1
|
Martín-Alonso S, Kang D, Martínez Del Río J, Luczkowiak J, Frutos-Beltrán E, Zhang L, Cheng X, Liu X, Zhan P, Menéndez-Arias L. Novel RNase H Inhibitors Blocking RNA-directed Strand Displacement DNA Synthesis by HIV-1 Reverse Transcriptase. J Mol Biol 2022; 434:167507. [PMID: 35217069 DOI: 10.1016/j.jmb.2022.167507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/27/2022]
Abstract
In retroviruses, strand displacement DNA-dependent DNA polymerization catalyzed by the viral reverse transcriptase (RT) is required to synthesize double-stranded proviral DNA. In addition, strand displacement during RNA-dependent DNA synthesis is critical to generate high-quality cDNA for use in molecular biology and biotechnology. In this work, we show that the loss of RNase H activity due to inactivating mutations in HIV-1 RT (e.g. D443N or E478Q) has no significant effect on strand displacement while copying DNA templates, but has a large impact on DNA polymerization in reactions carried out with RNA templates. Similar effects were observed with β-thujaplicinol and other RNase H active site inhibitors, including compounds with dual activity (i.e., characterized also as inhibitors of HIV-1 integrase and/or the RT DNA polymerase). Among them, dual inhibitors of HIV-1 RT DNA polymerase/RNase H activities, containing a 7-hydroxy-6-nitro-2H-chromen-2-one pharmacophore were found to be very potent and effective strand displacement inhibitors in RNA-dependent DNA polymerization reactions. These findings might be helpful in the development of transcriptomics technologies to obtain more uniform read coverages when copying long RNAs and for the construction of more representative libraries avoiding biases towards 5' and 3' ends, while providing valuable information for the development of novel antiretroviral agents.
Collapse
Affiliation(s)
- Samara Martín-Alonso
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Javier Martínez Del Río
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Joanna Luczkowiak
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Estrella Frutos-Beltrán
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Lina Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xiqiang Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain.
| |
Collapse
|
2
|
Govande AA, Duncan-Lowey B, Eaglesham JB, Whiteley AT, Kranzusch PJ. Molecular basis of CD-NTase nucleotide selection in CBASS anti-phage defense. Cell Rep 2021; 35:109206. [PMID: 34077735 DOI: 10.1016/j.celrep.2021.109206] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzymes are signaling proteins that initiate antiviral immunity in animal cells and cyclic-oligonucleotide-based anti-phage signaling system (CBASS) phage defense in bacteria. Upon phage recognition, bacterial CD-NTases catalyze synthesis of cyclic-oligonucleotide signals, which activate downstream effectors and execute cell death. How CD-NTases control nucleotide selection to specifically induce defense remains poorly defined. Here, we combine structural and nucleotide-analog interference-mapping approaches to identify molecular rules controlling CD-NTase specificity. Structures of the cyclic trinucleotide synthase Enterobacter cloacae CdnD reveal coordinating nucleotide interactions and a possible role for inverted nucleobase positioning during product synthesis. We demonstrate that correct nucleotide selection in the CD-NTase donor pocket results in the formation of a thermostable-protein-nucleotide complex, and we extend our analysis to establish specific patterns governing selectivity for each of the major bacterial CD-NTase clades A-H. Our results explain CD-NTase specificity and enable predictions of nucleotide second-messenger signals within diverse antiviral systems.
Collapse
Affiliation(s)
- Apurva A Govande
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Brianna Duncan-Lowey
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - James B Eaglesham
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Aaron T Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Dash C, Ahmadibeni Y, Hanley MJ, Pandhare J, Gotte M, Le Grice SFJ, Parang K. Inhibition of multi-drug resistant HIV-1 reverse transcriptase by nucleoside β-triphosphates. Bioorg Med Chem Lett 2011; 21:3519-22. [PMID: 21605974 PMCID: PMC3114884 DOI: 10.1016/j.bmcl.2011.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/01/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
Abstract
Despite the success of potent reverse transcriptase (RT) inhibitors against human immunodeficiency virus type 1 (HIV-1) in combination regimens, the development of drug resistant RTs constitutes a major hurdle for the long-term efficacy of current antiretroviral therapy. Nucleoside β-triphosphate analogs of adenosine and nucleoside reverse transcriptase inhibitors (NRTIs) (3'-azido-2',3'-dideoxythymidine (AZT), 3'-fluoro-2',3'-dideoxythymidine (FLT), and 2',3'-didehydro-2',3'-dideoxythymidine (d4T)) were synthesized and their inhibitory activities were evaluated against wild-type and multidrug resistant HIV-1 RTs. Adenosine β-triphosphate (1) and AZT β-triphosphate (2) completely inhibited the DNA polymerase activity of wild type, the NRTI multi resistant, and nonnucleoside RT inhibitors (NNRTI) resistant HIV-1 RT at 10nM, 10 and 100 μM, respectively.
