometric analysis is discussed. Furthermore, examples of metabolic studies that were performed in cell culture, animal and clinical experiments are presented.
Collapse
|
15
|
Ecker J. Profiling eicosanoids and phospholipids using LC-MS/MS: principles and recent applications. J Sep Sci 2012; 35:1227-35. [PMID: 22733504 DOI: 10.1002/jssc.201200056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Eicosanoids are potent lipid mediators involved in numerous physiological and pathophysiological processes. Precursors are polyunsaturated fatty acids liberated from membrane phospholipids. Thus, profiling and quantification of these molecules has gained a lot of attention during last years. Eicosanoids and phospholipids are commonly profiled by LC-MS/MSbecause this technique allows accurate quantification within acceptable run-times. This article therefore focuses on liquid chromatography and the ESI-MS/MS analysis of proinflammatory lipid mediators, particularly arachidonic acid (C20:4) derived eicosanoids and their precursors phospholipids. Recent analytical developments for quantification of these compounds are highlighted and analytical challenges are discussed. Furthermore, applications such as the use of these molecules as biomarkers are presented.
Collapse
Affiliation(s)
- Josef Ecker
- ABF Analytisch-Biologisches Forschungslabor GmbH, Munich, Germany.
| |
Collapse
|
16
|
Meyer SGE, Wendt AE, Scherer M, Liebisch G, Kerkweg U, Schmitz G, de Groot H. Myriocin, an inhibitor of serine palmitoyl transferase, impairs the uptake of transferrin and low-density lipoprotein in mammalian cells. Arch Biochem Biophys 2012; 526:60-8. [PMID: 22841978 DOI: 10.1016/j.abb.2012.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 11/29/2022]
Abstract
The role of sphingolipids in clathrin-mediated endocytosis is only poorly understood in mammalian cells. Thus the relationship between sphingolipid de novo synthesis and clathrin-mediated endocytosis of transferrin were studied in L929 fibroblasts and two other cell lines. Endocytosis was measured using live cell imaging with fluorescent transferrin or (125)I-transferrin. Lipids were primarily measured using electrospray ionization tandem mass spectrometry. At physiological temperature, transferrin uptake was significantly decreased by the inhibitor of serine palmitoyl transferase myriocin. Myriocin inhibited also the uptake of low-density lipoproteins. The endocytosis inhibition by myriocin could be released by the addition of sphingoid base and by the protein phosphorylation effectors phorbol-12-myristate, 13-acetate (PMA) and okadaic acid. Myriocin influenced not only sphingolipids but also the glycerophospholipid profile. The study of phosphatidylcholine species shows adaptations to more saturated, alkylated and longer fatty acid moieties. The reported results imply that in mammalian cells, at 37°C, sphingolipid de novo synthesis is required for clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Sybille G E Meyer
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Liebisch G, Scherer M. Quantification of bioactive sphingo- and glycerophospholipid species by electrospray ionization tandem mass spectrometry in blood. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 883-884:141-6. [PMID: 22100558 DOI: 10.1016/j.jchromb.2011.10.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 11/24/2022]
Abstract
Bioactive glycerophospho- and sphingolipids species are involved in the regulation of numerous biological processes and implicated in the pathophysiology of various diseases. Here we review electrospray ionization tandem mass spectrometric (ESI-MS/MS) methods for the analysis of these bioactive lipid species in blood including lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), bis(monoacylglycero)phosphate (BMP), ceramide (Cer), sphingosine-1-phosphate (S1P) and sphingosylphosphorylcholine (SPC). Beside direct tandem mass spectrometric and liquid chromatography coupled approaches, we present an overview of concentrations of these bioactive lipids in plasma. The analytical strategies are discussed together with aspects of sample preparation, quantification and sample stability.
Collapse
Affiliation(s)
- Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
18
|
Orsó E, Grandl M, Schmitz G. Oxidized LDL-induced endolysosomal phospholipidosis and enzymatically modified LDL-induced foam cell formation determine specific lipid species modulation in human macrophages. Chem Phys Lipids 2011; 164:479-87. [DOI: 10.1016/j.chemphyslip.2011.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 01/01/2023]
|
19
|
Scherer M, Böttcher A, Liebisch G. Lipid profiling of lipoproteins by electrospray ionization tandem mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:918-24. [PMID: 21745591 DOI: 10.1016/j.bbalip.2011.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/30/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
Abstract
Lipoproteins are of fundamental importance for the lipid transport and cardiovascular disease. The function and metabolism of lipoproteins is intimately linked to the biophysical properties of their surface lipids. Although a number of disease associations were found for lipid species in plasma, only a few studies reported lipid profiles of lipoproteins. Here, we provide an overview of techniques for lipoprotein separation, methods for lipid species analysis based on electrospray ionization tandem mass spectrometry (ESI-MS/MS) as well as data from recent lipidomic studies on lipoprotein fractions. We also discuss the different analytical strategies and how lipid profiling can expand our understanding of the biology and structures of lipoproteins.
Collapse
|
20
|
Parent N, Scherer M, Liebisch G, Schmitz G, Bertrand R. Protein kinase C-δ isoform mediates lysosome labilization in DNA damage-induced apoptosis. Int J Oncol 2010; 38:313-24. [PMID: 21174057 DOI: 10.3892/ijo.2010.881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 11/05/2010] [Indexed: 11/05/2022] Open
Abstract
A lysosomal pathway, characterized by the partial rupture or labilization of lysosomal membranes (LLM) and cathepsin release into the cytosol, is evoked during the early events of 20-S-camptothecin lactone (CPT)-induced apoptosis in human cancer cells, including human histiocytic lymphoma U-937 cells. These lysosomal events begin rapidly and simultaneously with mitochondrial permeabilization and caspase activation within 3 h after drug treatment. Recently, in a comparative proteomics analysis performed on highly-enriched lysosomal extracts, we identified proteins whose translocation to lysosomes correlated with LLM induction after CPT treatment, including protein kinase C-δ (PKC-δ). In this study, we show that the PKC-δ translocation to lysosomes is required for LLM, as silencing its expression with RNA interference or suppressing its activity with the inhibitor, rottlerin, prevents CPT-induced LLM. PKC-δ translocation to lysosomes is associated with lysosomal acidic sphingomyelinase (ASM) phosphorylation and activation, which in turn leads to an increase in ceramide (CER) content in lysosomes. The accumulation of endogenous CER in lysosomes is a critical event for CPT-induced LLM as suppressing PKC-δ or ASM activity reduces both the CPT-mediated CER generation in lysosomes and CPT-induced LLM. These findings reveal a novel mechanism by which PKC-δ mediates ASM phosphorylation/activation and CER accumulation in lysosomes in CPT-induced LLM, rapidly activating the lysosomal pathway of apoptosis after CPT treatment.
Collapse
Affiliation(s)
- Nicolas Parent
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame and Institut du Cancer de Montréal, Montreal, QC H2L 4M1, Canada
| | | | | | | | | |
Collapse
|
21
|
Ecker J, Liebisch G, Grandl M, Schmitz G. Lower SCD expression in dendritic cells compared to macrophages leads to membrane lipids with less mono-unsaturated fatty acids. Immunobiology 2010; 215:748-55. [DOI: 10.1016/j.imbio.2010.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 05/20/2010] [Indexed: 11/30/2022]
|
22
|
Ecker J, Liebisch G, Scherer M, Schmitz G. Differential effects of conjugated linoleic acid isomers on macrophage glycerophospholipid metabolism. J Lipid Res 2010; 51:2686-94. [PMID: 20522602 DOI: 10.1194/jlr.m007906] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Conjugated linoleic acids (CLA) are dietary fatty acids. Whereas cis-9,trans-11-(c9,t11)-CLA can be found in meat and dairy products, trans-9,trans-11-(t9,t11)-CLA is a constituent of vegetable oils. Previous studies showed that these two isomers activate different nuclear receptors and, thus, expression of genes related to lipid metabolism. Here we show that these CLA isomers are differentially elongated and desaturated in primary monocyte-derived macrophages isolated from healthy volunteers by using gas chromatography-mass spectrometry (GC-MS). We further demonstrate that c9,t11-CLA incorporates in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species and activates de novo glycerophospholipid synthesis by quantitative electrospray ionization-tandem mass spectrometry (ESI-MS/MS). c9,t11-CLA leads to strong shifts of the species profiles to PC 18:2/18:2 and PE 18:2/18:2, which are due to de novo synthesis and fatty acid remodeling. In contrast, t9,t11-CLA is preferentially bound to neutral lipids, including triglycerides and cholesterol esters. Taken together our results show that c9,t11-CLA and t9,t11-CLA have differential effects on PC and PE metabolism. Moreover, these data demonstrate that the structure of fatty acids not only determines their incorporation into lipid classes but also modulates the kinetics of lipid metabolism, particularly PC synthesis.