Collapse
Affiliation(s)
- Chandravanu Dash
- Center for AIDS Health Disparities Research, Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Xie J, Zhang P, Li C, Huang Q, Zhou R, Peng T. Mechanistic insights into the roles of three linked single-stranded template binding residues of MMLV reverse transcriptase in misincorporation and mispair extension fidelity of DNA synthesis. Gene 2011; 479:47-56. [DOI: 10.1016/j.gene.2011.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/07/2011] [Accepted: 02/13/2011] [Indexed: 11/25/2022]
|
5
|
Ahmadibeni Y, Dash C, Le Grice SFJ, Parang K. Solid-Phase Synthesis of 5'-O-β,γ-Methylenetriphosphate Derivatives of Nucleosides and Evaluation of Their Inhibitory Activity Against HIV-1 Reverse Transcriptase. Tetrahedron Lett 2010; 51:3010-3013. [PMID: 20454539 DOI: 10.1016/j.tetlet.2010.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bis(dichlorophosphino)methane was converted to a β,γ-methylenetriphosphitylating reagent. The reagent was immobilized on aminomethyl polystyrene resin-bound linker of 4-acetoxy-3-phenylbenzyl alcohol to afford a polymer-bound β,γ-methylenetriphosphitylating reagent, which was reacted with unprotected nucleosides followed by oxidation with tert-butyl hydroperoxide, deprotection of cyanoethoxy groups with DBU, and acidic cleavage, to produce 5'-O-β,γ-methylene triphosphate nucleosides in 53-82% overall yields. Among all the compounds, cytidine 5'-O-β,γ-methylenetriphosphate inhibited completely RNase H activity of HIV-1 reverse transcriptase at 700 μM.
Collapse
Affiliation(s)
- Yousef Ahmadibeni
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | |
Collapse
|
6
|
Ahmadibeni Y, Dash C, Hanley MJ, Le Grice SFJ, Agarwal HK, Parang K. Synthesis of nucleoside 5'-O-alpha,beta-methylene-beta-triphosphates and evaluation of their potency towards inhibition of HIV-1 reverse transcriptase. Org Biomol Chem 2010; 8:1271-4. [PMID: 20204192 PMCID: PMC2928660 DOI: 10.1039/b922846b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polymer-bound alpha,beta-methylene-beta-triphosphitylating reagent was synthesized and subjected to reactions with unprotected nucleosides, followed by oxidation, deprotection of cyanoethoxy groups, and acidic cleavage to afford nucleoside 5'-O-alpha,beta-methylene-beta-triphosphates. Among all the compounds, cytidine 5'-O-alpha,beta-methylene-beta-triphosphate inhibited RNase H activity of HIV-1 reverse transcriptase with a K(i) value of 225 microM.
Collapse
Affiliation(s)
- Y. Ahmadibeni
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, USA; Fax: +1-401-874-5787; Tel: +1-401-874-4471
- Department of Chemistry, Columbus State University, Columbus, Georgia 31907, USA
| | - C. Dash
- Centre for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA
| | - M. J. Hanley
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, USA; Fax: +1-401-874-5787; Tel: +1-401-874-4471
| | - S. F. J. Le Grice
- Resistance Mechanism Laboratory, HIV Drug Resistance Program, National Cancer Institute at Frederick, National Institute of Health, Frederick, Maryland 21702, USA
| | - H. K. Agarwal
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, USA; Fax: +1-401-874-5787; Tel: +1-401-874-4471
| | - K. Parang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, USA; Fax: +1-401-874-5787; Tel: +1-401-874-4471
| |
Collapse
|
7
|
Upadhyay AK, Talele TT, Pandey VN. Impact of template overhang-binding region of HIV-1 RT on the binding and orientation of the duplex region of the template-primer. Mol Cell Biochem 2009; 338:19-33. [PMID: 19921401 DOI: 10.1007/s11010-009-0316-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 10/29/2009] [Indexed: 11/26/2022]
Abstract
Fingers domain of HIV-1 RT is one of the constituents of the dNTP-binding pocket that is involved in binding of both dNTP and the template-primer. In the ternary complex of HIV-1 RT, two residues Trp-24 and Phe-61 located on the beta1 and beta3, respectively, are seen interacting with N + 1 to N + 3 nucleotides in the template overhang. We generated nonconservative and conservative mutant derivatives of these residues and examined their impact on the template-primer binding and polymerase function of the enzyme. We noted that W24A, F61A, and F61Y and the double mutant (W24A/F61A) were significantly affected in their ability to bind template-primer and also to catalyze the polymerase reaction while W24F remained unaffected. Using a specially designed template-primer with photoactivatable bromo-dU base in the duplex region at the penultimate position to the primer terminus, we demonstrated that F61A, W24A, F61Y as well as the double mutant were also affected in their cross-linking ability with the duplex region of the template-primer. We also isolated the E-TP covalent complexes of these mutants and examined their ability to catalyze single dNTP incorporation onto the immobilized primer terminus. The E-TP covalent complexes from W24F mutant displayed wild-type activity while those from W24A, F61A, F61Y, and the double mutant (W24A/F61A) were significantly impaired in their ability to catalyze dNTP incorporation onto the immobilized primer terminus. This unusual observation indicated that amino acid residues involved in the positioning of the template overhang may also influence the binding and orientation of the duplex region of the template-primer. Molecular modeling studies based on our biochemical results suggested that conformation of both W24 and F61 are interdependent on their interactions with each other, which together are required for proper positioning of the +1 template nucleotide in the binary and ternary complexes.
Collapse
Affiliation(s)
- Alok K Upadhyay
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | |
Collapse
|
8
|
Rutvisuttinunt W, Meyer PR, Scott WA. Interactions between HIV-1 reverse transcriptase and the downstream template strand in stable complexes with primer-template. PLoS One 2008; 3:e3561. [PMID: 18974785 PMCID: PMC2570493 DOI: 10.1371/journal.pone.0003561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 10/09/2008] [Indexed: 11/18/2022] Open
Abstract
Background Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) forms stable ternary complexes in which RT is bound tightly at fixed positions on the primer-template (P/T). We have probed downstream interactions between RT and the template strand in the complex containing the incoming dNTP (+1 dNTP•RT•P/T complex) and in the complex containing the pyrophosphate analog, foscarnet (foscarnet•RT•P/T complex). Methods and Results UV-induced cross-linking between RT and the DNA template strand was most efficient when a bromodeoxyuridine residue was placed in the +2 position (the first template position downstream from the incoming dNTP). Furthermore, formation of the +1 dNTP•RT•P/T complex on a biotin-containing template inhibited binding of streptavidin when biotin was in the +2 position on the template but not when the biotin was in the +3 position. Streptavidin pre-bound to a biotin residue in the template caused RT to stall two to three nucleotides upstream from the biotin residue. The downstream border of the complex formed by the stalled RT was mapped by digestion with exonuclease RecJF. UV-induced cross-linking of the complex formed by the pyrophosphate analog, foscarnet, with RT and P/T occurred preferentially with bromodeoxyuridine in the +1 position on the template in keeping with the location of RT one base upstream in the foscarnet•RT•P/T complex (i.e., in the pre-translocation position). Conclusions For +1 dNTP•RT•P/T and foscarnet•RT•P/T stable complexes, tight interactions were observed between RT and the first unpaired template nucleotide following the bound dNTP or the primer terminus, respectively.
Collapse
Affiliation(s)
- Wiriya Rutvisuttinunt
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Peter R. Meyer
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Walter A. Scott
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
9
|
DeStefano JJ, Nair GR. Novel aptamer inhibitors of human immunodeficiency virus reverse transcriptase. Oligonucleotides 2008; 18:133-44. [PMID: 18637731 DOI: 10.1089/oli.2008.0103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Primer-template-based double-stranded nucleic acids capable of binding human immunodeficiency virus reverse transcriptase (HIV-RT) with high affinity were used as starting material to develop small single-stranded loop-back DNA aptamers. The original primer-templates were selected using a SELEX (Systematic Evolution of Ligands by EXponential enrichment) approach and consisted of 46- and 50-nt primer and template strands, respectively. The major determinant of the approximately 10-fold tighter binding in selected sequences relative to control primer-templates was a run of 6.8 G residues at the 3' primer end. Sixty, thirty-seven, twenty-seven, and twenty-two nucleotide loop-back single-stranded versions that retained the base pairs near the 3' primer terminus were constructed. Both the 60- and 37-nt versions retained high affinity for RT with K(d) values of approximately 0.44 nM and 0.66 nM, respectively. Random sequence primer-templates of the same length had K(d)s of approximately 20 nM and approximately 161 nM. The shorter 27- and 22-nt aptamers bound with reduced affinity. Several modifications of the 37-nt aptamer were also tested including changes to the terminal 3' G nucleotide and internal bases in the G run, replacement of specific nucleotides with phosphothioates, and alterations to the 5' overhang. Optimal binding required a 4- to 5-nt overhang, and internal changes within the G run had a pronounced negative effect on binding. Phosphothioate nucleotides or the presence of a 3' dideoxy G residue did not alter affinity. The 37-nt aptamer was a potent inhibitor of HIV-RT in vitro and functioned by blocking binding of other primer-templates.