Collapse
Affiliation(s)
- Josef Ecker
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
23
|
Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc Natl Acad Sci U S A 2010; 107:7817-22. [PMID: 20385828 DOI: 10.1073/pnas.0912059107] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Monocytes are precursors of macrophages. Here we demonstrate that macrophage colony-stimulating factor (M-CSF)-dependent differentiation of primary human monocytes from healthy volunteers induces transcription of SREBP-1c target genes required for fatty acid (FA) biosynthesis and impairs transcription of SREBP-2 target genes required for cholesterol synthesis. Detailed lipid metabolic profiling showed that this transcriptional regulation leads to a dramatically increased fatty acid synthesis as driving force for enhanced phospholipid synthesis. During cell differentiation the major lipid class switches from cholesterol in monocytes to phosphatidylcholine in macrophages. Ultrastructural analysis revealed that this transcriptional and metabolic regulation is essential for development of macrophage filopodia and cellular organelles including primary lysosomes, endoplasmic reticulum, and Golgi network. Additional functional studies showed that suppression of fatty acid synthesis prevents phagocytosis representing a central macrophage function. Therefore induction of fatty acid synthesis is a key requirement for phagocyte development and function.
Collapse
|
24
|
Scherer M, Leuthäuser-Jaschinski K, Ecker J, Schmitz G, Liebisch G. A rapid and quantitative LC-MS/MS method to profile sphingolipids. J Lipid Res 2010; 51:2001-11. [PMID: 20228220 DOI: 10.1194/jlr.d005322] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sphingolipids comprise a highly diverse and complex class of molecules that serve not only as structural components of membranes but also as signaling molecules. To understand the differential role of sphingolipids in a regulatory network, it is important to use specific and quantitative methods. We developed a novel LC-MS/MS method for the rapid, simultaneous quantification of sphingolipid metabolites, including sphingosine, sphinganine, phyto-sphingosine, di- and trimethyl-sphingosine, sphingosylphosphorylcholine, hexosylceramide, lactosylceramide, ceramide-1-phosphate, and dihydroceramide-1-phosphate. Appropriate internal standards (ISs) were added prior to lipid extraction. In contrast to most published methods based on reversed phase chromatography, we used hydrophilic interaction liquid chromatography and achieved good peak shapes, a short analysis time of 4.5 min, and, most importantly, coelution of analytes and their respective ISs. To avoid an overestimation of species concentrations, peak areas were corrected regarding isotopic overlap where necessary. Quantification was achieved by standard addition of naturally occurring sphingolipid species to the sample matrix. The method showed excellent precision, accuracy, detection limits, and robustness. As an example, sphingolipid species were quantified in fibroblasts treated with myriocin or sphingosine-kinase inhibitor. In summary, this method represents a valuable tool to evaluate the role of sphingolipids in the regulation of cell functions.