Collapse
Affiliation(s)
- Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
10
|
Agopian A, Depollier J, Lionne C, Divita G. p66 Trp24 and Phe61 are essential for accurate association of HIV-1 reverse transcriptase with primer/template. J Mol Biol 2007; 373:127-40. [PMID: 17804012 DOI: 10.1016/j.jmb.2007.07.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 07/16/2007] [Accepted: 07/17/2007] [Indexed: 11/21/2022]
Abstract
Preventing dimerization of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) constitutes an alternative strategy to abolish virus proliferation. We have previously demonstrated that a short peptide derived from the Trp cluster of the connection domain disrupts the RT dimer by interacting with Trp24 and Phe61 in a cleft located between the fingers and the connection domains of p51. Both Trp24 and Phe61 of p51 are essential for the stability of the RT dimer. Here, in order to understand the requirement of Trp24 and Phe61 in the p66 subunit, we have investigated their implication in the formation of RT-primer/template (p/t) complexes and in RT processivity by combining pre-steady-state and steady-state kinetics with site-directed mutagenesis. We demonstrate that both residues are essential for proper binding of the p/t and control conformational changes required for RT ordered mechanism. Trp24 and Phe61 act on p/t binding and remodeling of the catalytic site. Phe61G mutation increases the binding "on" rate of both p/t and mismatched p/t, yielding an unfavorable RT-p/t for polymerase catalysis, unable to pursue mispair extension. Considering the structure of unliganded RT, Phe61 seems to be involved in the dynamics of p66 thumb-finger interactions and in stabilization of the p/t in the catalytic site. In contrast, the p66 Trp24G mutation alters the overall kinetics of p/t binding and is essentially involved in stabilizing the RT-p/t complex by contacting the 5' overhang of the template strand. Mutation of both Trp24 and Phe61 alters mispair extension efficiency, suggesting that disruption of the tight contacts between the fingers domain and the 5' overhang of the template strand increases RT fidelity and reduces RT processivity. Taken together, these studies infer that mutations altering the aromatic nature of Phe61 or Trp24 that may occur to counteract peptide inhibitors targeting this region will generate an unstable RT exhibiting low polymerase activity and higher fidelity. As such, our work suggests that the combined application of peptide-based RT dimerization inhibitors is likely to be highly efficient.
Collapse
Affiliation(s)
- Audrey Agopian
- Centre de Recherches de Biochimie Macromoléculaire, Department of Molecular Biophysics and Therapeutic, FRE-2593 CNRS, 1919 Route de Mende, 34293 Montpellier, France
| | | | | | | |
Collapse
|
11
|
Paulson BA, Zhang M, Schultz SJ, Champoux JJ. Substitution of alanine for tyrosine-64 in the fingers subdomain of M-MuLV reverse transcriptase impairs strand displacement synthesis and blocks viral replication in vivo. Virology 2007; 366:361-76. [PMID: 17532359 PMCID: PMC2045069 DOI: 10.1016/j.virol.2007.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 04/11/2007] [Accepted: 04/25/2007] [Indexed: 11/28/2022]
Abstract
A distinctive property of reverse transcriptase is the ability to carry out strand displacement synthesis in the absence of accessory proteins such as helicases or single-strand DNA binding proteins. Structure-function studies indicate that the fingers subdomain in HIV-1 reverse transcriptase contacts the template strand downstream of the primer terminus and is involved in strand displacement synthesis. Based on structural comparisons to the HIV-1 enzyme, we made single amino acid substitutions at the Tyr-64 and Leu-99 positions in the fingers subdomain of the M-MuLV reverse transcriptase to ask whether this subdomain has a similar role in displacement synthesis. In vitro assays comparing non-displacement versus displacement synthesis revealed that substitution of alanine at Tyr-64 generated a reverse transcriptase that was impaired in its capacity to carry out DNA and RNA displacement synthesis without affecting polymerase processivity or RNase H activity. However, substitution of Tyr-64 with phenylalanine and a variety of substitutions at position Leu-99 had no specific effect on displacement synthesis. The Y64A substitution prevented viral replication in vivo, and Y64A virus generated reduced levels of reverse transcription intermediates at all steps beyond the synthesis of minus strong stop DNA. The role of the fingers subdomain and in particular the possible contributions of the Tyr-64 residue in displacement synthesis are discussed.
Collapse
Affiliation(s)
- Benjamin A Paulson
- Department of Microbiology, School of Medicine, Box 357242, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|