Collapse
Affiliation(s)
- Max Scherer
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
25
|
Postle AD, Hunt AN. Dynamic lipidomics with stable isotope labelling. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2716-21. [DOI: 10.1016/j.jchromb.2009.03.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/29/2009] [Accepted: 03/30/2009] [Indexed: 01/22/2023]
|
26
|
Kainu V, Hermansson M, Somerharju P. Electrospray Ionization Mass Spectrometry and Exogenous Heavy Isotope-labeled Lipid Species Provide Detailed Information on Aminophospholipid Acyl Chain Remodeling. J Biol Chem 2008; 283:3676-3687. [DOI: 10.1074/jbc.m709176200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
27
|
Lipid homeostasis in macrophages – Implications for atherosclerosis. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2008; 160:93-125. [DOI: 10.1007/112_2008_802] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Schifferer R, Liebisch G, Bandulik S, Langmann T, Dada A, Schmitz G. ApoA-I induces a preferential efflux of monounsaturated phosphatidylcholine and medium chain sphingomyelin species from a cellular pool distinct from HDL(3) mediated phospholipid efflux. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:853-63. [PMID: 17531529 DOI: 10.1016/j.bbalip.2007.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 04/16/2007] [Accepted: 04/19/2007] [Indexed: 11/30/2022]
Abstract
Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used for a detailed analysis of cellular phospholipid and cholesterol efflux in free cholesterol (FC) loaded human primary fibroblasts and human monocyte-derived macrophages (HMDM) loaded with enzymatically modified LDL (E-LDL). Although both cell models differed significantly in their cellular lipid composition, a higher apoA-I specific efflux was found for monounsaturated phosphatidylcholine (PC) species together with a decreased contribution of polyunsaturated PC species in both cell types. Moreover, medium chain sphingomyelin (SPM) species SPM 14:0 and SPM 16:1 were translocated preferentially to apoA-I in both cell types. In contrast to fibroblasts, HMDM displayed a considerable proportion of cholesteryl esters (CE) in basal and apoA-I specific efflux media, most likely due to secretion of CE associated to apoE. Analysis of HDL(3) mediated lipid efflux from HMDM using D(9)-choline and (13)C(3)-FC stable isotope labeling revealed significantly different D(9)-PC and D(9)-SPM species pattern for apoA-I and HDL(3) specific efflux media, which indicates a contribution of distinct cellular phospholipid pools to apoA-I and HDL(3) mediated efflux. Together with a partial loading of fibroblasts and HMDM with HDL(3)-derived CE species, these data add further evidence for retroendocytosis of HDL. In summary, analysis of apoA-I/ABCA1 and HDL(3) mediated lipid efflux by ESI-MS/MS demonstrated a preferential efflux of monounsaturated PC and medium chain SPM to apoA-I. Moreover, this is the first study, which provides evidence for distinct cellular phospholipid pools used for lipid transfer to apoA-I and HDL(3) from the analysis of phospholipid species pattern in HMDM.
Collapse
Affiliation(s)
- Rainer Schifferer
- Institute of Clinical Chemistry, University of Regensburg, 93042 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
29
|
van Meer G, Leeflang BR, Liebisch G, Schmitz G, Goñi FM. The European lipidomics initiative: enabling technologies. Methods Enzymol 2007; 432:213-32. [PMID: 17954219 DOI: 10.1016/s0076-6879(07)32009-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipidomics is a new term to describe a scientific field that is a lot broader than lipidology, the science of lipids. Besides lipidology, lipidomics covers the lipid-metabolizing enzymes and lipid transporters, their genes and regulation; the quantitative determination of lipids in space and time, and the study of lipid function. Because lipidomics is concerned with all lipids and their enzymes and genes, it faces the formidable challenge to develop enabling technologies to comprehensively measure the expression, location, and regulation of lipids, enzymes, and genes in time, including high-throughput applications. The second challenge is to devise information technology that allows the construction of metabolic maps by browsing through connected databases containing the subsets of data in lipid structure, lipid metabolomics, proteomics, and genomics. In addition, to understand lipid function, on the one hand we need a broad range of imaging techniques to define where exactly the relevant events happen in the body, cells, and subcellular organelles; on the other hand, we need a thorough understanding of how lipids physically interact, especially with proteins. The final challenge is to apply this knowledge in the diagnosis, monitoring, and cure of lipid-related diseases.
Collapse
Affiliation(s)
- Gerrit van Meer
- Bijvoet Center, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Schmitz G, Liebisch G, Langmann T. Lipidomic strategies to study structural and functional defects of ABC-transporters in cellular lipid trafficking. FEBS Lett 2006; 580:5597-610. [PMID: 16934254 DOI: 10.1016/j.febslet.2006.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 07/28/2006] [Accepted: 08/08/2006] [Indexed: 11/30/2022]
Abstract
The majority of the human ATP-binding cassette (ABC)-transporters function in cellular lipid trafficking and in the regulation of membrane lipid composition associating their dysfunction with human disease phenotypes related to sterol, phospholipid and fatty acid homeostasis. Based on findings from monogenetic disorders, animal models, and in vitro systems, major clues on the expression, function and cellular localization of human ABC-transporters have been gained. Here we review novel lipidomic technologies including quantitative mRNA expression monitoring by realtime RT-PCR and DNA-microarrays, lipid mass spectrometry, cellular fluorescence imaging and flow cytometry as promising tools to further define regulatory networks, lipid species patterns and subcellular domains important for ABC-transporter-mediated lipid trafficking.
Collapse
Affiliation(s)
- Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss Allee 11, D-93053, Germany.
| | | | | |
Collapse
|